Geosci. Model Dev., 17, 5249-5262, 2024
https://doi.org/10.5194/gmd-17-5249-2024

© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

RoGeR v3.0.5 — a process-based hydrological

toolbox model in Python

Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler

Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany

Correspondence: Robin Schwemmle (robin.schwemmle @hydrology.uni-freiburg.de)

Received: 21 June 2023 — Discussion started: 3 July 2023

Revised: 9 April 2024 — Accepted: 20 April 2024 — Published: 9 July 2024

Abstract. Although water availability and water quality are
equally important for effective water resources management
at various spatial and temporal scales, to date, a combined
representation of soil water balance components and wa-
ter quality components in Python is not available. The new
RoGeR toolbox contains models that can be used for not
only the quantification of hydrological processes, fluxes and
stores, but also solute transport processes based on StorAge
selection (SAS). This study presents the code structure and
functionalities of RoGeR developed as a scientific model
toolbox following defined open-source software guidelines.
RoGeR uses five different computational backends covering
just-in-time compilation, parallelism and graphical process-
ing units (GPUs) that might be used for optimizing computa-
tional performance. We show that graphical processing unit
computing has the greatest potential to improve computation
time and energy usage, especially for large modelling exper-
iments. A simple modelling experiment highlights the capa-
bilities of the new RoGeR model toolbox. We simulated the
soil water balance, stable water isotope (!30) transport, and
corresponding travel time distributions of the Eberbaechle
catchment, Germany, for a 3-year period. Due to the current
limitations of a variety of process components, further devel-
opment of RoGeR as a scientific software is needed. Future
modifications are easily possible due to the open software
architecture of RoGeR.

1 Introduction

The interplay between the water and solute mass balance
(e.g. oxygen-18, chloride or nitrate) and its related flow and
transport in the soil-vegetation—atmosphere interface play

an important role in the understanding of hydrologic sys-
tems (e.g. Benettin et al., 2017). However, measurements of
their states and fluxes are not ubiquitously available, neither
in space nor in time (Beven, 2011). Thus, soil hydrological
models, soil-vegetation—atmosphere—transfer (SVAT) mod-
els and distributed catchment models are indispensable tools
to complement measurements (e.g. for a better process un-
derstanding) and to make predictions (e.g. future climate im-
pacts, land cover changes or in ungauged catchments). Cur-
rently, there are many models in hydrology, and the land-
scape of models is highly diverse (from simple conceptual
models to complex physically based models). One reason for
this large and diverse landscape of models is that hydrol-
ogists still disagree about modelling concepts (Weiler and
Beven, 2015). Despite the large number of models, however,
there is a lack of reproducibility in computational hydrology
(Hutton et al., 2016; Reinecke et al., 2022). The main rea-
sons for this lack of reproducibility are poorly documented
codes and workflows, code being too complex, unavailable
code, missing input data, a lack of calibration standards, and
a lack of standards dealing with uncertainties (e.g. Reinecke
et al., 2022).

Simulating the hydrological processes at the soil-
vegetation—atmosphere interface, including solute mass bal-
ance and transport with a high spatial and/or temporal res-
olution, still requires a long computation time. For reasons
of computational performance, hydrological models such as
HYDRUS (gimﬁnek et al., 2016), EcH20-iso (Kuppel et al.,
2018a) or mHM (HeBe et al., 2017; Kumar et al., 2020,
2013; Samaniego et al., 2010) are written in low-level pro-
gramming languages such as Fortran or C4++. However,
these languages are hard to read and to learn and are usu-
ally not included in the curriculum of hydrology-related de-

Published by Copernicus Publications on behalf of the European Geosciences Union.

laded uondiosap |8poN

5250

gree programmes. By contrast, high-level programming lan-
guages are easier to read and to learn, but computation takes
about 3-5 times longer than equivalent code in low-level pro-
gramming languages (Hifner et al., 2021). Therefore, high-
level programming languages have the potential to foster
reproducibility. Recently, high-level open-source program-
ming languages such as R or Python have gained popular-
ity in the hydrological modelling community. Python in par-
ticular is currently the most popular programming language
among software users (e.g. IEEE Spectrum, 2022; PYPL,
2022; Stack Overflow, 2021). Hydrological models quanti-
fying the hydrological cycle that are written in Python, for
example, are SUPERFLEX (Dal Molin et al., 2021; Fenicia
et al., 2011), CWatM (Burek et al., 2020) and UniFHy (Hal-
louin et al., 2022), but none of these models consider trans-
port of solutes, and they generally focus on the catchment
scale. To date, only rSAS (Harman, 2015) has implemented
a solute transport model written in Python. However, rSAS
does not quantify the water balance and requires hydrologi-
cal fluxes as input.

For reasons of longer computation times, high-level pro-
gramming languages are often avoided in spatially dis-
tributed hydrological models. One solution that would re-
duce computation time in high-level programming languages
is using a just-in-time (JIT) compiler. However, Python does
not contain a built-in JIT compiler. Instead, Python requires
program libraries such as Numba (Lam et al., 2022) or JAX
(Bradbury et al., 2018). However, Numba and JAX provide
the opportunity to run the code on graphical processing units
(GPUs) to decrease computation times. Veros (Héfner et al.,
2018, 2021), an ocean model written in Python using JAX
for acceleration, demonstrated that GPU computations are a
competitive alternative to central processing units (CPUs).
In addition to that, Héfner et al. (2021) could show that GPU
computations save energy.

The first model version of RoGeR had a focus on the
event-based runoff generation (Steinbrich et al., 2021).
Thereafter, RoGeR has been further developed, and by
adding a routing scheme, surface runoff and subsurface
runoff, contributions to flooding events could be explicitly
simulated (Steinbrich et al., 2021). Additionally, by consid-
ering snow hydrological processes, urban hydrological pro-
cesses and redistribution processes such as evapotranspira-
tion enabled the estimation of the long-term water balance
(Steinbrich et al., 2021). Based on the previous development
efforts of the RoGeR model by Weiler (2005) and Steinbrich
et al. (2016, 2021), we reimplemented the process-based hy-
drological model RoGeR in a modular software architecture
(e.g. different hydrological processes were implemented in
separate modules that can be independently modified) writ-
ten in Python. Since RoGeR has had no implementation for
solute transport so far, we include solute transport based
on StorAge selection (SAS) functions (e.g. Benettin et al.,
2017). We choose a high-level programming language and
a modular software paradigm to foster reproducibility and a

Geosci. Model Dev., 17, 5249-5262, 2024

R. Schwemmle et al.: RoGeR v3.0.5

wide range of applications in teaching and research. In partic-
ular, we aim to facilitate general code understanding; writing
new code; and debugging code, which usually takes most of
the time within software projects. To overcome limitations
of computational performance, we include the program li-
brary JAX.

EcH20-iso provides simulations with a spatial resolution
of 30m (Kuppel et al., 2018b), and mHM uses a spatial
discretization that starts at 100 m (Yang et al., 2018). HY-
DRUS can be used at the plot scale (e.g. Asadollahi et al.,
2020), but applying HYDRUS at the hillslope or catchment
scale requires a commercial licence. Thus, the main objec-
tive of the toolbox is to provide simulations with a high spa-
tial (<25 m) and temporal resolution (> 10 min) at the local
scale (< 10km). The local scale covers different scales: the
plot scale (1-25m; Bloschl and Sivapalan, 1995), the hill-
slope scale (25-100m; Bloschl and Sivapalan, 1995) and
the smaller catchment scale (100—10km; Bloschl and Siva-
palan, 1995). RoGeR contributes to the modelling of the
soil-vegetation—atmosphere continuum by enabling simula-
tions with a fine spatial resolution.

In the following, we describe the implementation of
the new model developed as a scientific software follow-
ing open-source guidelines. Thereafter, we provide a brief
overview of the representation of the hydrological pro-
cesses and the related solute transport. We further profile the
computational performance and energy usage. Finally, we
demonstrate the capabilities of the model by simulating a 3-
year period for a synthetic site.

