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Abstract. With the growing complexity of land surface mod-
els used to represent the terrestrial part of wider Earth sys-
tem models, the need for sophisticated and robust parameter
optimisation techniques is paramount. Quantifying parame-
ter uncertainty is essential for both model development and
more accurate projections. In this study, we assess the power
of history matching by comparing results to the variational
data assimilation approach commonly used in land surface
models for parameter estimation. Although both approaches
have different setups and goals, we can extract posterior pa-
rameter distributions from both methods and test the model–
data fit of ensembles sampled from these distributions. Using
a twin experiment, we test whether we can recover known
parameter values. Through variational data assimilation, we
closely match the observations. However, the known param-
eter values are not always contained in the posterior parame-
ter distribution, highlighting the equifinality of the parameter
space. In contrast, while more conservative, history matching
still gives a reasonably good fit and provides more informa-
tion about the model structure by allowing for non-Gaussian
parameter distributions. Furthermore, the true parameters are
contained in the posterior distributions. We then consider his-
tory matching’s ability to ingest different metrics targeting
different physical parts of the model, thus helping to reduce

the parameter space further and improve the model–data fit.
We find the best results when history matching is used with
multiple metrics; not only is the model–data fit improved,
but we also gain a deeper understanding of the model and
how the different parameters constrain different parts of the
seasonal cycle. We conclude by discussing the potential of
history matching in future studies.

1 Introduction

Land surface models (LSMs) are essential for studying land–
atmosphere interactions and quantifying their impact on the
global climate. They help us comprehend and represent the
mass and energy fluxes exchanged in the soil–vegetation–
atmosphere continuum, as well as the lateral transfers. How-
ever, in part due to their increasing complexity (Fisher and
Koven, 2020), these models are subject to large uncertainties
in terms of missing processes and poorly constrained param-
eters. Reducing this uncertainty is crucial to generate reliable
and credible model projections, especially since creating ro-
bust predictions of the terrestrial biosphere is becoming a
critical scientific and policy priority, e.g. in the context of
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plans for land-based climate mitigation such as re-greening
(Roe et al., 2021).

To address this parametric uncertainty, it is customary to
calibrate (or “tune”) the model. This means finding model
parameters that provide a good description of the system’s
behaviour, and this is often taken to be the model’s ability to
reproduce observations. In LSMs, this is commonly achieved
through data assimilation (DA), which uses a Bayesian
framework to account for prior parameter knowledge and to
obtain posterior values and uncertainties. DA can be used
to improve the initial state of the model and/or the internal
model parameters (Rayner et al., 2019). In numerical weather
forecasting, DA is predominately used to update the state of
the model, due to the chaotic nature of the weather system.
These models are primarily used to provide near-real-time
forecasts, and errors in the initial state can dominate the er-
ror in short-term future projections. In contrast, in climate
studies in which we tend to be more interested in long-term
trends, we rely less on initial state optimisation and more
on parameter calibration or state adjustment. This is espe-
cially true for carbon cycle models, where, in addition, a lot
of processes are based on empirical equations that may not
be perfect representations of the actual processes. In addi-
tion, LSMs use a small number of parameters to represent a
large diversity of ecophysiological properties. As such, the
calibration or tuning of this parameter has become central to
climate modelling. For a long time, it was done by hand and
was often linked to the subjectivity of the modeller (Hourdin
et al., 2017). The emergence of DA techniques for calibrat-
ing parameters has made it possible to focus on more objec-
tive criteria and account for uncertainties. When dealing with
LSMs of high complexity, we often rely on a 4-dimensional
variational DA (4DVar, simply referred to here as VarDA)
framework in which all observations within the assimilation
time window are used to create a cost function which is then
minimised (Rayner et al., 2005; Scholze et al., 2007; Kuppel
et al., 2012; Kaminski et al., 2013; Raoult et al., 2016; Peylin
et al., 2016; Castro-Morales et al., 2019; Pinnington et al.,
2020). Over the last 15 years, VarDA has been successfully
used in land surface modelling to optimise uncertain parame-
ters (MacBean et al., 2022). The focus of these optimisations
has often been to better estimate carbon stocks and fluxes
(Kuppel et al., 2012; Kaminski et al., 2013; Raoult et al.,
2016) by targeting vegetation- and carbon-cycle-related pa-
rameters, although more some recent studies have also fo-
cused on improving LSM soil moisture predictions (Scholze
et al., 2016; Pinnington et al., 2018; Raoult et al., 2021).
However, most of these examples use a limited number of
in situ data to calibrate a handful of parameters. As LSMs
become more complex, so must the experiments used to cali-
brate them. This also means that traditional Bayesian calibra-
tion techniques, such as Markov Chain Monte Carlo, are too
costly to use. Increased process representation and the tighter
coupling between the different terrestrial cycles (e.g. water,
carbon, and energy) mean that more parameters need to be

considered. As a result, LSMs are also becoming more costly
to run. Furthermore, although satellite retrievals now provide
us with data in previously hard-to-monitor areas, these data
at high temporal and spatial resolutions need to be carefully
ingested and contribute to more costly optimisations.

Emulators, i.e. simplified or surrogate models that are used
to approximate complex model behaviour, can provide a so-
lution to some of these computational challenges. They are
constructed by interpolating between the points where the
model has been run. Indeed, emulator-based LSM parame-
terisation has been gaining traction in recent years (Fer et al.,
2018; Dagon et al., 2020). Emulators can be used to emulate
LSM outputs (e.g. Kennedy et al., 2008; Petropoulos et al.,
2014; Huang et al., 2016; Lu and Ricciuto, 2019; Baker et al.,
2022). However, this can be challenging given the large, non-
linear, and multivariate output space. Fortunately, for cali-
bration, we do not need to emulate the full output space but
rather the property we seek to improve – for example, the
likelihood (Fer et al., 2018).

The rise in emulators in the field of LSM calibration has
also led to the preliminary testing of the so-called history-
matching (HM) method to tune LSM parameters (Baker
et al., 2022; McNeall et al., 2024). This is a different ap-
proach which asks not what is the best set to use but, rather,
what parameters can we rule out; i.e. what regions of parame-
ter space lead to model outputs being “too far” from observa-
tions? To do this, HM uses an implausibility function, based
on metrics chosen to assess the performance of the model,
to rule out unlikely parameters. HM commonly uses an it-
erative approach known as iterative refocusing to reduce the
parameter space, leaving the least unlikely parameter values
– the not-ruled-out-yet (NROY) space. This is a more conser-
vative approach to calibration, primarily used for uncertainty
quantification, helping to identify structural deficiencies of
the model (Williamson et al., 2015; Volodina and Challenor,
2021). Although this technique can work without emulators
(i.e. if the model is extremely fast; Gladstone et al., 2012), the
high cost of running LSMs means that emulators will likely
be required.

HM has successfully been used in a number of fields, mak-
ing it an established statistical method with a diverse lit-
erature record. Initially, it was introduced as a method for
discovering parameter configurations for computationally in-
tensive oil well models (Craig et al., 1997). It has since
been used in various domains of science and engineering,
such as galaxy formation (Bower et al., 2010; Vernon et al.,
2014), disease modelling (Andrianakis et al., 2015), systems
biology models (Vernon et al., 2022), and traffic (Boukou-
valas et al., 2014). In climate sciences, HM was also used
to calibrate climate models of different complexities (Ed-
wards et al., 2011; Williamson et al., 2013, 2015; Hourdin
et al., 2023), ocean models (Williamson et al., 2017; Lguen-
sat et al., 2023), atmospheric models (Couvreux et al., 2021;
Hourdin et al., 2021; Villefranque et al., 2021), and ice sheet
models (McNeall et al., 2013).
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Here, we present the application of HM to an LSM, start-
ing with its implementation into the ORCHIDEE Data As-
similation Systems (ORCHIDAS; https://orchidas.lsce.ipsl.
fr/, last access: 23 July 2024). Using a twin experiment with
known model parameters and model errors, we explore HM’s
ability to recover these parameters and the resulting model
fit to the data (here the model is run with the true parame-
ters). There are two parts to this study. In the first part, we
compare HM to VarDA by considering the two minimisa-
tion techniques historically used to calibrate the ORCHIDEE
LSM (i.e. a gradient-based and a Monte Carlo approach).
We initially use a root mean square difference metric in the
HM experiment to mimic the cost function used in VarDA.
Given the different motivations behind VarDA and HM, we
are less interested in finding the optimal set of parameters
but rather in whether the true parameters are contained in the
posterior distributions obtained and how the spread of the
model runs generated from sampling those distributions fits
the data. In the second part of the study, we delve deeper into
the HM methodology to demonstrate its versatility in consid-
ering different target metrics. We test whether we can more
closely constrain parameters involved in different processes
by specifically targeting these processes with our metrics. We
conclude by discussing our study’s limitations and exploring
future avenues for employing HM in LSM calibration.

