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Abstract. The use of single precision in floating-point rep-
resentation has become increasingly common in operational
weather prediction. Meanwhile, climate simulations are still
typically run in double precision. The reasons for this are
likely manifold and range from concerns about compliance
and conservation laws to the unknown effect of single preci-
sion on slow processes or simply the less frequent opportu-
nity and higher computational costs of validation.

Using an ensemble-based statistical methodology, Zeman
and Schär (2022) could detect differences between double-
and single-precision simulations from the regional weather
and climate model COSMO. However, these differences are
minimal and often only detectable during the first few hours
or days of the simulation. To evaluate whether these differ-
ences are relevant for regional climate simulations, we have
conducted 10-year-long ensemble simulations over the Eu-
ropean domain of the Coordinated Regional Climate Down-
scaling Experiment (EURO-CORDEX) in single and double
precision with 100 ensemble members.

By applying the statistical testing at a grid-cell level for
47 output variables every 12 or 24 h, we only detected a
marginally increased rejection rate for the single-precision
climate simulations compared to the double-precision refer-
ence based on the differences in distribution for all tested
variables. This increase in the rejection rate is much smaller
than that arising from minor variations of the horizontal dif-
fusion coefficient in the model. Therefore, we deem it negli-
gible as it is masked by model uncertainty.

To our knowledge, this study represents the most compre-
hensive analysis so far on the effects of reduced precision in a

climate simulation for a realistic setting, namely with a fully
fledged regional climate model in a configuration that has al-
ready been used for climate change impact and adaptation
studies. The ensemble-based verification of model output at
a grid-cell level and high temporal resolution is very sensitive
and suitable for verifying climate models. Furthermore, the
verification methodology is model-agnostic, meaning it can
be applied to any model. Our findings encourage exploiting
the reduction of computational costs (∼ 30% for COSMO)
obtained from reduced precision for regional climate simula-
tions.

1 Introduction

Numerical weather and climate models have evolved
from simple and computationally inexpensive radiative–
convective models (Manabe and Wetherald, 1967) into
highly complex codes solving the governing equations on
billions of grid points. While this advancement improves the
representation of Earth’s climate, it also increases computa-
tional costs, storage requirements, and energy consumption
(Schär et al., 2020). Reducing these costs without compro-
mising model accuracy is crucial for further enhancements
of resolution, domain size, ensemble size length of integra-
tion, number of variables, and quality of parameterization
schemes.

Reducing the precision in floating-point representation is
a straightforward method to alleviate computational costs in
numerical simulations. Typically, a floating-point number in
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weather and climate models requires 64 bits (double preci-
sion; DP). Reducing the precision to 32 bits (single preci-
sion; SP) will reduce the dynamical range (±10308 for DP,
±1038 for SP) and the accuracy (machine precision;∼ 10−16

for DP, ∼ 10−7 for SP) of numbers. Take the representa-
tion of temperature for instance. In DP, temperature can be
represented with a very high level of detail: for example,
296.45678912345676 K. In SP, the number of digits could
be reduced to 296.4568 K.

For most calculations within a climate model, the range
and accuracy of SP are more than enough, especially when
considering the often substantial uncertainties associated
with discretization, physical parameterizations for subgrid-
scale processes, initial and boundary condition errors, and
emission scenarios. On the plus side, the use of SP instead
of DP can significantly reduce the computational costs of
a simulation due to higher arithmetic intensity (number of
floating-point operations per number of bytes transferred be-
tween cache and shared memory) and a reduction of intern-
ode communication, as SP allows for fitting twice as many
grid points into the memory of a single node compared to
DP.

Reduced precision is used operationally by MeteoSwiss
for the national weather forecast for Switzerland. They im-
plemented SP for most model components, observing no dis-
cernible impact on forecast skill (Rüdisühli et al., 2014).
While the switch to SP did not require any major code
changes, some modifications like the reformulation of spe-
cific formulas and the addition of precision-dependent ep-
silons were necessary for the comparison of floating-point
numbers (i.e., ABS(a-b) < eps) and to avoid division by
zero (see Rüdisühli et al., 2014, for an overview). A few
model components still rely on DP, namely parts of the radi-
ation and the soil model, making the implementation “mixed
precision” rather than purely SP. The reduction in computa-
tional costs from using COSMO with reduced precision is
likely highly dependent on model configuration (model do-
main, domain decomposition, parameterizations used, etc.)
as well as computer architecture and compiler settings. Previ-
ous studies with COSMO have shown the reduction in com-
putational costs to be around 30 % (Zeman and Schär, 2022)
or 40 % (Rüdisühli et al., 2014).

