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Abstract. Forecasting heavy precipitation accurately is a
challenging task for most deep learning (DL)-based models.
To address this, we present a novel DL architecture called
“multi-scale feature fusion” (MFF) that can forecast precip-
itation with a lead time of up to 3 h. The MFF model uses
convolution kernels with varying sizes to create multi-scale
receptive fields. This helps to capture the movement features
of precipitation systems, such as their shape, movement di-
rection, and speed. Additionally, the architecture utilizes the
mechanism of discrete probability to reduce uncertainties
and forecast errors, enabling it to predict heavy precipitation
even at longer lead times. For model training, we use 4 years
of radar echo data from 2018 to 2021 and 1 year of data from
2022 for model testing. We compare the MFF model with
three existing extrapolative models: time series residual con-
volution (TSRC), optical flow (OF), and UNet. The results
show that MFF achieves superior forecast skills with high
probability of detection (POD), low false alarm rate (FAR),
small mean absolute error (MAE), and high structural simi-
larity index (SSIM). Notably, MFF can predict high-intensity
precipitation fields at 3 h lead time, while the other three
models cannot. Furthermore, MFF shows improvement in the
smoothing effect of the forecast field, as observed from the
results of radially averaged power spectral (RAPS). Our fu-
ture work will focus on incorporating multi-source meteoro-
logical variables, making structural adjustments to the net-
work, and combining them with numerical models to further
improve the forecast skills of heavy precipitations at longer
lead times.

1 Introduction

Heavy precipitation can cause various natural disasters, such
as floods, landslides, and mud–rock flows, which can be life-
threatening and cause property damage. Nowcasting is the
term used for predicting precipitation in a specific region
within a short time frame (usually less than 3 h) and with
a high spatiotemporal resolution (Ayzel et al., 2020; Cz-
ibula et al., 2021). It has become a popular research topic
in hydrometeorology. The intensity, duration, and area of
precipitation determine the extent of its destruction. Conse-
quently, accurate and timely nowcasting is essential for dis-
aster early warning and emergency response (Chen et al.,
2020; Ehsani et al., 2021). However, real-time, large-scale,
and fine-grained precipitation nowcasting remains a chal-
lenging task due to the complexities of atmospheric condi-
tions (Ehsani et al., 2021; Kim et al., 2021).

There are two main conventional approaches for precipita-
tion nowcasting: numerical weather prediction (NWP)-based
methods (Sun et al., 2014; Yano et al., 2018) and radar echo-
based quantitative forecasts (Liguori et al., 2014). The NWP
models predict precipitation dynamics by solving a series
of differential equations to describe atmospheric phenom-
ena (Dupuy et al., 2021), but they are computationally inten-
sive and time-consuming, and their forecast products depend
on initial and boundary conditions (Marrocu et al., 2020;
Ehsani et al., 2021). Moreover, the first few hours of precip-
itation predictions by NWP models are invalid, so they are
not commonly used in nowcasting (Han et al., 2019; Yan et
al., 2020). On the other hand, radar echo-based quantitative
models use the Z−R relationship to drive precipitation rates
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and estimate precipitation accumulations. The optical flow
model is the simplest technique in radar echo-based quan-
titative forecast models, which consists of tracking and ex-
trapolation. In this technique, an advection field is estimated
from a series of consecutive radar echo images, and it is then
used to extrapolate recent radar echo images through semi-
Lagrangian schemes or interpolation procedures (Ayzel et
al., 2019). Many studies have documented the progress and
achievements in precipitation nowcasting with variations of
the OF model (Marrocu et al., 2020; Pulkkinen et al., 2019;
Ayzel et al., 2019; Prudden et al., 2020; Liu et al., 2015; Woo
and Wong, 2017; Li et al., 2018). However, the OF model has
certain limitations due to the assumption of a constant advec-
tion field (Prudden et al., 2020; Li et al., 2021).

In recent years, deep learning (DL) techniques have be-
come increasingly popular for precipitation nowcasting, due
to their superior performance in tracking and processing suc-
cessive frames of radar echo video/images. For instance, Shi
et al. (2015) treated precipitation nowcasting as a spatiotem-
poral sequence predictive problem and proposed a convo-
lutional long short-term memory (ConvLSTM) architecture,
which captures spatial and temporal features of radar echo
sequences. This model outperformed the OF method. In their
follow-up study (Shi et al., 2017), they introduced a tra-
jectory GRU (TrajGRU) model, which used the same con-
volutional and recursive networks as the ConvLSTM while
excavating the spatially variant relationship of radar echo
through its sub-networks. Moreover, Chen et al. (2020) built
a new architecture with a transition path (star-shaped bridge
(SB)) based on ConvLSTM, which gleans more latent fea-
tures and makes the model more robust. The model was
tested in precipitation nowcasting over the Shanghai area and
achieved better performance than some conventional extrap-
olation methods. To improve the limitation of time-step re-
duction in the ConvLSTM model, Yasuno et al. (2021) pro-
posed a rain-code approach with multi-frame fusion, allow-
ing the model to have a forecast lead time of 6 h. Ronneberger
et al. (2015) presented a U-shaped architecture deep net-
work, namely UNet, consisting of a contracting path to cap-
ture context and an expanding path that enables precise po-
sitioning. This model was initially used in biomedical seg-
mentation applications. Numerous attempts have been made
to develop a UNet-based precipitation nowcasting model, in-
cluding the “RainNet” in Germany (Ayzel et al., 2020), the
“MSDM” in eastern China (Li et al., 2021), the “Convo-
lutional Nowcasting-Net” with IMERG products (Ehsani et
al., 2021), the “SmaAt-UNet” in the Netherlands (Trebing
et al., 2021), the “FURENet” for convective precipitation
nowcasting (Pan et al., 2021), and the nowcasting system
with ground-based radars and geostationary satellite imagery
(Lebedev et al., 2019). Additionally, Sadeghi et al. (2020)
used a UNet convolutional neural network and geographical
information to enhance near real-time precipitation estima-
tion.