2 Methods and data

2.1 ORCHIDEE land surface model

The ORCHIDEE (ORganising Carbon and Hydrology In Dy-
namic EcosystEms; originally described in Krinner et al.,
2005) model simulates the carbon, water, and energy ex-
changes between the land surface and the atmosphere. Fast
processes such as photosynthesis, hydrology, and energy bal-
ance are computed at a 30 min time step, while slow pro-
cesses such as carbon allocation and phenology are simulated
daily. The model can be run at different resolutions ranging
from point scale to global to offline (i.e. with meteorolog-
ical forcing data externally applied) or coupled as part of
the wider IPSL (Institut Pierre-Simon Laplace) Earth system
model. In this study, we use version 2.2 of the ORCHIDEE
model, which is the one used in the Coupled Model Inter-
comparison Project Phase 6 (CMIP6; Boucher et al., 2020;
Lurton et al., 2020).

2.2 Data assimilation framework – the ORCHIDAS
system

The ORCHIDAS system is set up to optimise the parameters
of the ORCHIDEE model. It has been used in over 15 years
of terrestrial optimisation studies (MacBean et al., 2022), ini-
tially with a focus on the carbon cycle and more recently to
optimise parts of the other terrestrial cycles such as water
(Raoult et al., 2021), methane (Salmon et al., 2022), and ni-

trogen (Raoult et al., 2023) See https://orchidas.lsce.ipsl.fr/
(last access: 23 July 2024) for a full list of the published stud-
ies.

This flexible framework easily allows ORCHIDEE to be
run with many different parameter settings which, histori-
cally, are used to minimise a cost function (using a stan-
dard Bayesian calibration setup) or test the sensitivity of the
model using classic sensitivity analysis methods (e.g. Morris,
1991, and Sobol, 2001). For this study, a HM methodology
adapted from HIGH-TUNE (the Laboratoire de Météorolo-
gie Dynamique (LMDZ) HM tool developed to improve and
calibrate the parameterisations involved in the representation
of boundary layer clouds; Couvreux et al., 2021; Hourdin
et al., 2021; Villefranque et al., 2021) was added to ORCHI-
DAS, allowing these different runs to be used to train emula-
tors and used to calculate implausibility.

2.2.1 A Bayesian setup

We use a Bayesian setup to account for model and observa-
tion errors. Therefore, we need to establish how we statis-
tically model the relationship between the observations and
the model variables. Following the best input approach by
Kennedy and O’Hagan (2001) for an observational constraint
z, let

z= y+ e, (1)

where y represents the underlying aspects of the system be-
ing observed, and e represents uncorrelated error in these
observations (perhaps comprising instrument error and any
error in deriving the data products making up z). Note that
this observation error, e, is treated as a random quantity with
mean 0 and variance σ 2

e (i.e. e ∼N (0,σ 2
e )). We then assume

that x∗ is the “best input” to our model H , and with η denot-
ing the model discrepancy, we get the following:

z= y+ e =H(x∗)+ η+ e. (2)

The model discrepancy, which is assumed to be independent
of x∗ and H(x), accounts for the model structural error due
to the inherent inability of the model to reproduce the ob-
servations exactly (e.g. due to unresolved physics or missing
processes, parameterisation schemes, or the resolution of nu-
merical solvers). This error has mean zero (unless the user
knows the direction in which the model is biased) and vari-
ance σ 2

η (i.e. η ∼N (0,σ 2
η )).

2.2.2 Variational data assimilation

In variational data assimilation (VarDA), we are looking for
p(x|z), i.e. the distribution of parameters given the observa-
tions. Here we treat z, the observations, as a vector to assim-
ilate over the whole time window. This is known as 4DVar
(compared to 3DVar, where the observations are compared
to a single model output at a time). Given a known parameter
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vector called the background (or prior, xb), the knowledge of
parameters is described by the probability density function
p(x). Similarly, p(z|x) is the likelihood of the observations
z, given the parameters x. Bayes’ theorem can be used to
combine these probabilities as

p(x|z)∝ p(z|x)p(x). (3)

Gaussian distributions are commonly used to represent the
different terms of the optimisation so that

p(z|x)∝ exp
[
−

1
2
(z−H(x))TR−1(z−H(x))

]
;

p(x)∝ exp
[
−

1
2
(x− xb)

TB−1(x− xb)

]
, (4)

where R and B are the covariance matrices of the observa-
tion/model errors (i.e. e+ η) and the background errors, re-
spectively.

When combining these analytical expressions, we find that
maximising the likelihood of p(x|z) is equivalent to min-
imising the cost function:

J (x)=
1
2

[
(H(x)− z)TR−1(H(x)− z)

+ (x− xb)
TB−1(x− xb)

]
. (5)

Note that this is known as finding the maximum a poste-
riori probability estimate in Bayesian statistics. Note that
here we use the term variational to describe the form of
the cost function minimised. While the classical approach to
minimise this function relies on gradient-based methods, in
the absence of gradient information, other methods have in-
creasingly been used to find the optimum. This has led per-
haps to an abusive use of the term “variational”; however,
we feel here it helps to group, via a common cost func-
tion, the two minimisation approaches we wish to compare
to the history-matching approach. Algorithms to minimise
this cost function broadly fall into two categories: determin-
istic gradient-based methods and stochastic random search
methods. Here we consider one from each category, both of
which are commonly used in land surface model parameter
estimation studies. The first is the quasi-Newton algorithm
L-BFGS-B (limited memory Broyden–Fletcher–Goldfarb–
Shanno algorithm with bound constraints; see Byrd et al.,
1995), henceforth referred to as BFGS. To calculate the gra-
dient information needed for this method, we use finite dif-
ferences (i.e. the ratio of change in model output against the
change in model parameter). While the gradient can be more
accurately computed with the tangent linear (linear derivative
of the forward model) or adjoint (a computationally efficient
way used to calculate the gradient of the cost function), these
are extremely hard to compute for complex models like OR-
CHIDEE and therefore not available at this time. The second
is the genetic algorithm (GA; Goldberg and Holland, 1988;

Haupt and Haupt, 2004), based on the laws of natural selec-
tion, and belongs to the class of evolutionary algorithms. It
considers the set of parameters as a chromosome, with each
parameter as a gene. At each iteration, the algorithm gen-
erates a population g of chromosomes by recombining and
possibly randomly mutating (defined by a mutation rate) the
fittest chromosomes from the previous iterations. Both meth-
ods are fully described in Bastrikov et al. (2018).

With the assumed Gaussian prior errors and further assum-
ing linearity of the model in the vicinity of the solution, we
can approximate the posterior covariance error matrix Bpost
as follows:

Bpost =
[
HTR−1H+B−1

]−1
, (6)

where H is the model sensitivity (Jacobian) at the minimum
of the cost function (Eq. 5; see Tarantola, 2005). To esti-
mate the posterior uncertainty in the parameters, we sam-
ple from the multivariate normal distribution N (xopt,Bpost)

(Tarantola, 2005, Chap. 3.3.1). This ensures that the whole
Bpost matrix is used, including off-diagonal elements that de-
scribe the covariance between parameters. Since Bpost relies
on information about the curvature of parameter space, it
lends itself well to gradient-based approaches (e.g. BFGS).
Nevertheless, it can be used to calculate the posterior dis-
tribution at the end of any optimisation algorithm. GAs, al-
though a Monte Carlo technique, lack the basic theorem of
the Metropolis algorithm (Tarantola, 2005), which involves
sampling the parameter space according to a prescribed dis-
tribution. Instead, genetic algorithms follow unknown distri-
butions and, therefore, cannot be used directly for the Monte
Carlo integration (Sambridge, 1999) needed to calculate the
posterior parameter distribution. While methods do exist to
resample parameter space, these are not without limitations
and are out of the scope of this study. Instead, we also calcu-
late Bpost at the end of the GA optimisations, using the same
hypothesis as for BFGS above.