The Unified Model (Brown et al., 2012) from the Met
Office operationally uses SP in the iterative solver for the
Helmholtz equation in the dynamical core, which leads to
improved runtime with no detrimental impact on the accu-
racy of the solution (Maynard and Walters, 2019).

Düben and Palmer (2014) performed global simula-
tions with the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System (IFS;
ECMWF, 2023) at SP for several days at horizontal grid
spacings ranging from 950 to 32 km. The differences in
500 hPa geopotential and 850 hPa temperature between SP
and DP were consistently smaller than those between differ-

ent DP ensemble members of the standard ensemble fore-
casting system.

Váňa et al. (2017) performed 13-month-long global sim-
ulations at ∼ 50 km grid spacing with four ensemble mem-
bers (generated by shifting the initial times) using the IFS
in DP and SP, with the SP runs having around 40 % shorter
runtimes. They compared the results with observations and
found only minor differences in root mean square errors
(RMSEs) from annual means of several model quantities be-
tween the DP and SP versions. These differences were negli-
gible when considering the magnitude of systematic forecast
errors.

Nakano et al. (2018) evaluated SP for parts of
the Nonhydrostatic Icosahedral Grid Atmospheric Model
(NICAM; Satoh et al., 2014) using the Jablonowski and
Williamson baroclinic wave benchmark test (Jablonowski
and Williamson, 2006). By using DP for the model setup and
SP everywhere else, the simulations showed the same qual-
ity as those with the conventional DP model but could be
performed 1.8 times faster.

Klöwer et al. (2020) investigated the effect of 16-bit pre-
cision on a shallow-water model and found that without
mitigation methods such as rescaling, reordering, or using
higher precision for critical parts of the code, 16-bit arith-
metic induced rounding errors that were too big. They also
showed that using the Posit number format (Gustafson and
Yonemoto, 2017) reduced the forecast error compared to
the traditional IEEE 754 format. Ackmann et al. (2022)
performed idealized tests with a shallow-water model and
showed that at least some parts of the elliptic solvers of the
semi-implicit time-stepping schemes could be performed at
half-precision without negatively affecting the quality of the
solution when compared to only using DP.

Extensive testing with reduced precision for IFS was con-
ducted by Lang et al. (2021). They performed medium-range
ensembles consisting of 50 members with a forecast range
of 15 d for several periods at a grid spacing of 18 km and 91
or 137 vertical levels. The simulations were validated using
the continuous ranked probability score (CRPS; Matheson
and Winkler, 1976) against model analysis and observations
for 121 variables, and significance has been tested with the
Student’s t test combined with variance inflation accounting
for temporal autocorrelation following the approach by Geer
(2015). Compared to the DP ensemble with 91 levels, the SP
ensemble with 91 levels had a reduced runtime by approxi-
mately 40 % (the same as Rüdisühli et al., 2014, and Váňa
et al., 2017) without compromising forecast skill. Moreover,
the SP ensemble with 137 levels significantly improved fore-
cast skill while still having about 10 % shorter runtime than
the DP ensemble with 91 levels. Based on these findings and
previous studies, ECMWF adopted SP for its ensemble and
deterministic forecasts starting with IFS model cycle 47R2
(Lang et al., 2021).

While single or mixed precision is becoming increasingly
common for weather forecasts, most climate simulations are
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still being run in DP. There are several good reasons to err on
the side of caution with climate simulations. Weather fore-
casts are performed many times every day and can thus be
validated often and promptly by comparing them to obser-
vations. Climate simulations are performed much less fre-
quently, and their validation is much more involved and less
routine. Furthermore, the slow processes, such as the ocean
model, the soil model, or the representation of ice sheets,
play a significantly more important role, as does compliance
with conservation laws. Thus, demonstrating no degradation
in weather forecast skill with reduced precision in an atmo-
spheric model does not automatically guarantee the same
outcome for climate simulations.

