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Abstract. Data assimilation (DA) in marine and freshwa-
ter systems combines numerical models and observations to
deliver the best possible characterization of a waterbody’s
physical and biogeochemical state. DA underpins the widely
used 3D ocean state reanalyses and forecasts produced op-
erationally by, e.g., the Copernicus Marine Service. The use
of DA in natural waters is an active field of research, but
testing new developments in realistic setting can be chal-
lenging as operational DA systems are demanding in terms
of computational resources and technical skill. There is a
need for test beds that are sufficiently realistic but also ef-
ficient to run and easy to operate. Here, we present the En-
semble and Assimilation Tool (EAT), a flexible and extensi-
ble software package that enables data assimilation of physi-
cal and biogeochemical variables in a one-dimensional water
column. EAT builds on established open-source components
for hydrodynamics (GOTM), biogeochemistry (FABM), and
data assimilation (PDAF). It is easy to install and oper-
ate and is flexible through support for user-written plug-
ins. EAT is well suited to explore and advance the state of
the art in DA in natural waters thanks to its support for
(1) strongly and weakly coupled data assimilation, (2) ob-
servations describing any prognostic and diagnostic element
of the physical–biogeochemical model, and (3) the estima-
tion of biogeochemical parameters. Its range of capabilities is
demonstrated with three applications: ensemble-based cou-
pled physical–biogeochemical assimilation, the use of vari-

ational methods (3D-Var) to assimilate sea surface chloro-
phyll, and the estimation of biogeochemical parameters.

1 Introduction

To understand and predict the ocean’s capacity for carbon
sequestration, its ability to supply food, and its response to
climate change, we need to know the ocean state, namely
its physical and biogeochemical properties from surface to
sea floor. Our ability to directly observe this state is lim-
ited; satellites have extensive, often global, geographic cov-
erage but only observe the ocean surface, while platforms
such as moorings and gliders may operate throughout the
water column but are limited to specific sites or regions.
Our best knowledge of the ocean state is obtained through
data assimilation (DA), which combines numerical models
and observations to deliver the best possible characteriza-
tion of ocean variables. This approach underpins, for in-
stance, the multidecadal reanalyses and 10 d forecasts pro-
duced by the Copernicus Marine Service (CMEMS; https:
//marine.copernicus.eu, last access: 19 July 2024).

Data assimilation in marine systems has a long history and
is widely used in operational settings (Brasseur et al., 2009),
but the field is still under active development (Moore et al.,
2019; Carrassi et al., 2018). A first example is the arrival
of autonomous observing platforms such as Biogeochemi-
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cal Argo (Roemmich et al., 2019) and the development of
new remote-sensing products (Brewin et al., 2021), which
have increased spatial coverage and added new types of ob-
servations, notably for ocean biogeochemistry. Extensive ex-
periments are needed to assess how best to integrate these
observations in DA pipelines (Skákala et al., 2021; Ford,
2021; Teruzzi et al., 2021a). For instance, coupled assimila-
tion of physical and biogeochemical variables shows promise
but also comes with challenges; it can improve (Goodliff et
al., 2019) or degrade assimilation results (Park et al., 2018),
depending on model and observation specifics. Second, new
and enhanced algorithms for blending model simulations and
observations are continuously being developed, with estab-
lished schemes such as 3D-Var and the ensemble Kalman
filter being supplemented by hybrid variational–ensemble
schemes and the particle filter (Van Leeuwen et al., 2015).
Third, extending data assimilation to estimate (biogeochem-
ical) parameters (in addition to model state) promises to help
us understand model deficiencies and to improve parameter-
izations. However, extensive experiments are needed to eval-
uate the viability of this approach, along with practical as-
pects such as the regionalized setting of estimated parame-
ters (Brankart et al., 2012). In short, the many promising de-
velopments in ocean data assimilation will require rigorous
experiments before they can be integrated in established DA
systems based on 3D models.

Unfortunately, 3D data assimilation systems are computa-
tionally expensive and time-consuming to run. This applies
in particular to ensemble-based methods that require poten-
tially of the order of 100 simultaneous model simulations. As
computational resources are limited, it is typically not feasi-
ble to perform extensive experiments with operational DA
systems. A second obstacle is that these systems are tech-
nically complex, requiring considerable high-performance
computing and programming skills to develop, modify, and
operate. The number of people capable of operating them
is therefore limited. The consequence of these resource and
skill requirements is that there is a considerable lag between
the development of new DA theory and methods on the one
hand and their evaluation and application in production sys-
tems on the other. There is therefore a clear need for DA test
beds that are both efficient to run and easy to operate.

Here, we present the Ensemble and Assimilation Tool
(EAT), a flexible and extensible software package that en-
ables data assimilation of physical and biogeochemical vari-
ables in a one-dimensional (1D) water column. Water column
models are ideal test beds for data assimilation; they are suf-
ficiently realistic to resolve vertical gradients in temperature,
light, and biogeochemistry, as well as the role of (turbulent)
mixing and its response to meteorological forcing, yet they
are efficient enough to allow 1 year to be simulated in un-
der a minute on a single core of a regular computer worksta-
tion. For that reason, experiments in marine data assimilation
often focus on 1D, for instance, when testing biogeochem-
ical data assimilation in setups with parameterized physics

(Pelc et al., 2012; Eknes and Evensen, 2002; Simon and
Bertino, 2012; Bertino et al., 2003), offline physics (Lenartz
et al., 2007), and online physics (Torres et al., 2006, 2020;
Hoteit et al., 2003; Allen et al., 2003); when assimilating
rates and state (Mamnun et al., 2022); and when performing
state–parameter estimation (Gharamti et al., 2017a, b). EAT
is designed specifically to facilitate such experiments. At its
core, EAT builds upon established open-source frameworks;
water column hydrodynamics are modeled with the General
Ocean Turbulence Model (GOTM; Burchard et al., 1999),
biogeochemistry with the Framework for Aquatic Biogeo-
chemical Models (FABM; Bruggeman and Bolding, 2014),
and data assimilation methods are provided by the Paral-
lel Data Assimilation Framework (PDAF; Nerger and Hiller,
2013). Through these frameworks, users have access to ex-
tensive collections of state-of-the-art biogeochemical mod-
els and data assimilation schemes. Moreover, these frame-
works are also common ingredients of established 3D data
assimilation systems; this benefits the transferability of de-
velopments from 1D EAT to 3D. In the next few sections, we
describe the feature set and structure of EAT, along with ex-
amples showcasing coupled physical–biogeochemical assim-
ilation, the capability to use both ensemble-based and varia-
tional methods, and the ability to perform state–parameter
estimation.

