
Geosci. Model Dev., 17, 5705–5732, 2024
https://doi.org/10.5194/gmd-17-5705-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelevaluation

paperEvaluation of the coupling of EMACv2.55 to the land surface
and vegetation model JSBACHv4
Anna Martin1, Veronika Gayler2, Benedikt Steil1, Klaus Klingmüller1, Patrick Jöckel3, Holger Tost4, Jos Lelieveld1,5,
and Andrea Pozzer1,5

1Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
2Climate Dynamics Department, Max Planck Institute for Meteorology, 20146 Hamburg, Germany
3Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
4Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
5The Cyprus Institute, Climate and Atmosphere Research Center, Nicosia 1645, Cyprus

Correspondence: Anna Martin (a.martin@mpic.de)

Received: 18 December 2023 – Discussion started: 5 January 2024
Revised: 5 April 2024 – Accepted: 30 May 2024 – Published: 30 July 2024

Abstract. We present the coupling of the Jena Scheme for
Biosphere–Atmosphere Coupling in Hamburg version 4 (JS-
BACHv4) to the ECHAM/MESSy Atmospheric Chemistry
(EMAC) model. With JSBACH, the soil water bucket model
in EMAC is replaced by a diffusive hydrological transport
model for soil water that includes water storage and infil-
tration in five soil layers, preventing soil from drying too
rapidly and reducing biases in soil temperature and mois-
ture. A three-layer soil scheme is implemented, and phase
changes in water in the soil are considered. The leaf area
index (LAI) climatology in EMAC has been substituted
with a phenology module calculating the LAI. Multiple land
cover types are included to provide a state-dependent sur-
face albedo, which accounts for the absorption of solar ra-
diation by vegetation. Plant net primary productivity, leaf
area index and surface roughness are calculated according
to the plant functional types. This paper provides a de-
tailed evaluation of the new coupled model based on ob-
servations and reanalysis data, including ERA5/ERA5-Land
datasets, Global Precipitation Climatology Project (GPCP)
data and Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite data. Land surface temperature (LST), ter-
restrial water storage (TWS), surface albedo (α), net top-
of-atmosphere radiation flux (RadTOA), precipitation (pre-
cip), leaf area index (LAI), fraction of absorbed photosyn-
thetic active radiation (FAPAR) and gross primary produc-
tivity (GPP) are evaluated in particular. The strongest cor-
relation (r) between reanalysis data and the newly coupled

model is found for LST (r = 0.985, with an average global
bias of −1.546 K), α (r = 0.947, with an average global
bias of −0.015) and RadTOA (r = 0.907, with an average
global bias of 3.56 W m−2). Precipitation exhibits a corre-
lation with the GPCP dataset of 0.523 and an average global
bias of 0.042 mm d−1. The LAI optimisation yields a cor-
relation of 0.637 with observations and a global mean de-
viation of −0.212. FAPAR and GPP exemplify two of the
many additional variables made available through JSBACH
in EMAC. FAPAR and observations show a correlation of
0.663, with an average global difference of −0.223, while
the correlation for GPP and observations is 0.564 and the av-
erage global difference is −0.001 kg carbon km−1. Benefit-
ing from the numerous added features within the simulated
land system, the representation of soil moisture is improved,
which is critical for vegetation modelling. This improvement
can be attributed to a general increase in soil moisture and
water storage in deeper soil layers and a closer alignment of
simulated TWS with observations, mitigating the previously
widespread problem of soil drought. We show that the nu-
merous newly added components strongly improve the land
surface, e.g. soil moisture, TWS and LAI, while surface pa-
rameters, such as LST, surface albedo or RadTOA, which
were mostly prescribed according to climatologies, remain
similar. The coupling of JSBACH brings EMAC a step closer
towards a holistic comprehensive Earth system model and
extends its versatility.
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1 Introduction

Earth system models (ESMs) are needed to analyse current
and future climate scenarios, and particularly in view of on-
going climate change (IPCC, 2021), it is crucial to include
the main Earth system components to identify and quantify
potential feedback mechanisms. These numerical models are
based on a mathematical formulation of the physical and
chemical processes, accounting for interactions between the
atmosphere, oceans and biogeochemical processes on land
(Flato, 2011). Common ESMs contain an atmospheric gen-
eral circulation model (A-GCM), an ocean general circu-
lation model (O-GCM) and a land surface model (LSM).
A comprehensive list of existing ESMs can be found, for
instance, in “Annex II: Models” of the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change
(Gutiérrez et al., 2021).

The ECHAM5/MESSy Atmospheric Chemistry (EMAC)
general circulation model is based on an underlying A-GCM;
more specifically, the spectral dynamical core, the large-
scale advection and the “nudging” method are originally
from ECHAM5 (the fifth generation of the European Centre
HAMburg general circulation model; Roeckner et al., 2006).
The physical parameterisations from ECHAM have been
modularized between respective further-developed MESSy
submodels. These include a simplified surface model (SUR-
FACE); O-GCM MPIOM (Pozzer et al., 2011a); and sev-
eral other submodels which address atmospheric chemistry,
cloud and transport processes (Roeckner et al., 2003; Jöckel
et al., 2005, 2010). The coupling is achieved via the Mod-
ular Earth Submodel System (MESSy2) framework, gradu-
ally refined and expanded during the past 2 decades to pro-
vide an infrastructure of submodel and process combina-
tions with a wide range of applications. EMAC is a com-
munity model with a growing number of users contribut-
ing to developments in various research areas, e.g. studies
on particle concentrations and aerosols (Kohl et al., 2023;
Righi et al., 2023), oxidation capacity (Nussbaumer et al.,
2023; Friedel et al., 2023), atmospheric dynamics (Eichinger
et al., 2023; Charlesworth et al., 2023) and environmental
consequences for human health (Pozzer et al., 2023; Milner
et al., 2023). Furthermore, an alternative dynamic vegetation
scheme (LPJ-GUESS; Forrest et al., 2020) has been cou-
pled to EMAC, allowing for climate–vegetation interactions
(e.g. Vella et al., 2023b). In the following, the implementa-
tion and evaluation of the LSM Jena Scheme for Biosphere–
Atmosphere Coupling in Hamburg (JSBACH), a substitute of
EMAC’s current surface model, is documented. JSBACH is
implemented into the MESSy framework following the rel-
evant coding standards. The dynamical land–surface model
JSBACH was first developed as the land model for ECHAM
at the Max Planck Institute for Meteorology (MPI-M) (Re-
ick et al., 2021). Originally, it emerged from the combi-
nation of all ECHAM5 land processes in a separate land
model and was further developed and refined, now providing

a large repertoire of biogeochemical processes of the ecosys-
tem. The latest version (JSBACHv4) is part of the Icosahe-
dral Nonhydrostatic Land (ICON-Land) model and has not
yet been coupled to models simulating atmospheric chem-
istry (Pham et al., 2021).

The implementation of JSBACH represents significant
progress in the development of the ESM EMAC. As climate
change progresses and the occurrence of extreme weather
events increases, the influence of surface processes and veg-
etation becomes more prominent (Domeisen et al., 2022).
Vegetation and soil water balance are the driving factors for
surface fluxes of heat and moisture, affecting temperature,
precipitation, atmospheric dynamics and chemistry (Miralles
et al., 2019; Lauwaet et al., 2009; Matyssek et al., 2014; Mel-
louki et al., 2015). JSBACH replaces the soil water bucket
model included in the MESSy submodel SURFACE by a
more comprehensive five-layer hydrological soil model. This
substitution aims at improving the representation of surface
energy fluxes of heat and moisture, reducing biases in sur-
face temperature and subsequent plant stress and their im-
pact on biogenic emissions. JSBACH enables the analysis of
biogeochemical processes on much smaller timescales, in-
cluding not only climatic scales, but also days and hours.
This allows for the analysis of the impact of vegetation on at-
mospheric chemistry, plant stomatal uptake, volatile organic
compound (VOC) emissions and associated feedback mech-
anisms and enables a more detailed understanding of land–
atmosphere interactions. Furthermore, the impact on the sur-
face energy budget allows for a more consistent representa-
tion of chemical and transport processes in the atmospheric
boundary layer. In Sect. 2, we give a short description of JS-
BACH and describe the coupling of EMAC and JSBACH via
MESSy, including the tuning of the newly coupled model. In
Sect. 3, the evaluation variables and corresponding observa-
tion and reanalysis datasets are introduced. The results and
the discussion of the corresponding evaluation are presented
in Sect. 4.

2 Model description

2.1 JSBACH

In this work, we implemented the most recent version of JS-
BACH (JSBACHv4, Schneck et al., 2022). A detailed de-
scription of the parameterisations used in JSBACH can be
found in Reick et al. (2013, 2021), while Schneck et al.
(2022) present features of the version JSBACHv4 in com-
parison with the previous one (JSBACHv3) along with an
assessment of the results of both versions. On the technical
side, JSBACHv4 has been improved with modernised source
codes and software infrastructure, while on the application
side, it offers an improved soil scheme with a dynamic calcu-
lation of ground heat conductivity and capacity, taking phase
change in water and organic fractions within soil layers into
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account (Jungclaus et al., 2022; Schneck et al., 2022; Ekici
et al., 2014). It provides a complex soil hydrological trans-
port model that includes percolation and storage of water in
several soil depths, reaching down to 9.8 m with increasing
layer thickness of 0.065, 0.254, 0.913, 2.902 and 5.7 m for
the first to the fifth layer, respectively. This gives a realistic
estimate of soil desiccation and corresponding soil tempera-
ture and moisture. Additionally, the new version introduces a
fractional lake mask, a three-layer snow scheme and the for-
est age structures (Schneck et al., 2022; de Vrese et al., 2021;
Nabel et al., 2020). The implemented version of JSBACHv4
does not include the natural vegetation dynamics, land-use
transitions and nitrogen cycle from JSBACH3. Those mech-
anisms have only recently been adopted in JSBACHv4 and
will be added to MESSy in the near future. However, on
the climate timescale, the interactions between climate and
vegetation are already available in MESSy through the LPJ-
GUESS interactive vegetation module (Vella et al., 2023a).