One of the few studies on the effect of reduced preci-
sion on climate timescales was conducted by Chantry et al.
(2019). They performed global 10-member ensemble simula-
tions for 10 years at ∼ 125 km grid spacing with double and
reduced precision. To assess the differences, they applied a
grid-point-based Student’s t test combined with the false dis-
covery rate (FDR) test on decadal averages of precipitation,
2 m temperature, and surface pressure. Their findings indi-
cated no significant differences between DP and SP in the
measured fields. Interestingly, no statistically significant dif-
ferences were found even when using half-precision. How-
ever, in this case, the zeroth mode of the spectral part of the
model, which represents the global mean of a field, was re-
tained in DP to mitigate large roundoff errors for quantities
like geopotential or temperature.

In their study, Paxton et al. (2022) evaluated ensem-
bles with different floating-point precisions using the mod-
ified SPEEDY model (Molteni, 2003; Kucharski et al.,
2006, 2013; Saffin et al., 2020). They integrated five mem-
bers per ensemble for 10 years and calculated the Wasserstein
distance for various variables on both grid points and the en-
tire grid. By reducing the size of the significand while keep-
ing the exponent bits constant, they found negligible model
differences for geopotential height, horizontal wind speed,
and precipitation when using 14 significant bits instead of
53. They also highlighted the benefits of stochastic rounding
(Croci et al., 2022) in mitigating errors induced by reduced
precision.

Similarly, Kimpson et al. (2023) examined the effects of
reduced precision on climate change simulations using the
SPEEDY model. They ran ensembles with five members for
100 years, focusing on increased CO2 concentrations. Com-
pared to a DP ensemble, the ensembles with reduced preci-
sion accurately represented global mean surface temperature
and precipitation. Notably, even an ensemble with 10 sig-
nificant bits showed biases within ∼ 0.1 K for temperature
and ∼ 0.015 mm(6h)−1 for precipitation. Similar to Paxton
et al. (2022), they also found that stochastic rounding re-
duced global mean biases.

The recent studies conducted by Chantry et al. (2019),
Paxton et al. (2022), and Kimpson et al. (2023) provide
strong motivation for employing reduced precision in cli-

mate simulations. However, some may still harbor reserva-
tions due to the emphasis on decadal averages of select vari-
ables (Chantry et al., 2019) or the utilization of simplified pa-
rameterizations (Paxton et al., 2022; Kimpson et al., 2023).
These considerations may raise doubts and hinder full com-
mitment to adopting reduced-precision techniques in climate
simulations.

In this study, we aim to systematically assess the effect
of reduced precision using the ensemble-based verification
methodology by Zeman and Schär (2022). This methodol-
ogy was originally designed to detect small changes in model
behavior resulting from hardware infrastructure changes or
software updates. The methodology offers high sensitivity
and employs statistical testing at the grid-cell level for in-
stantaneous, hourly, or daily output variables.

The methodology is applied to 10-year-long regional cli-
mate model ensemble simulations, consisting of 100 mem-
bers per ensemble, with the COSMO-crCLIM model on
the European domain of the Coordinated Regional Climate
Downscaling Experiment (CORDEX). The simulations em-
ploy a horizontal grid spacing of 0.44° (∼ 50 km) and are
configured identically to the model in its contribution to
EURO-CORDEX (see Sørland et al., 2021, for more infor-
mation). By applying this verification approach to all rele-
vant output fields, including those of the CORDEX ensem-
ble, we aim to provide a comprehensive assessment of the
differences caused by the switch from DP to SP. The results
are then compared to ensemble simulations with slightly
increased horizontal diffusion to better quantify the sen-
sitivity of the methodology to small model modifications.
The methodology is compared to the popular Benjamini–
Hochberg procedure in Appendix A, while Appendix B ex-
plores the effects of a coarser time resolution on the method-
ology’s sensitivity and Appendix C explores a small techni-
cal caveat of the methodology in edge cases and its solution.

2 Methods and data

2.1 Statistical methodology

The methodology used in this work was developed in Zeman
and Schär (2022) and is briefly described here.

