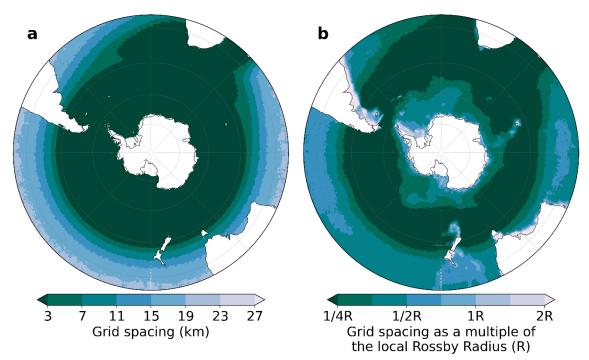
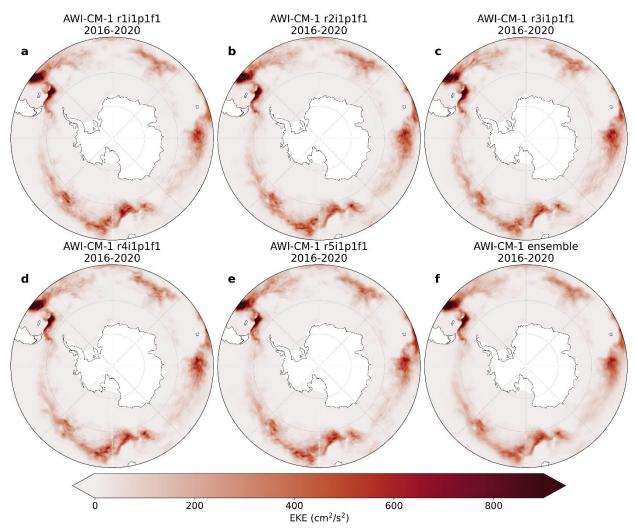


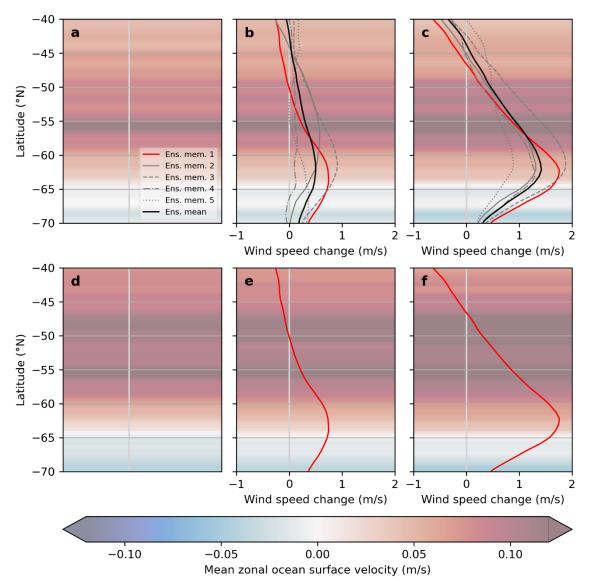
Supplement of

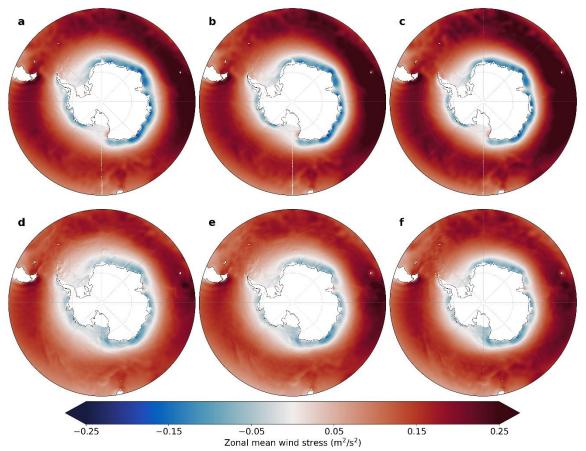

Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean

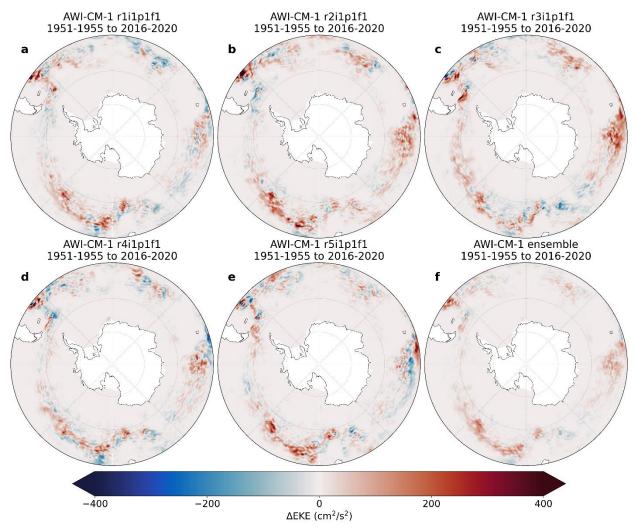
Nathan Beech et al.


Correspondence to: Nathan Beech (nathan.beech@awi.de)

The copyright of individual parts of the supplement might differ from the article licence.


Supplementary figures


Figure S1. Grid resolution of the SO3 mesh. a) grid resolution expressed as approximate element height following Danilov (2022). **b**) Grid resolution expressed as a multiple of the local Rossby radius.


Figure S2. Ensemble spread of mean EKE. Mean EKE during 2016-2020 in (**a-e**) each member of the AWI-CM-1 ensemble and (**f**) the ensemble mean.

