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Abstract. Reconstructing the thermo-chemical evolution of
Earth’s mantle and its diverse surface manifestations is a
widely recognised grand challenge for the geosciences. It re-
quires the creation of a digital twin: a digital representation of
Earth’s mantle across space and time that is compatible with
available observational constraints on the mantle’s structure,
dynamics and evolution. This has led geodynamicists to ex-
plore adjoint-based approaches that reformulate mantle con-
vection modelling as an inverse problem, in which unknown
model parameters can be optimised to fit available observa-
tional data. Whilst there has been a notable increase in the use
of adjoint-based methods in geodynamics, the theoretical and
practical challenges of deriving, implementing and validating
adjoint systems for large-scale, non-linear, time-dependent
problems, such as global mantle flow, has hindered their
broader use. Here, we present the Geoscientific ADjoint Opti-
misation PlaTform (G-ADOPT), an advanced computational
modelling framework that overcomes these challenges for
coupled, non-linear, time-dependent systems by integrating
three main components: (i) Firedrake, an automated system
for the solution of partial differential equations using the
finite-element method; (ii) Dolfin-Adjoint, which automati-
cally generates discrete adjoint models in a form compati-
ble with Firedrake; and (iii) the Rapid Optimisation Library,
ROL, an efficient large-scale optimisation toolkit; G-ADOPT
enables the application of adjoint methods across geophysi-
cal continua, showcased herein for geodynamics. Through
two sets of synthetic experiments, we demonstrate the appli-
cation of this framework to the initial condition problem of
mantle convection, in both square and annular geometries,

for both isoviscous and non-linear rheologies. We confirm
the validity of the gradient computations underpinning the
adjoint approach, for all cases, through second-order Tay-
lor remainder convergence tests and subsequently demon-
strate excellent recovery of the unknown initial conditions.
Moreover, we show that the framework achieves theoreti-
cal computational efficiency. Taken together, this confirms
the suitability of G-ADOPT for reconstructing the evolution
of Earth’s mantle in space and time. The framework over-
comes the significant theoretical and practical challenges of
generating adjoint models and will allow the community to
move from idealised forward models to data-driven simu-
lations that rigorously account for observational constraints
and their uncertainties using an inverse approach.

1 Introduction

Mantle convection is the “engine” driving our dynamic
planet. It is the principal control on Earth’s thermal and
chemical evolution and underpins tectonic and geological
activity at Earth’s surface (e.g. Davies and Richards, 1992;
Coltice et al., 2017). Through interactions with Earth’s crust,
it introduces heat and fluids that contribute to the formation
and concentration of ore deposits (e.g. Hoggard et al., 2020).
Mantle flow also induces vertical movements of Earth’s sur-
face (so-called dynamic topography; see Davies et al., 2023,
for a review), leading to regional and global changes in sea
level and climate (e.g. Poore et al., 2006; Moucha et al.,
2008; Cloetingh and Haq, 2015). The lithosphere, consid-
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ered here to be the mantle’s upper thermal boundary layer,
serves as a window into the form and time-dependence
of mantle convection, recorded through tectonic plate mo-
tions (e.g. Iaffaldano and Bunge, 2015; Müller et al., 2016;
Stotz et al., 2017, 2018; Wang et al., 2023). Although sub-
stantial progress has been made in reconstructing the his-
tory of plate tectonic motions (e.g. Seton et al., 2012; Gur-
nis et al., 2012; Müller et al., 2019; Merdith et al., 2021), the
quest for a dynamic reference, revealing the force equilib-
ria within the underlying mantle, remains ongoing. In other
words, the veracity of plate motion reconstructions is not
matched by an equivalent knowledge of the thermo-chemical
structure and flow history of the underlying mantle. This is a
major limitation, as it inhibits our ability to understand fun-
damental processes that depend on time-dependent interac-
tions between Earth’s surface and its deep interior.

The primary challenge in reconstructing past mantle flow
stems from the lack of knowledge surrounding the initial
state, compounded by uncertain physical and chemical pa-
rameters. Mantle convection is an initial condition problem,
uniquely determined by an initial condition some time in the
past: starting from some point in time, it can be uniquely
modelled by solving conservation equations for mass, mo-
mentum and energy (e.g. Ricard, 2007; Zhong et al., 2007).
However, the lack of knowledge on this initial condition
– specifically the thermo-chemical state of Earth’s man-
tle at some time in the past – renders reconstructions of
mantle flow through conventional forward calculations in-
tractable (Bunge et al., 2003) (Fig. 1a). Moreover, current
global mantle convection models employ billions of degrees
of freedom and require multiple time steps to resolve the
multi-scale dynamics of Earth’s mantle (e.g. Davies and
Davies, 2009; Wolstencroft et al., 2009; Stadler et al., 2010;
Weismüller et al., 2015; Dannberg and Gassmöller, 2018;
Bauer et al., 2019, 2020). Owing to the resulting computa-
tional expense, the use of conventional geophysical inverse
methods, including Monte Carlo techniques (e.g. Sambridge
and Mosegaard, 2002), is considered impractical for deter-
mining the mantle’s past structure, dynamics and evolution.