We consider ensemble simulations from two versions of
a climate model: an “old” model and a “new” model. The
methodology aims to determine whether or not the results
from the two versions can be statistically distinguished from
each other. In the context of statistical hypothesis testing, we
define a global null hypothesis for each tested output variable
(ϕ) and model time step. The global null hypothesis is as
follows:

– The results from the old and the new model, ϕold and
ϕnew, are drawn from the same distribution.

We consider the versions of the model significantly different
at this output time step if we reject the global hypothesis. Be-
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cause two field distributions cannot be compared directly, we
perform local hypothesis testing on a grid-point level, eval-
uating each grid point individually. To this end, we use the
two-sample Kolmogorov–Smirnov (KS) test on the distribu-
tion of ϕ at each grid point. These local tests have the follow-
ing null hypotheses:

– The results from the old and the new model at grid point
(i,j) are drawn from the same distribution.

Deciding whether or not to reject a global null hypothesis
based on the rejection results of local null hypotheses poses
a ubiquitous problem in climate sciences. This issue is dis-
cussed more thoroughly in, e.g., Zeman and Schär (2022)
and Wilks (2016). Our methodology addresses this problem
by employing a combination of Monte Carlo methods, sub-
sampling, and a control ensemble. A schematic overview of
the methodology is provided in Fig. 1.

The reference and control ensembles are both generated
with the old model and the test ensemble with the new
model. Each ensemble comprises nmem = 100 members. To
perform the analysis, we employ subsampling by conduct-
ing nsel = 100 subsamples, consisting of randomly drawn
nsam = 75 members. For each subsample, we test the local
null hypothesis at each grid point between the reference (R)
and control (C) ensembles, as well as between the reference
(R) and test (T) ensembles.

The outcomes of these tests (whether they are rejected or
not) are then spatially averaged to obtain a rejection rate for
each pair of tests. By repeating this process (subsampling –
local testing – spatial averaging) nsel times, we obtain two
empirical distribution functions of rejection rates, denoted
as f̂C-R and f̂T-R, which correspond to the control–reference
and test–reference pairs, respectively.

Finally, we reject the global null hypothesis if the mean
of f̂T-R exceeds the 95th percentile of f̂C-R. In other words,
when the test ensemble, generated by the new model, exhibits
a substantially higher number of local rejections when com-
pared to the reference ensemble, it indicates that the new
model differs from the old model on a global scale. The
choice of the 95th percentile here is somewhat arbitrary, but
the results are virtually insensitive to changes in the range
66–99. The impact of increasing (decreasing) this quantile
threshold is to add a negative (positive) bias to the rate of
rejected time steps in the final results, without qualitatively
changing them (not shown).

Before applying the tests, all data are rounded to the fifth
decimal point. This helps solve the issue presented in Ap-
pendix C where, for some variables, numerical near ties
in the distributions were causing spurious rejections. The
rounding has no effect outside of these problematic cases.

To exemplify the behavior of the methodology, we can
think of two cases.

1. Suppose our test ensemble was constructed by a test
model that mirrors the reference model but introduces a

minuscule constant offset to an entire field. In that case,
the likelihood of a local rejection would be marginally
higher for each grid point. Although this alteration may
go unnoticed for numerous grid points, it would lead to
an elevated mean of f̂C-T overall.

2. Our test ensemble might be generated by a model that
induces a substantial change in a minuscule part of the
domain but is otherwise identical. In this case, the grid
points in this tiny part of the domain with a change will
almost always lead to a local rejection, increasing the
mean of f̂C-T.

Whether or not these changes would be detected or masked
by the variance in f̂C-R heavily depends on the magnitude of
the changes and other factors, such as the ensemble size and
the length of the simulation. Previous results from Zeman
and Schär (2022) show that the methodology is generally
highly sensitive to changes, where, for example, an increase
in the diffusion coefficient by only 0.001 could be detected.

Theoretically, this methodology only tests for uncon-
ditional changes between ensembles. In an information-
theoretic sense, the mutual information between grid points
could change between ensembles even though the (uncondi-
tional) distributions are unchanged. Our methodology would
not detect such a change. However, a methodology also
testing for this would require quadratically more compu-
tational resources, which is beyond the computational re-
sources available to most research groups. This theoretical
limitation most likely has little to no effect in practice, since
a loss of mutual information would typically also come in
enough unconditional differences to trigger a rejection.