In the case of the ICON-Land infrastructure, a clear sep-
aration of the physical processes used in JSBACHv4 is al-
lowed. The processes used in this study include the vegeta-
tion coverage, phenology and plant productivity (defined via
gross primary productivity, GPP, and net primary produc-
tivity, NPP, and photosynthesis); a turbulence and radiation
scheme; surface energy balance; and the exchange fluxes of
heat and moisture, soil and vegetation carbon turnover, and
disturbances due to wildfires or windthrow. The processes are
listed in Table 1. In JSBACH, subgrid-scale heterogeneity is
taken into account by a tile approach; i.e. grid boxes are di-
vided into tiles associated with a specific land cover type (Re-
ick et al., 2021). All available land cover types are listed in
Table A1. The concept allows us to define processes specific
to the different land cover types. For example, processes only
related to vegetation (such as photosynthesis) are calculated
only on vegetated tiles. Based on Reick et al. (2021), water,
carbon, nitrogen, and area are conserved with numerical ac-
curacy. Energy conversion is not fully achieved yet since the
temperature of rainwater and heat produced by heterotrophic
respiration are not accounted for (Reick et al., 2013, 2021).

To couple JSBACH with EMAC, it is implemented as a
new submodel within the MESSy framework, following its
well-described coding standards (Jöckel et al., 2010). Each
process of the JSBACHv4 source code (listed in Table 1) is
implemented as an individual Fortran module in the MESSy
submodel core layer (SMCL) and complemented by a newly
created submodel core layer file. A schematic overview of
JSBACH as a new submodel in EMAC and corresponding
process calls are given in the Supplement. In addition to the
individual JSBACH processes, the file “messy_jsbach.f90” is
created, which includes the definitions of land-cover spec-
ifications (originally taken from lctlib_nlct21.def), the tile
aggregation subroutines and the subroutine to read the JS-
BACH namelist. The namelist (jsbach.nml) serves as a user
interface, where input and coupling variables are specified.
The full namelist is available in the Supplement; the cou-

pled variables are listed from line 152 to 206 of the namelist.
Parameters can be defined, and logical switches to mod-
ify and adjust the simulation can be set. The module sub-
routines are called from a newly created JSBACH interface
(messy_jsbach_si.f90), which is implemented in the MESSy
submodel interface layer (SMIL). Besides the process calls,
the interface includes the creation of new “representations”
to expand the EMAC model grid to new dimensions, for
soil, snow and canopy layers and vegetation tiles, and the JS-
BACH output variables are saved as new “channel objects”.
Both representations and channel objects are elements de-
fined in the submodel CHANNEL, which handles the mem-
ory, data output (including checkpointing) and internal data
exchange (Jöckel et al., 2010).

JSBACH was chosen as the LSM for EMAC since it has
already been successfully implemented and tested in other
models like the Icosahedral Nonhydrostatic Earth System
Model (ICON-ESM) and its predecessor (JSBACH3) in the
Max Planck Institute Earth System Model, MPI-ESM 1.2
(Mauritsen et al., 2019), which took part in the Coupled
Model Intercomparison Project phases 5 and 6 (Giorgetta
et al., 2013). Furthermore, in JSBACH, specific ecosystem
processes, like carbon cycling, are included. Those mech-
anisms will, in combination with an atmospheric chem-
istry model, provide new and interesting insights into the
interactions and feedback mechanisms between vegetation
and atmospheric composition. The combination of EMAC
and JSBACH makes it possible to analyse biogeochemical
processes at various spatial and temporal resolutions, from
small-scale experiments of local sub-daily effects to global-
scale climate change experiments, in contrast to the coupling
of the dynamic vegetation model LPJ-GUESS to EMAC
(Forrest et al., 2020), in which the vegetation–atmosphere
coupling is restricted by the diurnal time step of the vege-
tation scheme.

2.2 The EMAC model

The ECHAM/MESSy Atmospheric Chemistry (EMAC)
model is a numerical chemistry and climate simulation
system that includes submodels describing tropospheric
and middle-atmosphere processes and their interaction with
oceans, land and human influences (Jöckel et al., 2010). It
uses the second version of the Modular Earth Submodel Sys-
tem (MESSy2) to link multi-institutional computer codes.
The core atmospheric model is the fifth-generation Euro-
pean Centre Hamburg general circulation model (ECHAM5;
Roeckner et al., 2006). The physics subroutines of the orig-
inal ECHAM code have been modularised and reimple-
mented as MESSy submodels and have continuously been
further developed. Only the spectral transform core, the flux-
form semi-Lagrangian large-scale advection scheme, and
the nudging routines for Newtonian relaxation remain from
ECHAM. Further details on EMAC are documented by
Jöckel et al. (2016) and can be found on the MESSy web-
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Table 1. JSBACH file overview.

JSBACH process MESSy filename (SMCL) Short description

Fuel messy_jsbach_fuel.f90 Availability of carbon fuel to wildfires.
Disturbance messy_jsbach_dist.f90 Carbon relocation due to windthrow and vegetation fires.
Phenology messy_jsbach_pheno.f90 Leaf area index and foliage projected cover.
Hydrology messy_jsbach_hydro.f90 Soil hydrology.
Surface energy balance messy_jsbach_seb.f90 Surface latent and sensible heat fluxes.
Snow and soil energy messy_jsbach_sse.f90 Soil characteristics and ground heat fluxes.
Turbulence messy_jsbach_turb.f90 Surface roughness affecting the distribution of surface

fluxes.
Carbon messy_jsbach_carb.f90 Carbon pools above and below ground.
Assimilation messy_jsbach_assim.f90 Net primary productivity (NPP) and carbon assimilation.
Radiation messy_jsbach_rad.f90 Surface albedo and light absorption in canopy.

JSBACH LCT library messy_jsbach_lctlib.f90 JSBACH land cover type (LCT) library.

Core file (SMCL) messy_jsbach.f90 JSBACH core file for MESSy.
Interface (SMIL) messy_jsbach_si.f90 Interface for MESSy.
Namelist jsbach.nml User interface.

site (https://www.messy-interace.org, last access: 12 Octo-
ber 2023).

2.3 Parameter optimisation

JSBACH is an alternative to the standard submodel used,
SURFACE. In the case JSBACH is used, the SURFACE sub-
model must be switched off. Using JSBACH, a more com-
plex scheme for land temperature and hydrology is adopted,
and with that, the dynamical lower-boundary conditions of
ECHAM5 are modified. Since the EMAC dynamics were
optimised for the specific combination of ECHAM5 and
SURFACE (Kern, 2013), the new combination of ECHAM5
and JSBACH requires a refined parameter optimisation (“re-
tuning”), with respect to radiation balance, land surface tem-
perature and clouds. Such a parameter optimisation is gen-
erally performed to adjust the model results to be as close
as possible to observations and to prevent the model climate
from drifting, for example, due to a large radiative imbalance.
It is achieved by small variations in specific parameters for
processes with a high degree of uncertainty or a high level of
parameterisation, such as the ones related to clouds and con-
vection. A more detailed description of the optimisation pro-
cess is provided by Mauritsen et al. (2012). The five parame-
ters optimised in this study are the correction factor for asym-
metries of ice clouds (zasic), the homogeneity factors for ice
and liquid water clouds (zinhomi and zinhoml), the convec-
tive mass flux at the level of neutral buoyancy (cmfctop), and
the conversion factor from cloud water to rain (cprcon; in
s2 m−2). Simulations for the same period from 1990 to 2010
were carried out with gradually changing parameters. The
simulation using JSBACH based on the default parameters is
from now on referred to as CTRL. The climatically optimised
simulation is from here on referred to as EMAC/JSBACH,
while the simulation without JSBACH (and with SURFACE

activated instead) is referred to as EMAC/SRF. The simula-
tions with the according parameter setups are listed in Ta-
ble S2 in the Supplement (simulations 2 and 31 were not
completed due to server failures and were excluded from the
analysis). Subsequently, the global and temporal averages of
LST; top-of-atmosphere (TOA); and surface (SRF) radiation
including net, solar and terrestrial parts; heat flux including
net, sensible and latent parts; total column fractional cloud
coverage; total column cloud liquid and ice water content;
and TWS are calculated and compared to ERA5 and ERA5-
Land monthly averaged data (Muñoz Sabater, 2019). Addi-
tionally, the global and temporal average of precipitation is
compared to the Global Precipitation Climatology Project
(GPCP) monthly precipitation dataset (Adler et al., 2003).
These datasets are from here on referred to as reference data
REF. The results of the global and time averages of the previ-
ously mentioned parameters for each simulation are listed in
Table S3 in the Supplement. The corresponding RMSE and
NRMSE (RMSE normalised by the range of the reference
data) are shown in Table S4 in the Supplement. The crite-
ria used for the selection of the optimised tuning parameters
were, on the one hand, the smallest deviation from the refer-
ence data paired with the lowest normalised root mean square
error (NRMSE) sum and, on the other hand, the change in as
few parameters as possible to stay as close as possible to the
tuning of EMAC/SURF. The sets of parameters of CTRL and
EMAC/JSBACH are listed in Table 2. As shown here, only
one parameter needed to be adjusted via the replacement of
the calculation of zinhoml dependent on model level (lev)
and liquid water path (lwp) by a constant value of 0.92. The
default value of zinhoml is calculated based on Eqs. (11.52)–
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(11.53) in Roeckner et al. (2003), viz.

zinhomldefault ={
(
∑nlev

0 lwp∂lev)−0.1 if (
∑nlev

0 lwp∂lev) > 1,

1 otherwise,
(1)

with nlev being the number of model levels.
The temporally and spatially averaged results of REF,

EMAC/SRF, CTRL and EMAC/JSBACH are shown in Ta-
ble 3, with values that could be improved with respect to
CTRL indicated in bold.