2 Methods

EAT consists of the Python package eatpy, which man-
ages the data assimilation filter and the observations to as-
similate, and the executable eat-gotm that contains the 1D
hydrodynamic-biogeochemical model (Fig. 1). In both com-
ponents, the core functionality is provided by the following
established, Fortran-based open-source software packages:

– the General Ocean Turbulence Model (GOTM; Bur-
chard et al., 1999) simulates the physics (temperature,
salinity, and mixing) of the water column;

– the Framework for Aquatic Biogeochemical Models
(FABM; Bruggeman and Bolding, 2014) integrates with
GOTM to provide a wide range of biogeochemical mod-
els; and

– the Parallel Data Assimilation Framework (PDAF;
Nerger and Hiller, 2013) provides a wide range of data
assimilation algorithms.

By wrapping these existing packages, the EAT-specific
source code has remained relatively compact ( < 5000 lines).

2.1 GOTM: General Ocean Turbulence Model

The General Ocean Turbulence Model (GOTM; Burchard et
al., 1999) is a 1D water column model that has been actively
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Figure 1. Components of EAT and its dependencies. Each box indicates a script, compiled executable, Python package, or library; arrows
indicate dependencies.

developed over the last 25 years. GOTM is written in For-
tran 90. It was originally developed to test and compare dif-
ferent turbulence closure models under identical conditions,
e.g., forcing and numerics. Accordingly, GOTM comes with
a comprehensive library of turbulence closure schemes. In
addition, it has over time been extended to become increas-
ingly flexible and configurable (Burchard et al., 2006). As
part of this, GOTM has been coupled to FABM (see below)
to support coupled simulations with a wide variety of bio-
geochemical models. GOTM has numerous applications in
the ocean and in lakes, several of which include data assim-
ilation (Torres et al., 2020, 2006; Mattern et al., 2010; Bag-
niewski et al., 2011; Gharamti et al., 2017a).

GOTM uses a single text file in YAML format (https:
//yaml.org/, last access: 19 July 2024), gotm.yaml, to de-
scribe the physical model configuration. This file, in turn,
can point to additional forcing files which are text-based and
use a format for time series of vertical profiles for depth-
explicit variables (e.g., temperature and salinity) or a format
for time series of depth-independent variables (e.g., meteo-
rological forcing). All output is written in NetCDF format.
The model state, which includes biogeochemistry if active,
is written to and optionally read from a restart file; this also
uses the NetCDF format.

2.2 FABM: Framework for Aquatic Biogeochemical
Models

The Framework for Aquatic Biogeochemical Models
(FABM; Bruggeman and Bolding, 2014) is a generic Fortran-
based framework in which models for marine and freshwa-
ter biogeochemistry can be implemented. Several compre-
hensive models have been implemented in FABM, includ-

ing those used by most CMEMS Monitoring and Forecasting
Centers (MFCs):

– ERSEM (Atlantic European northwest shelves) (Buten-
schön et al., 2016);

– BFM (Mediterranean Sea) (Vichi et al., 2020);

– ECOSMO (Arctic Ocean) (Daewel and Schrum, 2013;
Yumruktepe et al., 2022);

– PISCES (global and Iberian–Biscay–Irish Sea) (Au-
mont et al., 2015); and

– ERGOM (Baltic Sea) (Leibniz Institute for Baltic Sea
Research, 2015).

Porting of additional CMEMS biogeochemical models
(e.g., BAMHBI for the Black Sea) is currently undertaken
in the project NECCTON (https://neccton.eu, last access:
19 July 2024).

FABM integrates with a large variety of hydrodynamic
models; couplers have been developed for NEMO, HYCOM,
ROMS, GETM, FVCOM, SCHISM, and GOTM, among oth-
ers. FABM-based biogeochemical models analyzed in 1D
GOTM water columns using EAT are directly available in
all of these hydrodynamic models, which notably cover all
CMEMS MFCs (HYCOM for the Arctic Ocean and NEMO
for the other domains). Accordingly, our understanding of the
controllability of biogeochemical (BGC) models, developed
using EAT, translates readily to production-ready 3D models.

FABM is configured through a single text file in YAML
format, fabm.yaml. This file specifies which biogeochemical
processes are active during a simulation, their parameteriza-
tion, and default initial values for all state variables. This
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default initial value is constant across the model domain,
but this can be overridden by the hydrodynamic model. For
instance, when FABM is coupled to GOTM, depth-explicit
initial values or biogeochemical variables can be read from
restarts or specified by pointing to a text file with profiles in
gotm.yaml.

2.3 PDAF: Parallel Data Assimilation Framework

The parallel data assimilation framework (PDAF; https://
pdaf.awi.de, last access: 19 July 2024; Nerger and Hiller,
2013; Nerger et al., 2005) is a model-agnostic framework
for data assimilation. PDAF provides different ensemble fil-
ters and smoothers, as well as variational methods. In ad-
dition, PDAF provides ensemble diagnostics. As a frame-
work, it provides support to convert numerical models into
models simulating an ensemble of model state realizations.
The data assimilation methods are implemented in a generic
way, allowing PDAF to be applied in various modeling ap-
plications like ocean physics (Brüning et al., 2021) and sea
ice (Mu et al., 2019), ocean biogeochemistry (Goodliff et
al., 2019; Pradhan et al., 2019), hydrology (Kurtz et al.,
2016), geodynamo (Fournier et al., 2013) and geodynamics
(Schachtschneider et al., 2022), or transport dynamics in the
atmosphere (Pardini et al., 2020). PDAF is implemented in
Fortran 95 with some functions of Fortran 2003 and uses par-
allelization with the Message Passing Interface (MPI; Gropp
et al., 1994) and OpenMP. It is suited for small applications
or toy models but also high-dimensional models that run on
several thousand processor cores (e.g., Kurtz et al., 2016;
Nerger et al., 2020). PDAF consist of a core program li-
brary and templates for case-specific functions which build
the basis for the implementation for a particular model. The
structure of PDAF provides a clear separation of concerns in
between the data assimilation method, the model, and obser-
vations that are assimilated.

While PDAF supports both offline and online coupling
(Nerger and Hiller, 2013; Nerger et al., 2020), EAT uses on-
line coupling to connect the model to the DA framework; the
model state is updated as part of the data assimilation step
(analysis) while the simulation remains running. EAT stores
the ensemble state internally in an array which is synchro-
nized with the active GOTM–FABM processes before and
after the DA update. PDAF exposes numerous configuration
options which include the type of data assimilation filter to
use, as well as various filter-specific settings. EAT enables
the user to set these configuration options in a Python run
script. Internally, these options are then forwarded to PDAF
functions.

2.4 Implementation

The data assimilation core of EAT is the “eatpy” Python
package which includes the filter algorithms, as well as the
logic for ensemble generation and observation handling.