In this work, we use a diagonal R matrix, and therefore,
we can think of the matrix R as a vector of errors σ . This
means that when performing a multi-data-stream optimisa-
tion (i.e. when considering more than one variable), we can
decompose the first term of Bpost in the following manner:

HTR−1H=
D∑
i=0

HTσ−1
i H, (7)

where D is the total number of data streams used in the opti-
misation, and σi is the error associated with each data stream,
assumed to be the same for all observations in that data
stream. Using this decomposition, we can create some proxy
posterior covariance matrices associated with each flux,

B′posti
= [HTσ−1

i H+B−1
]
−1, (8)

to gain insight into the different constraints that each separate
set of observations has on the posterior parameters.
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2.2.3 History matching

In Bayesian history matching (HM), we use observed data to
rule out any parameter settings that are “implausible”, usu-
ally done with the help of an emulator. It commonly uses
the notion of iterative refocusing, where model simulations at
each iteration (referred to as a wave) are chosen to improve
the emulator and the calibration. Instead of using a unique
cost function, an implausibility is computed independently
for different metrics to rule out parameters too far from the
target, as follows:

I(x)=
|z−E[H(x)]|

√
Var[z−E[H(x)]]

(9)

=
|z−E[H(x)]|

√
Var[H(x)] +Var[e] +Var[η]

, (10)

where E is the expectation, and Var is the variance. Large
values of I(xi) for a given xi imply that, relative to our un-
certainty specification, it is implausible that H(xi) is con-
sistent with the observations, and therefore, xi can be ruled
out. Note that to calculate the implausibility, we only require
the observation error variance, the model discrepancy vari-
ance, and the variance and expectation of H(x), which can
be defined using an emulator. Unlike in VarDA, there is no
background term, meaning that we do not need to calculate a
B matrix similar to the one found in Eq. (5).

By choosing a threshold a, we can formally define the not-
ruled-out-yet (NROY) space as

XNROY = {x ∈ X : Im(x)≤ a,∀m}, (11)

where Xm is the implausibility for a given metric m. Here,
we set a = 3, following the 3σ rule (Pukelsheim, 1994). This
states that for any unimodal continuous probability distribu-
tion, at least 95 % of the probability mass is within 3 standard
deviations of the mean.

To increase computational efficiency, it is very common to
use emulators in HM. Here, we use Gaussian process (GP)
emulators – a well-known statistical model that has the ad-
vantage of interpolating observed model runs and provides a
probabilistic prediction (and hence variance) for the model at
unseen x, which is required for the implausibility computa-
tion (Couvreux et al., 2021). The emulator gives the follow-
ing probability distribution for H :

H(x)|β,σ 2,δ ∼ GP
(
m(x;β),k(·, ·,σ 2,δ)

)
, (12)

where m(x;β) is a prior mean function with parameters β,
and k is a specified kernel (i.e. a covariance function). Within
the kernel, the variance is controlled by σ 2, and each ele-
ment of δ controls the correlation attributed to each input.
These emulators are trained on the true model runs. For more
specifics about how the emulators are built, see Williamson
et al. (2013).

Figure 1 illustrates how HM is used in the ORCHIDAS
system. We first define our p-dimensional parameter space
X . From this space, parameter sets are randomly drawn and
used to run the model. It is common to run the model for
approximately 10 times the number of parameters (Loeppky
et al., 2009). The outputs from each run are then mapped
onto scalar values with a metric (e.g. root mean square de-
viation, RMSD). Emulators are constructed for each metric,
and these are used to sample from XNROY. This allows us
to have a lot more points than model runs in the ruling-out
step. The implausibility (Eq. 10) is used to rule out points
to refine the XNROY. More waves can then be conducted us-
ing this new space until we are satisfied with the remaining
space. If the XNROY is empty after a wave, then it means that
we cannot match the observations given the current error tol-
erances. If the XNROY no longer reduces between successive
waves, then it might signify that the emulator variance is too
high relative to the spread of the ensemble. As such, training
the emulator with more runs may be necessary. It may also
mean that the system has converged, and all remaining points
are within the tolerance set. As a result, we may be able to
reduce the cutoff (a). Although in this study we only focus
on the same metrics throughout each HM experiment, there
is the potential to change them as the waves progress.

2.3 Experimental setup

2.3.1 Twin experiment

We perform a twin experiment to compare the different ap-
proaches in a controlled manner. This means that we generate
a set of pseudo-observations using a “true” set of parame-
ters; here, we use the default ORCHIDEE values. Gaussian
white noise, with a standard deviation set to 0.1 times the
time series’ mean, was added to each time step to represent
the model/observation error. We use this error to set up the
experiments, with e+ η (with η = 0) for HM and the diag-
onal element for the R in VarDA. We further use a diagonal
B in our VarDA experiments, where the prior uncertainty is
set to 100 % of the parameter range of variation (compared
to 40 % of the range used in Kuppel et al., 2012) to allow for
maximal space exploration.

We focus our study on a temperate broadleaf decidu-
ous forest site from the eddy covariance Fluxnet database
(Pastorello et al., 2020), FR-Fon (Fontainebleau-Barbeau;
Delpierre et al., 2016). This site is often used in our cali-
brations. Here, we focus on the first year of the time series
(year 2005) for calibration (to save on computational cost)
and the rest of the time series (years 2006–2009) for evalua-
tion. Since we are running a twin experiment, and therefore,
the observations are artificially generated, we only use the
Fluxnet meteorological data to drive our model. As in pre-
vious work (e.g. Kuppel et al., 2012; Bastrikov et al., 2018),
we focus on the model’s ability to simulate net ecosystem ex-
change (NEE) and latent heat (LE) fluxes. NEE represents the
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Figure 1. A flowchart showing the HM process in ORCHIDAS.

difference between carbon dioxide uptake by plants through
photosynthesis and carbon release through respiration, with
the growing season typically being characterised by negative
NEE that indicates net carbon absorption. LE represents the
exchange of energy between the Earth’s surface and the at-
mosphere through the phase changes in water, with higher
values during periods of increased evaporation and transpi-
ration often associated with warmer seasons. The parame-
ters for this study were chosen with these fluxes in mind,
using our past expertise, a preliminary Morris (1991) sen-
sitivity analysis, and the desire to work with a small set of
parameters (see the Supplement for more on the preliminary
sensitivity tests). These parameters are listed in Table 1.

2.3.2 Performed experiments

To minimise the cost function (Eq. 5) in the VarDA ex-
periments, we consider both BFGS (local gradient descent)
and GA (global random search) optimisation techniques. For
BFGS, the algorithm is run for 25 iterations, which was
found to be sufficient for the optimisation to converge. For
GA, a population of 24 and a mutation rate of 0.2 were used,
along with 25 iterations. These values are based on previous
optimisations performed using Fluxnet data to optimise sim-
ulated NEE/LE in the ORCHIDEE model (Bastrikov et al.,
2018) and were also found to be sufficient for convergence.

