

Supplement of

Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO_2 fluxes

Lucille Barré et al.

Correspondence to: Lucille Barré (lucille.barre@mio.osupytheas.fr) and Thibaut Wagener (thibaut.wagener@mio.osupytheas.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary materials

S1. Supplementary simulations

S1.1 Simulation with constant TA

In addition to simulations with autochthonous and allochthonous TA formulations, we ran a simulation in which TA is set to

5 a constant (mean of surface SOLEMIO measurements for the year 2017: 2591.2 μmol kg⁻¹). Statistical indicators (%BIAS,

AAE, AE and RMSD) for this simulation are presented in Table S1.

Table S1. Statistical indicators calculation for the simulation with a constant TA (TA = 2591.2 μ mol kg⁻¹). Mean, SD, AE, AAE and RMSD are in the same unit than the considered variable, i.e.: μ mol kg⁻¹ for TA and DIC, μ atm for *p*CO₂ and mmol m⁻³ for [H⁺]. %BIAS is without unit.

		ТА	DIC	pCO ₂	$\mathbf{p}\mathbf{H}_{\mathrm{T}}$	$[\mathbf{H}^+]$
Ν	Observation	20	20	20	20	20
Mean ± SD	Observation	2591.2	2294.9	391.0	8.09	8.08×10^{-9}
		± 19.4	± 24.0	± 31.0	± 0.03	\pm 5.52 $ imes$ 10 ⁻¹⁰
Mean ± SD	Model	2591.2	2305.7	418.0	8.07	8.48×10^{-9}
		± 0.22	± 26.1	± 28.9	± 0.03	$\pm 2.64 imes 10^{-10}$
%BIAS	Model	-0.002	-0.50	-5.79	0.26	-4.95
AAE	Model	16.5	19.7	35.5	0.03	6.26×10^{-10}
AE	Model	-0.06	-11.5	-22.6	0.02	-4.00×10^{-10}
RMSD	Model	18.90	26.14	38.45	0.03	6.78×10^{-10}

10 S1.2 Simulation with modified aeration process

...

15

By considering a small volume of 1 m^3 at the surface, Eco3M_MIX-CarbOx fail to represent seasonality and annual mean value of air-sea CO₂ fluxes. To better understand this feature, we ran a simulation with a modified version of aeration process (Eq. S1).

$$Aera = \frac{\kappa_{ex}}{30.5} * \alpha * \left(pCO_{2,sw} - pCO_{2,atm} \right)$$
(S1)

where Aera is in mmol m⁻³ s⁻¹. Kex represents the gas transfer velocity (Wanninkhof, 2014) in cm h⁻¹, α the CO₂ solubility coefficient (Weiss, 1974) in mol L⁻¹ atm⁻¹, *p*CO_{2,sw} the seawater *p*CO₂ modelled at the previous time step in µatm, *p*CO_{2,atm} the atmospheric *p*CO₂ from CAV in µatm. The process is now applied to a larger thickness of water which represents the mean value of mixed layer depth in the area (H = 30.5 m, Wimart-Rousseau et al., 2020).

Figure S1. Comparison of model outputs from SIMC1 (aeration process apply on a 1 m layer, Table 2 of the manuscript) and SIMR1 (aeration process apply on 30.5 m layer, model runs showing daily average (a) TA, (b) DIC, (c) pCO_2 , (d) pH_T, and air-sea CO₂ fluxes for 2017. SOLEMIO data are represented by blue markers.

This new simulation (SIMR1) is compared to the simulation in which allochthonous formulation of TA is used (SIMC1,
Table 1 of the manuscript). The representation of the variables of carbonate system and air-sea CO₂ fluxes for both simulations are presented in figure S1. A comparison of annual mean values of air-sea CO₂ fluxes for both simulations and Wimart-Rousseau et al. (2020) study is available in Table S2.

Table S2: Comparison of annual mean value and daily value range obtained for the SIMC1 (H = 1 m), SIMR1 (H = 30.5 m) and in Wimart-Rousseau et al. (2020) study.

	Annual mean value (mmol m ⁻² yr ⁻¹)	Daily value range (mmol m ⁻² d ⁻¹)
SIMC1	-0.21	[-13, 15]
SIMR1	-113.6	[-33, 34]
Wimart-Rousseau et al. (2020)	-803	[-15, 10]

Figure S2: TA measurements in the Rhône River (data: Naïades, https://naiades.eaufrance.fr, first data available: January 2018).

S3. Supplementary tables

Table S3. Salinity-TA couples for LSE events measured at SOLEMIO between 6 June 2016 and 26 June 2019 (last data available).

	Salinity	TA (μmol kg ⁻¹)
6 June 2016	37.11	2603.0
4 July 2016	37.78	2579.6
2 November 2016	37.30	2585.5
15 March 2017	36.82	2600.6
5 September 2017	37.18	2560.8
31 May 2018	37.66	2568.4
26 June 2019	37.32	2520.7
2 November 2016 15 March 2017 5 September 2017 31 May 2018 26 June 2019	37.30 36.82 37.18 37.66 37.32	2585.5 2600.6 2560.8 2568.4 2520.7

35 References

Fraysse, M., Pinazo, C., Faure, V. M., Fuchs, R., Lazzari, P., Raimbault, P. and Peyraud, I.: Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone? PLoS ONE, 8(12): e80012, https://doi.org/10.1371/journal.pone.0080012, 2013.

Fraysse, M., Pairaud, I., Ross, O. N., Faure, V. M. and Pinazo, C.: Intrusion of Rhone River diluted water into the Bay of

40 Marseille: Generation processes and impacts on ecosystem functioning, Journal of Geophysical Research: Oceans, 119, https://doi.org/10.1002/2014JC010022, 2014.

Gatti, J., Petrenko, A., Devenon, J.-L., Leredde, Y. and Ulses, C.: The Rhone River dilution zone present in the northeastern 1794-1815, shelf of the Gulf of Lion in December 2003. Continental Shelf Research, 26. https://doi.org/10.1016/j.csr.2006.05.012, 2006.

45 Lajaunie-Salla, K., Diaz, F., Wimart-Rousseau, C., Wagener, T., Lefevre, D., Yohia, C., Xueref-Remy, I., Nathan, B., Armengaud, A., and Pinazo, C.: Implementation and assessment of a carbonate system model (Eco3m-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France), Geoscience Model Developpment, 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021, 2021.

Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnology and

Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault, P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C., Garcia, F., Xueref-Remy, I., Blanc, P. E., Armengaud, A., and Lefèvre, D.: Temporal variability of the carbonate system and air–sea CO₂ exchanges in a Mediterranean human-impacted coastal site, Estuar. Coast. Shelf S., 236, <u>https://doi.org/10.1016/j.ecss.2020.106641</u>, 2020.

Oceanography: Methods, 12 (6), 351-362, https://doi.org/10.4319/lom.2014.12.351, 2014.

55

50