When it comes to radar-based nowcasting, there are sev-
eral plug-and-play modules available that use different net-
work architectures. Some models use ConvLSTM or UNet-
based architectures, while others either trim deformable net-
work architectures or implant various feature extraction op-
erations into the network architectures. For instance, Ravuri
et al. (2021) proposed a conditional generative model for
probabilistic nowcasting. Their model produced realistic and
spatiotemporally consistent predictions with a lead time of
up to 90 min, outperforming UNet and PySTEPS (Pulkkinen
et al., 2019). The Google Research group (Sønderby et al.,
2020) developed “MetNet”, a weather probabilistic model
that uses axial self-attention mechanisms to unearth weather
patterns from large-scale radar and satellite data. The model
provided probabilistic precipitation maps for up to 8 h over
the continental United States at a spatial resolution of 1 km
and a temporal resolution of 2 min. The Huawei Cloud group
(Bi et al., 2023) devised a 3D earth-specific transformer
module and developed “Pangu-Weather”, a high-resolution
system for global weather forecasting. This system showed
good application prospects for its superior performance in
many downstream forecast tasks such as wind, tempera-
ture, and typhoon forecasts. Researchers from DeepMind and
Google (Lam et al., 2023) proposed a novel machine learn-
ing weather simulator named “GraphCast”. It was an autore-
gressive model based on graph neural networks and a high-
resolution multi-scale mesh representation, which produced
medium-range global weather forecasting for up to 10 d. The
Microsoft Research Group developed and demonstrated the
“ClimaX” model (Nguyen et al., 2023). This model extended
the transformer architecture with novel encoding and aggre-
gation blocks, resulting in superior performance on bench-
marks for both weather forecasting and climate projections.
Similarly, Chen et al. (2023) presented an advanced data-
driven global medium-range weather forecast system named
“FengWu”. This system was equipped with model-specific
encoders–decoders, a cross-modal fusion transformer, and a
replay buffer mechanism. It solved the medium-range fore-
cast problems from a multi-modal and multi-task perspec-
tive. Marrocu et al. (2020) proposed the “PreNet” model,
which was based on a widely used semi-supervised and un-
supervised learning DL method named “generative adversar-
ial network” (GAN) (Goodfellow et al., 2014). The model’s
performance was compared with state-of-the-art OF proce-
dures and showed remarkable superiority. Zheng et al. (2022)
established the “GAN-argcPredNet” model, which was also
based on GAN architecture. It can reduce the prediction
loss in a small-scale space and show more detailed features
among prediction maps.

However, DL-based models for precipitation nowcasting
have their limitations and challenges, as reported by various
studies (Ayzel et al., 2020; Chen et al., 2020; Ehsani et al.,
2021; Prudden et al., 2020; Su et al., 2020; Li et al., 2021;
Kim et al., 2021; Singh et al., 2021; Huang et al., 2023). First,
these models struggle to extrapolate short-term local convec-
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tion or precipitation fields due to the complex nature of pre-
cipitation dynamics and the fact that DL models rely solely
on historical radar echo data to learn prior knowledge (Su et
al., 2020; Chen et al., 2020; Ehsani et al., 2021). This makes
it challenging to predict fast-moving precipitation systems or
short-term local convections characterized by rapid growth
and dissipation. Second, iterative forecasts tend to result in
accumulative errors and uncertainties due to discrepancies
between the model’s training and testing processes (Ayzel
et al., 2020; Prudden et al., 2020; Li et al., 2021; Singh et
al., 2021; Huang et al., 2023). This can lead to low values
of heavy precipitation, smoothing, or blurry forecast fields.
Third, the convolution operation used in DL models cov-
ers precipitation fields as comprehensively as possible, but
it cannot reveal the rapid changes in echo intensity, defor-
mation, and movement of precipitation fields (Ehsani et al.,
2021; Kim et al., 2021). Consequently, DL models produce
some undesirable forecast outputs, such as declining forecast
skills with increasing lead time, smoothing and blurry precip-
itation fields, missing extreme precipitation events, and poor
forecast skills for precipitation growth and dissipation.

Large-scale precipitation systems are influenced by sev-
eral factors, including prevailing westerlies, trade-wind
zones, mesoscale weather systems, land–sea distributions,
and topography effects (Huang et al., 2023; Luo et al., 2023).
As a result, real-time and accurate precipitation forecasting
remains a challenging task. In this study, we utilized large-
scale radar echo data and designed a DL architecture called
“multi-scale feature fusion” (MFF). The MFF model focuses
on detecting multi-scale features of radar echoes, such as in-
tensity, movement direction, and speed, which is expected
to enhance precipitation forecasting skills, particularly in
predicting precipitation growth and dissipation, fast-moving
precipitation systems, and heavy precipitations. This article
is organized as follows: Sect. 2 presents the data materials,
the detailed method, and the framework of the model. Sec-
tion 3 describes the experimental results from two precipi-
tation cases and discusses the advantages and disadvantages
of the four models. Finally, Sect. 4 concludes the study and
explores possible future work.

2 Materials, methods, and models

2.1 Radar reflectivity image products

Weather radar is a crucial tool for monitoring precipitation
systems and severe convective weather events such as hail,
gales, tornadoes, and flash floods. As of November 2022, the
China Meteorological Administration has installed a network
of 236 C-band and S-band Doppler weather radars across
China, known as the China Next Generation Weather Radar
(CINRAD) network (see Fig. 1). However, the CINRAD net-
work is distributed heterogeneously across China except in
complex terrain (Min et al., 2019). The network measures

the speed of meteorological targets relative to the radars and
then produces various types of meteorological products. This
study focuses on collecting and organizing radar reflectivity
image products from five seasons (March to August) between
2018 and 2022. The data have a temporal resolution of 6 min
and covers an area over (73–135◦ E, 10–55◦ N). The data pre-
processing steps include the following:

1. Low-altitude objects, such as mountains, buildings, and
trees, can produce sham echoes in radar images. There-
fore, we remove these anomalous radar echoes and de-
tach unnecessary annotations like city names, demarca-
tions, and rivers from each image. To reduce the impact
of sham echoes on the extrapolative model, we use a
local-mean filter algorithm to denoise the radar images.
After this, we transform the radar reflectivities into pre-
cipitation values using the Z−R relationship.