3 Evaluation

3.1 Model setup

For the present study, we applied EMAC (MESSy version
2.55.0) at the T63L31ECMWF resolution, i.e. with a spheri-
cal truncation of T63 (corresponding to a quadratic Gaussian
grid of approx. 1.8° by 1.8° spacing in latitude and longi-
tude), with 31 vertical hybrid pressure levels up to 10 hPa. An
overview of the submodels used in the reference simulation
EMAC/SRF is given in Table 4 along with a brief description
of each. In the simulation EMAC/JSBACH, the submodel
SURFACE is replaced by the new submodel, JSBACH, and
the tuning parameters are updated, while the remaining setup
is unchanged. Both simulations were performed from Jan-
uary 1970 to January 2011 and include tracer nudging of
CO2, CH4, N2O, CFC11 and CFC12 based on tracer profiles
derived from Atmospheric Chemistry and Climate Model In-
tercomparison Project (ACCMIP) historical lower-boundary
condition datasets (Lamarque et al., 2010, 2013). JSBACH is
operated on three snow layers, three canopy layers and five
soil layers, reaching a depth of 9.8 m below the surface. From
21 possible land cover types (LCTs), 11 plant functional
types (PFTs) are taken into account for the standard tile setup
(Table A1 in the Appendix). Those are tropical and extra-
tropical broadleaf evergreen and deciduous trees, raingreen
shrubs, deciduous shrubs, C3 and C4 grass, C3 and C4 pas-
ture, and C3 and C4 crops. This evaluation focuses only on
the dynamical coupling between EMAC and JSBACH; thus,
all calculations of atmospheric chemistry and the O-GCM
are deactivated. Aerosol concentrations are prescribed for all
simulations based on Tanré et al. (1997). A list of all coupled
variables can be found in the namelist attached in the elec-
tronic Supplement. Coupled variables include surface tem-
perature, latent and sensible fluxes, ground heat fluxes, soil
water content, surface albedo, and specific humidity at the
lowest atmospheric level. Atmospheric Model Intercompar-
ison Project (AMIP)-type simulations were performed with
prescribed monthly sea surface temperature and sea ice con-
centration to identify systematic errors in the model (Gates
et al., 1999). The sea surface temperature and ice concentra-
tion are based on ERA5 6-hourly data from 1940 to present

(Hersbach et al., 2020) and are the same for all performed
simulations. JSBACH was initialised with carbon pool, soil
and land property data from the year 2005 (in the Supple-
ment), which are estimated to stabilise within 5 years. This is
possible since we perform AMIP-type simulations in which
the land–carbon interaction remains inactive. Atmospheric
variables stabilise within days, and the soil moisture is es-
timated to be the slowest variable to adjust to equilibrium,
with a maximum adjustment time of 1 year (Hagemann and
Stacke, 2015; Schneck et al., 2022). Therefore, the first year
(1970) is considered the spin-up time and is not taken into
account for the evaluation.

3.1.1 Evaluation variables and reference datasets

The selected variables to be assessed are variables represent-
ing not only the land surface, like land surface temperature
(LST), terrestrial water storage (TWS) and surface albedo
(α), but also other atmospheric variables, like precipita-
tion (precip), top-of-atmosphere radiation balance (RadTOA),
fraction of absorbed photosynthetic active radiation (FA-
PAR), leaf area index (LAI) and gross primary productiv-
ity (GPP), in line with the study of Schneck et al. (2022).
These variables are compared either to ERA5/ERA5-Land
reanalysis datasets or directly to observational datasets of the
GPCP or MODIS satellite data (Table 5). The ERA5/ERA-
Land reanalysis data are a combination of synthesised es-
timates of the climate state, which are calculated based on
as many observations as possible, and a numerical model
due to either direct assimilation of the observations or forc-
ings (Muñoz Sabater, 2019). A comprehensive overview of
the limitations and uncertainties in the MODIS data is pro-
vided by Disney et al. (2016). The MODIS standard devia-
tions of LAI, FAPAR and GPP are displayed in the Appendix
(Figs. A2, A3 and A4) together with the GPCP precipitation
error (Fig. A1).

4 Results and discussion

To get an overview of the model performance compared to
the reference data, their statistical metrics of the monthly and
globally averaged results are presented in Fig. 1 as a Taylor
diagram (Taylor, 2001). For the classification of the results
of the coupled model, the statistical measures of the model
results without the coupling to JSBACH are added. Results
of the EMAC/JSBACH are shown as dots, while the re-
sults of the EMAC/SRF simulation are displayed as crosses.
The Taylor plot shows the Pearson correlation coefficient be-
tween simulated and reference data on straight lines stem-
ming from the origin, with arcs around the origin indicating
the standard deviation normalised by the reference standard
deviation and arcs around the value of 1 indicating the root
mean square error normalised by the range of the reference
data (NRMSE). The Pearson correlation coefficient (r) and
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Table 2. List of the optimised parameters of the simulation without JSBACH (EMAC/SRF), the control simulation including JSBACH
(CTRL) and the simulation best fitting the requirements (EMAC/JSBACH).

Parameter zasic zinhomi zinhoml cmfctop cprcon (×10−4 s2 m−2)
(default) (0.85) (0.85) (zinhomldefault; Eq. 1) (0.3) (1)

EMAC/SRF default default default default default
CTRL default default default default default
EMAC/JSBACH default default 0.92 default default

Table 3. Table of the temporally and globally averaged results, with inter-annual variability as the standard deviation of CTRL, EMAC/SRF
and EMAC/JSBACH from 1990 to 2010. The corresponding reanalysis or observational results are listed as REF. For precipitation, REF
refers to the GPCP monthly precipitation dataset (Adler et al., 2003), while for the remaining variables, REF refers to ERA5 and ERA5-Land
reanalysis datasets (Hersbach, 2023; Muñoz Sabater, 2019, 2021). TOAnet refers to the sum of shortwave (TOAsw) and longwave (TOAlw)
top-of-atmosphere radiation flux, while SRF∗ refers to the same at surface level. HFLXnet refers to the sum of the sensible (HFLXsensible)
and latent (HFLXlatent) heat fluxes. Clouds are assessed based on the accumulated cloud cover (ACLC), the liquid water content (LWC) and
the ice water content in clouds (IWC).

Run LST TOAnet TOAsw TOAlw SRFnet
[K] [W m−2] [W m−2] [W m−2] [W m−2]

282.25± 0.27 0.45± 0.65 242.67± 0.65 −242.22± 0.29 105.91± 0.45

EMAC/SRF 283.09± 0.27 3.56± 0.39 234.33± 0.27 −230.77± 0.34 107.92± 0.24
280.66± 0.26 6.61± 0.5 237.22± 0.3 −230.61± 0.42 108.08± 0.28

EMAC/JSBACH 280.48± 0.23 3.23 ± 0.38 233.86± 0.29 −230.63 ± 0.38 104.43 ± 0.3

Run SRFsw SRFlw HFLXnet HFLXsensible HFLXlatent
[W m−2] [W m−2] [W m−2] [W m−2] [W m−2]

163.76± 0.54 −57.85± 0.31 −69.92± 0.57 −28.15± 0.68 −41.76± 0.43

EMAC/SRF 161.74± 0.31 −53.83± 0.3 −104.24± 0.35 −16.74± 0.18 −87.5± 0.42
165.97± 0.36 −57.88± 0.35 −110.92± 0.65 −11.59± 0.15 −99.33± 0.6

EMAC/JSBACH 162.14 ± 0.34 −57.71± 0.35 −110.47 ± 0.67 −11.67 ± 0.14 −98.79 ± 0.61

Run Precip ACLC LWC IWC TWS
[mm d−1] [kg m−2] [kg m−2] [m]

2.7± 0.03 0.553± 0.00405 0.04707± 0.00098 0.02166± 0.00033 1.06012± 0.00947

EMAC/SRF 2.83± 0.02 1.06067± 0.00444 0.10394± 0.00115 0.04972± 0.00068 0.34995± 0.00425
2.77± 0.02 0.6462± 0.0025 0.09594± 0.00114 0.04945± 0.00067 1.00362± 0.00761

EMAC/JSBACH 2.76± 0.02 0.6464± 0.0028 0.09519± 0.0009 0.04936± 0.00054 1.00385± 0.00815

NRMSE are listed in Table 6, together with the weighted
global average, with standard deviations for the model sim-
ulations (MOD) and reference data (REF). The correlation
and NRMSE are based on monthly averages for the avail-
able time period of the reference datasets, with the corre-
lation conducted over time and location (see Table 6). This
covers the years 1971–2010 for LST, RadTOA, α and TWS.
Precipitation is analysed for the period 1980–2010 and LAI,
FAPAR and GPP for 2000–2010.

LST has the highest correlation with REF – namely 0.985
for EMAC/JSBACH and 0.989 for EMAC/SRF – whereas
the global average EMAC/JSBACH LST is, on average,
1.546 K colder than REF and EMAC/SRF and 0.816 K
warmer than REF (see Fig. 1 and Table 6). The second-

highest correlation between REF and the model simulations
is found for the surface albedo (shown in black in Fig. 1)
is 0.947 for EMAC/JSBACH and 0.944 for EMAC/SRF.
Also for this parameter, EMAC/JSBACH has a slightly lower
global average than REF, with an average difference of
−0.015, and EMAC/SRF differs by −0.013 from the global
average. The third-highest correlation is found for RadTOA
(shown in orange in Fig. 1) and is 0.907 for EMAC/JS-
BACH compared to REF and 0.909 for EMAC/SRF com-
pared to REF. The net radiative flux at the top of the at-
mosphere (TOA) between EMAC/JSBACH and REF differs
by 3.56 and 3.045 W m−2 from EMAC/SRF. FAPAR (shown
in yellow in Fig. 1) is only available for the EMAC/JS-
BACH simulation, with a correlation of 0.663 with REF.
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Table 4. List of the submodels comprising the EMAC/SRF simulation including short description and reference.

Process
submodels

Short description Reference

AEROPT Calculation of aerosol optical properties Dietmüller et al. (2016)
CLOUD ECHAM5 cloud scheme as MESSy submodel Roeckner et al. (2006); Tost (2023)
CLOUDOPT Calculation of cloud optical properties. Dietmüller et al. (2016)
CONVECT Convection parameterisations Tost et al. (2006)
E5VDIFF Land–atmosphere exchange and vertical diffusion based on ECHAM5 MESSy (2023a); Roeckner et al. (2003)
GWAVE ECHAM5 non-orographic gravity wave routines plus additional drag pa-

rameterisations
MESSy (2023a); Hines (1997)

HD Hydrological discharge model for present-day rivers Pozzer et al. (2011a)
TNUDGE Newtonian relaxation of species as pseudo-emission Kerkweg et al. (2006)
ORBIT Calculation of orbital parameters of the Earth’s orbit around the Sun Dietmüller et al. (2016)
OROGW Parameterisation of drag due to subgrid-scale orography blocking and oro-

graphic gravity wave forcing
Chap. 7 of Roeckner et al. (2003)

PTRAC User-defined initialised prognostic tracers Jöckel et al. (2008)
RAD ECHAM5 radiation code with extended features Dietmüller et al. (2016)
SURFACE Modularised version of the ECHAM5 subroutines SURF, LAKE,

LICETEMP and SICETEMP
Chap. 6 of Roeckner et al. (2003)

Table 5. Table of the evaluation variables, the corresponding reference dataset and the time period of the evaluation analysed.