2 Implementation
2.1 RoGeR as a scientific open-source software

For the development of RoGeR as a scientific open-source
software, we followed the guidelines presented in Table 1.
We defined these guidelines based on van Gompel et
al. (2016) and Hall et al. (2022) and on reviewing earth-
science-related software written in Python (e.g. Bakker et
al., 2016; Bartos, 2020; Burek et al., 2020; Collenteur et al.,
2019; Dal Molin et al., 2021; Héfner et al., 2018; Hallouin
et al., 2022; Helmus and Collis, 2016; Kratzert et al., 2022;
Milicke, 2022; May et al., 2022; Rose, 2018; Schwemmle et
al., 2021). We organized the different software concepts by
the degree of complexity. The application of different soft-
ware concepts incorporates different workloads and requires
different bits of knowledge of computer science. In order to
keep the workload at a minimum level, we organized the ap-
plication by the degree of software complexity. An example
for a high degree of complexity could be a complex model or
data analysis tool. Such software is often shipped with many
lines of programming code. In order to maintain the software
and make it reusable, we suggest a range of different software
concepts (see Table 1). Hands-on tutorials, online documen-

https://doi.org/10.5194/gmd-17-5249-2024

R. Schwemmle et al.: RoGeR v3.0.5

tation and unit tests may consume extra working hours and
increase the workload of a single researcher, but in the long
term, the workload of other researchers can be reduced by
facilitating the usage of existing methodology. An example
of using existing methodology could be a simple application
script (e.g. running the model or analysing the data) which
contains often a few lines of code, and, hence, the complex-
ity is low. If existing methodology is used to generate scien-
tific results and no new functionalities are added, comments,
public access and a licence are sufficient for reusing the ap-
proach. Moreover, including these guidelines in the curricu-
lum of hydrology-related degree programmes may lay the
foundation for a reproducible future in computational hydrol-

ogy.
2.1.1 Software architecture

The basic modular structure of the software is adapted from
Hifner et al. (2018). The core modules implement hydrolog-
ical processes and solute transport. As such, these modules
represent a toolbox which can be used to build pre-defined
models (e.g. a SVAT model by considering only vertical pro-
cesses). We already provided some pre-defined models, but
in general, new models can be easily assembled and com-
bined to achieve the level of complexity that is required.
Moreover, further processes might be added by writing new
modules. In addition to that, further modules are available
for the pre- and post-processing, writing the model out-
put, and handling computational backends. RoGeR is pure
Python; hence, not all computational bottlenecks might be
solvable. In such cases, we recommend writing extensions
using Cython instead of using a low-level language, which
would require a compiler.

2.1.2 Computational backends

The computations are handled by five different backends,
which are implemented through a function decorator (Héafner
et al., 2018). Users have to choose a suitable backend before-
hand. The choice depends on the programming skills, size
of the modelling experiment and available computational re-
sources. In the following, we briefly describe the backends
and give recommendations for the usage.

— numpy. This backend uses NumPy (Harris et al., 2020)
for computation and, hence, is easy to use. However,
the interpreted execution of the code and running com-
putations on a single CPU may cause performance lim-
itations. We recommend this backend to beginners and
for small-scale modelling experiments. As long as the
modelling experiment fits into the memory, there are no
specific requirements for the computational resources.

— numpy-mpi. The numpy-mpi backend parallelizes the
numpy backend via mpidpy (Dalcin et al., 2011). The
size of the modelling experiment might be limited by

https://doi.org/10.5194/gmd-17-5249-2024

5251

Table 1. Guidelines for scientific open-source software in compu-
tational hydrology.

Term/Concept Description Advantage
. . Comprehensive

J:
Comments Write meaningful and clear and reusable

comments within the source code
source code

Store the source code in an
online- repository and use
version control to enable
collaborative development

Transparent and
accessible code

Public access

Simple complexity

License Regulates usage of the software Reusable code

Assigns a new version number

Versioning after each release (1.e. update of Traceable code
the source code)
Use a virtual environment to
Software . .
avoid software conflicts and . .
. - Quick installation
environment provide information about
software dependencies
Hands-on- Guidance on the application of Learmnable and
. the software for real case lower entry bar for
tutorials -
examples NEW users

Modules Individual code blocks Improves c_ode
readability
Captures errors, warnings and Ll
Logger rop ess ofcorﬁ u‘nrmr: debugging of the
progr puts code
Online Contains essential information Learnable and

for mstalling, using the software
documentation and theoretical background (e.g
equations)

understandable
code

Tests basic functionality of the
software

Uit tests

Facilitates code
maintenance

High complexity

Runs umt tests on different
operating systems and different
software stack

Continuous

integration

Measures computation time (e.g.
of mndividual modules) or
memeory usage (e.g. GPU
memory)

Supports efficient
allocation of
computational
resources

Profiling

available memory and number of CPU cores. We rec-
ommend this backend to users with experience in paral-
lelized computations.

— jax. The jax backend is the same as numpy, but the code
is JIT-compiled via JAX (Bradbury et al., 2018). Since
JAX transforms NumPy code, it is required that all code
is NumPy compatible. The JIT compilation leads to a
decrease in computation time (see Sect. 3).

— jax-mpi. This backend is the same as numpy-mpi, but
the code is JIT-compiled via mpi4jax (Héafner and Vi-
centini, 2021). This leads to computational speedup (see
Sect. 3).

— jax-gpu. The code is JIT-compiled, and computations
are performed on the GPU, which leads to computa-
tional speedup (see Sect. 3). The jax-gpu backend re-
quires an appropriate GPU. The size of the modelling
experiment is limited to available GPU memory. We
recommend this backend to users with advanced pro-
gramming skills.

Geosci. Model Dev., 17, 5249-5262, 2024

5252

2.1.3 Discretization and data handling

For RoGeR-1D (i.e. no lateral transfer between grid cells),
space can be represented through either grid cells or poly-
gons. By contrast, RoGeR-2D models (i.e. lateral transfer
between grid cells) require a regular grid as spatial repre-
sentation. In order to generate physically meaningful results,
we recommend a spatial resolution of between 0.5 x 0.5 m?
and 5 x Sm?.
RoGeR requires input data for the following variables:

precipitation up to 10 min time steps

air temperature at daily time steps

potential evapotranspiration at daily time steps

solute concentrations at daily time steps (only if solute
transport is simulated).

The 10 min time step is required for the detailed representa-
tion of the runoff generation processes (i.e. infiltration, sur-
face runoff and lateral subsurface runoff). Averaging the in-
put flux for longer time steps leads to an overestimation of in-
filtration and underestimation of overland flow and preferen-
tial flow. Hourly precipitation or daily precipitation datasets
can be used with the model and resampled to a 10 min reso-
lution but lose the required temporal variability to correctly
simulate the runoff generation processes. For heavy rainfall
intensities (the default threshold is > 5 mm per 10 min), the
time step is adapted to 10 min (Fig. 1). For non-heavy rainfall
intensities (< 5 mm per 10 min and > 0 mm per 10 min), the
simulations use an hourly time step. While no rainfall occurs,
a daily time step is used. If precipitation data are available
with a coarser temporal resolution (for example, hourly or
daily resolution), we recommend resampling the precipita-
tion data to the required 10 min resolution. Depending on the
resolution of the available precipitation data, different resam-
pling methods can be applied. For example, hourly data can
be linearly interpolated to a 10 min resolution or daily data
can be disaggregated (e.g. Forster et al., 2016; Koutsoyian-
nis and Onof, 2001).

The input data can be a time series or spatiotemporal data
(i.e. time series for each grid cell), which are provided either
as text files (.txt) or NetCDF files (.nc). If the input data are
provided as a time series using text files, the data are inter-
nally converted to NetCDF.

Metadata (e.g. units and description) for all variables
and constants are defined in single modules as dictionaries
(Héfner et al., 2018). From these dictionaries, metadata (e.g.
units) are automatically added to the model output data. All
model output is written to NetCDF files. A major advantage
of the NetCDF format is that I/O operations enable parallel
writing with compression (Hifner et al., 2018). This reduces
the time needed for I/O operations and the size of output files.

Geosci. Model Dev., 17, 5249-5262, 2024

R. Schwemmle et al.: RoGeR v3.0.5

2.2 Hydrological model

Different hydrological processes are implemented as mod-
ules. In the following, we list the already-implemented pro-
cesses and refer the reader to the module and declare whether
the module is tested or if testing is still ongoing:

— surface water storage (surface.py; testing is complete)
— soil water storage (soil.py; testing is complete)

— root zone water storage (root_zone.py; testing is com-
plete)

— subsoil water storage (subsoil.py; testing is complete)

— groundwater water storage (groundwater.py; testing is
ongoing)

— transpiration (evapotranspiration.py; testing is com-
plete)

— soil evaporation (evapotranspiration.py; testing is com-
plete)

— interception (interception.py; testing is complete)

— snow accumulation/snowmelt (snow.py; testing is com-
plete)

— infiltration driven by capillary forces (infiltration.py;
testing is complete)

— infiltration driven by gravitational forces (film_flow.py;
testing is ongoing)

— surface runoff (surface_runoff.py; testing is ongoing)

— lateral subsurface runoff (subsurface_runoff.py; testing
is ongoing)

— lateral groundwater flow (groundwater_flow.py; testing
is ongoing)

— percolation (subsurface_runoff.py; testing is complete)
— capillary rise (capillary_rise.py; testing is complete)
— crop phenology (crop.py; testing is ongoing).