2. The extrapolative model is difficult to converge because
of the significant numerical differences among each
echo reflectivity. As a result, we normalize the initial
radar reflectivities to a range of [0,1]. Also, to assign
precipitation values in areas without radar echo, we set
them as 0. Finally, we resample the precipitation values
on a 1024× 880 grids for each radar image. The spatial
resolution of one radar image, combining all grid boxes,
is approximately 5 km. After completing the data pre-
processing steps, we obtained 205 848 samples, which
is a 3D matrix with the size of [205848× 1024× 880].

2.2 Multi-scale feature fusion

Radar echo extrapolation is an important technique for pre-
dicting precipitation by analyzing key variables such as
convective cloud intensity, shape, movement direction, and
speed. However, echo images may have different targets such
as light rain, moderate rain, and heavy rain, or the same tar-
get may vary in size at different resolutions. Additionally, in
a specific area of interest in an echo map, there may be mul-
tiple targets arranged in a tight or disorderly manner, which
can cause background noise, particularly due to strong local
convection. Therefore, using a single feature or convolution
kernel in a deep learning architecture can lead to lower fore-
casting accuracy due to the limited receptive field.

This study introduces two modules for feature fusion: a 3D
multi-scale feature fusion (3DMFF; Fig. 2a) module and a
2D multi-scale feature fusion (2DMFF; Fig. 2b) module. The
3DMFF module uses convolution kernels of different sizes
to capture information from different receptive fields. As-
suming that the average moving speed of a convective cloud
is 36 km h−1, the largest convolution kernel with the size of
4× 5× 5 grid can capture the traceability information of the
convective cloud under this moving speed. Conversely, the
smallest convolution kernel with the size of 4× 2× 2 grid is
geared toward the slow-moving clouds. Additionally, a ker-
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Figure 1. The distribution of the CINRAD over China and Topography (in meters) map. White dots represent C-band radars and red dots
denote S-band radars.

nel with the size of 4× 1× 1 grid is used for dimensional-
ity adjustments and information interaction among channels.
The outputs of these different scale features are concatenated
to store more information from the previous echo maps. Sim-
ilarly, the 2DMFF module uses convolution kernels of sizes
ranging from 1× 1 to 4× 4 grid and employs the “channel-
shuffle” technique to randomly shuffle the concatenated fea-
ture maps along the channel dimensions. This enhances the
feature interaction ability between channels and improves
the generalization ability of the module. Both the 3DMFF
and 2DMFF modules use the “ReLU” activation function for
nonlinear mapping, which helps to thin the network and ease
the over-fitting problem to a certain extent.

Consequently, as compared with the conventional single-
feature module, the MFF modules use different receptive
fields to enhance feature interaction and increase the number
of network routes. This enables the MFF modules to fully
extract feature information that was previously lost due to
fewer network routes. Additionally, the MFF modules intro-
duce channel sorting and spatial–temporal convolutions to
address the issue of information redundancy.

2.3 Framework of the nowcasting model based on MFF

Here is a detailed description of the precipitation nowcasting
model framework (Fig. 3) that we developed. The model is
trained using 60 min radar echo maps, with an input size of

(1,10,880,1024) grid, and produces nowcasting outputs of
180 min, with a size of (1,30,880,1024) grid. The model has
two main components: the encoding and decoding networks.
The encoding network uses multiple 3DMFF modules to ex-
tract features and compress information, while the decoding
network involves feature restoration and up-sampling using
3D transpose convolutions and 2DMFF modules. The 3D
transpose convolutions generate a tensor (see P in Fig. 3) that
acts as the probability matrix, retaining the intensity infor-
mation of radar echo for predicting various precipitation sys-
tems such as light rain, moderate rain, and heavy rain. To re-
store the decoding network’s features to the input’s features,
we perform two Hadamard product operations. The first op-
eration multiplies the output features of the 2DMFF by the
probability matrix (see m�P in Fig. 3), while the second
operation multiplies the output features of the 3D transpose
convolutions by 1−P (see (1−P)�f1 in Fig. 3). Since the
outputs from 3D transpose convolutions lack edge informa-
tion, we concatenate them with the outputs from the 2DMFF
modules to reduce information loss. Finally, we apply a 3D
convolution operation to adjust the channel of the product
outputs and generate the precipitation nowcasting results.

By drawing lessons from “MetNet” (Sønderby et al.,
2020), let us suppose the target weather condition is y and
the input condition is x; thus,

p(y|x)= DNNθ (x), (1)
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Figure 2. Panel (a) shows the 3D multi-scale feature fusion (3DMFF) and (b) the 2D multi-scale feature fusion (2DMFF).

where p(y|x) is a conditional probability over the output tar-
get y given the input x, and DNNθ (x) is a deep neural net-
work with parameter θ . The model used in this case intro-
duces uncertainties because it calculates the probability dis-
tribution over possible outcomes and does not provide a de-
terministic output. In most cases, the radar echo reflectivity is
a continuous variable, and we need to discretize the variable
into a series of intervals to approximate the probability den-
sity function of the variable. By using a discrete probability
model, we can reduce uncertainties. Therefore, the combi-
nation of discrete probability and radar echo reflectivity can
significantly reduce uncertainties of extrapolative radar echo.
Here, we use a mechanism of discrete probability as follows:

y[τ ] =

c∑
i=1

p
[τ ]
i

(
y[τ ]|x

)
· xi, (2)

where y[τ ] is the output at a given time τ , x is the input
condition, c is the number of channels, and p[τ ]i (y

[τ ]
|x) is

a conditional probability. Equation (2) shows the informa-
tion of multiple channels at time τ . Here, each channel has
its own probability value, which is used to extract better fea-
tures. The conditional probability p[τ ]i is multiplied by re-
lated channel information xi and their sum is calculated over
all channels to obtain more realistic radar echo reflectivities.