The user interacts with this package by writing compact
Python scripts that generate the model ensemble (Fig. 2)
and that run the data assimilation experiment (Fig. 3). This
scripting approach allows the user to retain full control; it
provides access to all DA configuration settings but also
makes it straightforward to insert custom code, for instance,
to introduce new ensemble-generation methods or variable
transformations. At runtime, a data assimilation experiment
combines the user’s Python run script and a number of
instances of the coupled hydrodynamic–biogeochemical
model (Fig. 1). This uses the multiple program–multiple data
paradigm, with different components (programs) communi-
cating via the MPI protocol. The user starts a DA experiment
using normal MPI syntax, e.g., mpiexec -n 1 python
<RUNSCRIPT> : -n <NENSEMBLE> eat-gotm
<EXTRA_ARGS>. Here, <RUNSCRIPT> is the name of
the Python script that defines the data assimilation experi-
ment (Fig. 3), <NENSEMBLE> is the number of ensemble
members, and <EXTRA_ARGS> are additional arguments
to pass to the model, e.g., --separate_gotm_yaml
to indicate that different ensemble members use different
configurations or --separate_restart_file to
indicate that different members use different initial states.

Under the hood, EAT builds on numerous software com-
ponents. These include the GOTM, FABM, and PDAF For-
tran codes that are distributed with EAT, as well as estab-
lished Python packages (e.g., NumPy and mpi4py). In turn,
these components depend on third-party libraries such as
MPI, BLAS, LAPACK, and NetCDF. It can be challeng-
ing to assemble and compile these codes and dependencies
from scratch. To avoid this becoming a bottleneck, EAT uses
the conda package manager (https://conda.io, last access:
19 July 2024) to set up its compilation and execution envi-
ronment. Conda pulls in all required packages (runtime de-
pendencies and any necessary compilers) with a single com-
mand and further ensures the versions of these components
are compatible. EAT offers three conda-based installation op-
tions: (1) the user installs a pre-compiled EAT package with a
single command that also pulls in all runtime dependencies,
(2) the user creates the compilation and execution environ-
ment with a single command and then uses this to compile
EAT themselves. This is appropriate if the user wants to in-
tegrate custom Fortran code, in particular, additional FABM-
based biogeochemical models; or (3) the user sets up a min-
imal execution environment with a single command but uses
pre-installed compilers to build EAT against pre-installed li-
braries (MPI, BLAS, LAPACK, and NetCDF). This is ap-
propriate for high-performance computing (HPC) systems
which typically have optimized compilers and libraries in-
stalled. These three options work on all major platforms –
Linux, Mac (Apple), and Windows. Together, they cover a
wide range of use cases, from rapid installation on student
laptops for a workshop or course to custom–tailored instal-
lations on HPC clusters that will run time-consuming exper-
iments (large ensembles, long simulations, multiple config-
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Figure 2. Example Python code for generating a data assimilation ensemble with members differing in the parameterization of the physical
model (gotm.yaml), the biogeochemical model (fabm.yaml), and the initial state (restart.nc). Standard NumPy functions are used to draw the
scale factor of each parameter and state variable from lognormal probability distributions using a median scale factor of 1 (a mean of 0 in
log-transformed space).

urations or scenarios, and/or computationally expensive bio-
geochemistry).

When using ensemble-based or hybrid data assimilation
methods, the first step in running an EAT experiment is
to generate the ensemble. Ensemble members can differ in
their initial state (the “restart”) and in their physical and
biogeochemical configuration (gotm.yaml and fabm.yaml,
respectively), which includes parameter values and forcing
files. EAT includes logic to manipulate GOTM–FABM’s
NetCDF-based restart files and YAML-based configuration
files (Fig. 2). For restart files, EAT provides read–write ac-
cess to all variables that are part of the model state (physical
and biogeochemical; depth-explicit and depth-independent).
For configuration files, EAT provides read–write access to
every setting, independent of its data type (floating point, in-
teger, Boolean, or string). Thus, it is possible to vary real-
valued configuration parameters across the ensemble, as well
as directing different ensemble members to different forcing
files (string-valued paths in the configuration file). Common
perturbation strategies, e.g., scaling the original value(s) of
a state variable or parameter with some factor drawn from
some user-selected distribution, can be implemented with a
single line of code per variable. As EAT provides full ac-
cess to the spatially explicit initial state and model con-
figuration, more complex strategies can be implemented as

well, for instance, ones that impose spatial (vertical) correla-
tions (Evensen, 2003) or cross-correlations among variables
and/or parameters.

The runtime data assimilation cycle in EAT is de-
picted in Fig. 4. The eatpy package exchanges information
with one or more instances of the coupled hydrodynamic–
biogeochemical model, GOTM–FABM. Assimilation hap-
pens online; each of the model instances is preserved in be-
tween assimilation cycles, with information passed via MPI
rather than via restart files. Information that is passed in-
cludes the time until which to simulate and the model state
before and after analysis. This model state includes all prog-
nostic fields associated with physics (e.g., temperature, salin-
ity, horizontal velocities, and turbulent quantities), pelagic
biogeochemistry (e.g., nutrients and plankton), and biogeo-
chemical variables at the surface and bottom interfaces (e.g.,
variables associated with benthos/sediments). Furthermore,
at the direction of the user (in the run script), this state can be
augmented with any physical or biogeochemical diagnostic
field available within GOTM–FABM (e.g., total chlorophyll
or primary production) and any biogeochemical parameter.
The latter enables parameter–state estimation in which the
selected parameter(s) become time-varying and are estimated
along with the model state.
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Figure 3. An example run script, written in Python, for an EAT experiment in which sea surface temperature and chlorophyll are assimilated.

A complete data assimilation experiment requires files
with observations, namely one text file per observed variable,
with each line describing the observation time, observed
depth (only for depth-explicit observations), observed value,
and its standard deviation in tab-separated-value (TSV) for-
mat. This format was chosen over structured formats such as
YAML because it enables EAT to read in new observations
on-demand while the simulation progresses, instead of hav-
ing to parse each observation file in its entirety upon start-up.
Observations are linked to model variables (state variables
and diagnostics) in the user’s run script. It is also possible
to perform ensemble-only simulations in which no observa-
tions are assimilated; such experiments are often used as con-
trol in DA studies. They are performed simply by executing
the model (eat-gotm) only: mpiexec -n <NENSEMBLE>
eat-gotm <EXTRA_ARGS>. Finally, it is also possible to
run the model as a stand-alone, without MPI; in this case, it
behaves exactly as the original GOTM–FABM model would.

Most real-world data assimilation experiments require
user-specified logic as part of the data assimilation update,
e.g., to implement custom operators that reconstruct observa-
tion equivalents from the model state, to limit the data assimi-
lation update to a subset of the model state, to apply anamor-
phosis functions that transform variables into a “Gaussian”

space, to apply additional constraints to state variable values
(e.g., to ensure values remain physically meaningful or to en-
sure mass conservation), or to specify the background error
covariance matrix in variational schemes. EAT makes this
possible through plugins; these are snippets of Python code
that execute during initialization, just before the assimilation
update, and just after the assimilation update. These plugins
have read–write access to the model state variables and all
assimilated observations, which allows them to a variety of
things. During initialization, they can add/remove variables
to the state seen by the DA filter, and at runtime, they can
transform state variables and/or observations, check and log
variable ranges and clip values, or save any element of the
assimilation update (forecast, analysis, and observations) to
file. EAT includes example plugins that perform each of these
functions; users can also implement their own, typically di-
rectly within the run script. An example of a user plugin im-
plementing a custom observation operator is shown in Fig. 5.
EAT’s plugin infrastructure is additionally used with varia-
tional data assimilation schemes (parameterized and hybrid
3D-Var) to allow the user to provide custom routines for co-
variance transformation; these are then called during the it-
erative state update. Any number of plugins can be active
during an EAT experiment; they will be called sequentially.