Variable Dataset Time period Reference

LST
ERA5-Land monthly averaged data from 1950 to the present 1971–2010 Muñoz Sabater (2019)TWS

Surface albedo

RadTOA ERA5 monthly averaged data from 1940 to the present 1971–2010 Hersbach et al. (2023)

Precipitation GPCP monthly precipitation dataset from 1979 to 2021 1980–2010 Adler et al. (2003)

LAI
FAPAR

MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4
Global 500m SIN Grid V061 regridded to global data at 0.5
resolution derived by ICDC

2000–2010
Kern (2023); Myneni (2021)

GPP MOD17A2H MODIS/Terra gross primary productivity 8-Day
L4 Global 500m SIN Grid V006 regridded to global data at 0.5
resolution derived by ICDC

2000–2010 Kern (2021); Running et al.
(2015)

Further datasets used for LST evaluation

HFLXlatent ERA5-Land monthly averaged data from 1950 to the present 1971–2010 Muñoz Sabater (2019)
Evaporation ERA5 monthly averaged data from 1940 to the present 1971–2010 Hersbach et al. (2023)

The global average difference is 0.223. The correlation of
simulated and observed LAI (shown green in Fig. 1) is
0.637 for the EMAC/JSBACH simulation and 0.864 for the
climatology used in EMAC/SRF. EMAC/JSBACH under-
estimates the global vegetation LAI by 0.212, while the
EMAC/SRF climatology overestimates LAI by 0.768. As
for FAPAR, GPP (shown in dark green in Fig. 1) is only
available for EMAC/JSBACH, leading to a correlation with
REF of 0.564, with an average global difference to REF
of −0.001 kg carbon km−2. The correlation between simu-
lated precipitation (shown in dark blue in Fig. 1) and REF
is 0.523 for EMAC/JSBACH and 0.614 for EMAC/SRF.

EMAC/JSBACH overestimates the global mean precipita-
tion by 0.042 mm d−1 and EMAC/SRF does the same by
0.316 mm d−1. The lowest correlation between model re-
sults and reference data is found for TWS (shown in light
blue in Fig. 1). EMAC/JSBACH and REF correlate with a
value of 0.223, while EMAC/SRF and REF correlate with
0.257. EMAC/JSBACH overestimates the mean global TWS
by 0.029 m, and EMAC/SRF underestimates it by 0.69 m.

For a more comprehensive assessment, in the following
subsections, each variable derived from the new coupled
model is evaluated individually via comparison to the refer-
ence dataset and the EMAC/SRF simulation. Monthly aver-
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Figure 1. Taylor plots of the Pearson correlation coefficient; root mean square error (RMSE); and standard deviation normalised with the
reference data standard deviation of monthly means of LST (1971–2010), RadTOA (1971–2010), surface albedo (1971–2010), precipitation
(1980–2010), TWS (1971–2010), LAI (2000–2010), FAPAR (2000–2010) and GPP (2000–2010). The statistical measures of the EMAC/JS-
BACH are displayed as dots, while the EMAC/SRF values are shown as crosses. As EMAC does not provide FAPAR and GPP output; both
are only shown for the EMAC/JSBACH simulation. Straight lines from the origin represent the correlations, while the arcs around the origin
represent the standard deviations. The arcs around the value 1 on the horizontal axis show the RMSE normalised to the standard deviation.
The correlation and RMSE are based on monthly average values, with the correlation conducted over time and location.

ages over the corresponding analysis period were calculated
and, subsequently, the average values for the spring and sum-
mer months (March, April, May, June, July and August) and
the autumn and winter months (September, October, Novem-
ber, December, January and February) were determined. The
same was done for the MODIS, GPCP and ERA5 datasets.

4.1 Land surface temperature (LST)

The land surface temperature is one of the main drivers in
determining the habitat conditions for the vegetation and liv-
ing organisms in ecosystems. It is one of the most impor-
tant drivers of all land processes as it controls the surface
energy and radiation balance as well as the hydrological and
thermal exchange fluxes between the surface and the atmo-
sphere. Furthermore, it determines the freezing and thawing
of the snow and ice covers. It is the upper-boundary condi-

tion for the soil temperature calculation within the five-layer
soil scheme and one of the lower-boundary conditions for
EMAC. LST is calculated in JSBACH via the surface en-
ergy balance equation and the values for saturated humidity
and dry static energy based on the Richtmyer–Morton coeffi-
cients derived from the vertical diffusion scheme of ECHAM
(Reick et al., 2021). Here, LST is compared with monthly
averaged reanalysis data from ERA5-Land, available for the
period from 1950 to the present (Muñoz Sabater, 2019), with
only the simulated years (1971–2010) included in the com-
parison. The ERA5-Land dataset is provided at a 0.1°-by-
0.1° spatial resolution and is interpolated into the T63L31
EMAC output grid.

The geographical distribution of the LST difference be-
tween ERA5 and EMAC/JSBACH is shown in Fig. 2. Fig-
ures 3 and 4 show the LST time series and seasonality anal-
ysis and Fig. 5 shows the LST seasonality and correspond-
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Table 6. Summary of the comparison between model results and reference data. The Pearson correlation coefficient is listed as r , and NRMSE
shows the root mean square error normalised by the range of the reference data. The simulations were performed at T63L31 resolution and
with a model time step of 600 s. The columns MOD and REF are the weighted global averages, with the standard deviation of the model
simulation results and the reference data.

Variable Period r NRMSE MOD REF

EMAC/JSBACH vs. REF

LST [K] 1971–2010 0.985 0.045 280.434± 23.207 281.98± 26.258
TWS [m] 1971–2010 0.223 0.18 1.123± 0.701 1.094± 0.552
Surface albedo 1971–2010 0.947 0.127 0.301± 0.268 0.316± 0.292
RadTOA [W m−2] 1971–2010 0.907 0.099 3.948± 65.664 0.388± 62.201
Precipitation [mm d−1] 1980–2010 0.523 0.083 2.738± 2.479 2.696± 1.78
LAI 2000–2010 0.637 0.175 1.187± 1.049 1.399± 1.257
FAPAR 2000–2010 0.663 0.271 0.161± 0.137 0.384± 0.196
GPP [kg carbon km−2] 2000–2010 0.564 0.203 0.02± 0.017 0.021± 0.013

EMAC/SRF vs. REF

LST [K] 1971–2010 0.989 0.037 282.796± 24.933 281.98± 26.258
TWS [m] 1971–2010 0.257 0.211 0.404± 0.202 1.094± 0.552
Surface albedo 1971–2010 0.944 0.129 0.303± 0.267 0.316± 0.292
RadTOA [W m−2] 1971–2010 0.909 0.098 3.434± 65.327 0.388± 62.201
Precipitation [mm d−1] 1980–2010 0.616 0.074 3.025± 2.186 2.696± 1.78
LAI (climatology) 2000–2010 0.864 0.263 2.165± 1.945 1.399± 1.257

ing latent heat flux at the surface separated for three cli-
mate zones. The polar zone is defined as latitudes over 66.5°,
the temperate zone as latitudes between 40° and 66.5°, and
the tropical and subtropical zones as latitudes under 40°. As
shown in Fig. 2, the EMAC/JSBACH LST is lower than REF
everywhere throughout the year except for the polar regions,
the Himalaya and over the Amazon Basin. The largest LST
underestimations are found over the Rocky Mountains and
the Taklamakan and Gobi deserts, being most pronounced
in the Northern Hemispheric summer. The largest overes-
timation of LST occurs over the Antarctic Ross Ice Shelf
(up to 20 K); along the coast of the Greenland Sea (up to
15 K); and in the Hindu Kush, Himalayan, Kunlun and Tien
Shen mountain ranges (up to 15 K). As result, the zonal
mean shows a slightly warmer surface in the polar regions
and a colder surface in the subtropics and temperate zones.
In the temporal and global average, the LST of EMAC/JS-
BACH is 1.546 K colder compared to the reanalysis data.
The general trend of steadily increasing LST is reproduced
by EMAC/JSBACH (Fig. 3). Nevertheless, in both the time
series analysis and seasonality analysis, the overall differ-
ence of 1.546 K between EMAC/JSBACH and ERA5 LSTs
is clearly visible. When comparing the geographical differ-
ence between EMAC/SRF and ERA5 LSTs, as displayed in
Fig. 2, overestimations of the LST are found over the Antarc-
tic Ross Ice Shelf, along the coast of the Greenland Sea, and
over the same mountain ranges as previously found for the
EMAC/JSBACH results. Here, too, are the polar regions in
general warmer than indicated by ERA5. Overall, the LST
derived from EMAC/SRF is 0.743 K warmer than the reanal-

ysis data. This is also visible in the trend analysis, which
shows the overall warmer global land surface of EMAC/SRF
in comparison to ERA5. In the zonal mean, the differences
largely cancel out, leading to a similar zonal progression of
the EMAC/SRF results compared to the ERA5 LST.

Comparing EMAC/JSBACH and the ERA5 LST, larger
differences than 1.546 K are found for the tropics/subtrop-
ics and temperate zone (latitudes > 66.5°), while in the po-
lar climate zone, the LST is overestimated in the EMAC/JS-
BACH and the EMAC/SRF simulation, as shown in Fig. 5.
The lower LST of EMAC/JSBACH compared to EMAC/SRF
in non-polar regions can be explained by variations in the
latent heat flux, where EMAC/JSBACH simulated consis-
tently higher values than EMAC/SRF. Here, the main driver
is evapotranspiration, the process by which water vapour is
released from the surface and vegetation. Evapotranspiration,
the sum of evaporation and transpiration, has, in general, a
cooling effect on the evaporating surface due to energy ab-
sorption during the phase change in water. Figure 5 displays,
besides LST and latent heat flux, the surface evaporation,
which is strongest in the tropics and subtropics. This is in line
with cooler LST values in those regions. The partially over-
estimated TWS (Sect. 4.2) could be the cause of the stronger
latent heat flux, as more water is available for evaporation. As
the moisture content of the soil in EMAC/JSBACH is, in gen-
eral, much larger than in EMAC/SRF, increased evaporation
in the coupled simulation is plausible. In the polar regions,
where vegetation is sparse or absent, the difference in latent
heat flux between EMAC/JSBACH and EMAC/SRF is less
significant, as shown in Fig. 5, resulting in less variation in
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the LST between simulations. The strong overestimation of
LST along the Antarctic coast is visible in both simulations
and might be an artifact of sea ice occurrence and the vari-
ability of snow and ice cover. Despite local variations, the
overall temporal and spatial correlation between EMAC/JS-
BACH and ERA5 is large (0.985; Table 6), indicating that
LST is, in general, realistically reproduced and that the rep-
resentations of seasonal patterns and overall trends are plau-
sible.