We perform two sets of experiments per minimisa-
tion algorithm. The first set of experiments uses Bpost
to assess posterior distributions after a single opti-
misation. To calculate the posterior uncertainties, we
sample 10 000 points from N (xopt,Bpost) using the
random.multivariate_normal function from the
NumPy Python package (Papoulis, 1991; Duda et al., 2001).
In the second set of experiments, we perform many optimi-
sations (200), starting from random priors, and use the pos-
terior parameter values to elicit the posterior parameter un-
certainty. Given the probabilistic results obtained, we refer
to these experiments as “stochastic”. In a standard optimi-

sation, we would use the default model parameter values as
the prior since they are our best guess. However, as we are
performing a twin experiment in which the default parameter
values are the true solution, we must start from a different
part of the parameter space. To do this, we generate several
random parameter sets. For the Bpost experiments, where we
consider only one optimisation, we chose the randomly gen-
erated parameter set that starts closest to the true values to
be the most realistic. Although not shown, we repeated the
analysis using a different prior, which gave similar results.
For the stochastic experiments, we start from 200 different
uniformly and randomly generated priors.

For HM, we do not need to worry about prior parameter
values – only the parameter ranges. For each wave, the model
is run 60 (i.e. 10 times the number of parameters) times. Ini-
tially, we consider the RMSD between the model and true
model run as the target metric since this closely relates to
the cost function used in VarDA (Eq. 5). In the second part
of the study, we vary the metrics to fully explore the power
of HM. Indeed, using RMSD is often discouraged since it is
usually associated with a small signal-to-noise ratio. Further-
more, the implausibility (Eq. 10) is already similar to the root
mean square error (Couvreux et al., 2021). In this section, we
consider additional metrics to highlight the power of HM. To
select informative metrics, it can be helpful to identify spe-
cific features that we want to constrain. For example, for both
the NEE and LE fluxes, we are looking at a seasonal cycle.
As such, we expect NEE to have a global sink (i.e. maxi-
mum carbon uptake) and LE to have a global peak (i.e. maxi-
mum evapotranspiration) in summer. As well as constraining
the magnitude of these turning points, we might also want to
consider constraining when they occur or the rate of change
leading to and from them (i.e. the gradient of slopes). Evapres
and Rootprof parameters impact the slopes of the LE seasonal
curve in spring and autumn, respectively, so focussing on
these gradients may help better inform us about these param-
eters. Similarly, Lagecrit impacts senescence, so the slope in
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Table 1. ORCHIDEE parameters used in this study. True value refers to the default value of each parameter in ORCHIDEE. These values
were used to generate the observations used in the twin experiment. Range refers to the range of variation allowed for each parameter.

Description True value Range

VCmax Maximum carboxylation rate (µmol m−1 s−1) 50 [30, 80]
SLA Specific leaf area (m2) 0.026 [0.013, 0.05]
Lagecrit Critical leaf age for starting leaf senescence (days) 160 [90, 240]
Evapres Factor controlling bare soil resistance to evapotranspiration (–) 1 [0, 1.3]
Rootprof Root profile parameter of an exponential function that describes the decrease in root

density as a function of depth (m)
0.8 [0.2, 3.0]

Q10 Parameter determining the temperature dependency of the heterotrophic respiration (–) 0.69 [0, 1.1]

Table 2. Target and variance used for each metric tested in the HM
experiments. Min/max are taken as the minimum/maximum of the
smoothed annual cycle (12-period rolling mean with a window size
of 5). Spring slope is taken as the difference between April and
February monthly means, autumn slope is taken to be the difference
between September and August monthly means, and the initial C
stocks are taken as the starting value of the time series.

Metric NEE (gC m−1 d−1) LE (W m−2)

RMSD 0± 0.04 0± 12.5
Min/max −4.81± 0.004 101.96± 0.696
Spring slope −5.46± 0.003 59.53± 0.72
Autumn slope 2.16± 0.004 −29.87± 0.85
Initial C stocks 1.558± 0.0002 n/a

n/a – not applicable.

autumn is of particular interest. We also know that in win-
ter, there will be little to no photosynthesis (since we are
considering a deciduous site). Similarly, we expect low rates
of terrestrial ecosystem respiration during these months and,
therefore, can constrain NEE in winter. This is similar to con-
straining the initial carbon pools in the model. In this work,
we consider four of these metrics: (i) min/max of the sea-
sonal cycle (sink for NEE; peak for LE), (ii) the slope during
spring (taken as the difference between April and February
monthly means) and (iii) the slope during the senescence pe-
riod (taken as the difference between September and August
monthly means), and (iv) initial carbon stocks (NEE only).
We perform five experiments, with four using different met-
rics (listed in Table 2) and the fifth combining all metrics. We
perform 10 waves in each case and keep a constant cutoff of
3. At each step, we check the emulator quality (see Sect. B).
We also retain the true model runs that are below the cutoff
to train the next emulators.

3 Results

3.1 Comparing variational data assimilation and
history matching

3.1.1 Model–data fit

The first step in any calibration experiment is commonly to
check the posterior model–data fit. Instead of considering the
fit given by a single parameter set for each experiment, we
consider the ensemble of posterior parameters taken from
each experiment (Fig. 2). For the VarDA results, we consider
model runs generated from each optimal parameter set found
in the stochastic experiments (i.e. 200 optimisations) since
these results give a larger posterior spread than the Bpost ex-
periments (not shown). For HM, we consider the experiment
using the RMSD as the target metric since this most closely
relates to the cost function used in VarDA. For consistency,
we consider 200 parameter sets sampled from the XNROY
found at the end of the experiment (i.e. after 10 waves) and
use these to run the model to create the posterior ensembles.

The model–data fit in all experiments is much improved
compared to the prior ensemble, with the GA experiment
closely matching the observations, BFGS performing sec-
ond best, and HM retaining the most spread. Overall, we
are able to capture the seasonality and general magnitude of
the observed fluxes. Typically, the only parts of the observa-
tions that are not contained in the posterior spread are the LE
winter values, which are also outside of the prior ensemble
spread. This suggests that these values are not reproducible
by the model and represent the structural error (i.e. the noise
we added to the true model realisation used to generate these
pseudo-observations). We also note that the GA experiment
gives an ensemble spread that is smaller than the spread of
the noise on the observations, suggesting that these parame-
ter sets may have overfitted the data.

Although the general shape of the seasonal pattern is rea-
sonably well matched, we can see that there are parts of
the time series that we are less able to constrain, especially
with the HM experiment. This can be seen from the slope
in spring, for example (also noticeable for BFGS), and the
behaviour in summer. This highlights the issue of relying
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Figure 2. Time series of NEE (a, b, c) and LE (d, e, f) for FR-Fon year 2005. For the VarDA experiments (minimisation methods GA and
gradient descent BFGS), the spread represents the results taken from the stochastic experiments (i.e. from 200 optimisations). For the HM
experiment, 200 parameter sets were sampled from the XNROY and used to run the model. The prior ensemble, i.e. before any calibration, is
shown in grey, and the posterior ensemble is shown in dark colours. The lighter-coloured spread shows the mean and standard derivation of
the posterior ensemble. The bar plots on the right-hand side show the range of the mean of each ensemble time series. Note the difference in
scales.

on a single metric in the optimisation process to capture the
full behaviour of a time series, particularly the RMSD. The
RMSD is prone to correcting large errors and therefore may
be strongly driven by outliers. As such, it works well at cor-
recting the errors in amplitude but less well at fitting other
temporal features.

Figure 2 shows the fit to the calibration year – i.e. the one
used to tune the model. We also tested the ensembles over
several more years (2006–2009) to further evaluate the re-
sults. This evaluation step is important to check that we do
not over-tune to the specificities of a given year but find pa-
rameter sets that work against the data not used in the calibra-
tion. We see that the ensemble spread is reduced for all meth-
ods and years (Fig. 3). This is most significant for the NEE,
which started off with larger errors relative to the magnitude
of the time series than LE. We see the largest reductions in
the RMSD for the BFGS and GA minimisations in the cal-
ibration year, where the median of each boxplot reduces by
over 80 %. When applied over the evaluation period, the re-
duction in RMSD is not as severe – especially when consid-
ering LE. For NEE, the resulting RMSD for the HM experi-
ment is more consistent between the calibration and evalua-
tion periods, suggesting that the more conservative approach
has stopped us from overfitting to the calibration year. This
consistency is less apparent for LE, but we do still see more
overlap between the RMSD for the calibration and evaluation
period for HM than the two minimisation methods.