Geosci. Model Dev., 17, 5619–5639, 2024 https://doi.org/10.5194/gmd-17-5619-2024
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Figure 4. The data assimilation cycle in EAT, showing the flow of information through the eatpy.model.GOTM.run routine, responsible
for observation handling and analysis and the eat-gotm model component. Dashed arrows indicate inter-process communication between
eatpy.model.GOTM.run (one process) and eat-gotm (one process per ensemble member) via MPI. After the analysis state is sent back to the
model instances (bottom), the cycle repeats with the updated state taking the role of state(timeprevious) on the eat-gotm side.

EAT’s flexibility extends beyond plugins. For example, users
can also implement custom data assimilation filters and use
these instead of the provided PDAF options; this requires just
one Python function that takes in the forecast state and obser-
vations and returns the analysis state.

3 Applications

The EAT package has been applied at different locations
in the European seas in three different configurations (Ta-
ble 1): coupled physical–biogeochemical state estimation by
ensemble-based assimilation, biogeochemical state estima-
tion by variational assimilation, and joint state–parameter
estimation by ensemble-based assimilation. All three setups
use meteorological forcings extracted from ERA5 (Hersbach
et al., 2023). The model setups and EAT scripts are publicly
available (see the Code and data availability section).

3.1 Physical–biogeochemical state estimation with
ensemble-based assimilation

Different types of coupled physical–biogeochemical data as-
similation were tested for a 110 m deep site in the north-
ern North Sea (59.33° N, 1.28° E) using the FABM imple-

mentation of the PISCES biogeochemical model (Aumont et
al., 2015). The model is set up to cover the period 2020–
2022. Initial conditions were taken from the World Ocean
Atlas 2018 (temperature, salinity, nitrate, phosphate, silicate,
and oxygen) and Global Ocean Data Analysis Project (GLO-
DAP) v2 (total dissolved inorganic carbon and alkalinity).
Meteorological forcing was taken from the ERA5 reanaly-
sis. Tidal forcing was implemented by prescribing horizontal
gradients in surface elevation taken from TPXO9 (Egbert and
Erofeeva, 2002).

Two data assimilation experiments were performed. The
first assimilated only daily sea surface temperature observa-
tions from the level 4 SST CCI (sea surface temperature cli-
mate change initiative) product, and the second additionally
assimilated surface chlorophyll observations from the level 3
OceanColour CCI (OC CCI) product. Both types of obser-
vations were mapped to model equivalents in the very top
layer of the modeled water column, which is 10 cm thick.
In the first experiment, the assimilation scheme operates on
temperature and salinity only (weak coupling: biogeochem-
ical fields are affected through simulation with the coupled
model system). In the second experiment, the assimilation
scheme operates on temperature, salinity, all biogeochem-
ical state variables defined by the PISCES model, and the
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Figure 5. Example of an EAT plugin, written in Python, that implements an observation operator that calculates the mean chlorophyll
concentration over the first optical depth in the model. The plugin augments the model state with the custom chlorophyll diagnostic. This
diagnostic can subsequently be linked to observations (e.g., Fig. 3). The calculation is implemented in the plugin’s “before_analysis” method,
which is called just before model state and observations are sent to the filter (PDAF) for the data assimilation update.

Table 1. Summary of the EAT applications at three locations with different assimilation setups.

Assimilation
method

Location Model Assimilated
observations

State estimation Parameter estimation

Sequential
ensemble based
(ESTKF)

North Sea PISCES Satellite sea surface
temperature and
chlorophyll

Temperature, salinity,
all biogeochemical
variables

–

Variational
(3D-Var)

Mediterranean Sea BFM Satellite chlorophyll 17 phytoplankton
variables

–

Sequential
ensemble based
(ESTKF)

English Channel ERSEM Northwest European
shelf sea reanalysis
assimilating OC PFT
chlorophyll

5 diatom variables Maximum specific
productivity at a
reference temperature
for diatoms

Geosci. Model Dev., 17, 5619–5639, 2024 https://doi.org/10.5194/gmd-17-5619-2024
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diagnostic total chlorophyll concentration obtained by sum-
ming chlorophyll in PISCES’ two phytoplankton function
types (PFTs) (strong coupling: assimilation is applied simul-
taneously to the full system state, with covariances between
physical and biogeochemical components allowed to be non-
zero). All biogeochemical variables were log-transformed to
guarantee positivity, as is common in biogeochemical data
assimilation (e.g., Santana-Falcón et al., 2020; Skákala et al.,
2022; Pradhan et al., 2020). Transformation was done with a
standard plugin provided by EAT (the “Log” plugin in Fig. 3)
which applies log transformation to a user-specified subset
of model variables and, by default, also to any associated ob-
servations. For the latter, the mean and variance of the log-
transformed observation is reconstructed from the untrans-
formed mean and variance under the assumption that each
observation is perfectly log-normally distributed.

This application uses ensemble-based sequential data as-
similation with the error subspace transform Kalman filter
(ESTKF; Nerger et al., 2012), using an ensemble of 20 mem-
bers. The initial ensemble was generated by applying log-
normally distributed scale factors to the following:

– the x and y components of the surface wind (u10, v10);

– the minimum turbulent kinetic energy (k_min), which
in GOTM is typically used to parameterize unresolved
processes that contribute to vertical mixing (e.g., inter-
nal waves); and

– the maximum growth rate of nanophytoplankton and di-
atoms.

This was implemented using EAT’s built-in support for en-
semble generation (Fig. 2). The above parameters were se-
lected to showcase the ability to introduce uncertainty in me-
teorological forcing (u10, v10), as well as the parameteriza-
tion of the physical and biogeochemical models. Incorpora-
tion of other sources of uncertainty in the ensemble will be
discussed at the end of this section. All ensemble members
start from the same initial conditions; variation in the ensem-
ble state first seen by the DA filter is generated by simulating
12 h to the time of the first SST observation.

For simplicity, the same probability distribution was used
to scale all five parameters; scale factors were drawn from
a log-normal distribution with a standard deviation of 0.2 in
natural log units. This was done independently per ensem-
ble member for each of the five scale factors (i.e., they are
independently distributed). The assumption of log normality
is common in biogeochemistry (e.g., Campbell, 1995) and a
reasonable choice for many turbulent quantities (Hans Bur-
chard, personal communication, 2024). It also ensures that
the affected variables remain positive definite; we note, how-
ever, that both the type of distribution and its parameters are
easy to customize (Fig. 2).