The mechanism of discrete probability is used by bothm�P
and (1−P)� f1 (see Fig. 3).

Overall, the nowcasting model has a deep and hierarchi-
cal encoding–decoding backbone that helps to extract es-
sential features from inputs. It also has several plug-and-
play modules suitable for excavating context information,
reducing background noise and identifying texture features.
This makes the model effective in investigating the move-
ment vector features of precipitation systems such as shape,
movement direction, and moving speed. The model also uses
the mechanism of discrete probability to reduce uncertainties
and forecast errors, which helps to postpone the declining
rate of strong-intensity echoes to some extent. Therefore, the
model can produce heavy rains with longer lead times.

2.4 Comparative models

To provide a thorough comparison, here we also present three
radar echo extrapolation models.

2.4.1 Optical flow

The problem of radar echo extrapolation can be seen as de-
tecting moving objects, which involves separating targets
from a continuous sequence of images. Gibson (1979) in-
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Figure 3. The framework of the nowcasting model based on multi-scale feature fusion (MFF).

troduced the concept of optical flow (OF), which character-
izes the instantaneous velocity of pixel motion of a space ob-
ject in an imaging plane. The OF method employs the vari-
ation of a pixel of the image sequence in the time domain
and the correlation between two adjacent frames to investi-
gate the movement information of objects between consecu-
tive frames. Essentially, the transient variation of a pixel on
a certain coordinate of the 2D imaging plane is defined as an
optical flow vector. The OF method relies on two basic as-
sumptions: grayscale invariance and the small movement of
pixels between consecutive frames.

Letting I (x,y, t) be the grayscale value of the pixel at
position (x,y) and time t , it moves (dx,dy) units of dis-
tances using dt units of time. Based on the grayscale invariant
hypothesis, the grayscale value remains unchanged between
two adjacent times, so the following equation holds:

I (x,y, t)= I (x+ dx,y+ dy, t + dt). (3)

Using Taylor expansion, the right term of Eq. (3) becomes

I (x,y, t)= I (x,y, t)+
∂I

∂x
dx+

∂I

∂y
dy+

∂I

∂t
dt + ε, (4)

where ε represents the infinitesimal of the second order
which is negligible. Then substitute Eq. (4) into Eq. (3) and

divide by dt . Thus, we have

∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
+
∂I

∂t
= 0. (5)

Suppose u= dx/dy and v = dy/dy are two velocity vectors
of optical flow along the x axis and the y axis, respectively.
Let Ix = ∂I

∂x
, Iy = ∂I

∂y
, and It = ∂I

∂t
be the partial derivatives

of the grayscale of pixels along the x axis, the y axis, and the
t axis, respectively. Thus, Eq. (5) turns into

Ixu+ Iyv+ It = 0, (6)

where Ix , Iy , and It can be calculated from the original image
data, while (u,v) are two unknown vectors. Because Eq. (6)
is a constraint equation but has two unknown variables, it
is necessary to add other constraint conditions to calculate
(u,v). Currently, there are two common algorithms used to
solve this problem: global optical flow (Horn and Schunck,
1981) and local optical flow (Lucas and Kanade, 1981), de-
tailed mathematical derivations of the two algorithms which
we do not expatiate here.

2.4.2 UNet

The second comparative model is U-Net. Unlike the MFF
model, the UNet model uses general 2D convolution instead
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of the “MFF module”. It consists of three main parts. The
first part, called the encoder module, is a backbone net-
work that performs down-sampling and feature extraction. It
is composed of several convolution layers and max-pooling
layers. The second part, called the decoder module, uses sev-
eral up-convolution layers and convolution layers to conduct
up-sampling and strengthen feature extraction. This allows
for effective feature fusion based on the output features from
the first part. Finally, the third part is a prediction module that
is used for a specific task, such as regression and segmenta-
tion. Additionally, to ensure that the down-sampling feature’s
size matches the up-sampling feature’s size, and to further
preserve more original information, the “feature copying and
cropping” operation is also required.

2.4.3 Time series residual convolution

The third comparative model is time series residual convolu-
tion (TSRC) proposed in our previous study (Huang et al.,
2023). The model compensates for the current local radar
echo features with previous features during convolution pro-
cesses on a spatial scale. It also incorporates “time series
convolution” to minimize dependencies on spatial–temporal
scales, resulting in the preservation of more contextual infor-
mation and fewer uncertain features in the hierarchical archi-
tecture. The model has shown excellent performance in han-
dling the smoothing effect of the precipitation field and the
degenerate effect of the echo intensity. (For detailed mathe-
matical derivations of the TSRC model, please refer to our
previous study.)

2.5 Evaluation metrics

We utilize five metrics to assess the forecast accuracy of
three models: probability of detection (POD), false alarm rate
(FAR), mean absolute error (MAE), radially averaged power
spectral (RAPS), and structural similarity index (SSIM).
Their mathematical equations are as follows:

POD=
successful forecast

successful forecast+missing forecast
(7)

FAR=
null forecast

successful forecast+ null forecast
. (8)

In practical precipitation tasks, it is common to encounter
successful forecasts, missing forecasts, and null forecasts,
which are determined by comparing the ground true value
(GTV), forecast value (FV), and threshold value (TV). Here,
the threshold of 20 dBz is used to represent reflectivity val-
ues greater than 20 dBz (referred to as “∼ 20 dBz”). Simi-
larly, “∼ 30” and “∼ 40 dBz” can be abbreviated. This study
adopts three thresholds (20, 30, and 40 dBz). To determine
the occurrence of successful forecast events, mark one if
GTV ≥ TV and FV ≥ TV. For missing forecast events, mark
one if GTV ≥ TV and FV < TV. For null forecast events,
mark one if GTV < TV and FV ≥ TV. The performance of

growth and dissipation forecasting tasks can be intuitively
described by both POD and FAR:

MAE=
1
n

n∑
i=1
|Y

g
i −Y

f
i |, (9)

where Y g
i and Y f

i are the ground truth value and forecast value
in the ith pixel of the related echo image and n is the total
number of pixels. This metric describes the performance of
each forecast model at different precipitation intensity levels.