2.2 Data

The methodology is applied to daily and 12-hourly out-
put from 10-year-long regional climate simulations with the
COSMO 6.0 model. These simulations are conducted on
hybrid GPU–CPU nodes on the supercomputer Piz Daint
operated by the Swiss National Supercomputing Centre
(CSCS). The experimental setup follows the configuration
of the EURO-CORDEX EUR44 experiments (Sørland et al.,
2021), which employ a long–lat grid consisting of 129×132
points over a European domain with a rotated pole to ensure
uniform grid spacing of 0.44° (∼ 50 km). The simulations
are driven by boundary conditions derived from the ERA-
Interim reanalysis (Dee et al., 2011). The outermost 10 grid
points, identified as the nudging zone, are not considered in
the analysis.

In total, seven ensemble simulations of 100 members each
are performed. The ensembles are created by adding random
perturbations to the initial conditions of seven prognostic
variables: the three wind components, pressure, temperature,
specific humidity, and cloud water content. The perturbations
take the form ϕp = (1+ εR)ϕ, where ϕp and ϕ respectively
represent the perturbed and unperturbed variables, R denotes
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Figure 1. Workflow of the statistical test. (a) Control and reference ensembles are produced by an old model, and a test ensemble is produced
by a new model. (b) Subsequently, subsamples from each of the ensembles are drawn, and a statistical test is performed at each grid point
of each subsample. The two resulting arrays of local rejections are then averaged into a global rejection rate. (c) The rejection rates from
each subsampling step then form the two empirical distribution functions f̂C-R and f̂T-R. We compare the 95th percentile of f̂C-R against the
mean f̂T-R. (d) If the mean is larger, the global null hypothesis is rejected.

a random number between −1 and 1, and ε is a small value
(here ε = 10−4). Only initial conditions are perturbed. The
lateral and upper boundary conditions are the same across all
members and ensembles. This expensive total of 7000 sim-
ulated years is only necessary to assess the performance of
our methodology and only feasible thanks to the relatively
low grid resolution we use. The “Summary and discussion”
section provides readers with recommendations to check the
performance of their SP implementation in a far cheaper way.

Out of the seven ensembles, three are created with pa-
rameters considered to be “default”. Two of these ensem-
bles serve as the control and reference ensembles required by
the methodology described in the previous section, while the
third constitutes an identical test ensemble where every re-
jection is essentially a false positive. A fourth ensemble uses
SP instead of the default DP and constitutes the main test. Fi-
nally, the sensitivity and performance of the methodology are
evaluated using three additional ensembles using DP floats
but different horizontal diffusion coefficients. These diffu-
sion coefficients correspond to values ofC = 0.33,C = 0.41,
and C = 0.50, whereas the default value is C = 0.25. While
increased diffusion will have a significant effect on the model
behavior (Zeman et al., 2021), the magnitude of the changes
above is small and lies within the range used for model tun-
ing (Schättler et al., 2021). The previous paragraph is sum-
marized in Table 1.

3 Results

Our results consist of a Boolean decision time series for each
of the 47 variables tested across five different test ensembles:

Table 1. Summary of the seven ensembles created with the changes
differentiating them. All other parameters are the same across all
ensembles.

Ensemble Floating-point Diffusion coefficient
name precision C

Ref Double 0.25
Control Double 0.25
ID Double 0.25
SP Single 0.25
C33 Double 0.33
C41 Double 0.41
C50 Double 0.50

the identity test (ID), the reduced-precision test (SP), and the
modified diffusion tests with varying coefficients (C33, C41,
and C50). These time series, with resolutions corresponding
to the output variables, indicate whether the test was rejected
(true) or passed (false).

A visual representation of our results is provided in Fig. 2,
displaying monthly averaged decision time series for a repre-
sentative set of 10 variables across all test ensembles. Within
an individual test ensemble, the results were similar for all
tested variables, typically rejecting or passing in unison. This
uniformity across variables is not surprising, given the strong
coupling by the governing equations. Note that this consis-
tency remains true for the full set of 47 variables tested, ex-
cept for soil variables and the surface snow amount. Those
exhibited a unique pattern, characterized by more persistent
and occasionally time-lagged rejections compared to their at-
mospheric counterparts.
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The ID ensemble serves as a baseline and exhibits the
fewest rejected time steps, while the number of rejected time
steps increases progressively through the modified diffusion
ensembles, peaking in the C50 test. Meanwhile, our primary
test ensemble, SP, exhibits a low rate of rejected time steps
for all variables, comparable to the ID ensemble.