The main reason for using a modular structure is to support
the readability of the code. Another motivation for using a
modular structure is to represent a certain process by mul-
tiple process formulations that provide different complexi-
ties (Knoben et al., 2019). As such, the processes can be
combined in multiple ways to build different model struc-
tures. Thus, depending on the chosen process complexity,
model structures represent those considered processes by
different degrees of complexity. However, building process-
consistent model structures from many different process for-
mulations can be challenging for model users. RoGeR uses

https://doi.org/10.5194/gmd-17-5249-2024

R. Schwemmle et al.: RoGeR v3.0.5

Soil hydrological cycle
- Precipitation as time series
- Air temperature as time series
- Potential evapotranspiration as time series

Solute transport
- Simulated hydrological fluxes as time series
- Simulated storages as time series
- Tracer input as time series

Input(s)

Soil hydrological cycle Solute transport
SAS
functions

w[-]

Transpiration Precipitation -
i °@
;valporanon l Interception 4
o & .
evaporat\on\ / Transpiration
Tt Lower interception
Macrix/l storage ‘%J [-]
infiltration 3:2 S?E Root zone “

Macropore /I water storage 1500, Percolation

mﬂltranon/ of root zone
Capillary-
rise Subsoil water
storage
PercolatlonZl

Concept

CH(T,H)

Subsoil Root zone
()Sd

StorAge StorAge

CHT,t)

&)
I -
S(T,t)

[
o[- Percolation
of subsolil

('1)Sd

Soil hydrological cycle Solute transport

-3 10

[10 minutes

‘5 € 1 time steps § 15 Daily time steps

ag s g

EE - Hourly E

v = " Daily 5
cekFE2 time steps =

ime steps
=] g0 -
= 0 1 2 3
ﬁ time [days] time [days]
'f:‘, Soil hydrological cycle and solute transport
=
a
'E 0.5-25m
A

s

-

[

o

7]

Polygons Plot scale Hillslope scale Catchment scale

(for 1D only)
Figure 1. Overview of model inputs, conceptual implementation
shown for a single grid cell or unit (water storages are represented
in italic), and temporal discretization of the soil hydrological cycle
and solute transport. Spatial discretization for different scales is the
same for the soil hydrological cycle and solute transport.

single-process formulations that constrain the flexibility of
the structural complexity. However, we provide pre-defined
model structures (i.e. a combination of various hydrologi-
cal processes) to ensure a certain process consistency. The
most basic model structure is shown in Fig. 1 and is the basis
for more complex model structures. We pre-defined further
model structures by adding further hydrological processes
(e.g. lateral subsurface flow and crop phenology). For more
details about the pre-defined model structures, we refer the
reader to the online documentation of RoGeR (Schwemmle,
2023a).

RoGeR provides representations for bucket-type intercep-
tion, degree-day-based snow accumulation and snowmelt
(LARSIM-Entwicklergemeinschaft, 2021); soil matrix,
macropore and shrinkage crack infiltration (Steinbrich et
al., 2016; Weiler, 2005); soil evaporation (Or et al., 2013);
vegetation phenology and vegetation-specific transpiration
(Steduto et al., 2009); capillary rise from a groundwater
table and percolation to the groundwater (Salvucci, 1993);

https://doi.org/10.5194/gmd-17-5249-2024

5253

and lateral subsurface runoff (Steinbrich et al., 2016; Stoll
and Weiler, 2010). For detailed information (e.g. model
equations), we refer the reader to the online documentation
of RoGeR (Schwemmle, 2023a).

RoGeR explicitly solves the soil water balance (i.e. fluxes
update the state in a specific sequence) using an adap-
tive time-stepping scheme (see Fig. 1). The adaptive time
stepping provides a better compromise between accuracy
and performance compared to fixed time-stepping schemes
(Clark and Kavetski, 2010). Numerical errors may compen-
sate for model structural errors; we have not evaluated the ef-
fect of other time-stepping schemes on the numerical errors
in RoGeR. Although numerical errors affect the simulations,
parameter uncertainty (e.g. Wagener and Gupta, 2005) or in-
put data uncertainty (e.g. Yatheendradas et al., 2008) may
have a stronger impact on the simulations.

2.3 Solute transport model

Solute transport is implemented by a travel-time-based ap-
proach. Particularly, we use StorAge selection (SAS) func-
tions (Rinaldo et al., 2015). SAS is implemented by specific
distribution functions. We assign a distribution function to
each hydrological process (Fig. 1). Here, we introduce two
distribution functions which can be used for SAS and are im-
plemented in the toolbox. The first distribution function is
based on a power law and requires only a single parameter,
ko (Fig. 2a). The power law distribution function is given as

wo (T.1) =K - P(T, k=D, (1)
with

Sr(T,
P(T,1) = % 2)

and the corresponding cumulative power law distribution
function:

Qo (T,1) = P(T,)ke, 3)

where T is the water age (d), ¢ is the time step (d), wo (T, 1)
is the probability distribution function of the hydrologic flux,
Qo(T,1) is the cumulative probability distribution function),
St (T, 1) is the cumulative age-ranked storage (mm), S (t) is
the soil water content (mm) and Ps(7T,t) is the cumulative
probability distribution of the storage.

As a second distribution function, we employ the Ku-
maraswamy distribution (Kumaraswamy, 1980). With two
parameters, ag and by, the Kumaraswamy distribution pro-
vides a greater flexibility than a power law distribution
(Fig. 2b). The Kumaraswamy distribution function is formu-
lated as

bo-1
wo(T.t)y=a-b- P(T,1)"". (1 — Py(T, 1) > 4)

Geosci. Model Dev., 17, 5249-5262, 2024

5254
30 (@)| — k=03
25 - goes to 90 k=0.5
— k=0.7
20 k=1.5
o 15 k=2
ol k=3
10
5
— —
0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Ps [-]

R. Schwemmle et al.: RoGeR v3.0.5

a=1, b=20
a=1.5, b=20
a=1, b=10
a=3, b=1
a=5, b=1
a=5, b=1.5

0.0

0.2

0.4

Ps [-]

0.6

0.8 1.0

Figure 2. Storage selection with different parameters, illustrated for the power law distribution function (a; see Eq. 1) and the Kumaraswamy
distribution function (b; see Eq. 3).

Average time per iteration [s]
)

Average time per iteration [s]

-
o
=)

numpy
(a) Notebook (1.57 5)8
,/
J/",.o jax-mpi
T (0.75s)
*-o-——-———0-————- -~ /
I/
/.
///,
———./
*-—o-——-—-—-o""
e . - . o
10’ 100 10 10" 10°
Grid size [# grid cells]
numpy
1 (b) Cluster (18.26 s)
E| /.//
//',
g ‘s jax-mpi
ot _-%Ze(0685)
———————— D S g jax-gpu
e Eab ¥ (0.45's)
4 ",
10° 10 10° 10°

Grid size [# grid cells]

Average time per iteration [s]

Average time per iteration [s]

numpy
1() Notebook (2585) o
o
101 3 /,//
W~ .
/"/ J-7 jax-mpi
o | e e (525)
10 3 T %
B e
1 ¥
- - ' -
10" 10° 10°
Grid size [# grid cells]
3 numpy
103 (@ Cluster ~ (828.05),
/”
107 L
1 o 4 \Ag_s\ g
° o '\31»'99“ _.#" jax-mpi
eiiill Pt (15.6's)
10° o7 --- 7 pi
goiit--
S —
10° 10° o

Grid size [# grid cells]

Figure 3. Runtime performance of computational backends for the RoGeR-SVAT-type model (a, b) and for the RoGeR—SVAT—lSO—type
transport model (c, d). Note that the number of grid cells represents the two horizontal spatial dimensions (i.e. longitude and latitude). The
total number of elements is greater for transport models due to additional age dimensions and can be derived by multiplying the number of
grid cells (i.e. two spatial dimensions) by the number of water ages (e.g. 1500). The SVAT model used 100 iterations and the SVAT-180
transport model used 20 iterations.

and the corresponding cumulative Kumaraswamy distribu-

tion function as

Lo
Qo(T,t)y=1— (1 — (Ps(T, 1))) .

Generally, any distribution function might be used as long as
a closed form (i.e. probabilities integrated into one) is avail-
able (Harman, 2015). We apply the fractional SAS function
type (fSAS; van der Velde et al., 2012) and solve the SAS
equations for each hydrologic flux, Q. To solve the SAS
functions, we provide three numerical schemes with fixed
time steps: (i) deterministic (i.e. solving SAS equations for
each flux in a sequential order), (ii) explicit Euler and (iii) ex-

Geosci. Model Dev., 17, 5249-5262, 2024

&)

plicit Runge—Kutta fourth-order. Transport processes can be
defined for conservative and non-conservative solutes:

— For stable water isotopes, oxygen-18 ('80) and deu-
terium (*H), isotopic fractionation is not yet considered.

— For bromide and chloride, evapoconcentration, sorption
processes and partitioning of the root uptake are in-
cluded.

— For nitrate, biogeochemical process denitrification
(Kunkel and Wendland, 2006), nitrification, soil nitro-
gen mineralization and nitrogen uptake by crops are im-
plemented.

https://doi.org/10.5194/gmd-17-5249-2024

R. Schwemmle et al.: RoGeR v3.0.5

Table 2. Hardware specifications of computational benchmarks.