4.2 Terrestrial water storage (TWS)

The variation in soil depth of the reanalysis data and the
model datasets complicates direct comparisons of the soil
water content per layer. To overcome this problem, TWS is
chosen as the evaluation variable. TWS is defined as the ver-
tically integrated water content on land and the subsurface,
including groundwater, rivers, lake water, soil moisture (also
in the root zone), snow and ice (including permafrost), wet
biomass, and water stored in vegetation (Girotto and Rodell,
2019). It depends on the amount of precipitation and the air
temperature as well as on the soil type and infiltration, veg-
etation cover, surface and soil temperature, and runoff (Sch-
neck et al., 2022).

For this assessment, however, we exclude water that drains
from the land surface into rivers, streams or other waterbod-
ies in order to focus only on the part of the water that is stored
in the soil and vegetation. The TWS therefore includes all the
water stored in a grid box; this total amount of water is com-
parable between the models and reanalysis.

In EMAC/JSBACH, the TWS is the sum of water content
and runoff, calculated separately. The water content is cal-
culated as the sum of all water reservoirs above and below
ground, down to the bedrock. Everything below the bedrock,
like deep groundwater and aquifers, is not represented in JS-
BACH and thus not taken into account (Reick et al., 2021).
In EMAC/JSBACH, the soil water column is segmented into
five layers, with a maximum depth of 9.834 m. The above-
groundwater includes the wet skin reservoir (water on the
canopy and surface) and snow on canopy and surface, both
depending on and exchanging moisture between surface and
atmosphere via precipitation, evaporation, sublimation, melt-
ing and windblow. TWS does not include any fluxes (such
as evaporation). Water infiltrating the ground either perco-
lates by gravitational movement (ending up as drainage if it
reaches bedrock) or diffuses. Depending on its phase, it is
defined as one of the EMAC/JSBACH below-groundwater
reservoirs: soil moisture or soil ice. At the surface, the mois-
ture exchange with the atmosphere occurs through evap-
otranspiration, dew formation or evaporation of bare soil,
controlled by the specific humidity and temperature of the
surrounding air. Furthermore, these processes strongly de-
pend on vegetation coverage and, with that, plant produc-
tivity, which is also assessed via the gross primary produc-
tivity (GPP) (Sect. 4.8). TWS is compared to the ERA5-

Land TWS, derived as the sum of the integrated volumet-
ric soil water content, skin reservoir content and snow depth
in metres water equivalent. The ERA5 soil water column
is distributed over four layers, with a maximum depth of
2.89 m. Here, too, is the ERA5 dataset interpolated into the
EMAC grid. Since TWS is not calculated for glaciers within
EMAC/JSBACH, glaciated polar areas are excluded from
this analysis.

In Fig. 6, the difference in TWS between EMAC/JS-
BACH and EMAC/SRF to ERA5 is shown. The annual
global average of EMAC/JSBACH TWS weighted by lati-
tudes is 0.029 m larger than the global mean of the ERA5.
The maximum overestimation of TWS is found in western
Russia (up to 3.0 m). EMAC/JSBACH overestimates TWS
almost everywhere, independent of the season, except for
high, elevated regions such as the Tibetan Plateau and Tien
Shen, central and eastern Siberia, India (Deccan Plateau),
the Ethiopian highlands, and Patagonia. Additionally, TWS
is underestimated in the Amazon Basin.

The zonal mean of the EMAC/JSBACH TWS, as shown
in Fig. 6 (right panels), does not exactly reproduce the zonal
mean of the TWS from ERA5, but its absolute values are in
better agreement with the ERA5 data than the EMAC/SRF
results. This is also visible in Fig. 7, where the globally aver-
aged TWS time series is illustrated. Since there are no snow
cover data available from ERA5-Land for the year 1974,
this year was excluded from the analysis. The TWS of the
EMAC/SRF simulation (Fig. 6) is lower everywhere com-
pared to the ERA5 dataset, except for deserts, where the
TWS is low anyway. This leads to an annual global aver-
age of the EMAC/SRF TWS of 0.404 ± 0.202 m, which is
different by −0.69 m than the one derived from reanalysis
data (see Table 6). In EMAC/JSBACH, the global average
of TWS is 1.123 ± 0.701 m, which is, with a difference of
0.029 m, significantly closer to ERA5 (1.094 ± 0.552 m).

The soil hydrology module that comes with EMAC/JS-
BACH offers the possibility of improving the representation
of the soil water. The soil moisture in EMAC/SRF was sim-
ulated based on a simple bucket model. Following Senevi-
ratne et al. (2010), this is now replaced by a more com-
plex five-layer diffusive hydrological transport model that
includes water storage and infiltration in five soil layers,
preventing soil from drying too rapidly. While EMAC/SRF
tends to strongly underestimate soil moisture levels every-
where, the integration of JSBACH results in larger and more
spatially diverse soil moisture content. However, de Vrese
et al. (2023) found that in the JSBACH version used here,
infiltration only takes place if the temperature of the first soil
layer is at or above the melting point. In combination with
the five-layer snow scheme presented by Ekici et al. (2014),
this becomes problematic. During spring snowmelt, soil tem-
peratures are below the 0 °C of the overlying snow cover,
causing all the meltwater to run off at the surface, while, in
reality, a considerable amount should percolate into the soil
(de Vrese et al., 2023). This contributes to the strong under-
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Figure 2. Difference in land surface temperature (LST) between EMAC/JSBACH and ERA5-Land during Northern Hemispheric (NH)
summer (a) and NH winter (d) months, with data averaged over the years 1971 to 2010. Analogously, the difference between EMAC/SRF
and ERA5-Land LST during summer (b) and winter (e) months is displayed. Positive values represent an overestimation of the simulated
LST, while negative values indicate an underestimation. Additionally, the zonal average of all three datasets for both summer (c) and winter (f)
months is shown. Here, LST from EMAC/JSBACH is depicted in green, LST from EMAC/SRF is shown in blue and LST from the ERA5-
Land dataset is represented in black. The shaded area within the zonal mean plot illustrates the standard deviations along longitudes.

Figure 3. Globally averaged LST time series (in K) of EMAC/JS-
BACH (green), EMAC/SRF (blue) and ERA5 (black).

estimation of TWS in permafrost regions, e.g. Siberia. De-
spite this, the global average time series analyses show that
EMAC/JSBACH TWS aligns much more closely with the
TWS from the ERA5 reanalysis compared to the EMAC/SRF
results (Fig. 7).

Figure 4. Globally averaged seasonal LST (in K) of EMAC/JS-
BACH (green), EMAC/SRF (blue) and ERA5 (black) for the years
1971 to 2010.

4.3 Surface albedo (α)

Another key factor in Earth system modelling is the surface
albedo as it is a fundamental input for the radiation scheme
and strongly influences the energy budget of the planet. Gen-
erally defined as the reflected fraction of incoming solar ra-
diation, it depends on the type of land cover and the extent
and thickness of the snow cover or ice sheet. Especially over
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Figure 5. Averaged seasonal LST (in K), surface latent heat flux (in W m−2) and evaporation (without transpiration) (in m) of EMAC/JS-
BACH (green), EMAC/SRF (blue) and ERA5 (black) for the years 1971 to 2010. The upper panels indicate values averaged over the polar
climate zone (latitudes > 66.5°), the mid panels values averaged over the temperate climate zone (latitudes between 40° and 66.5°) and the
bottom panels values averaged over the tropical and subtropical climate zones (latitudes < 40°).

the continental area of the Northern Hemisphere and the sea
ice cover in the Southern Hemisphere, the surface albedo can
exert a strong feedback effect (Hall, 2004). Since the sur-
face coverage of snow and ice can vary on small scales and
is strongly coupled to atmospheric and oceanic dynamics,
the computation of the surface albedo is still a challenging
factor for GCMs (Bony et al., 2006). In EMAC/JSBACH,
the surface albedo on glaciers is calculated for grid boxes
either with ice sheets or without them, where these boxes
are either completely or not at all covered with ice. For
ice sheets, the albedo is calculated according to ECHAM5
(Roeckner et al., 2003). Every other surface is treated with a
new albedo scheme based on the current state of snow cover,
LAI, vegetation distribution and the spectral composition of
solar downward radiation for each grid box, as described by
Reick et al. (2021).

The surface albedo is compared to the ERA5-Land albedo
variable. The ERA5-Land albedo is based on a 5-year
MODIS climatology. These satellite observations are a com-
bined Terra and Aqua retrieval (Schaaf and Wang, 2015).
From the 16 d level-3 data of a 0.05° climate modelling grid
(approx. 5.6 km at the Equator), monthly averages are cal-
culated and interpolated into the EMAC T63 grid. The sur-
face albedo of EMAC/JSBACH is, in general, in good agree-

ment with the ERA5 surface albedo (Fig. 8). During summer,
EMAC/JSBACH shows a slight overestimation over Europe
and Asia between 45 and 75° N and parts of Canada. Be-
tween 25° S and 15° N, an underestimation is visible. During
the northern winter months, North America and Canada show
underestimated surface albedo along with Scandinavia, east-
ern Europe, northern Russia and elevated regions in Asia.
The average annual global difference between EMAC/JS-
BACH and ERA5 is−0.015. The same geographical patterns
are visible for the EMAC/SRF compared to ERA5 surface
albedo comparison with average annual global difference of
−0.012. The zonal mean shows a slight overestimation of
surface albedo for both simulations in the southern subtrop-
ics during summer and winter. During winter, there is a min-
imum of the surface albedo at about 45° N, which is not seen
in the reference data (Fig. 8, right panels).