Temporal trends in the rejection rates were largely absent
across all ensembles, although an initial spike in rejected
time steps occurred within the first 10 to 20 d of the SP sim-
ulations. This initial spike is consistent with findings from
Zeman and Schär (2022) and can likely be attributed to the
lower internal variability at the beginning of the simulations,
making the test more sensitive to differences. Figure 3 offers
a time-averaged summary for all 47 variables, illustrating a
gradually increasing rate of rejected time steps from the ID
ensemble to the modified diffusion tests. The ID results in-
dicate that we can expect a false rate of rejected time steps
of 10% to 20% for most variables. Such a high rate of false
positives is likely the result of the high internal variability,
probably undersampled by only 100 members, of instanta-
neous or 12- or 24-hourly output fields at a grid-cell level for
such long simulations. For example, synoptic- or lower-scale
events appearing or being stronger in some members than in
others creates a lot of random noise. The average rate of re-
jected time steps is almost always 2 to 5 percentage points
higher for SP, and we see a steady increase from ∼ 40%–
60% to 100% for the modified diffusion experiments.

In the SP ensemble, five variables have a much lower rate
of rejected time steps than the rest: the four cloud cover vari-
ables and the deepest soil moisture metric. This is the direct
effect of the rounding applied to the data before the testing.
Rounding to the fifth decimal point was used as a measure
for the problem illustrated in detail in Appendix C, where
those five variables exhibited an anomalously high number
of rejected grid points even though the distributions were ex-
tremely similar, and coupled variables like soil temperature
or precipitation showed neither such high rejection rates nor
final rates of rejected time steps. To explain the issue, we take
the example of total cloud cover (clct). The cause of this
problem could never be elucidated, but its direct consequence
is that the DP model outputs values of clct between a num-
ber close to 5× 10−17 and exactly 1, while the SP model
outputs values between exactly 0 and a number close to 1–
5×10−6. This mirrored situation suggests that a part of the
COSMO code adds small numbers to values at 0 and 1 to
avoid those numbers, but some of it got lost in the output,
which is in SP for all ensembles. These numbers do not quite
correspond to machine epsilon, at least not for the SP model.
While a similar issue might also exist for other variables, it
is problematic for cloud cover in particular, since most grid
points have a value of 0 or 1. For deep soil moisture, most
grid points are at or close to 0. The KS tests, but also many
rank-based tests, have spurious interactions with near ties, in
which one distribution spikes at x and the other one at x± ε,

where ε is a very small number. This is illustrated as the dif-
ference between Figs. C1 and C2.

In summary, these near ties can be considered artifacts of
the testing methodology rather than reflecting genuine model
differences, which is why we chose to use the coarse solu-
tion of rounding to the fifth decimal point to get rid of them.
The results without rounding can be seen in the top row of
Fig. A1.

However, for the height of the planetary boundary layer
(HBL), the KS test artifact argument cannot be used, sug-
gesting that the elevated rate of rejected time steps signals an
underlying issue in the code. This highlights two key points.
First, the identification potentially reveals code that is still
sensitive to rounding errors in algorithms whether easy to fix
(e.g., a bug) or not, thereby showcasing the effectiveness of
our proposed testing method.

Second, it is worth reiterating that HBL is a purely diag-
nostic output variable in the COSMO model, so any impreci-
sions associated with it do not feed back into the subsequent
model development. Nevertheless, the revealed differences in
the HBL between DP and SP necessitate further analysis and
likely some adaptation of the corresponding source code.

Finally, it is worth noting that the radiation and soil model
are run in DP even in SP simulations, as running these com-
ponents in their current state in SP causes errors that are
too large. Surprisingly, variables linked to these modules still
showed a slightly higher rejection rate in SP compared to ID,
reflecting the coupling with the model components converted
to SP.