Notebook Cluster node
CPU Intel® Core™ i7 @ 2.60 GHz (4 phys- 2 x Intel® Xeon® E5-2680v4 (Broad-
ical cores) well) @ 2.40 GHz (28 physical cores)
TDP! of CPU 45W 280 W
RAM 8 GB DDR3 128 GB DDR4
GPU - NVIDIA Tesla K80 (12GB GDDRS5
memory)
TDP! of GPU - 300 W

Software stack

GNU 8.1, Open MPI 4.1.3, HDF5
1.12.2, roger 3.0

GNU 9.2, Open MPI 4.1.3, HDF5
1.12,
CUDA 11.4, roger 3.0

PUE2 1 1.31
! Total power draw. 2 Power usage efficiency.
. numpy .
_ 0.7 (0.68 Wh)# B 175
r .
S 06 1 Jax-mpi § 15.0 1 numpy
© P e ——ee 1 (056 Wh) 3 4(13.00 Wh)
2 0.5+ ! 2 12517 o jax-mpi
= 1 = , =
< 1 < (] []
S 041 / S 100 A 07 why
@ ! @ s /
o . : o 7.5 ’ /
8 0.3 /o 8 /, /’.,
2 02 e 2 501 ey g
> 2 jax-gpu > & -——mm Ly
[P PO o 0.21 Wh S 25 7
= S b5 () g R— :/,
0.0 B 00 ®--—-"="" jax-gpu (1.46 Wh)
T T T T T
10° 10* 10° 10° 10° 10*
Grid size [# grid cells] Grid size [# grid cells]
T oy =
o 6.85 kWh) ® o]
> (6.)7 . . > 6 1
c 64 ! jax-mpi c
o 19(5.62 kWh) 9 5 numpy
B 5] e S —— R o = _®(4.78 kWh)
— - v
> ’/ g 4 7 elax-mpi
E 44 | = S0/ (3.91 kWh)
Q B v] ,/ ’/
= I} c 3 ’ /
341 ,‘ ; N /
=
~ 4 ~ 2 ,/ __,Q
— h /e — T —‘/,—’
v ? L7 jax-gpu N P —— o= 7
CJCTN [P S—— PR s (2.07 kWh) @ 14 P
s (== - o} $====————= .,/
- e i °7 jax- .53 kWh
5 047 : o — > 0 : Jax‘gpy(lolf’?l W)
(4]
2 10° 10* 10° 10° c 10° 10"
w L

Grid size [# grid cells]

Grid size [# grid cells]

5255

Figure 4. Energy usage of computational backends on a cluster node for the RoGeR-SVAT-type model (a, b) and for the RoGeR-SVAT-180-

type transport model (c, d).

Again, we refer the reader to the online documentation of

RoGeR for detailed information (Schwemmle, 2023a). The
following routines are implemented, and we refer the reader

to the module and declare whether the module is tested or if

testing is still ongoing:

https://doi.org/10.5194/gmd-17-5249-2024

testing is complete)

— nitrogen cycle (nitrate.py; testing is ongoing).

— solute transport and water ages (transport.py and sas.py;

Geosci. Model Dev., 17, 5249-5262, 2024

5256

Table 3. Model parameters for the Eberbaechle catchment.

R. Schwemmle et al.: RoGeR v3.0.5

Hydrological model parameter Symbol Unit Range of parameter values

Land use/land cover lu_id - Grass, forest, sealed
surface and agriculture

Surface sealing sealing - 0-1

Soil depth Zsoil mm 200-1000

Length of vertical macropores Impv mm 0-800

Density of vertical macropores Pmpv m—2 0-200

Air capacity of soil Bac - 0.06-0.14

Plant available field capacity of soil Oufe - 0.1-0.2

Permanent wilting point of soil Opwp - 0.09-0.18

Saturated hydraulic conductivity of soil ks mmh~! 104-125

Hydraulic conductivity of bedrock kg mmh~! 2500*

Offset for air temperature TAoffset °C —2.5--0.4

Weighting factor for potential evapotranspiration ~ PETyejght - 0.73-1.06

Weighting factor for precipitation PRECIPyeight - 1.0-1.27

* Parameter value represents free drainage. We assume free drainage since information for the lower boundary condition (i.e. depth of the

groundwater table) is not available.

1200 -

- 600

£y

- 10007 550 =

S =

B 3

g 8007 500 ¢

5 —_
c

2> 600+ 450 .8

£ =

g g
[

2 4001 400 &

b

5 500 350

300
0

0 250 500 750 1000 1250 1500 1750 2000
Distance in x-direction [m]

Figure 5. The Eberbaechle catchment used for the application ex-
ample. Further catchment properties used as model parameters are
shown in Figs. S31-S39. The coordinates of the catchment outlet
are 47°57'24" N, 7°49'48" E.

3 Test cases for continuous development,
computational performance and energy usage

RoGeR uses unit tests and continuous integration to test and
ensure technical functionality (see Table 1). Additionally, we
use test cases for continuous development. The idea of these
test cases is to guarantee predictive consistency and to track
advances in model development (i.e. comparison between
model versions). We run the test cases with model param-
eters that cover a wide range of common parameters and per-
form simulations with different input data. In contrast to unit
tests, the execution time is longer and depends on the num-
ber of time steps covered by the input data. The results (see
Sect. S1 in the Supplement) can be compared to future ver-
sions of RoGeR.

High-level programming languages such as Python still
have the reputation of being comparatively slow. We profiled

Geosci. Model Dev., 17, 5249-5262, 2024

the computation time and energy usage using the five back-
ends (see Sect. 2.1.2). For the profiling, we used two dif-
ferent hardware specifications representing commonly avail-
able computing resources and high-performance computing
(HPC) resources (Table 2). We measured computation time
and energy usage with a fixed number of iterations but vary-
ing number of grid cells (Fig. 3).

Model parameters are the same for each grid cell. Fig-
ure 3 shows that for small modelling experiments (< 1000
grid cells), the numpy backend performs as well as the
other backends. Parallel computation improves computa-
tional speedup only for intermediate to larger modelling ex-
periments (> 1000 grid cells), provided that a greater number
of CPU cores are available. Computation on a single GPU
device is faster than on multiple CPUs for the RoGeR-SVAT-
type model, while multiple CPUs (numpy-mpi and jax-mpi)
are faster than a single GPU device for the RoGeR-SVAT-
180-type model. However, a major requirement for GPU
computing is that the modelling experiment fits into the GPU
memory (< 10° grid cells). A solution to the memory limita-
tion would be the usage of multiple GPU devices.

HPC consumes more energy than running computations
on a laptop. Depending on the energy source, HPC con-
tributes differently to climate warming (Lannelongue et al.,
2021). In order to raise awareness about the energy usage in
an HPC context and to provide information for a sustainable
allocation of computational resources, we profiled the energy
usage of RoGeR in an HPC context (see Table 2). Based on
the profiling of computation time, we calculated the energy
usage of the five backends using the method proposed by
Lannelongue et al. (2021). The results (Fig. 4) show that us-
ing multiple CPUs (numpy-mpi and jax-mpi) consumes more
energy than other backends. Using a single GPU device de-
creases energy usage, while computation time still competes

https://doi.org/10.5194/gmd-17-5249-2024

R. Schwemmle et al.: RoGeR v3.0.5

5257

~
© -5 4
2 40 q(a) = i (e)/t Y
E 2 LMNAOS
= 20 o -10 ! Voo
o ® I', ¢ \‘J \s \
O 0 '
W) yl
xr O _15-| T T T T T T T
o
LTV TV CEPT T TV
B Soil ~Transpiration] . ° (f) | =
S 5.0 qevaporation é ! \ =
£ (b) -10 1 H ke
£ 2.5 - 9 g\ A)
— = h i o
= J 0 \r ®
Lu OO 1 1 1 T - _15 1 1 1 1 T 1 T 1 T
SES S SEISELRS LS
N NN N NN
R A A 5$$$www&&@
—_ (9) =
0.3 - 0 2
= = 10 3
@ S ‘©
0.2 1 e 9
(c) © ©
T T T T T T T T T _15 T T T T T T T T
= YV TT TV 5$$$www$w@
L @) ~) =
£ 50 - =, ®
E o -10 -W S, 500 -
Q 2 g
X [’S) 2
E O - _15 T T T T T T T T 0 T T T T T T T T T
SIS SEEISTLRS LS SEESLSI LS
N NN N NN ~N
PO v PPV VY PP vy

Time [year-month]

Time [year-month]

Time [year-month]

Figure 6. Simulated fluxes and soil water content (a—d); corresponding & 180 signal (e-h); and corresponding 10th, 50th and 10th percentiles
of water ages (i-k) of a single grid cell. Vertical red lines indicate the four different dates from Fig. 7. Power law distribution function serves
as a SAS function (SAS parameters are keyap—soil = 0.2, ktransp = 0.5, kxperc—rz = 1.5, kkperc—ss = 1.5; see Fig. 2).

with multiple CPUs (cf. Fig. 3). For small and intermediate
modelling experiments, single-CPU (numpy and jax) back-
ends use less energy than other backends. With these results,
we aim to support efficient and sustainable allocation of com-
putational resources. We suggest that computation time and
energy usage should be considered equally for the allocation.