3.1.2 Posterior parameter uncertainty

Variational data assimilation

In this next section, we take a closer look at the posterior pa-
rameter distributions themselves. As described in Sect. 2.2.2,

after minimising the cost function in a VarDA experiment,
we usually use information about the curvature of the param-
eter space to calculate the posterior covariance error matrix
Bpost (Eq. 6). Figure 4a shows results from the single GA and
BFGS optimisation experiments (i.e. the optimisation with
the randomly generated prior closest to the true values). For
both optimisations, the reduction in parametric uncertainty is
quite severe for all parameters, and for half of the parameters,
the true value does not fall in the posterior distribution. The
differences observed between the optimisations are mainly
because we did not converge to the same xpost. The two most
sensitive parameters (VCmax andQ10) have the lowest poste-
rior uncertainty. While still tightly constrained, SLA has the
largest posterior uncertainty after both optimisations. After
BFGS, Evapres and Rootprof have a larger uncertainty than
after the GA optimisation. This suggests that the minimum
found from the GA optimisation is more constrained than the
minimum found from the BFGS optimisation.

In Fig. 4b, we consider the impact each of the two fluxes
has on the parameter posterior distributions (following the
decomposition in Eq. 8). Although the decomposition is
shown for the BFGS optimisation, the GA optimisation gives
similar results. The results show that the full posterior distri-
bution of the different parameters is the intersection between
the posterior distribution of each flux. This is most clearly
illustrated by parameter Q10. This parameter is highly con-
strained after the optimisation for NEE flux. In contrast, this
parameter does not impact the modelled LE and, therefore, is
not constrained by this flux. As such,Q10 can take any value
for this LE, and so the distribution spans the whole range.
Therefore, when accounting for both fluxes, the posterior dis-
tribution forQ10 matches the NEE constraint. We can further
interpret the information in Fig. 4b as the flux sensitivity to
each parameter, with constrained parameters being the most
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Figure 3. Boxplots showing the distribution characteristics of the RMSD of each of the 200 runs for the calibration year (2005; filled
boxplots) and the evaluation years (2006–2009; outlined boxplots). The box represents the interquartile range and contains the central 50 %
of the data. The horizontal line inside the box marks the median. Whiskers extend to the minimum and maximum values within 1.5 times the
interquartile range. Full time series corresponding to these plots can be found in Fig. C1.

Figure 4. Posterior distributions obtained using Bpost (Eq. 6) shown by kernel density estimation plots. Each sub-box is a 2D representation
of parameter space showing the density for each pair of parameters, with darker regions signifying areas with higher data density. The true
parameter values are shown in blue. (a) Full Bpost for the GA optimisation (bottom triangle) and the BFGS optimisation (top triangle).
(b) Bpost decomposition (Eq. 8) for the BFGS optimisation with NEE (bottom triangle) and LE (top triangle).

sensitive and unconstrained the least sensitive. From this we
see that in addition to Q10, NEE is more sensitive to SLA
than LE and toLagecrit, although to a lesser extent. LE is more
sensitive to Evapres. Both fluxes give similar constraints on
Rootprof. These results are consistent with our understanding
of the model and the impacts of the different parameters.

Although this decomposition is very informative, it does
not explain why the true values do not always fall within
the total posterior distribution. There are several reasons why
this might be the case, including the two key assumptions

made when calculating Bpost. First, we assume that we have
found the global minimum, and second, we assume the lin-
earity of the model in the vicinity of the solution, resulting
in a Gaussian posterior distribution. This means the Bpost
method is unable to take into account any non-Gaussian un-
certainty.

We can use the stochastic experiments to bypass these
assumptions. Unlike the Bpost method, we no longer have
a Gaussian assumption on the posterior uncertainty, allow-
ing us to find non-Gaussian distributions. Furthermore, we
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Figure 5. Posterior distributions obtained from the stochastic ex-
periment shown by kernel density estimation plots. Each sub-box is
a 2D representation of the parameter space showing the distribution
of the 200 different xpost found with GA (bottom) and BFGS (top),
with darker regions signifying areas with higher data density. The
true values are shown in blue.

have an ensemble of posterior parameters, so the assumption
of being at the global minimum is less important. Figure 5
shows the xpost ensemble obtained after 200 optimisations
using both minimisation techniques. We see immediately that
allowing for a non-Gaussian posterior distribution reveals
more information about the parameters. For example, a clear
relationship between VCmax and SLA is found by both min-
imisation techniques. There is a trade-off between the two
parameters – if the leaf has a small surface area (SLA), then
the leaf’s capacity to capture carbon (through VCmax) is in-
creased. We further obtain a two-peaked posterior distribu-
tion for Rootprof (clearest in the BFGS experiment). This pa-
rameter defines the depth above which ∼ 65 % of roots are
stored. The double peak suggests that either most of the roots
are stored above 1.5 m, and the trees will primarily get water
from the subsurface, or the roots grow deeper to access wa-
ter down the soil column. Both options would result in the
trees having the same water availability. For Evapresp, both
minimisation techniques remove the possibility of low val-
ues, and for Lagecrit, the posterior distribution is centred on
the range. We again see that Q10 is the most constrained pa-
rameter relative to the prior range.

Unlike the Bpost experiments, here the true values are con-
tained within the posterior distributions (see Fig. C2 for
1D distributions). The distribution of solutions is similar
for BFGS and GA. Nevertheless, the GA distributions are
slightly tighter and more dense. This is because GA is a
global search algorithm and, therefore, less likely to get stuck

Figure 6. NROY density plots (upper triangle) and minimum im-
plausibility plots (lower triangle) from the HM experiment using
NEE and LE RMSD as metrics after 10 waves. NROY densities (or
optical depth) represent the fraction of points with implausibility
smaller than the cutoff a (here a value of three) using the colour
bar on the right, with grey regions indicating completely ruled-out
areas. This fraction is obtained by fixing the two parameters given
on the main diagonal at values of the x axis and y axis of the plot-
ted location and searching the other dimensions of the parameter
space. Minimum implausibilities represent the smallest implausi-
bilities found when all the parameters are varied, except those used
as x and y axes. These plots are oriented the same way as those on
the upper triangle to ease visual comparison. True parameter values
are shown in black, with the square on the NROY density plots and
circle on the minimum implausibility plots.

in local minima. The fact that we still get a large variation in
solutions, while still obtaining a similar fit to the model in
Fig. 2, further highlights our problem of equifinality.

History matching

To directly compare HM to the VarDA approach, in Fig. 6
we use the RMSD between the observations and the model
output for both NEE and LE as metrics. Already in the first
wave the XNROY reduces by over 80 % (Table B1). This is
further reduced to less than 10 % of the original parameter
space by the end of the 10th wave. Furthermore, the true pa-
rameter values exist in XNROY. We can also see some of the
same patterns we were starting to observe in Figs. 4 and 5.
Most notable is the relationship between VCmax and SLA
and the strong constraint on Q10, where values below 0.45
of this parameter are ruled out. Similarly, values of Lagecrit
below 124 are ruled out. In contrast, Evapres and Rootprof are
not constrained at all by this experiment; there is not enough
information to rule out any values. These two parameters im-
pact LE, specifically its slope, in spring and autumn.
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3.1.3 Computational cost

The computational cost of calibration algorithms is primar-
ily determined by the number of parameters and the time it
takes to perform a single model run. In this study, we test the
different methods over a single pixel for a single year, which
only takes seconds to run, meaning the ensembles needed for
each algorithm were not too costly to generate. However, in
practice, a single model run can be costly – especially when
running the model over a large area or coupled with an atmo-
spheric transport model. Table 3 shows the number of simu-
lations needed for each algorithm. Note that the extra com-
putation time needed to construct the emulators and use these
to sample from the NROY space is marginal in comparison.