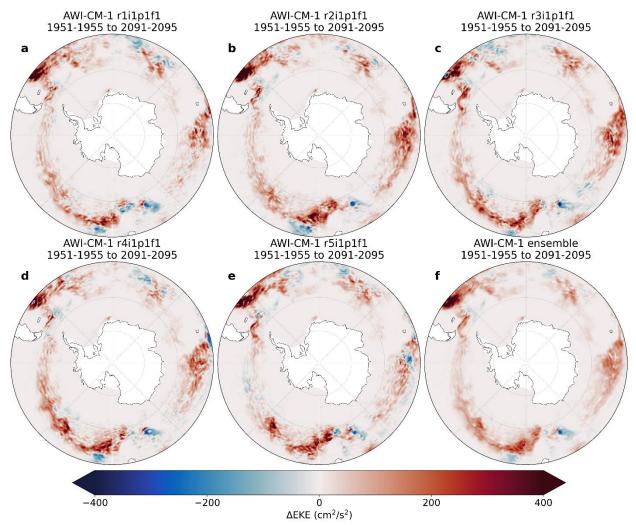

Figure S3. Zonal mean wind speed and surface velocities. Mean zonal surface velocities during the 1951-1955 (**a,d**), 2016-2020 (**b,e**), and 2091-2095 (**c,f**) periods in the AWI-CM-1 ensemble (**a-c**) and the SO3 simulations (**d-f**). Changes in mean zonal wind speeds relative to the 1951-1955 mean are overlaid.

Figure S4. Zonal mean wind stress. Zonal mean wind stress to the ocean surface in AWI-CM-1 ensemble member 1 (a-c) and the SO3 simulations (d-f) during the periods 1951-1955 (a,d), 2016-2020 (b,e) and 2091-2095 (c,f). Positive values indicate an eastward direction.

Figure S5. Ensemble spread of EKE change between 1951-1955 and 2016-2020. EKE change in (**a-e**) each member of the AWI-CM-1 ensemble and (**f**) the ensemble mean.

Figure S6. Ensemble spread of EKE change between 1951-1955 and 2091-2095. EKE change in (**a-e**) each member of the AWI-CM-1 ensemble and (**f**) the ensemble mean.

Supplementary tables

Data	Durbin-	Skew	p(Skew)	Kurtosis	p(Kurt)
	Watson				
Ens. 1	0.169	0.867	p<0.001	0.536	0.056
Ens. 2	0.232	-0.075	0.549	-0.156	0.623
Ens. 3	0.283	0.198	0.119	-0.270	0.289
Ens. 4	0.179	0.176	0.165	-0.220	0.423
Ens. 5	0.214	0.400	0.002	-0.439	0.040
Ensemble	0.206	0.381	p<0.001	0.237	0.052
SO3	0.44	0.432	0.001	0.013	0.813

Table S1. EKE statistics for the 1951-1955 period. Statistical properties reported are autocorrelation (Durbin and Watson, 1950), skewness (D'Agostino and Belanger, 1990), and kurtosis (Fisher, 1997). Statistics are calculated using 5-day mean EKE data with linear trends removed as in Figures 1a,b,c and Figure 3.

Data	Durbin-	Skew	p(Skew)	Kurtosis	p(Kurt)
	Watson				
Ens. 1	0.226	0.295	0.021	-0.335	0.157
Ens. 2	0.255	0.451	0.001	-0.454	0.031
Ens. 3	0.245	-0.175	0.167	-0.220	0.425
Ens. 4	0.216	0.022	0.860	-0.480	0.020
Ens. 5	0.267	0.339	0.009	0.164	0.427
Ensemble	0.251	0.179	0.002	-0.263	0.010
SO3	0.387	0.417	0.001	-0.509	0.011
Obs.	0.499	0.032	0.801	-0.146	0.658

Table S2. EKE statistics for the 2016-2020 period. Statistical properties reported are autocorrelation (Durbin and Watson, 1950), skewness (D'Agostino and Belanger, 1990), and kurtosis (Fisher, 1997). Statistics are calculated using 5-day mean EKE data with linear trends removed as in Figures 1a,b,c and Figure 3.

Data	Durbin-	Skew	p(Skew)	Kurtosis	p(Kurt)
	Watson				
Ens. 1	0.14	-0.085	0.502	-0.329	0.167
Ens. 2	0.15	0.331	0.010	-0.698	p<0.001
Ens. 3	0.264	-0.150	0.235	-0.27	0.289
Ens. 4	0.199	0.134	0.289	-0.472	0.023
Ens. 5	0.133	-0.031	0.806	-0.981	p<0.001
Ensemble	0.168	0.067	0.244	-0.476	p<0.001
SO3	0.219	-0.345	0.008	-0.484	0.018

Table S3. EKE statistics for the 2091-2095 period. Statistical properties reported are autocorrelation (Durbin and Watson, 1950), skewness (D'Agostino and Belanger, 1990),

and kurtosis (Fisher, 1997). Statistics are calculated using 5-day mean EKE data with linear trends removed as in Figures 1a,b,c and Figure 3.

References

D'Agostino, R. B. and Belanger, A.: A Suggestion for Using Powerful and Informative Tests of Normality, Am. Stat., 44, 316–321, https://doi.org/10.2307/2684359, 1990.

Danilov, S.: On the Resolution of Triangular Meshes, J. Adv. Model. Earth Syst., 14, e2022MS003177, https://doi.org/10.1029/2022MS003177, 2022.

Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least Squares Regression. I, Biometrika, 37, 409–428, https://doi.org/10.1093/biomet/37.3-4.409, 1950.

Fisher, R. A.: The moments of the distribution for normal samples of measures of departure from normality, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, 130, 16–28, https://doi.org/10.1098/rspa.1930.0185, 1997.