4 Application: soil water balance, 130 transport and
water age statistics of a 3-year period

To demonstrate the capabilities of RoGeR, we present a sim-
ple application example. We simulate the soil water bal-
ance and fluxes and 80 fluxes of the Eberbaechle catch-
ment (1.54 km? with a resolution of 25 m x 25 m) for a time
period of 3 years. The input data were retrieved from the
database WeatherDB, which provides data from stations op-
erated by Deutscher Wetterdienst (DWD), tailored to the re-
quired format of RoGeR (Schmit, 2022). We selected the
DWD station at Freiburg airport (station ID 1443) to obtain
precipitation, air temperature and potential evapotranspira-

https://doi.org/10.5194/gmd-17-5249-2024

tion data from November 2019 to October 2022. Since DWD
stations do not measure solute concentrations in precipita-
tion, data for '80 in precipitation have been generated by a
sinusoidal function with random variation for amplitude and
offset (Allen et al., 2018; amplitude of 4.3 £ 0.5 %o, offset of
—10=£0.5 %o and phase of 60 d). In order to set the values for
the model parameters listed in Table 3, we used the BK50
soil map (Regierungsprasidium Freiburg, Landesamt fiir Ge-
ologie, Rohstoffe und Bergbau), lidar data (Landesvermes-
sungsamt Baden-Wiirrtemberg) and ATKIS DLM25 (Lan-
desvermessungsamt Baden-Wiirrtemberg). Additionally, we
assumed a deep groundwater table implemented through a
high hydraulic conductivity of the bedrock (see Table 2).
SAS parameters for the selected power law distribution func-
tion are assumed to be spatially and temporally constant for
each hydrological process and grid cell. We assigned k = 0.2
to soil evaporation and capillary rise, k = 0.5 to transpiration,
k = 1.5 to percolation of the root zone and k = 1.5 to per-
colation of the subsoil. Thus, soil evaporation capillary rise
and transpiration have a preference for younger water, while

Geosci. Model Dev., 17, 5249-5262, 2024

R. Schwemmle et al.: RoGeR v3.0.5

5258
dry condtions
____ @) (24" Aug 2020)
% 2000 1w =" 7 transition to dry condtions
S I~ (26" Feb 2022)
c:n 1000 7]] transition to wet condtions
I+ 4 (11" Mar 2021)
0o 00 025 050 075 100 -150 125 —100 7.5 -50 wet condtions
.)) :)) — (6" Mar 2020)
EVAPsoi [mm/day] (p) 5'8Ogvap,,, %] (f) (i)
£ 2000 - ‘ﬁ - e g
[0]
o
% 1000 4 _f - .
g [
O T T T T T T T T T
0 1 2 3 4 -150 -125 -10.0 -7.5 -5.0 0 100 200 300 400
TRANSP [mm/day] (C) 6180TRANSP [%o] (g) TTrranNSP [days] (J)
2 2000 - g . wal
[0}
o
2 1000 . .
(@]
++*
0 T T T T T T T T T
0.2 0.3 0.4 -150 -125 -10.0 -7.5 -50 0 100 200 300 400
0[] (d) 68 0g [%] (h) RT [days] (k)
2 2000 - f g -
2 2000
kel
-2 1000 - : -
&) 0 :
3+ 0 0.25
0 T T T T T T — T T T
0 25 50 75 100 -150 -125 -10.0 -7.5 -5.0 0 100 200 300 400
PERC [mm/day] 68 Opere [%o] TTperc [days]

Figure 7. Cumulative distributions of simulated fluxes and soil water content (a—d), corresponding & 180 signal (e-h), and the corresponding
average travel time and average residence time (i—-Kk) of the Eberbaechle catchment (1.54 km2) on four different dates (transition to dry, dry,

transition to wet and wet conditions).

percolation processes have a preference for older water (see
Fig. 2a).

In Fig. 6, we display the time series of hydrologic fluxes
and soil water content with the corresponding '80 signature
and water age distributions of a single grid cell. The tempo-
ral pattern exhibits that soil water content and travel times of
hydrologic fluxes can be related. This pattern emphasizes the
interlinkage between hydrologic states and transport veloci-
ties of solutes (Hrachowitz et al., 2016). Figure 7 shows the
cumulative distributions of soil hydrologic fluxes, soil water
content, §'80 signals and average water ages at four differ-
ent dates with different soil water content conditions. Soil
water content is wetter on 10 February 2021 and drier on
13 August 2022, while the other two dates represent the tran-
sition between drier and wetter conditions. The cumulative
distributions of §'80 signals and average water ages reveal
differences between these different soil water content condi-
tions. The 8'80 signals display distinct differences between
the considered fluxes and soil water storage. The average wa-
ter age exposes a more general pattern. For drier conditions,
average water age is older, whereas for wetter conditions,
median water age decreases.

Geosci. Model Dev., 17, 5249-5262, 2024

The primary objective of the example is to demonstrate the
capabilities of RoGeR. Therefore, we kept the complexity of
the example at a simple level. Although a comparison be-
tween simulations and observations is important to evaluate
the fidelity of the model, we do not provide such a compar-
ison here. Instead, we refer the reader to Schwemmle and
Weiler (2023) for an in-depth evaluation of RoGeR using
measurements from a grassland lysimeter site. Since the de-
velopment of RoGeR as scientific software started recently
and is still ongoing, further evaluation of RoGeR will be
made in the future.

The simple application example demonstrates the poten-
tial of RoGeR for a combined quantification of the water bal-
ance and solute mass balance. The example focuses on verti-
cal soil hydrological processes and a conservative tracer, but
this is just an excerpt from the toolbox. Other processes (e.g.
lateral subsurface runoff and a different SAS function; see
Sect. 2.2 and 2.3) or other tracers (e.g. bromide; see Sect. 2.3)
could also be considered and implemented.

https://doi.org/10.5194/gmd-17-5249-2024

R. Schwemmle et al.: RoGeR v3.0.5

5 Summary and outlook

The development of the process-based hydrological tool-
box RoGeR followed open-source software guidelines
(Sect. 2.1). We believe that such guidelines improve the re-
producibility in computational hydrology. With the modu-
lar code structure (Sect. 2.1.1) and the good readability of
Python code, RoGeR is intended to be easy to use (i.e. us-
able by programmers with little experience) and to be easy
to modify (i.e. modification and extension of the code).
With using different computational backends, we maintained
code readability without hampering computational perfor-
mance (Sect. 2.1.2). The five backends provide the oppor-
tunity to simulate anything between plot scale and the catch-
ment scale with reasonable computation times. Especially,
the GPU backend has great potential for reducing compu-
tation time and energy usage of catchment-scale modelling
experiments (Sect. 3).

In comparison to the publicly available hydrological mod-
els written in Python, we combined hydrological processes
(Sect. 2.2) and solute transport based on SAS (Sect. 2.3).
The combined representation enables the prediction of hy-
drologic states and fluxes and their corresponding solute con-
centrations, including travel times. The simple application
example considering the water balance and '30 transport
through the soil of the Eberbaechle catchment showed plau-
sible results. The RoGeR toolbox contains many processes
to describe one-dimensional hydrological processes (i.e. no
lateral transfer between grid cells). The implementation of
the lateral transfer between grid cells (i.e. routing schemes
for surface and subsurface runoff) will be addressed in future
releases. Surface runoff routing will be implemented using a
hydraulic scheme. Subsurface runoff routing will use the ap-
proach of Steinbrich et al. (2016), which is based on the topo-
graphic slope and corresponding flow velocities. Moreover,
we suggest that future work may improve or extend the cur-
rently available process representations (e.g. gravity-driven
infiltration and percolation; Demand and Weiler, 2021; Ger-
mann and Prasuhn, 2018) and further evaluation of RoGeR
with measured data may provide insights into the strengths
and weaknesses.

RoGeR contributes to a further diversification of the hy-
drological model landscape, and the disagreement about pro-
cess representation in the hydrological modelling community
will continue (Weiler and Beven, 2015). In general, an ad-
vantage of this diversification and disagreement is that many
different approaches and, hence, a great flexibility to address
different problems are available. On the other hand, the the-
oretical diversification is accompanied by technical diversi-
fication (e.g. different programming languages or different
data formats) that leads to inconsistencies in the application.
We suggest that the diverse hydrological model landscape
might benefit from focusing on constrained data interfaces of
the models following common data conventions (Hallouin et
al., 2022) and implementing standardized model interfaces

https://doi.org/10.5194/gmd-17-5249-2024

5259

(Hut et al., 2022; Hutton et al., 2020). This would facili-
tate the coupling of hydrological models with other models
(e.g. groundwater models). Another advantage would be that
multiple hydrological models could be compared more eas-
ily. Such a model comparison of RoGeR with other models
— for example, with tRIBS (Ivanov et al., 2004a, b; Vivoni
et al., 2004), DHSVM (Wigmosta et al., 1994) or mHM
(Samaniego et al., 2010) — may be useful to highlight the
advantages and disadvantages of using RoGeR compared to
other models.