These values represent ballpark figures – a maximum it-
eration of 25 was used for consistency, but the system often
converged sooner (e.g. approximately 10 iterations for each
BFGS run). Similarly, we used 10 waves for HM, but after
the fifth wave, the improvements were marginal (Table B1).
Overall, a single BFGS optimisation (i.e. gradient descent)
remains the fastest method. However, it is also the one that
is most likely to get stuck in local minima. HM is compara-
ble to a single GA run in terms of the number of simulations
needed. However, we have seen that a single GA run is not
enough in this example to quantify the posterior parameter
space fully. Instead, multiple GA optimisations are prefer-
able (here we used 200), which is extremely costly.

3.2 Implementing process-oriented metrics

One of the strengths of HM is that we can easily apply dif-
ferent metrics, and so in this section, we consider the ad-
ditional constraints that these metrics bring. In Fig. 7a, we
consider how the minimum/maximum of the seasonal cycle
can be used to constrain the parameters. We again highlight
the VCmax–SLA relationship. Another relationship found is
between VCmax and Rootprof. Although this metric cannot be
used to rule out unlikely values of Rootprof, there is a denser
fraction of likely points falling around 2.3. Note that this is
not the true value of the parameter but is closer to the value
of the second minimum found in the stochastic experiments.
When considering VCmax, VCmax is constrained to 50 when
Rootprof is small. However, when Rootprof is large, i.e. the
roots can access water further down the soil column, VCmax
is less constrained. This means that when there is more wa-
ter availability, the carbon capture capacity of the plant is
less important in determining the peak and sink of the NEE
and LE seasonal cycles, respectively. Although 35 % of the
parameter space is left, we see clearly that this metric is in-
sufficient to constrain the other parameters. Indeed, the mini-
mum/maximum is not sensitive to Lagecrit, Evapres, and Q10.
When considering the time series for this experiment, the fit
is not too dissimilar from Fig. 2 when using the RMSD as
the metric. However, we see here that winter behaviour is not
constrained. This is especially true for the NEE time series;

we do not reduce the spread at the beginning and end of the
year.

Figure 7b and c use the slope in spring and autumn, respec-
tively. For the spring slope metric, we again pick out the rela-
tionship between VCmax and SLA. This is even sharper than
in the RMSD and the minimum/maximum cases. We also no-
tice a relationship between Evapres and Q10, with values in
the lower left-hand corner of the space ruled out. Similarly,
low values of Evapres are ruled out using this metric. When
considering the time series, we clearly reduce the spread of
the ensemble in spring for the LE. We also reduce for NEE;
however, this is less obvious since the prior ensemble spread
was already quite narrow. For the autumn metric, we start
to constrain Lagecrit and Rootprof and SLA to a lesser ex-
tent. These are parameters that we did not constrain using
the other metrics tested. Changes to the ensemble spread in
the time series are similar to when the RMSD was used as
the metric, although a little more marked during September
of the LE time series.

The final metric considered in Fig. 7d considers constrain-
ing the initial carbon stocks. We clearly see that this metric
is completely controlled by a single parameter,Q10. This pa-
rameter has been the most constrained throughout, and here
we see why. It directly impacts the spread of NEE at the be-
ginning and end of the time series. For the rest of the time
series, this parameter has no impact – the ensemble spread in
summer is at its maximum width.

These examples illustrate clearly how we can use individ-
ual metrics to target different parts of the seasonal cycle. The
next step is to combine them in one experiment. In Fig. 8, we
combine these five metrics (RMSD, min/max, spring slope,
autumn slope, and initial carbon stocks) to have a total of
nine constraints (each of the metrics is applied to both NEE
and LE, except for the initial carbon stock metric which is
only applied to NEE; see Table 2). Note that these metrics
are not weighted (in the traditional sense) when combined.
Instead, the weighting occurs through the individual errors
used to set up the experiment.

Using these multiple metrics, the XNROY is reduced to
0.01 % of its original size. We see that all of the parame-
ters are constrained with the true points still contained in the
NROY space. Indeed, the true values lie in the space where
the minimum implausibility is at most 1.5. We would still re-
cover these points if the cutoff were decreased from its cur-
rent value of three. The relationship between VCmax and SLA
is kept, and we can pick out the true value of Q10. By com-
paring to Fig. 6, we can see that combining different metrics
has helped reduce the space to a much greater extent by con-
straining the other parameters that were not constrained by
solely relying on the RMSD. When considering the time se-
ries, we see that the posterior ensemble of model runs tightly
fits the observations – especially at the beginning of the year.
The ensemble spread is more reduced than when we only
used the RMSD (Fig. 2) but with the same consistency be-
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Figure 7. History-matching experiments considering different individual metrics. NROY density plots are shown above (see Fig. 6 for how
to interpret the figure) with the proportion of the remaining space after 10 waves in the title parentheses. The time series plots shown below
each density plot illustrate the ensemble spread generated when running the model with 200 parameter sets sampled from each XNROY.

Figure 8. History-matching experiment considering all metrics listed in Table 2. Results from the third wave are shown with the NROY
density plot on the left (see Fig. 6 for how to interpret the figure). The time series shown on the right depicts the spread of 200 ensemble runs
generated from points sampled from the XNROY (shown in dark purple), with the mean and standard derivation of this spread shown in light
purple. The boxplots in panels (b) and (c) show the distribution characteristics of the RMSD of each of the 200 runs for the calibration year
(2005; filled boxplot) and the evaluation years (2006–2009; outlined boxplot).
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Table 3. Number of model runs needed in each algorithm for p parameters. Note that the BFGS and GA algorithms were run 200 times for
the stochastic experiments.

Formula Terms In this study Total no. of runs

BFGS (single run) niter · (p+ 1) niter= number of iterations niter = 25, p = 6 175
GA (single run) niter · g niter= number of iterations, g= population size niter = 25, g = 24 600
Bpost p+ 1 p = 6 7
HM nwave · (10 ·p) nwave= number of waves niter = 10, p = 6 600

tween the calibration year and the rest of the time series, es-
pecially for NEE.

Using these physical metrics and targeting different parts
of the seasonal cycle, we are able to better fit the data and
gain an understanding about the parameters. We still have
some variability in late autumn, with the model runs tending
to underestimate NEE. Currently, we only target the slope
between the September and August monthly means to cap-
ture the leaf senescence. If we further included a metric in
October or November, we may be able to constrain the time
series further. Ideally, this would be based on some phys-
ical process to understand which parameters would be the
most impacted. We also expect that targeting the variabil-
ity in the summer months would help constrain LE during
July and August. This would most likely target Rootprof and
Evapres, as variability during these drier months will impact
the amount of water in the soil.

4 Discussion

This study provides a good introduction to how HM can con-
strain the carbon and water cycles in land surface models.
Nevertheless, it is not without limitations. In the first part
of the study, we compare it to VarDA, which is often used
for parameter estimation in land surface models (especially
when calibrating the ORCHIDEE land surface model), and
consider two different minimisation algorithms to reduce the
cost function. However, properly comparing VarDA and HM
is hard since they are both designed with different goals. This
means that discussions around computational cost are nu-
anced – there are no comparable convergence criteria. Fur-
thermore, for each algorithm, there is a trade-off in compu-
tational time and efficiency. For example, we can use more
model runs to fit emulators in HM or increase the population
size in GA.

In this study, we use gradient descent BFGS and random-
search GA to find the optimum and then the gradient in-
formation at the optimum to find the posterior uncertainty
(through Bpost; Eq. 6). We do acknowledge that there are
other methods we can use to minimise the cost function –
ones where the ensembles can be used to infer the poste-
rior distributions (e.g. Markov Chain Monte Carlo; Geyer,
1992). However, these are extremely costly and therefore
outside the scope of this study. Furthermore, we wanted to

use the method currently used in ORCHIDAS and, therefore,
where we have the most understanding and experience. Fi-
nally, whilst we do not expect it to have a huge impact on the
results, without the adjoint of the ORCHIDEE model, Bpost
only approximates the curvature of the parameter space, and
therefore, the posterior parameter distributions found with
this matrix are not accurate. Maintaining the adjoint of a
complex model like ORCHIDEE is very costly, given the
model’s evolving nature. Therefore, the fact that HM does
not need the adjoint in its calculation of posterior distribu-
tions is an advantage.