4 Summary and discussion

Our results indicate that the methodology developed by Ze-
man and Schär (2022) is well-suited to climate simulations
without requiring any modifications. It detects small changes
in model parameters over long timescales while maintain-
ing a reasonably low false rejection rate. Notably, when ap-
plied to the output of SP climate simulations, the methodol-
ogy demonstrates that these simulations are comparable in
quality to DP simulations during a 10-year period. The poor
performance of the SP model for five variables is shown to
be caused by technical artifacts rather than a significant dif-
ference between the SP and DP model results. However, a
sixth variable, the height of the boundary layer, also shows
poorer performance than the rest; this cannot be attributed to
the same artifacts but rather to a small bug in the code, which
necessitates further analysis.

However, even this significant change in the height of the
boundary layer due to the use of SP comfortably lies within
the variability of model results induced by the use of differ-
ent model parameters as part of model tuning. Therefore, our
results encourage exploiting the reduction of computational
costs of around 30 % obtained from reduced precision for
regional climate simulations with COSMO. More generally,
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Figure 2. Monthly averaged test decisions for all five test ensembles and a representative subset of 10 variables out of 47. Variables in black
are output daily, while those in gray are output 12-hourly.

Figure 3. Time-averaged test decisions for all variables and all test ensembles considered in the study. Variables in black are output daily,
while those in gray are output 12-hourly.
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the results also encourage development towards the use of
reduced precision in other climate models.

To our knowledge, this work is the first to test the accu-
racy of reduced-precision regional climate simulations on a
comprehensive set of output variables using a state-of-the-art
regional climate model.

It is important to acknowledge that the tests conducted in
this study were based on regional and not global climate sim-
ulations. In this type of simulation, the spread, or amount
of internal variability, is inherently constrained by the lateral
boundary conditions, which are exactly the same across the
ensemble members. Nevertheless, the results of our sensitiv-
ity tests reveal that even in the presence of boundary forc-
ing, we are still able to detect differences within the domain
caused by relatively minor changes to the model parameters.
Nonetheless, it would be valuable to extend the application of
this methodology to global simulations to evaluate its perfor-
mance under those conditions as well. As the methodology
works with any gridded field, it is directly applicable to the
output of global climate models.

Future users of the methodology developing their own SP
implementation will not need to perform simulations as long
and costly as done in this work in order to test it. Simulations
of a few days, as done in Zeman and Schär (2022), are long
enough to test the dynamics and fast atmospheric processes.
We therefore recommend running those as a first verification
step. Additionally, we recommend running the model with
a coarse resolution like the one used in this work or even
coarser for the tests, as switching off parameterization mod-
ules also means that this part of the code will not be tested
for differences, and to save computational resources.

Slower processes, including, in our case, soil and snow
processes – but that may also include sea ice, ocean, or atmo-
spheric chemistry processes in a fully coupled global climate
model – will need longer simulations. While a year is likely
a safe choice for these processes, month-long simulations in
both the cold and hot seasons would likely suffice to detect
any major issues if the simulation costs are very high.

We recommend comparing the results of the main test
(here, SP) against an “anti-control” test produced by chang-
ing a model parameter slightly within its tuning range, as we
did with the modified diffusion ensembles C33, C41, and
C50. An idea that deserves to be explored further is the use
of different parameters for different timescales or processes
being focused on, like the soil hydraulic conductivity for soil
processes. Furthermore, many of the results shown in this
work could already be observed when working with ensem-
bles of only 10 members each, but with typically less sensi-
tivity. The effects of reduced ensemble and subsample sizes
are explored more in Zeman and Schär (2022).

We hope that our methodology makes it easier for re-
searchers to create and verify SP implementations of the
models they are creating, which is a switch our results highly
encourage. Our methodology can be used on relatively short
and inexpensive simulations first before moving on to longer

ones depending on the stage of development of the new im-
plementation and on the physical processes being tested. It
is good to keep in mind that our methodology provides per-
variable, per-output-step results and does not directly give
an overall statement about the model. It is up to the user to
decide what differences between the new and old implemen-
tation are acceptable, a decision that we believe is made eas-
ier when an anti-control ensemble is tested in parallel to the
main test.