Figure 6a shows the impact of data assimilation on sea sur-
face temperature (SST). The free-running model can be seen

to have a cold bias in autumn and winter, which is elimi-
nated when SST is assimilated. Figure 6c shows the impact
of assimilation on temperature throughout the water column
compared to the free-running reference of Fig. 6b. It can
be seen that data assimilation already has a pronounced im-
pact in summer, causing slightly colder surface temperature
and considerably warmer (> 1 °C) temperatures below the
original thermocline, suggesting enhanced vertical mixing.
This pattern generally persists into autumn, although, occa-
sionally, warmer surface temperatures in the DA experiment
cause a decrease in mixing and, accordingly, a shoaling in
thermocline depth that manifest as subsurface cooling.

Figure 7 shows the impact of assimilation on surface
chlorophyll, both through SST-only assimilation in the first
experiment (weak coupling between physics and biogeo-
chemistry or “phys DA”) and through SST and chlorophyll
assimilation in the second experiment (“phys+ bgc DA”). It
can be seen that SST assimilation alone has limited impact
on chlorophyll; its main effect is a slight increase in chloro-
phyll in summer (likely though the enhanced mixing caused
by SST assimilation), which is beneficial but not sufficient
to raise chlorophyll to observed values. Unsurprisingly, the
combined assimilation of SST and surface chlorophyll re-
sults in the model closely tracking observations through-
out the simulation. The impact of assimilation is felt more
strongly at depth, however; the subsurface chlorophyll maxi-
mum is much less pronounced, with concentrations dropping
at least twofold.

This application can be extended in several ways. For ex-
ample, additional sources of uncertainty can be introduced
when constructing the ensemble. The current setup includes
a primitive parameterization of meteorological uncertainty
through scaling of the surface wind components; more re-
alistic experiments might source an ensemble of different
meteorological model realizations (i.e., separate meteorolog-
ical forcing files) and distribute those over the EAT ensemble
members. EAT facilitates this by allowing its ensemble gen-
erators to set YAML parameters (e.g., the location of me-
teorological forcing in gotm.yaml) to member-specific file
paths, similar to how the biogeochemical configuration (fab-
m/yaml_file) is treated in Fig. 2. Another option is to in-
troduce uncertainty in biogeochemical parameters other than
phytoplankton maximum growth rate. This is easy to realize;
all biogeochemical parameters are set in fabm.yaml, and any
of these can be varied across the ensemble by adding a single
line in the ensemble-generation script, as in Fig. 2. Finally, it
is possible to vary physical and biogeochemical initial con-
ditions across the ensemble, as shown in the last section of
Fig. 2.

Another possible extension is to assimilate observations
that describe not just the water surface but also deeper lay-
ers. Notably, the inclusion of depth-explicit biogeochemical
observations, e.g., from ship-based casts, automatic profilers,
or Argo floats, might help determine whether the decrease
in subsurface chlorophyll in Fig. 7 is realistic or an artifact
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Figure 6. Modeled and observed temperature in a free model run (“no DA”) and in the experiment where remotely sensed sea surface
temperatures were assimilated (“DA”). The top panel (a) shows surface temperatures (modeled and observed), the middle panel (b) shows
the temperature throughout the water column in the free run, and the bottom panel (c) shows the difference in temperature between the
assimilation experiment and the free run.

of surface-only chlorophyll assimilation. Inclusion of depth-
explicit observations in EAT is straightforward, as it merely
requires adding a column with depth information to the ob-
servation file and dropping the depth index (−1) in the linked
model variable (Fig. 3). Another option would be to account
for the fact that remotely sensed chlorophyll observations
may be representative of a greater depth range than just the
very first model layer, which here is just 10 cm thick (Gor-
don and McCluney, 1975). For instance, Fig. 5 demonstrates
how EAT’s plugin architecture can be used to define a custom
observation operator that calculates the average chlorophyll
concentration over the first optical depth in the model, which
varies both over time and between ensemble members (as
these differ in chlorophyll-derived light attenuation). By link-
ing remotely sensed chlorophyll to this custom chlorophyll
metric, biogeochemistry at depth will be better constrained.

Finally, EAT lends itself well to further experiments that
investigate the impact of assimilation of different observa-
tions. For instance, an experiment assimilating only sea sur-

face chlorophyll (included in the application notebook; see
the Code and data availability section) could help ascertain
whether coupled physical–biogeochemical assimilation per-
forms better or worse than biogeochemistry-only assimila-
tion.

3.2 Biogeochemical state estimation with variational
assimilation

The variational assimilation implemented in EAT has been
tested in the Mediterranean Sea using the BFM biogeochem-
ical model. For this purpose, GOTM–FABM has been set
up for a location the Tyrrhenian Sea (39.36° N, 12.36° E).
The atmospheric forcings and profiles of temperature and
salinity used for nudging have been obtained using the
iGOTM tool (https://igotm.bolding-bruggeman.com/, last
access: 19 July 2024). A relatively weak nudging to the tem-
perature and salinity profiles has been imposed by applying
a 1-year relaxation time.
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Figure 7. Modeled and observed total chlorophyll in a free model run (“no DA”), the experiment where remotely sensed sea surface temper-
atures were assimilated (“phys DA”), and the experiment where remotely sensed temperature and chlorophyll were assimilated (“phys+bgc
DA”). The top panel (a) shows surface chlorophyll (modeled and observed), the middle panel (b) shows chlorophyll throughout the water
column for the “no DA” run, and the bottom panel (c) shows chlorophyll throughout the water column for the “phys+ bgc DA” experiment.

The BFM model describes the marine lower trophic web
through the spatial and temporal evolution of 51 state vari-
ables. BFM uses variable stoichiometry and represents cycles
of carbon, nitrogen, phosphorus, and silicon. Accordingly, it
explicitly tracks fluxes of these elements between its nutrient
pools (nitrate, phosphate, and silicate) and living functional
types (phytoplankton, zooplankton, and bacteria) (Vichi et
al., 2020).

Here a test with variational assimilation of satellite chloro-
phyll observations is presented. The variational assimilation
is performed using an opportunely developed EAT plugin
that reflects the 3D variational scheme that is operationally

implemented to provide the Mediterranean Sea biogeochemi-
cal products in the Copernicus Marine Service. In the present
1D application, the background error covariance matrix (that
propagates the assimilation increments across space and vari-
ables) is composed of two elements: the vertical covariance
operator and the biogeochemical one. As in the 3D appli-
cation (Teruzzi et al., 2021a), the vertical covariance is de-
scribed by a set of precomputed covariances (empirical or-
thogonal functions of a multiannual simulation), while the
biogeochemical covariance is limited to the phytoplankton
variables and aims at preserving the phytoplankton physio-
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logical state by keeping the ratio among the phytoplankton
components constant.