In the second part of the study, we look at using different
metrics for training emulators to use in HM. Although using
different metrics is also possible in VarDA, this is trickier
since the choices must be made before a costly calibration
(for example, which metrics to use and how to weight them).
With HM, we can run an ensemble first and test different
metrics on the ensemble. Adding new metrics as the waves
progress is also possible instead of restarting the whole op-
timisation procedure. In this study, we chose a few illustra-
tive metrics based on our understanding of the physical pro-
cesses driving the model and the results of the one-at-a-time
sensitivity analysis (Fig. A1 in Appendix A). Choosing the
best, most suitable metrics could be the subject of a whole
separate study. Furthermore, increasing the objectivity of the
tuning procedure will allow the climate modelling commu-
nity to more meaningfully share insights and expertise with
each other, thereby increasing our understanding of the in-
tegrated climate system. In addition to performance-based
metrics (e.g. RMSD and skill scores), physically based met-
rics allow us to target different parts of the model. However,
these require an understanding of the different processes in-
volved. While here we focused specifically on parts of the
seasonal cycle, there may be other more complex metrics to
consider (for example, the timing of the leaf area index reach-
ing a certain threshold). Furthermore, we can use techniques
such as a principal component analysis to help reduce the
dimensionality of the problem (Lguensat et al., 2023).

Nevertheless, HM does come with its own challenges. It
is, in a way, much more involved and requires a level of un-
derstanding to ensure the emulators are properly constructed
and applied. There are also a number of subjective choices
that can be made during an HM experiment, such as chang-
ing the cutoff (a in Eq. 11) if the emulator is believed to
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be good enough, which requires some level of understanding
beyond using the method as a black box. When combining
a large number of the metrics, it is also possible to expand
Eq. (11) to allow for some additional flexibility (Couvreux
et al., 2021). For different metrics mi , XNROY is the intersec-
tion of the XNROYmi associated with each metric,

XNROY =
⋂
i

XNROYmi

=

{
x ∈ X : #{x ∈ X : Imi (x) > a} ≤ τ

}
, (13)

where # denotes the number of metrics that satisfies the con-
dition in the bracket, and τ is the number of metrics for which
the model is allowed to be far away from the target. Through-
out, we set τ = 0, meaning that each model run must satisfy
all the metrics. However, when combining many metrics, this
value can be increased to stop us from accidentally ruling
out good runs before the emulators are properly trained. Al-
though not necessary in our test case, this τ can be an impor-
tant consideration.

The example we test here is simple but illustrative. Never-
theless, we only test one site, and as we have seen, this suf-
fers from a high degree of equifinality. Several studies have
shown that moving from a single-site setup to multisite op-
timisations (i.e. finding one common set of parameters for
multiple sites) results in a more robust optimisation that is
less likely to get stuck in local minima (Kuppel et al., 2012;
Raoult et al., 2016; Bastrikov et al., 2018). This is because
the multiple constraints from the different sites smooth out
parameter space. Even so, multisite optimisation can suffer
from wider parameter uncertainty distributions as there are
dynamics at various sites that are not explicitly included in
the models, thus necessitating a robust preselection of the
subset of sites used in the experiment. To further test the
strength of the HM method, a new step will be to move to
multisite setup. We anticipate that one of the strengths of
HM, its use of emulators, will become more apparent when
we move to these more costly experiments. Furthermore, em-
ulators will greatly benefit the optimisation of larger regions
and more costly processes (e.g. spin-up). Finally, although
the twin experiment is very informative, a next key step will
be to use real-world data to assess the full potential of HM.

4.1 Future avenues

HM is a promising approach that may prove invaluable in
future land surface model calibration. One of the key chal-
lenges in land surface model calibration is multi-data stream
optimisations. Ideally, we would perform simultaneous cal-
ibrations in which all the information is ingested in one go.
However, this is not always practical. There may be some
technical constraints like, for example, computational capa-
bilities. We may also want to assimilate a newly acquired
data stream without redoing the whole calibration process.
The alternative is to perform calibrations in a stepwise man-

ner by treating the data sequentially. If dealt with properly,
the stepwise approach is mathematically equivalent to the si-
multaneous one (MacBean et al., 2016; Peylin et al., 2016).
However, this means propagating the full parameter error co-
variance matrix between each step, which can be hard to es-
timate properly. This is where HM becomes particularly at-
tractive. The NROY space contains all the information about
the parameter errors, so this information is not lost between
steps. Furthermore, HM’s iterative nature means we can add
different data when and as they become available. It also
lends itself well to a stepwise approach to calibration, allow-
ing us to separately constrain, for example, the fast and slow
processes of the model. Finally, HM’s conservative nature
means that we are less likely to overfit to a particular data
stream or indeed the particularities of given experiments, as
shown here.

Although HM does not provide an optimal set of parame-
ters at the end, this is not necessarily an issue. As computers
become more powerful, we can run land surface models as
ensembles instead of a single realisation of the model, al-
lowing us to rigorously obtain the uncertainty in the model
prediction. Indeed, as a climate community, we should be
moving towards using data-constrained ensembles instead of
a single realisation (Hourdin et al., 2023). HM would allow
us to generate such ensembles to be used as, for example,
the Coupled Model Intercomparison Project. Alternatively,
we could use HM for pre-calibration (Edwards et al., 2011),
i.e. reducing the parameter space before performing data as-
similation. The XNROY could further help us define the off-
diagonal elements of the B matrix in Eq. (5). We also note
that one wave of history matching is as costly as a Morris
sensitivity analysis commonly used to assess parameter im-
portance (Appendix A) but much more informative.

The true strength of HM is its ability to help with the
identification of structural errors (Couvreux et al., 2021). Al-
though we can also use VarDA to identify structural errors,
HM’s more conservative approach to parameter rejection can
more easily help identify when the model is clearly wrong.
Furthermore, once an ensemble is generated, applying dif-
ferent metrics to test different model sensitivities is easy (in-
stead of performing a full optimisation, as would be needed
in VarDA). It is common to add model complexity to mod-
els to address structural changes without first checking that
the errors truly represent structural deficiencies and are not
simply an artefact of poor model tuning (Williamson et al.,
2015). Through HM, we can easily test for structural errors
and see whether it is possible to match observations given the
current model structure.

5 Conclusions

Using a twin experiment (i.e. with known posterior param-
eter values), we first compared the posterior parameter dis-
tributions found after variational data assimilation (VarDA)
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experiments to those found after a history-matching (HM)
experiment. We found that the Gaussian hypothesis used to
calculate the posterior uncertainty after the VarDA experi-
ments was too strong. The posterior parameter distributions
did not reflect the full equifinality of the parameter space or
the non-linear behaviours and relationships of the different
parameters. Furthermore, the true parameter values were not
contained in the posterior distribution for half of the parame-
ters. When performing multiple cost function minimisations
starting from 200 different random priors, we achieved a bet-
ter exploration of the parameter space. These experiments
were much more computationally costly but started to re-
veal relationships between the parameters and contained the
true parameter values in the posterior distribution. Similarly,
while not constraining all of the parameters, the posterior dis-
tributions from the HM experiment also contained the true
parameters and maintained non-linear relationships between
the parameters. Furthermore, the model ensemble found by
sampling the not-ruled-out-yet space fitted the observed time
series reasonably well.

In the first part, we used the root mean squared difference
as the target metric for HM to directly compare to the cost
function used in the VarDA experiments. In the second part,
we showed HM’s versatility in using different metrics to tar-
get different parts of the seasonal cycle. This allowed for all
of the parameters to be better constrained and the posterior
model ensemble to tightly fit the observations. We showed
that instead of using a single cost function, multiple process-
based metrics improved the calibration and enhanced our un-
derstanding of the model processes.

Although this paper only considers a simple exploration
of the HM methodology, its strong potential for land surface
model calibration is clear. It will allow us to constrain multi-
ple data streams, better targeting individual processes. Over-
all reductions in parameter uncertainty will lead to more ac-
curate projections of the land surface, enhancing our under-
standing of terrestrial behaviour under climate change and
allowing us to better plan for the future.