In this study, the radar echo’s grayscale is considered a sig-
nal. The power spectrum describes the different frequency
components’ magnitudes of a 2D image signal. Therefore,
we use the Fourier transform to convert it from the spatial
domain to the frequency domain (Braga et al., 2014). Differ-
ent frequency components in the power spectra are located
at varying distances and directions from the base point on
the frequency plane. High-frequency components are farther
from the base point, and different directions indicate different
orientations of the data features. To investigate the smooth-
ing effect of forecast radar echo maps and discuss the fore-
cast skill on local convection, we use RAPS (Sinclair and
Pegram, 2005; Ruzanski and Chandrasekar, 2011). Here are
the mathematical derivations of RAPS in detail. First, we per-
form a 2D Fourier transform on a 2D input image:

F(u,v)= F{f (x,y)}, (10)

where F(u,v) is the representation of complex domain after
Fourier transform, F is the Fourier operator, and f (x,y) is
the input image. Next, we calculate the power spectral P and
radial coordinate r in the frequency domain:

P(u,v)= |F(u,v)|2, r(u,v)=
√
u2+ v2. (11)

Last, the power spectra are grouped according to the radial
coordinate of frequency; subsequently, we take the average.
For each radius rk , its corresponding radially averaged power
spectral Pk is

Pk =
1
Nk

∑
i

P(ui,vi), (12)

where r(ui,vi)≈ rk , and Nk is the number of frequency
points falling within the radius of rk .

In addition, we calculate the SSIM (Wang et al., 2004) to
examine the similarity of precipitation fields between ground
true and forecasting radar echo maps:

SSIM=
(2µgµf+ c1)(2σgf+ c2)

(µ2
g+µ

2
f + c1)(σ 2

g + σ
2
f + c2)

, (13)

where µg and µf are the means of ground truth and forecast-
ing radar echo map, σg and σf are the related standard devi-
ations, and σgf is the covariance, respectively. c1 and c2 are
two constants. These metrics reflect the movement of precip-
itation fields between the ground truth and forecasting radar
echo map.
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3 Results

3.1 Overall forecast performances on testing data

We use 4 years of data (2018–2021) for model training and
1 year of data from 2022 for model testing. In Fig. 4, we
show the four evaluation metrics, i.e., POD, FAR, MAE,
and SSIM, in three reflectivity intervals of ∼ 20, ∼ 30, and
∼ 40 dBz. Overall, we observed that POD in the four models
consistently decreases with increased forecast lead time for
all reflectivity intervals, while FAR increases. The rankings
of POD (or FAR) are quite different for the three reflectivity
intervals. In the∼ 20 dBz reflectivity interval, MFF ranks the
highest in POD during the entire forecast period, remaining
stable ranging from 0.6 to 0.8, which is almost twice that of
TSRC, OF, and UNet after the 2 h lead time. However, MFF
and TSRC have nearly equal FAR, which is roughly half of
that of OF and UNet. In the ∼ 30 dBz reflectivity interval,
TSRC ranks highest in POD, followed by MFF. Coinciden-
tally, TSRC also ranks highest in FAR before the 1 h fore-
cast time, while both MFF and TSRC obtain relatively low
FAR compared with that of OF and UNet. In the ∼ 40 dBz
reflectivity interval, POD in TSRC is ahead of the other three
models, especially before the 1 h lead time, and it degrades
into that of MFF at the longer lead time. POD in both OF and
UNet remains lower than 0.2 during the entire forecast period
and nearly declines to 0 after the 2 h lead time; MFF reports
the lowest FAR during the entire forecast period. While the
value of FAR climbs from about 0.1 to 0.9, TSRC has a rel-
atively stable FAR, while the value of FAR is higher than
0.5 during the entire forecast period. FAR in OF and UNet
rapidly increases from about 0.1 to 0.8 in the first 90 min.
FAR in all models is greater than 0.8.

Although MFF produces relatively low POD in high
reflectivity (∼ 30 and ∼ 40 dBz) intervals compared with
TSRC, it obtains relatively low FAR at the same time. From
the definition of POD/FAR, it can be understood that both
more “successful forecasts” and more “null forecasts” occur
in TSRC, while fewer “successful forecast” events and fewer
“null forecast” events occur in MFF compared with TSRC
for high reflectivity intervals. If we take POD = 0.6 as a di-
viding point, it is clear that MFF yields ”successful forecast”
events for the whole forecast period in ∼ 20 dBz reflectivity,
while TSRC, OF, and UNet gain “successful forecast” events
only before 60, 24, and 36 min, respectively. Similarly, if we
take FAR= 0.5 as a dividing point in∼40 dBz reflectivity, it
can be found that MFF, OF, and UNet report FAR< 0.5 only
before 2 h, 30 min, and 30 min, respectively, suggesting that
at least the three models can avoid half of the “null forecast”
events before 2 h, 30 min, and 30 min, respectively. However,
TSRC is unavoidable in producing “null forecast” events for
the whole forecast period in ∼ 40 dBz reflectivity.