In the EAT framework, we performed two simulations
for 2019 using BFM to evaluate the variational assimilation
and its impacts: a run with weekly assimilation of satellite
chlorophyll concentration and a free run without assimila-
tion. The simulations started from vertically varying condi-
tions extracted from Copernicus Marine Service reanalysis
(Teruzzi et al., 2021b). The assimilation is performed once a
week in 2019 using weekly averaged observations at a loca-
tion in the proximity of a Biogeochemical Argo float location
(39.35° W, 12.36° E). Chlorophyll satellite observations are
extracted from the near-real-time ocean color (OC Thematic
Assembly Centre) daily product in the Copernicus Marine
Service catalogue. The comparison of the two simulations
shows the assimilation effects on chlorophyll (Fig. 8) and
primary production (Fig. 9). As expected, at surface the as-
similation brings chlorophyll concentrations closer to satel-
lite observations (Fig. 8a). Considering chlorophyll concen-
tration in the water column, greater assimilation impacts oc-
cur during late winter and spring (Fig. 8c), with assimilation
increasing chlorophyll concentration nearly uniformly in the
0–100 m layer in the late winter mixed bloom (from mid-
January to mid-February) while decreasing it through March.
At the beginning of the stratification phase (since April), the
effects of data assimilation are no longer uniform along the
water column with impacts on the localization of the subsur-
face chlorophyll maximum (that is visible in Fig. 8b). Most
relevant effects on primary production also occur during late
winter and spring (Fig. 9b), impacting the productivity of the
surface winter bloom time window (Fig. 9a). Even if limited
to a shallower layer (0–40 m), variational assimilation im-
pacts on primary production are similar to those impacts on
chlorophyll in the same season, with an increase in primary
production between half of January and half of February and
a strong decrease in March. Slighter effects on primary pro-
duction occur in summer and in the autumn transition phase.

This application can be easily extended. To better con-
strain the behavior of the model at depth, it would be pos-
sible to include chlorophyll profiles as part of the assimi-
lation or to use a custom observation operator that consid-
ers a greater depth range when calculating the model equiv-
alent of remotely sensed chlorophyll. Both options are de-
scribed in more detail for the previous application. Further-
more, the background error covariances used in the varia-
tional approach can be reformulated to extend the assimila-
tion to variables other than chlorophyll (e.g., profiles of ni-
trate or oxygen). This is straightforward to implement, as the
background error covariances in EAT are already controlled
by a user-defined plugin when using variational assimilation.
A combination of plugins can be used to fully specify how
biogeochemical variables are affected by the assimilation to
control which model variables are of interest for assimila-
tion (the “Select” plugin in Fig. 3), to read and apply prede-
fined vertical error covariances, and potentially to implement

custom schemes that adjust filter-proposed updates or extend
them to others variables, e.g., by applying preservation rules
that force ratios between selected model variables to remain
the same before and after DA.

3.3 Parameter estimation

We demonstrate the use of EAT software in an experi-
ment where uncertain biogeochemical parameters are es-
timated in a time-dependent way with the use of en-
semble data assimilation techniques established in PDAF.
The EAT system was run at the L4 location, which
is an observing station in the western English Chan-
nel (part of the Western English Channel Observatory,
https://www.westernchannelobservatory.org.uk/, last access:
19 July 2024), within the near-coastal zone, around 15 km
from the Plymouth Sound (50°15.00′ N, 4°13.02′W). The lo-
cation is 50 m deep and is characterized by seasonally strat-
ified dynamics (Pingree and Griffiths, 1978) with significant
input from nearby river mouths (e.g., Tamar and Plym rivers).
The observing station at L4 provides data for essential phys-
ical variables (e.g., temperature and salinity) and one of the
longest continuous time series (since 1988; Harris, 2010) for
a number of biogeochemical variables such as total phyto-
plankton chlorophyll and carbon biomass, nutrients (nitrate,
phosphate, silicate, and ammonium), and oxygen.

We have focused on the European Regional Seas Ecosys-
tem Model (ERSEM), a highly complex biogeochemistry
model with > 50 pelagic state variables and > 400 model
parameters (Butenschön et al., 2016), most of which are
highly uncertain. ERSEM uses variable stoichiometry, repre-
senting cycles of multiple chemical elements (carbon, nitro-
gen, phosphorus, and silicon), with four functional types of
phytoplankton (picophytoplankton, nanophytoplankton, mi-
crophytoplankton, and diatoms) and three functional types
of zooplankton. From the many (mostly poorly constrained)
ERSEM parameters, we selected in this experiment the max-
imum specific productivity of diatoms at 10 °C (Butenschön
et al., 2016), which has been identified as one of the five most
sensitive ERSEM parameters from the point of simulating a
selected class of ecosystem target indicators (Ciavatta et al.,
2022). In the following, we will refer to this parameter as
“diat-MSP”. The GOTM–FABM–ERSEM 1D configuration
was run for the 3-year period between November 2014 and
October 2017, using initial conditions derived from a 7-year
spin-up run.

In our experiment, we used a 50-member ensemble orig-
inating purely from the estimated diat-MSP parameter per-
turbations, where the initial prior perturbations were drawn
from a uniform distribution with ±30 % interval around the
default parameter value (diat-MSP= 1.375 d−1). Although,
by limiting ensembles only to perturbations of the diat-MSP
parameter, we lack realistic representation of the background
uncertainty, it is still the most pragmatic choice given the
constrained size of the ensemble, since introducing addi-
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Figure 8. Modeled and observed chlorophyll in a free model run (“no DA”) and in the experiment where remotely sensed surface chlorophyll
were assimilated (“DA (3DVar)”). The top panel (a) shows surface chlorophyll (modeled and observed), the middle panel (b) shows the
chlorophyll throughout the water column in the free run, and the bottom panel (c) shows the difference in chlorophyll between the variational
assimilation experiment and the free run.

tional perturbations would introduce significant noise into
the parameter–state cross-covariances. On the other hand, us-
ing only diat-MSP parameter perturbations for the ensem-
ble introduces a perfect correlation between the parameter
and the assimilated variable, potentially introducing spurious
short-term fluctuations into the diat-MSP values. To remove
this effect, we have low-pass filtered the diat-MSP time se-
ries on a scale of a month.

The EAT assimilation method chosen for our experi-
ment was ensemble-based sequential data assimilation, re-
lying on ESTKF for ensemble transformation. The op-
timal data for assimilation are diatom chlorophyll con-
centrations, which were not available among the L4 data
for the relevant period. We thus decided to use the data
from the North-West European Shelf bi-decadal reanalysis
(https://doi.org/10.48670/moi-00058, E.U. Copernicus Ma-
rine Service Information, 2024; Skákala et al., 2023a) pro-
duced by the UK Met Office, assimilating chlorophyll de-
rived from the ocean color satellite measurements, and par-

titioned into phytoplankton functional types (including di-
atoms) (Brewin et al., 2017). The reanalysis validates nicely
against many observed L4 variables (Skákala et al., 2023),
with the comparison of total chlorophyll being slightly
worse, probably due to representativity issues and noise in L4
observations (see some discussion in Skákala et al., 2023).
The reanalysis data were assimilated into the model every
5 d, updating all the ERSEM diatom biomass components
and the estimated diat-MSP parameter.