Code availability. The code is open-source and publicly available
at https://doi.org/10.5281/zenodo.10948254 (Schwemmle et al.,
2024) and https://doi.org/10.5281/zenodo.8095094 (Schwemmle,
2023b).

Data availability. The meteorological input data used in the
application example have been retrieved from https://weather.
hydro.intra.uni-freiburg.de (Schmit, 2022) and are available at
https://doi.org/10.5281/zenodo.11562349 (Schwemmle, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-5249-2024-supplement.

Author contributions. MW conceived the idea of the hydrological
model RoGeR. MW, HL, AS and RS conceptualized RoGeR. HL
and AS developed the first model suites of RoGeR in Python. RS
developed RoGeR as a software package with support from HL with
translating Python code into a software package. RS wrote the first
draft of the paper with contributions from all co-authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors acknowledge support by the
High-Performance and Cloud Computing Group at the Zentrum
fiir Datenverarbeitung of the University of Tiibingen, the state of
Baden-Wiirttemberg through bwHPC, and the German Research
Foundation (DFG; grant no. INST 37/935-1 FUGG). We are grate-
ful to the Veros development team for providing their software ar-
chitecture, to the Python community for providing useful tools and
to everyone involved in the development of RoGeR.

Geosci. Model Dev., 17, 5249-5262, 2024

https://doi.org/10.5281/zenodo.10948254
https://doi.org/10.5281/zenodo.8095094
https://weather.hydro.intra.uni-freiburg.de
https://weather.hydro.intra.uni-freiburg.de
https://doi.org/10.5281/zenodo.11562349
https://doi.org/10.5194/gmd-17-5249-2024-supplement

5260

Financial support. This research has been supported by the
Helmholtz Association (grant no. 42-2017) and the Deutsche
Forschungsgemeinschaft (grant no. INST 37/935-1 FUGG). The
article processing charge was funded by the Baden-Wiirttemberg
Ministry of Science, Research and Art and the University of
Freiburg through the Open-Access Publishing funding programme.

This open-access publication was funded
by the University of Freiburg.

Review statement. This paper was edited by Charles Onyutha and
reviewed by two anonymous referees.

References

Allen, S. T., Kirchner, J. W., and Goldsmith, G. R.: Predicting Spa-
tial Patterns in Precipitation Isotope (6%H and 5'30) Seasonality
Using Sinusoidal Isoscapes, Geophys. Res. Lett., 45, 4859-4868,
https://doi.org/10.1029/2018GL077458, 2018.

Asadollahi, M., Stumpp, C., Rinaldo, A., and Benettin, P.:
Transport and Water Age Dynamics in Soils: A Com-
parative Study of Spatially Integrated and Spatially Ex-
plicit Models, Water Resour. Res., 56, €2019WR025539,
https://doi.org/10.1029/2019wr025539, 2020.

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T,
Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model De-
velopment Using Python and FloPy, Groundwater, 54, 733-739,
https://doi.org/10.1111/gwat.12413, 2016.

Bartos, M.: pysheds: simple and fast watershed delineation in
python, Zenodo, https://doi.org/10.5281/zenodo.3822494, 2020.

Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G.,
and Rinaldo, A.: Using SAS functions and high-resolution
isotope data to unravel travel time distributions in head-
water catchments, Water Resour. Res., 53, 1864-1878,
https://doi.org/10.1002/2016WR020117, 2017.

Beven, K. J.: Rainfall-Runoff Modelling, The
Primer, John Wiley & Sons, Chichester, England,
https://doi.org/10.1002/9781119951001, 2011.

Bloschl, G. and Sivapalan, M.: Scale issues in hydrolog-
ical modelling: A review, Hydrol. Process., 9, 251-290,
https://doi.org/10.1002/hyp.3360090305, 1995.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q.: JAX: composable trans-
formations of Python+NumPy programs, available at: http://
github.com/google/jax (last access: 20 January 2023), 2018.

Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M.,
Guillaumot, L., Zhao, F., and Wada, Y.: Development of the
Community Water Model (CWatM v1.04) — a high-resolution
hydrological model for global and regional assessment of inte-
grated water resources management, Geosci. Model Dev., 13,
3267-3298, https://doi.org/10.5194/gmd-13-3267-2020, 2020.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons of
conceptual hydrological modeling: 1. Fidelity and efficiency
of time stepping schemes, Water Resour. Res., 46, W10510,
https://doi.org/10.1029/2009wr008894, 2010.

Geosci. Model Dev., 17, 5249-5262, 2024

R. Schwemmle et al.: RoGeR v3.0.5

Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and
Schaars, F.: Pastas: Open Source Software for the Analy-
sis of Groundwater Time Series, Groundwater, 57, 877-885,
https://doi.org/10.1111/gwat.12925, 2019.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy 1.3.0: an
open-source Python framework for building, testing, and improv-
ing conceptual hydrological models, Geosci. Model Dev., 14,
7047-7072, https://doi.org/10.5194/gmd-14-7047-2021, 2021.

Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A.: Parallel dis-
tributed computing using Python, Adv. Water Resour., 34, 1124—
1139, https://doi.org/10.1016/j.advwatres.2011.04.013, 2011.

Demand, D. and Weiler, M.: Potential of a Gravity-Driven Film
Flow Model to Predict Infiltration in a Catchment for Di-
verse Soil and Land Cover Combinations, Water Resour. Res.,
57, e2019WR026988, https://doi.org/10.1029/2019WR026988,
2021.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47,
W11510, https://doi.org/10.1029/2010WR010174, 2011.

Forster, K., Hanzer, F., Winter, B., Marke, T., and Strasser, U.: An
open-source MEteoroLOgical observation time series DISaggre-
gation Tool (MELODIST v0.1.1), Geosci. Model Dev., 9, 2315-
2333, https://doi.org/10.5194/gmd-9-2315-2016, 2016.

Germann, P. F. and Prasuhn, V.: Viscous Flow Approach to Rapid
Infiltration and Drainage in a Weighing Lysimeter, Vadose Zone
J., 17, 170020, https://doi.org/10.2136/vzj2017.01.0020, 2018.

Hifner, D. and Vicentini, F.: mpi4jax: Zero-copy MPI com-
munication of JAX arrays, J. Open Source Softw., 6, 3419,
https://doi.org/10.21105/joss.03419, 2021.

Hifner, D., Jacobsen, R. L., Eden, C., Kristensen, M. R. B., Jochum,
M., Nuterman, R., and Vinter, B.: Veros v0.1 — a fast and versatile
ocean simulator in pure Python, Geosci. Model Dev., 11, 3299—
3312, https://doi.org/10.5194/gmd-11-3299-2018, 2018.

Hifner, D., Nuterman, R., and Jochum, M.: Fast, Cheap, and
Turbulent — Global Ocean Modeling With GPU Acceleration
in Python, J. Adv. Model. Earth Syst., 13, e2021MS002717,
https://doi.org/10.1029/2021MS002717, 2021.

Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski,
S. J., Drost, N., van Emmerik, T., and Hut, R.: A hydrologist’s
guide to open science, Hydrol. Earth Syst. Sci., 26, 647-664,
https://doi.org/10.5194/hess-26-647-2022, 2022.

Hallouin, T., Ellis, R. J., Clark, D. B., Dadson, S. J., Hughes, A.
G., Lawrence, B. N., Lister, G. M. S., and Polcher, J.: UniFHy
v0.1.1: a community modelling framework for the terrestrial
water cycle in Python, Geosci. Model Dev., 15, 9177-9196,
https://doi.org/10.5194/gmd-15-9177-2022, 2022.

Harman, C. J.: Time-variable transit time distributions and trans-
port: Theory and application to storage-dependent transport
of chloride in a watershed, Water Resour. Res., 51, 1-30,
https://doi.org/10.1002/2014WR015707, 2015.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P.,, Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Rio, J. F.,, Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357-362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

https://doi.org/10.5194/gmd-17-5249-2024

https://doi.org/10.1029/2018GL077458
https://doi.org/10.1029/2019wr025539
https://doi.org/10.1111/gwat.12413
https://doi.org/10.5281/zenodo.3822494
https://doi.org/10.1002/2016WR020117
https://doi.org/10.1002/9781119951001
https://doi.org/10.1002/hyp.3360090305
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.5194/gmd-13-3267-2020
https://doi.org/10.1029/2009wr008894
https://doi.org/10.1111/gwat.12925
https://doi.org/10.5194/gmd-14-7047-2021
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1029/2019WR026988
https://doi.org/10.1029/2010WR010174
https://doi.org/10.5194/gmd-9-2315-2016
https://doi.org/10.2136/vzj2017.01.0020
https://doi.org/10.21105/joss.03419
https://doi.org/10.5194/gmd-11-3299-2018
https://doi.org/10.1029/2021MS002717
https://doi.org/10.5194/hess-26-647-2022
https://doi.org/10.5194/gmd-15-9177-2022
https://doi.org/10.1002/2014WR015707
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

R. Schwemmle et al.: RoGeR v3.0.5

Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit
(Py-ART), a library for working with weather radar data in
the Python programming language, J. Open Res. Softw., 4,
https://doi.org/10.5334/jors.119, 2016.