The land surface albedo remains almost unchanged in
the new model version. This is presumably due to the fact
that in EMAC/SRF the background albedo is temporally
constant except for changes in ice and snow cover (Nützel
et al., 2023). In EMAC/JSBACH, a simplified ground albedo
scheme was used to obtain a comparable result. However,
there is a slight improvement compared to the reference data
for EMAC/JSBACH, which is particularly noticeable during
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Figure 6. Difference in terrestrial water storage (TWS) between EMAC/JSBACH and ERA5-Land during NH summer (a) and NH winter (d)
months, with data averaged over the years 1971 to 2010. Analogously, the difference between EMAC/SRF and ERA5-Land TWS during
summer (b) and winter (e) months is displayed. Positive values represent an overestimation of the simulated TWS, while negative values
indicate an underestimation. Additionally, the zonal average of all three datasets for both summer (c) and winter (f) months is shown.
Here, TWS from EMAC/JSBACH is depicted in green, TWS from EMAC/SRF is shown in blue and TWS from the ERA5-Land dataset is
represented in black. The shaded areas within the zonal mean plots illustrate the standard deviations of the datasets. Glaciated polar regions
are excluded.

Figure 7. Globally averaged TWS time series (in m w.e.) of
EMAC/JSBACH (green), EMAC/SRF (blue) and ERA5 (black).

the summer in eastern Siberia, where the model overestima-
tion is reduced. In this region, the LST and LAI derived
from EMAC/JSBACH align more closely to the reference
data than EMAC/SRF alone. This suggests that the slightly
warmer surface and less vegetation in this region may con-
tribute to the improved surface albedo representation.

4.4 Top-of-atmosphere radiation balance (RadTOA)

The top-of-atmosphere (TOA) net radiation can be defined
as the difference between the incoming solar radiation; out-
going solar radiation backscattered and reflected by clouds,
aerosols, air and the land surface; and the terrestrial radiation
emitted by the surface, atmosphere and clouds. In total and
in equilibrium, the multi-year global mean sum should be
zero. However, as climate change continues and the amount
of greenhouse gases in the atmosphere increases, this effect
exceeds zero; i.e. more radiation is trapped in the atmosphere
than is emitted, leading to global warming. In climate mod-
elling, the amounts of radiative energy absorbed and emit-
ted in and by the atmosphere are key factors in the Earth’s
energy balance. The concentration of water vapour in the at-
mosphere and the surface albedo are important factors (Loeb
et al., 2009). It is important to reproduce these factors cor-
rectly and to detect possible biases. The radiation fluxes are
calculated by the MESSy submodel RAD, which is a new im-
plementation of the ECHAM5 radiation scheme (Dietmüller
et al., 2016). RadTOA is compared to the ERA5 monthly av-
eraged reanalysis data of TOA solar and terrestrial radiation
interpolated into the EMAC T63 grid (Hersbach et al., 2023).

The average temporal and spacial correlation between
EMAC/JSBACH and ERA5 RadTOA is 0.907 (Table 6).
The largest differences and overestimation of EMAC/JS-
BACH RadTOA in comparison to ERA5 during the summer
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Figure 8. Difference in surface albedo (α) between EMAC/JSBACH and ERA5-Land during Northern Hemispheric (NH) summer (a) and
NH winter (d) months, with data averaged over the years 1971 to 2010. Analogously, the difference between EMAC/SRF and ERA5-Land α
during summer (b) and winter (e) months is displayed. Positive values represent an overestimation of the simulated α, while negative values
indicate an underestimation. Additionally, the zonal average of all three datasets for both summer (c) and winter (f) months is shown. Here, α
from EMAC/JSBACH is depicted in green, α from EMAC/SRF is shown in blue and α from the ERA5-Land dataset is represented in black.
The shaded area within the zonal mean plot illustrates the standard deviations along longitudes.

months occur over north and west Africa and the Middle
East (Fig. 9). The best agreement is found during summer
over western Russia. The largest underestimations are found
over central Africa and northern South America. During win-
ter, the largest overestimation occurs over the Himalayas and
the largest underestimation over the northern and southern
Andes, central Africa, and Indonesia. During this time pe-
riod, the best agreement is found over the polar and sub-
polar regions. The average annual global difference between
EMAC/JSBACH and ERA5 is 3.56 W m−2. The zonal mean
of the simulation is well in line with the zonal mean of
the reanalysis data, and the overestimation of the simulation
only occurs at 30° N and between 0 and 30° S. Comparing
EMAC/SRF and ERA5, a similar geographical distribution is
discernable and, especially in winter, there is almost no dif-
ference to the EMAC/JSBACH simulation. However, almost
everywhere at high latitudes, the TOA radiative flux is lower
during summer. The same applies for the zonal average. The
average annual global difference between EMAC/SRF and
ERA5 is 3.045 W m−2, and the overall correlation is 0.909.

The TOA radiation derived from EMAC/JSBACH shows
noticeable regional variations when compared to reanaly-
sis data, yet its overall balance remains comparable to the
one derived from EMAC/SRF. Moreover, these regional dif-
ferences in RadTOA closely align with those observed for
EMAC/SRF and do not significantly change when EMAC is
in operation without JSBACH. RadTOA shows a strong anti-
correlation with the surface albedo (ρ =−0.86), which de-

termines the amount of absorbed radiation on the surface (Ta-
ble A2 in the Appendix). Since there are no significant differ-
ences between the EMAC/SRF and EMAC/JSBACH surface
albedo, no significant differences in RadTOA are expected.

4.5 Precipitation (precip)

Since precipitation is one of the most important and chal-
lenging climate variables to reproduce for coupled global
climate models (Dai, 2006), we are interested in analysing
the general performance of the coupled EMAC/JSBACH and
EMAC/SRF simulations to reproduce regional and temporal
variations as well as the amount and intensity of precipita-
tion. Problems of the simulation of precipitation can be an
indication of issues of the processes that drive precipitation,
such as large- and small-scale atmospheric dynamics, cloud
micro-physics, and aerosol formation (Dai, 2006). Precipita-
tion is calculated by the submodels CLOUD and CONVECT
and is one of the standard input parameters for EMAC/JS-
BACH, forcing many processes in the land system. The sim-
ulated precipitation is compared to the Global Precipitation
Climatology Project (GPCP) dataset of monthly precipitation
spanning 1979 to 2021 (Adler et al., 2003). The observational
precipitation data are available at a grid resolution of 2.5° ×
2.5°, which is approximately 280 km at the Equator, and is
regridded to the EMAC Gaussian T63 grid (1.8° × 1.8°, ap-
proximately 210 km at the Equator) using bi-linear interpola-
tion. The dataset provides an error estimate, which is defined
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Figure 9. Difference in top-of-atmosphere radiation (RadTOA) between EMAC/JSBACH and ERA5 during Northern Hemispheric (NH)
summer (a) and NH winter (d) months, with data averaged over the years 1971 to 2010. Analogously, the difference between EMAC/SRF
and ERA5 RadTOA during summer (b) and winter (e) months is displayed. Positive values represent an overestimation of the simulated
RadTOA, while negative values indicate an underestimation. Additionally, the zonal average of all three datasets for both summer (c) and
winter (f) months is shown. Here, RadTOA from EMAC/JSBACH is depicted in green, RadTOA from EMAC/SRF is shown in blue and
RadTOA from the ERA5 dataset is represented in black. The shaded area within the zonal mean plot illustrates the standard deviations along
longitudes.

for every data point present in the dataset. This assessment
considers solely the stochastic error and relies on both the
mean rainfall rate and the quantity of samples utilized for
its computation (Huffman, 1997). The differences between
global precipitation distributions are shown in Fig. 10. The
subtropical and tropical equatorial zones over land appear
drier in the EMAC/JSBACH simulation in comparison to
the GPCP data. This shifts from the Northern Hemisphere
during summer to the Southern Hemisphere during winter.
Over the oceans, regions of heavy precipitation are intensi-
fied in the simulation. The average annual global difference
between EMAC/JSBACH and ERA5 is 0.042 mm d−1 (2.738
to 2.696 mm d−1; see Table 6). For the GPCP dataset, the er-
ror is shown as a grey-shaded area within the zonal mean
plot. Zonally averaged, EMAC/JSBACH summer precipita-
tion is within the GPCP precipitation error for the tropics and
mid-latitudes, with EMAC/JSBACH underestimating precip-
itation at high latitudes. In the tropical region of the North-
ern Hemisphere, EMAC/JSBACH also slightly overestimates
precipitation during winter. The northern Inter-Tropical Con-
vergence Zone (ITCZ) is reproduced in agreement with the
observations by the EMAC/SRF and EMAC/JSBACH sim-
ulations. The comparison between EMAC/SRF and GPCP
shows that the simulated precipitation amounts are higher
than the observed ones, with an average annual global de-
viation of 0.329 mm d−1. Similar to EMAC/JSBACH, this
simulation shows lower precipitation over Indonesia com-

pared to the GPCP data. Particularly noticeable is the ten-
dency to overestimate precipitation over land, especially in
the Himalayas in summer and in the Andes in winter. This
is also evident in the zonal mean, although EMAC/SRF re-
mains within the margin of error in the observations in sum-
mer. The only exception is the tropical regions of the North-
ern Hemisphere, where there is more precipitation in winter
and less around 60° S.

Overall, EMAC/JSBACH is capable of reproducing global
precipitation to a similar extent as EMAC/SRF. It exhibits a
distinct wet bias zone, extending from 20° S to the Equator
during winter and from 20° N to the Equator during sum-
mer (Fig. 11). This wet bias band is adjacent to a dry bias
region, ranging from 0–10° N during NH winter and from 0–
25° S during NH summer. The same is found for the precip-
itation derived from EMAC/SRF (Fig. 11) and leads to the
assumption that there is no major change in the large-scale
atmospheric dynamics of the new coupled model. The wet
bias will be corrected by further “tuning” microphysical pa-
rameters in upcoming model versions. The dry biases over
the Arctic and Antarctic regions throughout the year may be
attributed to relatively low sea surface temperatures. This re-
lationship has previously been documented by Pozzer et al.
(2011a).
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Figure 10. Difference in precipitation between EMAC/JSBACH and GPCP during Northern Hemispheric (NH) summer (a) and NH win-
ter (d) months, with data averaged over the years 1980 to 2010. Analogously, the difference between EMAC/SRF and GPCP precipitation
during summer (b) and winter (e) months is displayed. Positive values represent an overestimation of the simulated precipitation, while
negative values indicate an underestimation. Additionally, the zonal average of all three datasets for both summer (c) and winter (f) months
is shown. Here, precipitation from EMAC/JSBACH is depicted in green, precipitation from EMAC/SRF is shown in blue and precipitation
from the GPCP dataset is represented in black. The shaded area within the zonal mean plot in black illustrates the GPCP dataset error and in
green the standard deviation of the EMAC/JSBACH precipitation.