Figure 10 shows the time series for diat-MSP, demonstrat-
ing that the parameter is highly time-variable. This suggests
that, as far as model performance is concerned, it is better
to change the model structure by accounting for diat-MSP
time-variability, rather than fitting time-constant parameters
as done in the present ERSEM. Such temporal (as well as
spatial) variability in diatom parameters could account for
changes in the internal diatom species composition, which
remains unresolved by the ERSEM model, suggesting that
ERSEM needs improving in its capability to capture biodi-
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Figure 9. Modeled primary production in a free model run (“no DA”) and in the experiment where remotely sensed surface chlorophyll
was assimilated (“DA (3DVar)”). The top panel (a) shows the chlorophyll throughout the water column in the free run, and the bottom
panel (b) shows the difference in chlorophyll between the variational assimilation experiment and the free run.

versity. However, we need to keep in mind that Fig. 10 is only
a temporally varying parameter fit and as such should not be
over-interpreted, e.g., the varying parameter values could be
just a simple bias compensation for various other model defi-
ciencies, which could also be potentially related to the large
numbers of other poorly constrained ERSEM parameters.

Figure 10 also shows that the time-variability in diat-MSP
is dominated by the strong seasonal harmonics, with high
parameter values during winter and low parameter values
during summer. It is then understandable that the diat-MSP
parameter shows correlation with temperature (R =−0.55)
and also with chlorophyll (R = 0.48). The diat-MSP parame-
ter seasonal variations can be understood from Fig. 11, show-
ing that the diat-MSP values compensate for the model sea-
sonal biases in the diatom concentrations (i.e., both for the
model diatom underestimates in the winter and their over-
estimates during the spring bloom). Figure 11 also indicates
that the summer low diat-MSP values from Fig. 10 might be,
for the most part, a relic of low ensemble spread, leading to
the lack of assimilation impact in the summer (no assimila-
tion means that the parameters will retain their last acquired
values).

This application could be extended to estimate biogeo-
chemical parameters beyond the maximum growth rate of
diatoms. From a technical point of view, this is straightfor-
ward; the list of biogeochemical parameters that are to be
estimated is configured in the run script through argument
fabm_parameters_in_state provided to eatpy.models.GOTM

(for the application’s original run script, see the Code and
data availability section). The (scientific) challenge is to de-
cide which specific parameters to target, as some biogeo-
chemical models have several hundreds of parameters. One
potential strategy is to first perform sensitivity analysis to de-
termine which biogeochemical parameter have the greatest
impact on model results; tools for doing this with GOTM–
FABM are readily available (Ciavatta et al., 2022; Andersen
et al., 2021). Another important consideration for selecting
parameters is to assess which biogeochemical parameters are
most likely to exhibit temporal variability. That assessment
should highlight parameters that are constant in the origi-
nal model but clearly aggregated over multiple processes or
functional types and thus likely to vary temporally in real-
ity as the relative importance of their constituent processes
or functional types changes. Finally, it is worth noting that
in EAT, parameters that are estimated during assimilation re-
main the same over the entire water column, even though
they become variable in time. This is also common in 3D
data assimilation (Doron et al., 2013). However, if parame-
ter variability is assumed to stem from shifts in biological
species composition, then it is worth noting that the cur-
rent approach cannot account for, e.g., separate “light” and
“shade” communities (Sournia, 1982) which would require
parameter values to vary in depth. This can only be achieved
by modifying the (Fortran) source code of the biogeochemi-
cal model in order to replace each affected (scalar) parameter
by a spatially resolved state variable.
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Figure 10. The November 2014–October 2017 time series for the diat-MSP parameter showing the median value, the ensemble spread, and
the region between the two quartiles around the median. The figure also shows the (constant) parameter value in the non-assimilated case
(blue line).

Figure 11. The time series for surface diatom chlorophyll a concentrations comparing the median of the model free run ensemble, the
assimilated observations from reanalysis, and the median of the ensemble with data assimilation active.

4 Discussion

The EAT software package has several features that make
it well suited for exploring the latest developments in marine
data assimilation. First, its core 1D model, GOTM–FABM, is
an “online coupled” hydrodynamic–biogeochemical model;
it simultaneously simulates the physical and biogeochemi-
cal state of the water column. This combined state is avail-
able to the data assimilation filter, which means that (1) ob-
servations of any physical or biogeochemical variable can
be assimilated and, (2) during an assimilation update, ob-
servational information can propagate to any part of the
physical–biogeochemical state via emergent or prescribed
cross-covariances. This enables “coupled” data assimilation,
for instance, experiments that assess how the assimilation
of physical observations affects modeled biogeochemistry,
or vice versa. Such coupling can either be “weak” (assim-
ilated observational information propagates to other vari-

ables during simulation with the coupled model system) or
“strong” (observational information additionally propagates
to multiple variables during assimilation updates via cross-
covariances) (Penny et al., 2017) (see the “Coupled physical–
biogeochemical data assimilation” application). The prop-
agation of information from biogeochemistry to physics
placed further demands on the model system. First, it re-
quires online physics as in GOTM–FABM, as opposed to pa-
rameterized physics (Pelc et al., 2012; Eknes and Evensen,
2002; Simon and Bertino, 2012; Bertino et al., 2003) or of-
fline physics (Lenartz et al., 2007). Second, it benefits from
a model system such as GOTM–FABM that explicitly rep-
resents feedbacks from biogeochemistry to physics, for in-
stance, light absorption by BGC variables that heats the wa-
ter, thereby changing density stratification and (turbulent)
mixing (Skákala et al., 2020). These feedbacks modulate the
link between BGC and physics; in weakly coupled DA ex-
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periments, they are the only mechanism through which bio-
geochemistry can influence physics.

A second key feature of EAT is that the biogeochemical
state available to the assimilation system is readily exten-
sible. Unlike other studies (Torres et al., 2006), it already
includes benthic state variables which permits benthic ob-
servations to be assimilated to study the coupling between
pelagic and benthic systems in data assimilation. In addi-
tion, the model state can be augmented with biogeochemi-
cal diagnostics, for instance, process rates such as net pri-
mary production (Mamnun et al., 2022). Any diagnostic al-
ready exposed by the biogeochemical model is available for
this purpose; there is no need to re-implement it as part of
an observation operator within EAT. Even simple expres-
sions dependent on model state, such as the sum of chloro-
phyll over multiple plankton functional types, are typically
already available as BGC diagnostics and therefore do not re-
quire custom user code in order to be assimilated. Finally, the
model state can be augmented with any biogeochemical pa-
rameter to perform parameter–state estimation (see the “Pa-
rameter estimation” example). The value of such parameters
then changes over time in response to observations being as-
similated (Gharamti et al., 2017a, b; Simon et al., 2015). At
present, temporal but not vertical variation in these parame-
ters is considered; that is, at any given time, the parameter
value is the same across the water column. This, however, is
already sufficient to mimic experiments that consider tempo-
ral and horizontal variation in parameters as, for instance, in
Doron et al. (2013).