HeBe, F., Zink, M., Kumar, R., Samaniego, L., and Attinger, S.: Spa-
tially distributed characterization of soil-moisture dynamics us-
ing travel-time distributions, Hydrol. Earth Syst. Sci., 21, 549—
570, https://doi.org/10.5194/hess-21-549-2017, 2017.

Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., How-
den, N. J. K., Ruiz, L., van der Velde, Y., and Wade, A. J.: Tran-
sit times — the link between hydrology and water quality at the
catchment scale, Wiley Interdisciplinary Reviews: Water, 3, 629—
657, https://doi.org/10.1002/wat2.1155, 2016.

Hut, R., Drost, N., van de Giesen, N., van Werkhoven, B., Ab-
dollahi, B., Aerts, J., Albers, T., Alidoost, F., Andela, B., Cam-
phuijsen, J., Dzigan, Y., van Haren, R., Hutton, E., Kalverla, P.,
van Meersbergen, M., van den Oord, G., Pelupessy, 1., Smeets,
S., Verhoeven, S., de Vos, M., and Weel, B.: The eWaterCycle
platform for open and FAIR hydrological collaboration, Geosci.
Model Dev., 15, 5371-5390, https://doi.org/10.5194/gmd-15-
5371-2022, 2022.

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and
Arheimer, B.: Most computational hydrology is not reproducible,
so is it really science?, Water Resour. Res., 52, 7548-7555,
https://doi.org/10.1002/2016WR019285, 2016.

Hutton, E. W., Piper, M. D., and Tucker, G. E.: The Basic Model
Interface 2.0: A standard interface for coupling numer ical
models in the geosciences, J. Open Source Softw., 5, 2317,
https://doi.org/10.21105/joss.02317, 2020.

IEEE Spectrum: Top Programming Languages 2022, available
at: https://spectrum.ieee.org/top-programming-languages-2022
(last access: 12 January 2023), 2022.

Ivanov, V. Y., Vivoni, E. R., Bras, R. L., and Entekhabi, D.:
Catchment hydrologic response with a fully distributed triangu-
lated irregular network model, Water Resour. Res., 40, W11102,
https://doi.org/10.1029/2004WR003218, 2004a.

Ivanov, V. Y., Vivoni, E. R., Bras, R. L., and Entekhabi,
D.: Preserving high-resolution surface and rainfall data
in operational-scale basin hydrology: a fully-distributed
physically-based approach, J. Hydrol., 298, 80-111,
https://doi.org/10.1016/j.jhydrol.2004.03.041, 2004b.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C.,
and Woods, R. A.: Modular Assessment of Rainfall-Runoff
Models Toolbox (MARRMoT) v1.2: an open-source, extend-
able framework providing implementations of 46 conceptual hy-
drologic models as continuous state-space formulations, Geosci.
Model Dev., 12, 2463-2480, https://doi.org/10.5194/gmd-12-
2463-2019, 2019.

Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation using
adjusting procedures on a Poisson cluster model, J. Hydrol.,
246, 109-122, https://doi.org/10.1016/S0022-1694(01)00363-8,
2001.

Kratzert, F., Gauch, M., Nearing, G., and Klotz, D.: Neu-
ralHydrology — A Python library for Deep Learning re-
search in hydro logy, J. Open Source Softw., 7, 4050,
https://doi.org/10.21105/joss.04050, 2022.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of dis-
tributed hydrologic model parameterization on water fluxes at

https://doi.org/10.5194/gmd-17-5249-2024

5261

multiple scales and locations, Water Resour. Res., 49, 360-379,
https://doi.org/10.1029/2012WR012195, 2013.

Kumar, R., HeBe, F., Rao, P. S. C., Musolff, A., Jawitz, J. W.,
Sarrazin, F., Samaniego, L., Fleckenstein, J. H., Rakovec, O.,
Thober, S., and Attinger, S.: Strong hydroclimatic controls on
vulnerability to subsurface nitrate contamination across Europe,
Nat. Commun., 11, 6302, https://doi.org/10.1038/s41467-020-
19955-8, 2020.

Kumaraswamy, P.: A generalized probability density function
for double-bounded random processes, J. Hydrol., 46, 79-88,
https://doi.org/10.1016/0022-1694(80)90036-0, 1980.

Kunkel, R. and Wendland, F.: Diffuse Nitrateintréige in die Grund-
und Oberflichengewdsser von Rhein und Ems — Ist-Zustands-
und MaBnahmenanalysen, Forschungszentrum Jiilich, liilich,
Germany, 143 pp., http://hdl.handle.net/2128/2524 (last access:
11 June 2024), 2006.

Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: EcH20-
iso 1.0: water isotopes and age tracking in a process-based, dis-
tributed ecohydrological model, Geosci. Model Dev., 11, 3045—
3069, https://doi.org/10.5194/gmd-11-3045-2018, 2018a.

Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: What can
we learn from multi-data calibration of a process-based eco-
hydrological model?, Environ. Modell. Softw., 101, 301-316,
https://doi.org/10.1016/j.envsoft.2018.01.001, 2018b.

Lam, S. K., Pitrou, A., Florisson, M., Seibert, S., Markall,
G., Anderson, T. A., Leobas, G., Collison, M., Bourque,
J., Meurer, A., Oliphant, T. E., Riasanovsky, N., Wang,
M., Pronovost, E., Totoni, E., Wieser, E., Seefeld, S.,
Grecco, H., Peterson, P., Virshup, I, Matty, G., Turner-
Trauring, 1., and Bourbeau, J.: numba/numba: Version 0.56.4,
https://doi.org/10.5281/zenodo.7289231, 2023.

Lannelongue, L., Grealey, J., and Inouye, M.: Green Algorithms:
Quantifying the Carbon Footprint of Computation, Adv. Sci., 8,
2100707, https://doi.org/10.1002/advs.202100707, 2021.

LARSIM-Entwicklergemeinschaft: Das Wasserhaushaltsmodell
LARSIM: Modellgrundlagen und Anwendungsbeispiele,
LARSIM-Entwicklergemeinschaft - Hochwasserzen-
tralen LUBW, BLfU, LfU RP, HLNUG, BAFU, 258 pp.,
https://larsim.info/dokumentation/LARSIM-Dokumentation.pdf
(last access: 11 June 2024), 2021.

Milicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatisti-
cal variogram estimation toolbox written in Python, Geosci.
Model Dev., 15, 2505-2532, https://doi.org/10.5194/gmd-15-
2505-2022, 2022.

May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron,
M. D., Bruick, Z., Bruning, E. C., Manser, R. P, Arms, S. C., and
Marsh, P. T.: MetPy: A Meteorological Python Library for Data
Analysis and Visualization, B. Am. Meteorol. Soc., 103, E2273—
E2284, https://doi.org/10.1175/bams-d-21-0125.1, 2022.

Or, D., Lehmann, P., Shahraeeni, E., and Shokri, N.: Advances
in Soil Evaporation Physics — A Review, Vadose Zone J., 12,
vzj2012.0163, https://doi.org/10.2136/vzj2012.0163, 2013.

PYPL: PYPL PopularitY of Programming Language index, avail-
able at: https://pypl.github.io/PYPL.html (last access: 12 January
2023), 2022.

Reinecke, R., Trautmann, T., Wagener, T., and Schiiler, K.:
The critical need to foster computational reproducibility, En-
viron. Res. Lett.,, 17, 041005, https://doi.org/10.1088/1748-
9326/ac5ct8, 2022.

Geosci. Model Dev., 17, 5249-5262, 2024

https://doi.org/10.5334/jors.119
https://doi.org/10.5194/hess-21-549-2017
https://doi.org/10.1002/wat2.1155
https://doi.org/10.5194/gmd-15-5371-2022
https://doi.org/10.5194/gmd-15-5371-2022
https://doi.org/10.1002/2016WR019285
https://doi.org/10.21105/joss.02317
https://spectrum.ieee.org/top-programming-languages-2022
https://doi.org/10.1029/2004WR003218
https://doi.org/10.1016/j.jhydrol.2004.03.041
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.1016/S0022-1694(01)00363-8
https://doi.org/10.21105/joss.04050
https://doi.org/10.1029/2012WR012195
https://doi.org/10.1038/s41467-020-19955-8
https://doi.org/10.1038/s41467-020-19955-8
https://doi.org/10.1016/0022-1694(80)90036-0
http://hdl.handle.net/2128/2524
https://doi.org/10.5194/gmd-11-3045-2018
https://doi.org/10.1016/j.envsoft.2018.01.001
https://doi.org/10.5281/zenodo.7289231
https://doi.org/10.1002/advs.202100707
https://larsim.info/dokumentation/LARSIM-Dokumentation.pdf
https://doi.org/10.5194/gmd-15-2505-2022
https://doi.org/10.5194/gmd-15-2505-2022
https://doi.org/10.1175/bams-d-21-0125.1
https://doi.org/10.2136/vzj2012.0163
https://pypl.github.io/PYPL.html
https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.1088/1748-9326/ac5cf8

5262

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire,
K. J., van der Velde, Y., Bertuzzo, E., and Botter, G.: Storage
selection functions: A coherent framework for quantifying how
catchments store and release water and solutes, Water Resour.
Res., 51, 48404847, https://doi.org/10.1002/2015WR017273,
2015.