Appendix A: Parameter sensitivities

One of the primary uses of HM is to test the sensitivity of
the model outputs to the parameter uncertainty. Nevertheless,
we ran a couple of simple tests in advance to get a sense
of the different parameter sensitivities. These more closely
resemble the tests that land surface modellers perform when
doing simple manual tuning and are not as rigorous as HM.
However, they remain common – especially since they can be
used to pre-select the key parameters for these more robust
but costly methods.

The first is a simple, one-factor-at-a-time parameter per-
turbation experiment (Fig. A1). Although this does not ac-
count for interactions between parameters, it can help un-
derstand some of the direct impacts of the different param-

eters. This cost of the method is determined by the number
of ensembles used for each parameter (here 50). The sec-
ond is a Morris sensitivity analysis (Morris, 1991; Campo-
longo et al., 2007) (Fig. A2), which is effective with rela-
tively few model runs compared to other more sophisticated
methods (e.g. Sobol, 2001). Indeed, a standard Morris exper-
iment equates to the computational cost of doing one HM
wave (i.e. 10 times the number of parameter forward runs of
the model). Using an ensemble of parameter values, the Mor-
ris method determines incremental ratios known as “elemen-
tary effects”. These effects are determined by sequentially
modifying individual parameters across multiple trajectories
within the parameter space. The mean (µ) and standard devi-
ation (σ ) of the differences in model outputs for all the trajec-
tories are calculated. This global method determines which
parameters have a negligible impact on the model and which
have linear and non-linear effects. The results of this method
are qualitative and serve to rank the parameters by their sig-
nificance. To evaluate the results, we consider the normalised
means, obtained by dividing each value by the µ of the most
sensitive parameter. As such, the values fall within the range
of 0 and 1, with 1 indicating the most sensitive parameters
and 0 indicating parameters with no sensitivity.

Both methods clearly show that NEE and LE are highly
sensitive to VCmax and SLA. In Fig. A1, we see that these
parameters directly impact the amplitude of the seasonal cy-
cle. NEE is most sensitive to Q10 (the parameter determin-
ing the temperature dependence of heterotrophic respiration),
which we see impacts the respiration (TER) component of
this flux. This parameter has no impact on LE. After VCmax
and SLA, LE is most sensitive to Evapres, which controls bare
soil resistance to evapotranspiration. This parameter impacts
the slope in spring, controlling how much water is in the soil
before the leaves start to grow at this deciduous site. Both
fluxes are sensitive to Lagecrit in autumn, so this parameter
impacts the age of leaves and therefore senescence. Finally,
while still showing some sensitivity, the fluxes are least sensi-
tive to Rootprof. This parameter controls root depth and seems
to have the most impact in summer when the months will be
warmer.

While the one-factor-at-a-time experiment seems more in-
formative here, we must remember that it does not account
for the interactions between the parameters. This can be dan-
gerous because it is possible that changing different combi-
nations of the parameters may impact the processes differ-
ently. This will be crucial in more complex cases. While the
Morris experiment does account for interactions, it is not pos-
sible to disassociate from non-linear effects. Furthermore, al-
though Morris is less costly, little information beyond simple
rankings can be gleaned.
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Figure A1. Preliminary experiment demonstrating the individual sensitivity of each parameter. For each row, 50 ensembles of a given
parameter are shown for NEE and LE, as well as NEE’s components of the gross primary production (GPP) and terrestrial ecosystem
respiration (TER). Runs are coloured by the parameter values used, with low values in blue, passing through yellow, and high values in red.

Figure A2. Heatmap showing the relative sensitivity of each parameter for NEE (top row) and LE (bottom row). Morris scores are normalised
by the highest-ranking parameter in each case. Dark squares represent the most sensitive parameters for each output, and light squares
represent parameters with little to no sensitivity.
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Appendix B: Emulator quality

We ran leave-one-out cross-validations to validate the emu-
lators at each wave of the HM procedure. Each point from
the design set was retained for validation, and the emulator
was refitted. We then test if that point lies within the 95 %
confidence interval of the refitted emulator – if 95 % ratio of
the left-out points should lie inside the confidence intervals,
then the emulator is deemed good. While it is an ideal case,
we consider in this work that the emulator is good if the ratio
is at least over 90 %.

To illustrate this, Fig. B1 shows the diagnostic plots for
the first and last wave of the HM RMSD experiment, and
Table B1 shows the leave-one-out diagnostics at each wave.
The emulator represents the model well for both the NEE and
LE cases with small error bars and predictions close to true
values. We obtain larger error bars for NEE compared to LE
(especially in later waves) due to the more sophisticated be-
haviour of the model for the NEE case. In Table B1, we see
that both the average error and variance decrease with suc-
cessive waves, showing our emulators are becoming more
accurate, and in each case, the accuracy is above the 90 %
mark. Overall, we are satisfied with the quality of our em-
ulators. Although not shown, emulators from the other HM
experiments give similar results.

Table B1. Information about emulators and the leave-one-out diagnostics at each successive wave. The error column shows the mean emulator
error, and the SD column shows the mean emulator SD for each prediction.

Fraction of space NEE LE

Wave remaining Accuracy (%) Error SD Accuracy (%) Error SD

1 0.1428 92.1 0.103 0.11 92.2 1.07 1.08
2 0.1172 92.9 0.067 0.065 92.9 0.496 0.444
3 0.1092 94.2 0.057 0.059 94.2 0.303 0.282
4 0.1092 92.7 0.056 0.054 94.7 0.282 0.275
5 0.0948 93.6 0.037 0.035 94.6 0.186 0.175
6 0.0932 94.2 0.028 0.028 94.9 0.169 0.154
7 0.0864 94.9 0.025 0.025 95.2 0.147 0.138
8 0.086 94.5 0.025 0.024 95.6 0.111 0.107
9 0.086 94.1 0.022 0.023 95.2 0.109 0.103
10 0.0845 93.5 0.021 0.021 94.8 0.084 0.084
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Figure B1. Leave-one-out diagnostic plots against each of the parameters for NEE (top row) and LE (bottom row) for the first and last
wave of the history-matching RMSD experiment. Black points and error bars (±2 SD prediction intervals) are computed from E[H(x)]

and Var[H(x)]. The true (left-out) values are plotted in purple/red if they lie within/outside 2 standard deviation prediction intervals. The
horizontal dashed lines show the observations plus the observed error (0±2

√
Var(e)). Note the difference in scale between the plots in wave

1 and wave 10.
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Appendix C: Additional figures

Here, we present a few additional figures to help further vi-
sualise the results. Figure C1 shows the time series for the
additional evaluation years (2006–2009).

Figure C2 compares the 1-dimensional posterior distribu-
tions found by the VarDA stochastic experiments and HM
experiments. Remember that this is a 1D representation of
multidimensional space and so does not illustrate the rela-
tionships between parameters.

Figure C1. Full time series of NEE (a) and LE (b) for FR-Fon years 2006–2009. For the data assimilation experiments (GA and BFGS),
the spread represents the results taken from the stochastic experiments (i.e. from 200 optimisations). For the HM, 200 parameter sets were
sampled from the XNROY and used to run the model. The prior ensemble, i.e. before any calibration, is shown in grey, and the posterior
ensemble is shown in dark colours. Boxplots on the right show the distribution characteristics of the RMSD between each of the 200 runs
and the observations. The RMSD for the calibration year (2005) is shown by filled boxplots, and the evaluation years (2006–2009) are shown
by outlined boxplots. The box represents the interquartile range, containing the central 50 % of the data. The horizontal line inside the box
marks the median. Whiskers extend to the minimum and maximum values within 1.5 times the interquartile range.
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Figure C2. 1-dimensional representation of posterior parameter distributions. For the data assimilation experiments (GA and BFGS), the
values represent the results from the stochastic experiments (i.e. from 200 optimisations). For the history-matching experiments (HM; RMSD
for when only the RMSD metric is used; ALL for when all the metrics are applied), 200 parameter sets were sampled from the XNROY. The
true values are shown in blue.
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in this paper are available from a Zenodo repository at https://doi.
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