Figure 11. Zonally averaged monthly difference in EMAC/JSBACH (a) and EMAC/SRF (b) compared to GPCP precipitation in millimetres
per day, averaged over the years 1980 to 2010.

4.6 Leaf area index (LAI)

The leaf area index is defined by Watson (1947) as the to-
tal one-sided area of leaf tissue per unit of ground surface
area. It is an important quantity for estimating the gas ex-
change between vegetation and the atmosphere in particular
(e.g. photosynthetic production or transpiration) and repre-
sents the canopy–atmosphere interface (Bréda, 2003). It has

a strong spatial and temporal variability, which makes it diffi-
cult to properly measure and simulate it. The default scheme
to calculate the LAI in JSBACHv4 is an implementation of
the Logistic Growth Phenology (LoGro-P) model, which is
described in detail by Böttcher et al. (2016) and Reick et al.
(2021). Within LoGro-P, the LAI is calculated depending
on the phenology type of the plant functional types (PFTs),
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which are either evergreen, summergreen, raingreen, grasses,
or tropical or extratropical crops. Due to the prescribed ge-
ographical PFT distribution, there is no seasonal or inter-
annual variability in plant functional types, limiting LAI vari-
ability. The phenology types are linked to certain phenol-
ogy phases. For the summergreen type, these are, in turn,
associated with seasons. Spring corresponds to the growth
phase, summer to the vegetative phase, and winter and au-
tumn to the resting phase (Schneck et al., 2022). Raingreen,
grass, and tropical crop phenology types are only linked to
a growth phase determined by environmental conditions like
soil moisture, temperature and NPP, growing whenever those
conditions are beneficial (Schneck et al., 2022). Tropical or
extratropical crops are not linked to a vegetative phase. The
LAI changes primarily due to temperature, soil moisture and
NPP, and the maximum possible value is limited for each
phenology type individually (Schneck et al., 2022). The LAI
is compared to the 8-Day global MODIS/Terra Leaf Area In-
dex dataset, regridded to 0.5° resolution (Kern, 2023; My-
neni, 2021). Monthly averages are calculated and interpo-
lated into the EMAC T63L31 grid.

The LAI difference between the EMAC/JSBACH and
MODIS observations is shown in Fig. 12. The annual global
average LAI within EMAC/JSBACH is −0.212 m2 m−2

(1.187 to 1.399 m2 m−2; see Table 6) lower than the one es-
timated using MODIS satellite data. In particular, the LAI
of tropical rainforests is underestimated throughout the year
in the simulation, as are deciduous forests and boreal forests
over eastern Siberia in summer. Otherwise, vegetation LAI
tends to be overestimated, with peaks in India, south Africa
and northern Canada throughout the year and in northern
Europe during the winter. The zonal average (Fig. 12, right
panels) shows that EMAC/JSBACH follows the MODIS LAI
trend but with lower peak values at the Equator. EMAC/SRF
overestimates LAI in comparison to the MODIS dataset al-
most everywhere, and the annual global average LAI is
0.768 m2 m−2 larger than the satellite-instrument-based es-
timate. Maximum overestimations are found for the Ama-
zon rain forest and Canadian boreal forest throughout the
year. The same is found for the zonal average, of which the
EMAC/SRF LAI peaks at the Equator at 7.5 m2 m−2.

Discrepancies between EMAC/SRF and EMAC/JSBACH
LAI are expected, due to EMAC/SRF’s reliance on a LAI cli-
matology, whereas in EMAC/JSBACH LAI is a prognostic
variable. In JSBACH, the calculation of LAI for raingreen
and crop phenology strongly depends on water availability.
Tropical raingreen phenology is found in regions such as the
Amazon, Indonesia and central Africa. These regions exhibit
low TWS and coincide with regions of underestimated LAI.
Over India, the phenology only consists of tropical broadleaf
deciduous forests and both C3 and C4 crops. Given that the
water deficit in India is not as pronounced as in other areas,
the overestimation of LAI in India may be partly attributed
to sufficient moisture content in the soil. In addition, GPP is
enhanced in this area. This results in a feedback loop as more

vegetation leads to greater LAI, which in turn increases GPP
and NPP, thus stimulating plant growth. The overestimation
of LAI of extratropical evergreen and summergreen phenol-
ogy, such as in northern Canada and Europe, is not deter-
mined by water availability since those LAI calculations are
only based on parameterisations governing phenology and a
set of parameters defining growth rate and the length of the
growth season. Schneck et al. (2022) stated that an unlucky
choice of those parameters can have a major effect on LAI es-
timation. However, Lin et al. (2023) found that the MODIS
version 6.1 leaf area index product tends to underestimate
LAI particularly in northern latitudes, which may contribute
to the bias found over northern Canada and Europe.

4.7 Fraction of absorbed photosynthetic active
radiation (FAPAR)

Together with the LAI, the fraction of absorbed photosyn-
thetic active radiation is required to estimate the ecosystem
productivity. It is a state variable that describes the amount
of incoming solar radiation which is absorbed by leaves and
available for photosynthesis. The absorption happens in the
photosynthetic active radiation (PAR) band of 400–700 nm
(Sellers, 1985) and depends on the solar zenith angle, the
canopy thickness, the types of leaves, their optical properties,
the orientation and the soil underneath (Reick et al., 2021).

In EMAC/JSBACH FAPAR is calculated in three canopy
layers by the canopy radiation module, which is described
by Loew et al. (2014) and Reick et al. (2021) in detail. After
the calculation, FAPAR is handed over to the photosynthe-
sis module and used to estimate the gross and net primary
productivity and carbon fixation in the plants.

We compare our results to 8-Day Global MODIS/Terra
Leaf Area Index dataset, regridded to global data at 0.5 reso-
lution derived by the Integrated Climate Data Center (ICDC)
(Kern, 2023; Myneni, 2021). Monthly averages are calcu-
lated and interpolated into the EMAC T63 grid.

The fraction of absorbed photosynthetic active radiation
(FAPAR) is a newly introduced variable that was not avail-
able as EMAC output before the coupling to JSBACH. When
compared to MODIS, the simulated FAPAR in EMAC/JS-
BACH is systematically underestimated across most regions,
with the exception of India and northern Canada (Fig. 13).
This underestimation is also evident in the zonal average.
The annual global average FAPAR simulated by EMAC/JS-
BACH is 0.161 ± 0.137, whereas MODIS data indicate a
higher average of 0.384 ± 0.196. Disney et al. (2016) con-
ducted a comparison between the MODIS product and FA-
PAR and LAI measurements obtained from the ESA Glob-
Albedo product. GlobAlbedo aligns with the 1D radiative
transfer schemes used in EMAC/JSBACH and other large-
scale ESMs. Their findings indicated overall good agree-
ment in terms of timing between the datasets. Nevertheless,
notable discrepancies in peak values were detected, with
GlobAlbedo-derived values generally registering as lower
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Figure 12. Difference in LAI between EMAC/JSBACH and MODIS during Northern Hemispheric (NH) summer (a) and NH winter (d)
months, with data averaged over the years 2000 to 2010. Analogously, the difference between EMAC/SRF and MODIS LAI during sum-
mer (b) and winter (e) months is displayed. Positive values represent an overestimation of the simulated LAI, while negative values indicate
an underestimation. Additionally, the zonal average of all three datasets for both summer (c) and winter (f) months is shown. Here, LAI from
EMAC/JSBACH is depicted in green, LAI from EMAC/SRF is shown in blue and LAI from the MODIS dataset is represented in black. The
shaded area within the zonal mean plot illustrates the standard deviations along longitudes.

compared to MODIS. They also state that the method used
to determine FAPAR can result in variations of up to an or-
der of magnitude difference. Loew et al. (2014) found a dif-
ference of up to 25 % when comparing models and satellite
observations. These biases can be attributed, in part, to uncer-
tainties in total cloud cover and snow cover that may affect
satellite-based measurements. However, they may also result
from the underlying definitions and algorithms used to de-
termine the FAPAR product by satellite instruments (Loew
et al., 2014). Within EMAC/JSBACH, the largest potential
cause of uncertainty is the bias of the LAI, which, for exam-
ple, most likely leads to the overestimation of FAPAR over
India. Additionally, it cannot be ruled out that the represen-
tation of the surface albedo and the radiative transfer scheme
might lead to the general underestimation of FAPAR, as was
also documented in former studies (Loew et al., 2014; Disney
et al., 2016). The differences in EMAC and observations in
the radiative fluxes (mentioned above), especially the short-
wave components, might also substantially contribute to the
bias in FAPAR.

4.8 Gross primary productivity (GPP)

Gross primary productivity is the total rate of organic car-
bon gained via photosynthesis. This includes autotrophic
respiration, which can be divided into maintenance respi-
ration (driving basic functionalities of the plant, like water
and nutrient transport, defence mechanisms, or repairs) and

growth respiration. GPP is a key parameter in estimating the
net primary productivity (NPP), which describes the actual
amount of carbon (sugars) stored in vegetation and is, there-
fore, an important quantity for the terrestrial carbon cycle.
It is highly dependent on radiation, temperature, precipita-
tion, LAI, TWS and water usage efficiency (the amount of
water used by the plant to assimilate carbon). In EMAC/JS-
BACH, GPP is calculated via carbon assimilation (based on
the plant water stress), FAPAR and LAI. The full and detailed
description of the dynamics of vegetation carbon is provided
by Reick et al. (2021).

GPP is compared to the MOD17A2H MODIS/Terra gross
primary productivity 8-Day L4 Global 500m SIN Grid V006
regridded to global data at 0.5 resolution derived by ICDC
(Kern, 2021; Running et al., 2015). Monthly averages are
calculated and interpolated into the EMAC T63 grid.