With respect to the data assimilation methodology, EAT
provides a wide choice of methods covering both variational
data assimilation and sequential estimation methods that in-
clude different ensemble Kalman filter variants. This allows
users to assess the impact of different assimilation meth-
ods under identical modeling conditions. Moreover, the ef-
fect of different configuration options or representations of
the covariance matrix in parameterized variational methods
can be easily examined. Furthermore, EAT supports hybrid
approaches that combine variational and ensemble assimila-
tion. In this case, the user plugin for control variable trans-
forms (an example can be found in the variational applica-
tion; see the Code and data availability section) gets access
to the ensemble state, which allows the user to combine the
background error covariance matrix with the ensemble-based
one in a variety of ways (Bannister, 2017). Last, EAT al-
lows us to perform twin experiments in which synthetic ob-
servations are assimilated and in which the true state, which
is to be estimated, is known. In such experiments, a simple
model run with EAT can produce the true state. Synthetic ob-
servations are subsequently generated by sampling this true
state and adding perturbations. Starting from a different ini-
tial state, one can then assimilate these observations. This
approach allows one to study what the application of data as-
similation can achieve in an optimal case. Likewise, it can
give an indication of the ability of certain observations to

constrain the model state or parameters. In general, EAT is
flexible. User plugins are given full control over observa-
tions, forecasts, and analyses (with the ability to override pro-
posed state updates). Ensemble members can differ in both
state and configuration, and ensemble states can be saved and
reused through support for restart files. These features can be
combined in any number of ways to design new data assimi-
lation experiments. Thus, the applications described here are
representative of EAT functionality but not exhaustive.

Finally, by building on established frameworks, EAT can
offer the same state-of-the-art process descriptions and data
assimilation algorithms that are used in operational data as-
similation systems. Through GOTM, it supports a compre-
hensive library of turbulence closure schemes, as well as em-
pirical vertical mixing schemes such as KPP (Li et al., 2021).
Through FABM, EAT has access to a large and rapidly grow-
ing collection of biogeochemical models, including many
used in reanalysis, forecasting, and climate studies (e.g.,
ERSEM, BFM, PISCES, MEDUSA, ECOSMO, and ER-
GOM). Through PDAF, it has access to the latest data as-
similation algorithms, including ensemble-based, variational
(3D-Var), and hybrid methods.

1D data assimilation systems such as EAT are valuable on
their own for research and operational use (Thomas et al.,
2020), but they also often serve as stepping stone to incor-
porating new DA theory and methods in 3D operational sys-
tems. EAT facilitates this by building on GOTM, FABM, and
PDAF. These frameworks and their underlying models and
algorithms are widely used in existing 3D data assimilation
systems. Therefore, knowledge gleaned through EAT about
optimal strategies for coupled data assimilation, parameter
evolution, and data assimilation methods can transfer readily
to 3D.

Nevertheless, 1D models behave differently from 3D mod-
els in some respects. Their physics tend not to exhibit the
(bounded) chaotic behavior associated with 3D models (Car-
rassi et al., 2018), and therefore, they do not show the same
sensitivity to initial conditions. For instance, a 1D water col-
umn model set up for shallow sites is often fully mixed in
winter, with the water temperature converging to the tem-
perature of the overlaying air. At that moment, any initial
variations in water temperature across any ensemble disap-
pear. If ensemble members differ only in water temperature,
its spread then collapses entirely, causing ensemble methods
to fail. 1D data assimilation therefore depends on additional
methods for generating ensemble spread, e.g., by perturbing
forcing or parameters of physical and biogeochemical pro-
cesses. EAT includes flexible ensemble perturbation logic
specifically for this purpose. While this is crucial for 1D ap-
plications, it can also be helpful to explore alternative pertur-
bations strategies that are under consideration for 3D applica-
tion. Another reason why 1D data assimilation systems such
as EAT cannot be fully consistent with 3D is the additional
requirement of the horizontal spatial correlation structure in
3D and, through that structure, the impact of geographically
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distant observations on the local model state. This is still best
investigated in 3D, though we note that remote observations
might crudely be represented in 1D by incrementing the ob-
servation uncertainty with an estimate of the spatial covari-
ance, potentially derived from 3D simulation results. A re-
lated aspect that is difficult to represent in 1D is the regional-
ized setting of estimated parameters (Brankart et al., 2012),
though some aspects of this may be investigated through the
use of multiple 1D DA setups across large regions and subse-
quent analysis of spatial patterns in their results (Skákala et
al., 2023). Finally, 1D models have limitations independent
of data assimilation. As they assume horizontal gradients are
negligible, they cannot represent conditions in areas domi-
nated by horizontal features, e.g., high-energy horizontal cur-
rents (e.g., the Gulf Stream) or convection currents. Fortu-
nately, these areas cover a minor fraction of the open and
coastal oceans. Moreover, GOTM includes mechanisms to
prescribe horizontal gradients, though these cannot respond
to assimilation.

5 Conclusions

EAT is a 1D framework for marine data assimilation with
numerous advantages. It is accessible; it can be installed on
any computer workstation (Windows, Linux, or Mac) with
two to five commands and is therefore readily usable by stu-
dents, as well as established scientists. It is flexible; through
FABM, it can integrate a wide range of third-party biogeo-
chemical models, including ones that are not distributed with
EAT/GOTM/FABM. Moreover, through EAT’s plugin archi-
tecture, users can readily add custom logic for ensemble gen-
eration, variable transformation and anamorphosis, covari-
ance transformation for variational DA, ensemble diagnos-
tics, and bespoke output in any format. Finally, EAT includes
the functionality needed to replicate and develop state-of-the-
art research in marine DA; it supports fully coupled physical–
biogeochemical simulation and assimilation, and, through
state augmentation, it supports assimilation of observed di-
agnostics and estimation of biogeochemical parameters. We
believe this feature set makes it ideally suitable for a wide
range of applications.

Code and data availability. The source code is publicly available,
though for most applications it suffices to install a pre-compiled
EAT package from Anaconda (https://anaconda.org/conda-forge/
eatpy, last access: 19 July 2024).

The EAT source code is available from https://github.com/
BoldingBruggeman/eat (last access: 19 July 2024). It in-
cludes compatible versions of GOTM, FABM, and PDAF as
submodules. These individual components are also available
stand-alone from https://github.com/gotm-model/code (last access:
19 July 2024) (GOTM), https://github.com/fabm-model/fabm (last
access: 19 July 2024) (FABM), and https://github.com/pdaf/PDAF
(last access: 19 July 2024) (PDAF).

The exact version of the combined codes that were used is avail-
able at https://doi.org/10.5281/zenodo.11111437 (Bruggeman et al.,
2024a).

EAT documentation is available at https://github.com/
BoldingBruggeman/eat/wiki (last access: 19 July 2024).
The three example applications are available from
https://doi.org/10.5281/zenodo.11111361 (Bruggeman et al.,
2024b). This archive includes model configurations, observations,
forcing data, run script, and pre-/post-processing scripts.
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