We also analyze the mean absolute error and structural
similarity index metric between the nowcasting and ground
truth. The MAE gradually increases with the forecast time

for all models. Out of the three models, MFF has the small-
est MAE (around 15 dBz), which is better than both TSRC
and UNet by approximately 2 dBz reflectivity after 90 min.
On the other hand, OF has the highest MAE, particularly
in long forecast times. This indicates that MFF reproduces
the precipitation intensity with relatively less overestimation
or underestimation compared with the other models, while
OF shows little capacity to do so, especially in a long fore-
cast time. In terms of SSIM, it can be found that MFF per-
forms well and maintains an upward trend, while OF remains
consistent throughout the forecast time. However, TSRC and
UNet show a downward trend, especially after 90 min. This
indicates that MFF is capable of capturing the shapes of pre-
cipitation fields with relatively high similarity, and its fore-
cast performance improves with forecast times.

Understandably, the MFF model can identify movement
vectors of precipitation systems and reduce uncertainties in
high reflectivity intervals. By using the mechanism of dis-
crete probability, the model is particularly effective for high-
intensity precipitation systems even at longer forecast times.
However, the TSRC model may struggle to replenish the in-
formation on precipitation intensity, leading to overestima-
tion for the entire forecast period and producing more “null
forecasts” events. On the other hand, the OF model produces
precipitation fields based on the grayscale invariant and the
slight movement of the precipitation system, making it diffi-
cult to detect fast changes in precipitation fields, especially
in longer forecast times. Additionally, it tends to overesti-
mate or underestimate high-intensity precipitations. Lastly,
the UNet model only performs feature extractions on the spa-
tial scale, leading to information loss and an inability to de-
tect fast changes in precipitation fields on the temporal scale
and high-intensity precipitations. Consequently, it has poor
performance in nowcasting throughout the forecast period.

3.2 Results of case study

Here we present forecast results for two real precipitation
cases (see Fig. 5) to better understand the performance of
the four models.

3.2.1 Case 1

The first case is a large-scale precipitation process over China
on 5 June 2022, 02:36:00 UTC (Fig. 5a). It contains the
north part over northeastern China affected by a cold vor-
tex and the south part (also known as “dragon-boat rain”)
over southern China affected by warm, humid air. Figure 6
presents the forecast results of this case. In the ground truth,
the whole precipitation area keeps a sluggish enlarging trend
with the increased lead time, but the precipitation area of
the high-intensity (e.g., greater than 35 dBz) echoes nar-
rows gradually. As an important finding, MFF shows the
best forecast performances since it can predict high-intensity
(e.g., greater than 45 dBz) echoes even at the longest lead

Geosci. Model Dev., 17, 53–69, 2024 https://doi.org/10.5194/gmd-17-53-2024



J. Tan et al.: Deep learning model based on multi-scale feature fusion 61

Figure 4. The forecast results in terms of four evaluation metrics on testing data for the whole year of 2022.
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Figure 5. Overhead depiction of two precipitation cases in China, the left lower corner shows the South China Sea. Publisher’s remark:
please note that the above figure contains disputed territories.

time (T + 180 min). Comparatively, TSRC and UNet pro-
duce these echoes only at the short-range forecast time and
miss them at the longest lead time. In terms of the precip-
itation field, both MFF and TSRC roughly capture the pre-
cipitation area, especially for low-intensity (e.g., less than
30 dBz) echoes at short-range lead times. OF draws an ob-
vious dragged trajectory of the precipitation field in longer
lead times, indicating the model simply creates precipitation
fields with symbolic replications from the first frame to the
last frame (T + 180 min) at a horizontal scale and always
misses the local changes of the precipitation system. UNet
is difficult to grasp the whole precipitation field, not to men-
tion the heavy precipitation system, and its precipitation field
narrows gradually with the increasing lead time and finally
disappears. The above analysis seems to be in accord with
previous results that the high POD is reported in MFF and
TSRC for low-intensity echoes (Fig. 4a), while there is rela-
tively steady POD in OF and UNet for high-intensity echoes
(Fig. 4b and c). Overall, MFF outperforms the other three
models in predicting the precipitation field and the heavy pre-
cipitation.

On 5 June 2022 at 02:36:00 UTC, a large-scale precip-
itation process occurred over China, affecting northeastern
China and southern China differently. The northeastern part
was affected by a cold vortex, while the southern part experi-
enced warm, humid air, also known as “dragon-boat rain”. In
Fig. 5a, the forecast results of this case are presented, with the
ground truth showing a sluggish enlargement of the whole
precipitation area but a gradual narrowing of high-intensity
echoes (greater than 35 dBz). An important finding is that
MFF has the best forecast performances, predicting high-
intensity echoes even at the longest lead time (T +180 min).

In contrast, TSRC and UNet only produced these echoes at
short-range forecast times and missed them at the longest
lead time. In terms of the precipitation field, both MFF and
TSRC roughly capture it, especially for low-intensity echoes
(less than 30 dBz) at short-range lead times. OF draws an ob-
vious dragged trajectory of the precipitation field in longer
lead times, indicating the model simply creates precipitation
fields with symbolic replications from the first frame to the
last frame (T+180 min) at a horizontal scale, always missing
the local changes of the precipitation system. It is definitely
difficult for UNet to grasp the whole precipitation field, not
to mention the heavy precipitation system, and its precipi-
tation field narrows gradually with the increasing lead time
and eventually disappears. The above analysis is in line with
previous results that MFF and TSRC have high POD for low-
intensity echoes (see Fig. 4a), while OF and UNet have rel-
atively steady POD for high-intensity echoes (see Fig. 4b
and c). Overall, MFF outperforms the other three models in
predicting the precipitation field and heavy precipitation.