Similar to FAPAR, gross primary productivity is a new
diagnostic introduced in EMAC by JSBACH. GPP shows
the largest differences to MODIS observations during NH
summer over India, where GPP is strongly overestimated
(Fig. 14). These are slightly lower during winter, when the
GPP overestimation is larger over Australia and central South
America. The largest underestimation is found during sum-
mer month over northeastern Siberia, the Amazon region
and central Africa, while, during summer, the largest un-
derestimation is found in the Amazon Basin and the An-
des. The annual global average GPP of EMAC/JSBACH
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Figure 13. Difference in the fraction of absorbed photosynthetic active radiation (FAPAR) between EMAC/JSBACH and MODIS during
Northern Hemispheric (NH) summer (a) and NH winter (c) months, with data averaged over the years 2000 to 2010. Positive values represent
an overestimation of the simulated FAPAR, while negative values indicate an underestimation. Additionally, the zonal average of both datasets
for both summer (b) and winter (d) months is shown. Here, FAPAR from EMAC/JSBACH is depicted in green and FAPAR from the MODIS
dataset is represented in black. The shaded area within the zonal mean plot illustrates the standard deviations along longitudes.

is 0.02 ± 0.017 kg carbon km−2, while that of MODIS is
0.021 ± 0.013 kg carbon km−2.

GPP underestimations are mostly found in areas where
TWS and FAPAR are also underestimated. The correlation
between TWS and GPP is ρ = 0.79, indicating a monotonic
relationship (Table A2 in the Appendix). The correlation be-
tween FAPAR and GPP is, as expected, high, with 0.94, since
the GPP calculation is based on FAPAR. However, in this
study, GPP demonstrates a notably better agreement with
MODIS observations than FAPAR. The pronounced overes-
timation of GPP over India can be largely attributed to the
concurrent overestimation of FAPAR in that region, which,
in turn, can be traced back to the high LAI values that are
prevalent there. In the global mean, FAPAR derived from
EMAC/JSBACH and MODIS are in good agreement.

5 Conclusions

We have implemented the land surface model JSBACH ver-
sion 4 as a new submodel into EMAC following the MESSy
coding standards. The new addition aims to replace of the
former, simplified submodel SURFACE, in which many pa-
rameters have been prescribed based on pre-determined cli-

matologies. JSBACH comprises numerous new features, in-
cluding a comprehensive hydrology model and an improved
soil scheme, enhancing the overall versatility of EMAC. It
enables the possibility of performing new experiments that
analyse not only the fundamental physical processes of the
land surface within the Earth system on climatic timescales,
but also the effects of atmospheric chemical components
and associated feedback mechanisms on short timescales of
hours and days. In this assessment, we demonstrate that the
implementation, various modifications, and newly added fea-
tures to EMAC have not degraded the overall model perfor-
mance and stability. This is done based on a comparison of
the new coupled model results to observational and reanaly-
sis data and in comparison to results from a simulation con-
ducted without JSBACH (i.e. based on climatologies). The
newly coupled land–atmosphere model, however, required
re-tuning to optimise the radiation budget via adjusted cloud
parameters. The usage of JSBACH instead of SURFACE in-
creases the runtime, on average, by 0.056 %±4× 10−4 %
for simulations carried out on two computing nodes of the
DKRZ (German Climate Computing Centre) supercomputer
LEVANTE.
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Figure 14. Difference in gross primary productivity (GPP) between EMAC/JSBACH and MODIS during Northern Hemispheric (NH) sum-
mer (a) and NH winter (c) months, with data averaged over the years 2000 to 2010. Positive values represent an overestimation of the
simulated GPP, while negative values indicate an underestimation. Additionally, the zonal average of both datasets for both summer (b) and
winter (d) months is shown. Here, GPP from EMAC/JSBACH is depicted in green and GPP from the MODIS dataset is represented in black.
The shaded area within the zonal mean plot illustrates the standard deviations along longitudes.

Results indicate that the LST derived from the newly cou-
pled EMAC/JSBACH model is, on average globally, 1.546 K
colder compared to the LST derived from ERA5 (using the
old SURFACE submodel, the globally averaged LST was
0.816 K warmer). The change from SURFACE to JSBACH
improves the representation of TWS by generally increas-
ing soil moisture and groundwater storage. This improves
the agreement of the absolute global average TWS with the
ERA5-Land reanalysis data and reduces the NRMSE. Sur-
face albedo and RadTOA balance show no significant changes
after the implementation of JSBACH. While seasonal and re-
gional precipitation patterns are preserved, the global mean
precipitation is slightly reduced in EMAC/JSBACH. The av-
erage global LAI of the EMAC/JSBACH simulation agrees
better with the average LAI of MODIS than the climato-
logical standard LAI present in EMAC/SRF; nevertheless,
the spacial and temporal correlation of 0.637 between sim-
ulated LAI and observed LAI is still not very high. FAPAR
and GPP are among many other newly introduced variables
that were not available in previous EMAC versions (a selec-
tion of the additional output variables is included in the Sup-
plement). They are now provided as diagnostic parameters.
FAPAR shows the largest deviation from the observations,

which could partly be due to challenges in observing and
quantifying FAPAR. Nevertheless, FAPAR as a fundamen-
tal parameter within the GPP calculations seems realistic, as
the GPP and observational global average difference are only
−0.001 kg carbon km−1.

We plan to implement the remaining JSBACH4 features,
such as the closed carbon cycle and dynamic vegetation. The
latter can be achieved before these updates are available by
linking JSBACH with the dynamic vegetation of the LPJ-
GUESS module that is already coupled with EMAC (Forrest
et al., 2020). The model will be further refined to increase
its capabilities and accuracy. This ongoing model develop-
ment is crucial to striving towards the more comprehensive
and realistic numerical modelling of the intricate interactions
between the atmosphere and land along with the associated
feedback mechanisms. It marks a significant advancement
for EMAC, bringing it one step closer to the realisation of
a comprehensive Earth system model.
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Appendix A

Table A1. EMAC/JSBACH land cover types (lct) and corresponding tile in the EMAC/JSBACH simulation.

LCT Description Tile

lct01 glacier 1
lct02 tropical broadleaf evergreen 1
lct03 tropical broadleaf deciduous 2
lct04 extratropical evergreen 3
lct05 extratropical deciduous 4
lct10 raingreen shrubs 5
lct11 deciduous shrubs 6
lct12 C3 grass 7
lct13 C4 grass 8
lct15 C3 pasture 9
lct16 C4 pasture 10
lct20 C3 crops 11
lct21 C4 crops 11

Table A2. Spearman rank correlation (ρ) of the assessed variables derived from monthly means of EMAC/JSBACH for the years 1971
to 2010. A positive Spearman rank correlation suggests a monotonously increasing relationship, while a negative correlation indicates a
monotonously decreasing relationship. All correlations were tested for statistical significance at the p < 0.05 level.

LST TWS Surface albedo RadTOA Precipitation LAI FAPAR GPP

LST 1.0
TWS 0.69 1.0
Surface albedo −0.89 −0.77 1.0
RadTOA 0.87 0.44 −0.86 1.0
Precipitation 0.75 0.65 −0.87 0.68 1.0
LAI 0.67 0.73 −0.79 0.66 0.78 1.0
FAPAR 0.75 0.83 −0.85 0.74 0.84 0.95 1.0
GPP 0.84 0.79 −0.90 0.84 0.82 0.91 0.94 1.0
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Figure A1. GPCP precipitation error during Northern Hemispheric (NH) summer (a) and NH winter (c) months, with data averaged over the
years 2000 to 2010. Additionally, the zonal average of summer (b) and winter (d) months is shown. The shaded area within the zonal mean
plot illustrates the standard deviations along longitudes.

Figure A2. MODIS standard deviation of the leaf area index (LAI) during Northern Hemispheric (NH) summer (a) and NH winter (c)
months, with data averaged over the years 2000 to 2010. Additionally, the zonal average of summer (b) and winter (d) months is shown. The
shaded area within the zonal mean plot illustrates the standard deviations along longitudes.
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Figure A3. MODIS standard deviation of the fraction of absorbed photosynthetic active radiation (FAPAR) during Northern Hemispheric
(NH) summer (a) and NH winter (c) months, with data averaged over the years 2000 to 2010. Additionally, the zonal average of summer (b)
and winter (d) months is shown. The shaded area within the zonal mean plot illustrates the standard deviations along longitudes.

Figure A4. MODIS standard deviation of the gross primary productivity (GPP) during Northern Hemispheric (NH) summer (a) and NH
winter (c) months, with data averaged over the years 2000 to 2010. Additionally, the zonal average of summer (b) and winter (d) months is
shown. The shaded area within the zonal mean plot illustrates the standard deviations along longitudes.
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Code availability. The Modular Earth Submodel System (MESSy;
https://doi.org/10.5281/zenodo.8360186; The MESSy Con-
sortium, 2024) is continuously further developed and applied
by a consortium of institutions. The usage of MESSy and
access to the source code are licensed to all affiliates of in-
stitutions which are members of the MESSy Consortium.
Institutions can become a member of the MESSy Consortium
by signing the MESSy Memorandum of Understanding. More
information can be found on the MESSy Consortium website
(http://www.messy-interface.org). The code presented/used
here is available at https://doi.org/10.5281/zenodo.10084186
(The MESSy Consortium, 2023) and will be part of the next
official release. It is based on MESSy version d2.55.2 and JS-
BACH version 4 that is available via the jsbach repository on
GitLab (no. 7de0f9bf3b50910655f474bc23d647c6ba2a7b6f).
The model outputs relevant for this study are perma-
nently stored in the Zenodo repository and are accessible
via https://doi.org/10.5281/zenodo.10084186 (The MESSy
Consortium, 2023). The ERA5-Land monthly averaged
data from 1950 to the present can be downloaded from
https://doi.org/10.24381/cds.68d2bb30 (Muñoz Sabater, 2019).
The ERA5 monthly averaged data from 1940 to the present can
be downloaded from https://doi.org/10.24381/cds.f17050d7
(Hersbach et al., 2023). The GPCP monthly precipita-
tion dataset from 1979 to 2021 can be downloaded from
https://downloads.psl.noaa.gov/Datasets/gpcp/ (last access: 19 Jan-
uary 2023, Adler et al., 2003). The MODIS/Terra 8-Day data prod-
uct can be downloaded from https://doi.org/10.25592/uhhfdm.8880
(Kern, 2021) and https://doi.org/10.25592/uhhfdm.8880 (Kern,
2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-5705-2024-supplement.
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