Appendix A: Comparison with the
Benjamini–Hochberg procedure

A commonly used approach to determine the rejection of
a global null hypothesis based on the rejections of local
null hypotheses is the Benjamini–Hochberg procedure (Ben-
jamini and Hochberg, 1995), which is also known as the false
discovery rate (FDR) method. It has been extensively dis-
cussed by Wilks (2016). It is highly regarded within the sci-
entific community and may offer a cost-effective alternative
to our methodology, as it does not require a control ensemble
or multiple subsampling steps. Comparing the results of the
two methods, we observe that most output variables exhibit
similar behavior (Fig. A1). Note that, contrary to the main
text figures, this figure shows the results from our methodol-
ogy with no rounding applied to the variables before testing
and can serve as a comparison. Certain variables however,
particularly those related to radiation, demonstrate a signif-
icantly higher or lower rejection rate in the SP ensembles.
Further examination reveals that these variables consistently
exhibit clusters of unusually large rejections in specific re-
gions, such as the western Sahara (not shown). We could not
find an explanation for this behavior and further investiga-
tion, while certainly interesting, would be beyond the scope
of this work. Confusingly, the radiation module operates us-
ing DP floats in all models, and no other related variable dis-
plays the same behavior in the regions of high rejections for
the radiation variables. The presence of these large spurious
rejections leads to a higher number of rejected output steps
under the FDR method compared to ours. Consequently, we
believe that this method is overly sensitive to outlier grid
points and may be less suitable for our specific case.
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Figure A1. Comparison between our method (a), but with no rounding, and the Benjamini–Hochberg procedure (b). Variables in black are
output daily, while those in gray are output 12-hourly.

Appendix B: Time coarsening

We now explore the effect of a coarser temporal resolution on
the results presented in the main text by temporally averag-
ing the data before applying our methodology. As a proof of
concept, Fig. B1 shows the results for a single 2D field, tem-
perature at the 850 hPa level, and a single year at the end of
our simulations for six decreasing temporal resolutions. As
expected, the finer temporal structure of the results erodes
with decreasing temporal resolution, but the main features
are there even if the data are averaged over the whole year.
Interestingly, the sensitivity of the test for ID and SP is re-
duced with decreasing temporal resolution. Generally, we see
fewer false positives with time averaging, which might be a
result of the decreased internal variability coming from time
averaging. However, time averaging also leads to a lower
number of statistical tests performed for the same time pe-
riod, which naturally leads to a lower number of false pos-
itives. Therefore, the relatively smooth rejection curves for
the time-averaged results might be a bit misleading. For ex-
ample, for the 1-year average, only one decision is made, nat-
urally leading to a straight line in this diagram. Nevertheless,
time coarsening may prove to be a valuable path forward if
one is not interested in the fine-grained details in the tempo-
ral distribution of the rejections or the model’s representation
of extreme events.
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Figure B1. Rejection rate and associated decision (colored box: reject) for different magnitudes of time coarsening and/or averaging of
temperature at 850 hPa for 1 year of output data.
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Appendix C: Cloud cover and rounding problem

In the Results section of the main text, we found six vari-
ables to have large decision rates for the SP ensemble, which
seemed at odds with the fact that all other coupled variables
(e.g., precipitation) showed low decision rates. To investigate
this issue, we perform the first step of our methodology and
apply the KS test to the ensemble distribution of randomly
chosen grid points and output time steps, and we show the
results for eight of them in Fig. C1. The dashed blue line
represents the largest vertical distance between the empirical
distribution and the x position at which it is found. This max-
imum vertical distance is this test’s statistic, which is then
compared against a rejection threshold for the null hypothe-
sis. Figure C1 shows that this maximum distance is always
found at points where both distributions have a large positive
derivative before reaching 1 and where both lines seem to
overlap. The issue is that the lines do not actually overlap but
rather reach a different number. One reaches 1, and the other
reaches 1−ε, where ε is small number< 10−5. The mirrored
situation between 0 and ε also happens. This is sufficient to
create a large vertical distance between the two distributions
at x = 1− ε. We confirm this by rounding the variable to the
fourth decimal for both ensembles and observe in Fig. C2
that none of these days are rejected with this added round-
ing.

Figure C1. Example KS results for total cloud cover for 8 random days without rounding. The gray background indicates that all these
results lead to a local rejection.
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Figure C2. Example KS results for total cloud cover for the same 8 d as Fig. C1 with rounding to the fourth decimal. Compared to Fig. C1,
there are no local rejections when rounding is used.
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