The RAPS metric is used to examine the smoothing and
blurry precipitation fields. A lower power spectral indicates a
smoother precipitation field. Conspicuously, OF enjoys a rel-
atively high power spectral that is comparable to that of the
ground truth for the entire wavelength range. At first glance,
OF can accurately predict local convection activity and the
evolution of the precipitation system. However, the model
shifts the precipitation field from the first frame to the last,
which results in poor forecast performance at longer lead
times. The other three DL-based models (MFF, TSRC, and
UNet) have relatively low power spectra, indicating that they
introduce a smooth precipitation field to some extent. But
they might describe the evolution of the precipitation system
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more reasonably. MFF has a low power spectral under 4 km
wavelength, higher than that of TSRC and UNet. This differ-
ence becomes more significant at longer lead times, suggest-
ing that the MFF model is better at describing local convec-
tion activity on a small scale. Overall, the MFF model does
at least ease the smoothing effect.

3.2.2 Case 2

On 15 May 2022 at 03:06:00 UTC, a significant precipitation
event occurred in central China and offshore China (Fig. 5b).
The event was influenced by the upper-level westerly trough,
the southwest vortex, and the lower-level shear. The forecast
results for this event are presented in Fig. 7, The precipitation
area gradually expands, but the high-intensity area decreases
with lead times. Both the MFF and TSRC models roughly
follow the shape of the precipitation areas on land and sea
and provide the evolutionary trend of the precipitation sys-
tem. However, the OF model shifts the precipitation field
from the first frame to the last frame, missing the evolution-
ary trend of the precipitation system, particularly for longer
lead times. This confirms the model’s poor ability to forecast
precipitation over long ranges. The UNet model proved to
be the most challenging to use in capturing the evolutionary
trend of the precipitation system, as it reproduces the small
precipitation field, which is the opposite of the ground truth.
The four models show different forecasting performances in
terms of echo intensity. MFF overestimates strong-intensity
echoes (greater than 30 dBz), but it also increases the area of
echoes at all lead times. TSRC cannot produce strong echo
intensities after the 120 min lead time. OF can predict strong-
intensity echoes at longer lead times, but the model’s predic-
tion is almost identical to the first frame, indicating a poor
performance in predicting the evolution of strong-intensity
echoes. Unfortunately, UNet shows the worst forecast per-
formance since it underestimates these strong intensities at
shorter lead times and cannot deduce these strong-intensity
echoes at longer lead times.

The three DL-based models report relatively low power
spectra before the 90 min lead time. OF obtains relatively
high power spectra, which are almost equal to the ground
truth at all lead times. This is because OF shifts the precipi-
tation field using an extrapolative technique. It is noteworthy
that the power spectral in MFF is slightly greater than that
in TSRC and UNet at longer lead times, suggesting that the
smoothing effect is further improved by MFF, making it more
suitable for precipitation forecasting both on land and sea.

3.3 Discussion

Here we summarize the advantages and disadvantages of the
four models in precipitation nowcasting.

3.3.1 MFF

The purpose of MFF is to improve the accuracy of precipi-
tation forecasting, particularly at longer lead times. Current
DL-based models for precipitation forecasting are faced with
two major challenges: the poor forecast skill when differ-
ent precipitation systems with varying scales are present; and
the low predictive accuracy when different precipitation tar-
gets, such as light rain, moderate rain, and heavy rain, are
densely distributed in a certain area of interest and also in-
troduce noises. From a qualitative perspective, MFF pro-
poses a deep and hierarchical encoding–decoding architec-
ture that can make full use of the receptive fields to effi-
ciently detect different precipitation systems in multi-scales
and predict various precipitation targets. This superiority is
unable to be achieved by the traditional single-scale recep-
tive fields. However, this architecture shows strong ability
in feature extraction but might also account for the issue of
information redundancy. Therefore, the model employs sev-
eral techniques, such as channel shuffle, feature concatena-
tion, and spatial–temporal convolution, to enhance the fea-
ture interaction ability among multi-scales and further ease
information redundancy. These techniques do obtain consid-
erable forecast performance in several evaluation metrics,
including POD, FAR, MAE, and SSIM. Additionally, the
model skillfully applies the mechanism of discrete proba-
bility, which mathematically allocates the probability infor-
mation into each channel and can reduce uncertainties and
forecast errors to the most extent. The results of the case
study further prove that only this model can produce heavy
precipitations such as those greater than 45 dBz reflectivity
radar echoes even at the 3 h lead time. It is noteworthy that
two tricky issues, namely the smoothing effect and cumu-
lated error, are still inevitably reported in the model. How-
ever, these issues are not specific to MFF, as most DL-based
models are also confronted. The principal reasons accounting
for them include that the convolution strives to smooth multi-
scale features in receptive fields to minimize fitting errors
and that there are iterative discrepancies between the train-
ing processes and targets. Encouragingly, by introducing the
MFF and the mechanism of discrete probability, at least our
models have some improvements. This offers a lot of promise
for handling practical tasks such as precipitation growth and
dissipation, fast-moving precipitation systems, heavy precip-
itation, and local convection activity. In any event, MFF is a
DL-based and data-driven radar extrapolative model without
any consideration of physical constraints and atmospheric
dynamics. Hopefully, the model can be further improved by
adding multi-source data and combining ingenious DL archi-
tectures.

Furthermore, like other convolution-based DL models, the
MFF model also requires highlighting the “inductive bias”
to improve its generalization ability. Inductive bias can be
thought of as a sort of “local prior”. In the case of image anal-
ysis, the inductive bias in the MFF model mainly consists of
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Figure 6. The precipitation maps of case 1 (5 June 2025, 02:36:00 UTC): ground truth (first row), multi-scale feature fusion (second row),
time series residual convolution (third row), optical flow (fourth row), and UNet (fifth row). The sixth row shows the radially averaged power
spectral density.

two aspects. The first aspect is “spatial locality”, which as-
sumes that adjacent regions in a radar echo image always
have relevant precipitation features. For example, the region
of strong-intensity echoes is usually accompanied by the re-
gion of moderate-intensity echoes. However, this inductive
bias may sometimes overestimate the precipitation intensity
(see case 2 in Fig. 7). or enlarge the precipitation field, lead-
ing to accuracy issues. The other aspect is “translation equiv-
ariance”, which means that when the precipitation field in the
input map is translated, the precipitation field is also trans-
lated due to the use of local connection and weight-sharing

in the multi-scale convolution process. This feature does al-
low the MFF model to trace the moving precipitation system.
Therefore, as a widely concerned weather phenomenon, ex-
treme precipitations (e.g., 1-in-100-year rainfall events) may
also be extrapolated and predicted by using inductive bias in
the MFF model if both the training dataset and testing input
provide precipitation events with very strong radar echoes.
Conversely, it is also very challenging for the MFF model to
tackle such a forecasting task.
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Figure 7. Same as in Fig. 6, but for the precipitation in case 2 (15 May 2022, 03:06:00 UTC).