Rose, B. E.: CLIMLAB: a Python toolkit for interactive, process-
oriented climate modeling, J. Open Source Softw., 3, 659,
https://doi.org/10.21105/joss.00659, 2018.

Salvucci, G. D.: An approximate solution for steady vertical flux of
moisture through an unsaturated homogeneous soil, Water Re-
sour. Res., 29, 3749-3753, https://doi.org/10.1029/93wr02068,
1993.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale pa-
rameter regionalization of a grid-based hydrologic model
at the mesoscale, Water Resour. Res., 46, W05523,
https://doi.org/10.1029/2008 WR007327, 2010.

Schmit, M.: WeatherDB, https://apps.hydro.uni-freiburg.de/de/
weatherdb (last access: 20 January 2023), WeatherDB [soft-
ware], 2022.

Schwemmle, R.: RoGeR — a process-based hydrological toolbox
model in Python, https://doi.org/10.5281/zenodo.7633362 and
available at: https://github.com/Hydrology-IFH/roger (last ac-
cess: 9 March 2023), 2023a.

Schwemmle, R.: Calculating energy usage
using Green Algorithms (v1.0.1), Zenodo
https://doi.org/10.5281/zenodo.8095094, 2023b.

Schwemmle, R.: Application example of the GMD pub-
lication “RoGeR v3.0.5 — a process-based hydrologi-
cal toolbox model in Python”, (1.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.11562349, 2024.

Schwemmle, R. and Weiler, M.: Consistent modelling of trans-
port processes and travel times — coupling soil hydrologic pro-
cesses with StorAge Selection functions, Water Resour. Res.,
60, e2023WR034441, https://doi.org/10.1029/2023WR034441,
2023.

Schwemmle, R., Demand, D., and Weiler, M.: Technical
note: Diagnostic efficiency — specific evaluation of model
performance, Hydrol. Earth Syst. Sci., 25, 2187-2198,
https://doi.org/10.5194/hess-25-2187-2021, 2021.

Schwemmle, R., Leistert, H., Steinbrich, A., and
Weiler, M.: RoGeR (v3.0.5), Zenodo [code],
https://doi.org/10.5281/zenodo.10948254, 2024.

giml"mek, J., van Genuchten, M. T., and gejna, M.: Recent
Developments and Applications of the HYDRUS Computer
Software Packages, Vadose Zone J., 15, vzj2016.2004.0033,
https://doi.org/10.2136/vzj2016.04.0033, 2016.

Stack Overflow: Stack Overflow Developer Survey, avail-
able at: https://insights.stackoverflow.com/survey/2021#
technology-most-popular-technologies, (last access: 12 January
2023), 2021.

Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E.: AquaCrop —
The FAO Crop Model to Simulate Yield Response to Water: I.
Concepts and Underlying Principles, Agron. J., 101, 426437,
https://doi.org/10.2134/agronj2008.0139s, 2009.

of RoGeR
[code],

Geosci. Model Dev., 17, 5249-5262, 2024

R. Schwemmle et al.: RoGeR v3.0.5

Steinbrich, A., Leistert, H., and Weiler, M.: Model-based
quantification of runoff generation processes at high spa-
tial and temporal resolution, Environ. Earth Sci., 75, 1423,
https://doi.org/10.1007/s12665-016-6234-9, 2016.

Steinbrich, A., Leistert, H., and Weiler, M.: RoGeR - ein bo-
denhydrologisches Modell fiir die Beantwortung einer Vielzahl
hydrologischer Fragen, Korrespondenz Wasserwirtschaft, 14, 2,
https://doi.org/10.3243/kwe2021.02.004, 2021.

Stoll, S. and Weiler, M.: Explicit simulations of stream networks to
guide hydrological modelling in ungauged basins, Hydrol. Earth
Syst. Sci., 14, 1435-1448, https://doi.org/10.5194/hess-14-1435-
2010, 2010.

van der Velde, Y., Torfs, P. J. J. E., van der Zee, S. E. A. T. M., and
Uijlenhoet, R.: Quantifying catchment-scale mixing and its effect
on time-varying travel time distributions, Water Resour. Res., 48,
WO06536, https://doi.org/10.1029/2011WR011310, 2012.

van Gompel, M., Noordzij, J., de Valk, R., and Scharnhorst, A.:
Guidelines for Software Quality, Common Lab Research In-
frastructure for the Arts and Humanities, Amsterdam, Nether-
lands, 1-42 pp., https://pure.knaw.nl/portal/en/publications/
guidelines-for-software-quality-clariah-task-54100 (last access:
11 June 2024), 2016.

Vivoni, E. R., Ivanov, V. Y., Bras, R. L., and Entekhabi, D.:
Generation of Triangulated Irregular Networks Based on
Hydrological Similarity, J. Hydrol. Eng., 9, 288-302,
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(288),
2004.

Wagener, T. and Gupta, H. V.: Model identification for hydrological
forecasting under uncertainty, Stoch. Env. Res. Risk A., 19, 378-
387, https://doi.org/10.1007/s00477-005-0006-5, 2005.

Weiler, M.: An infiltration model based on flow vari-
ability in macropores: development, sensitivity anal-
ysis and applications, J. Hydrol., 310, 294-315,
https://doi.org/10.1016/j.jhydrol.2005.01.010, 2005.

Weiler, M. and Beven, K.: Do we need a Community Hy-
drological Model?, Water Resour. Res., 51, 7777-7784,
https://doi.org/10.1002/2014WR016731, 2015.

Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Re-
sour. Res., 30, 1665-1679, https://doi.org/10.1029/94WR00436,
1994.

Yang, X., Jomaa, S., Zink, M., Fleckenstein, J. H., Borchardt, D.,
and Rode, M.: A New Fully Distributed Model of Nitrate Trans-
port and Removal at Catchment Scale, Water Resour. Res., 54,
5856-5877, https://doi.org/10.1029/2017WR022380, 2018.

Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C.,
Goodrich, D., Schaffner, M., and Stewart, A.: Under-
standing uncertainty in distributed flash flood forecasting
for semiarid regions, Water Resour. Res., 44, WO05S19,
https://doi.org/10.1029/2007wr005940, 2008.

https://doi.org/10.5194/gmd-17-5249-2024

https://doi.org/10.1002/2015WR017273
https://doi.org/10.21105/joss.00659
https://doi.org/10.1029/93wr02068
https://doi.org/10.1029/2008WR007327
https://apps.hydro.uni-freiburg.de/de/weatherdb
https://apps.hydro.uni-freiburg.de/de/weatherdb
https://doi.org/10.5281/zenodo.7633362
https://github.com/Hydrology-IFH/roger
https://doi.org/10.5281/zenodo.8095094
https://doi.org/10.5281/zenodo.11562349
https://doi.org/10.1029/2023WR034441
https://doi.org/10.5194/hess-25-2187-2021
https://doi.org/10.5281/zenodo.10948254
https://doi.org/10.2136/vzj2016.04.0033
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.1007/s12665-016-6234-9
https://doi.org/10.3243/kwe2021.02.004
https://doi.org/10.5194/hess-14-1435-2010
https://doi.org/10.5194/hess-14-1435-2010
https://doi.org/10.1029/2011WR011310
https://pure.knaw.nl/portal/en/publications/guidelines-for-software-quality-clariah-task-54100
https://pure.knaw.nl/portal/en/publications/guidelines-for-software-quality-clariah-task-54100
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(288)
https://doi.org/10.1007/s00477-005-0006-5
https://doi.org/10.1016/j.jhydrol.2005.01.010
https://doi.org/10.1002/2014WR016731
https://doi.org/10.1029/94WR00436
https://doi.org/10.1029/2017WR022380
https://doi.org/10.1029/2007wr005940

	Abstract
	Introduction
	Implementation
	RoGeR as a scientific open-source software
	Software architecture
	Computational backends
	Discretization and data handling

	Hydrological model
	Solute transport model

	Test cases for continuous development, computational performance and energy usage
	Application: soil water balance, 18O transport and water age statistics of a 3-year period
	Summary and outlook
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