3.3.2 TSRC

Essentially, TSRC is a reinforced “encoding–decoding” ar-
chitecture that adds previous features to current feature
planes on temporal scales during convolution processes. This
allows more contextual information and fewer uncertain fea-
tures to remain in deep networks. The model takes into ac-
count the correlation of radar echo features on a temporal
scale, which theoretically reduces the problem of informa-
tion loss and the degenerate effect intensity. However, the
compensatory features in the architecture may lack speci-
ficity and carry noises, which causes the model to increase
the precipitation intensities at the whole forecast lead times

mindlessly. Although the model has relatively high POD, it
has high FAR and MAE, particularly for heavy precipita-
tions. The model increases the depth of the hierarchical ar-
chitecture with different learnable parameters, excavates the
dependencies of echo features on both temporal and spatial
scales, and uses several techniques, such as feature concate-
nation, residual connection, and attention mechanism, to pre-
vent the declining rate of intensity and the smoothing effect.
The testing data show that the model has great advantages
at real forecast tasks, such as low-intensity precipitation sys-
tems, and slow-change precipitation systems, especially for
short lead times. However, the model lacks consideration of
multi-scale features due to the fixed/unique receptive field on
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spatial scales. This leads to great difficulty in many real fore-
cast tasks, such as local-convection activity, growth and dissi-
pation, fast-moving precipitation systems, and rapid changes
in the rainfall field. Therefore, it is speculated that the model
can be further improved by implementing feature extraction
on multi-spatial scales.

3.3.3 OF

The main principle behind OF is to observe the variation
of pixels in a sequence of images in the time domain. By
examining the correlation of two adjacent frames, the al-
gorithm can detect the movement of objects. However, OF
can only accurately forecast precipitation systems that have
slow changes even at short lead times. The model relies on
two fundamental hypotheses, namely the grayscale invari-
ance and the tiny movement of pixels. The grayscale invari-
ance feature renders the model challenging to deal with pre-
cipitation systems characterized by swift intensity fluctua-
tions. For the tiny movement of pixels, it can hardly satisfy
the forecast of a fast-moving precipitation system. Unlike the
DL-based models, OF generates precipitation fields based on
Lagrangian persistence and smooth motion, which also fail
to recognize both local and multi-scale features of the pre-
cipitation system. This leads to poor forecasting ability at
longer lead times, and the model often produces inaccurate
results by merely shifting the precipitation fields. Although
improved methods like the semi-Lagrangian method, which
relies on the advection field, have been developed, they still
struggle to explain the complex features of the precipitation
system.

3.3.4 UNet

The UNet architecture involves three important steps, namely
encoding, decoding, and skip connection. The encoding pro-
cedure uses multiple convolution layers for down-sampling
and feature compression. This allows the contracting path to
capture more context information. On the other hand, the de-
coding process applies several deconvolution layers for up-
sampling and feature restoration. This allows the expanding
path to locate different features. The skip connection part
fuses the pixel-level features and semantic-level features to
achieve feature segmentation and reduce information loss.
While the bottom of the hierarchical architecture collects
low-frequency information in the form of greater receptive
fields, it fails to capture high-frequency information. As a re-
sult, when it comes to forecast tasks, the model may focus
on those global (abstract or essential) features of precipita-
tion systems but omit those exquisite changes in precipitation
systems at spatial–temporal scales. Since radar echoes usu-
ally have variability at multiple scales, it is insufficient for
UNet to capture complex features of the precipitation sys-
tem. The results from the case study also confirm that the
model has poor forecast skills in fast-moving precipitations,

high-intensity precipitations, growth, and dissipation, as well
as long-term forecasting. In summary, UNet has the worst
forecast performance among the three DL-based models.

4 Conclusions

This study presents MFF, a deep learning model designed for
large-scale precipitation nowcasting with a lead time of up
to 3 h. The model aims to investigate the movement features
of precipitation systems on multiple scales. To reduce un-
certainties and forecast errors, we introduce the mechanism
of discrete probability in the model. We compare our model
with three existing radar echo extrapolative models, namely
TSRC, OF, and UNet. The comprehensive analyses of testing
data further prove the impressive forecast skills of MFF un-
der four evaluation metrics: POD, FAR, MAE, and SSIM.
MFF is the only extrapolative model that produces heavy
precipitations even at the 3 h lead time, and the smoothing
effect of the precipitation field is improved. From an early
warning perspective, the model shows a promising applica-
tion prospect.

It is well known that data always determine the upper limit
of a machine learning model, while algorithms only attempt
to approximate this limit. Regretfully, the current study only
considers the radar echo data as the model inputs. There-
fore, we highly recommend considering more meteorological
variables, such as temperature, pressure, humidity, wind, and
so on, as well as ground elevations, in future work. These
data can come from various sources such as radar obser-
vations, satellite sounding, reanalysis, real-time observation,
NWP downscaling, and so forth. We believe that these multi-
source data can fortify some kind of physical or thermody-
namic constraint for a pure data-driven extrapolative model.
The smoothing effect remains a challenging task, and it is
still reported as long as the convolution procedure is per-
formed. Therefore, future work will focus on the structural
adjustments of the network and the combinations with nu-
merical models to further improve the forecast accuracy of
heavy precipitations at longer lead times.
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