The initial condition problem can be partially addressed
through sequential data-assimilation techniques. In essence,
the objective of sequential data assimilation is to leverage
all accessible information to improve predictions of man-
tle flow in space and time. Data assimilation is commonly
achieved through sequential filtering (e.g. Wunsch, 1996),
in which the model is advanced in time over the period in
which observations exist. Whenever observations become
available, the model is adjusted or “corrected” (e.g. Bunge
and Grand, 2000; Bocher et al., 2016). The magnitude of
the correction can be optimally determined using methods
such as the Kalman filter (e.g. Bocher et al., 2018), with the
model subsequently restarted from the updated state, and this
process is repeated until all available information has been
utilised (Fig. 1b). In a geodynamic context, the most com-
monly exploited dataset consists of palaeo-surface velocities

from plate tectonic reconstruction models, primarily through
a kinematic surface boundary condition in time-dependent
models. In recent years, there has been a notable increase
in the use of this approach (e.g. Bunge et al., 2002; Davies
et al., 2012; Bower et al., 2013; Zhong and Rudolph, 2015;
Nerlich et al., 2016; Young et al., 2022; Panton et al., 2023).
This can be attributed to two main factors: (i) improved con-
fidence in the validity of plate tectonic reconstruction models
and their extension further back in time (e.g. Merdith et al.,
2021; Young et al., 2022; Müller et al., 2022) and (ii) the
enhanced accessibility of such models, facilitated via open-
source community frameworks like the GPlates project (e.g.
Gurnis et al., 2012; Müller et al., 2018).

Sequential data-assimilation methods, however, come with
an inherent limitation: due to the sequential nature of the as-
similation process, each observation is incorporated to influ-
ence the model only at later times. Consequently, information
propagates from the past into the future but cannot be trans-
mitted back into the past. This drawback poses a significant
limitation, as our knowledge of the mantle at the present day
is substantially more detailed than at any other time. Thus,
it becomes imperative to explore approaches that explicitly
carry information backwards in time, or more precisely, en-
able the estimation of a time-dependent model that best fits
all available observational constraints.

Inverse geodynamics is a rapidly evolving field that em-
barks on this very idea. The foundation of this field is an opti-
misation approach, in which mantle convection modelling is
reformulated as an inverse problem. Using inverse theory, un-
known model parameters can be optimised to fit available ob-
servational data via the so-called adjoint method (e.g. Bunge
et al., 2003; Ismail-Zadeh et al., 2004), through which the
sensitivities of a performance measure (the so-called “objec-
tive functional”), with respect to model parameters (e.g. the
choice of initial condition), can be computed. The resulting
sensitivity information can be used to adjust model parame-
ters, generating a model flow trajectory that matches observa-
tional constraints (e.g. present-day mantle thermo-chemical
structure) (Fig. 1c). The geodynamic adjoint equations for
reconstructing the initial condition have been derived for iso-
chemical, incompressible (e.g. Bunge et al., 2003; Horbach
et al., 2014), compressible (Ghelichkhan and Bunge, 2016)
and thermo-chemical mantle flow (Ghelichkhan and Bunge,
2018). Moreover, the method has been enhanced for simul-
taneous recovery of initial temperature conditions and rheo-
logical parameters (Li et al., 2017) despite the inherent ill-
posedness introduced in such a problem. Growing adoption
of adjoint-based methods within a broader geodynamic con-
text is evidenced by their application in Reuber et al. (2020)
to decipher subsurface structures and rheological parame-
ters via inversion of principal stress directions and by Craw-
ford et al. (2018) to quantify the sensitivity of post-glacial
sea level changes to lateral variations in mantle viscosity.
Recent growth in computational power has led to multiple
adjoint-based mantle reconstructions, with a particular fo-
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Figure 1. Illustration of different procedures available for estimating past mantle structure: (a) forward modelling prediction, where an
unknown initial condition is estimated at t0, with modelling error measured as the difference between the modelled and true states. This
difference is represented by the distance along the y axis, which typically grows in time. Variations in forward modelling include “nudging”
of the initial condition to better match present-day structure; (b) sequential data assimilation or “Kalman filtering” – starting from an initial
condition at t0, the forward model is run until t1. An analysis is subsequently undertaken from the resulting model and the available obser-
vation. The corrected model is then subsequently integrated in time until t2, when the next observation is available. This process is repeated
until t3 or the last time step with available observational data. The information flow diagram depicts how information is carried from both
the past and present, using current data; (c) adjoint-based or 4-D variational data assimilation, which is capable of carrying information on
present-day structure (e.g. images from seismic tomography) explicitly backward in time. In (c) observational data that constrain present-day
mantle structure, alongside data from different points in space and time, are used to optimise the unknown initial condition. Here, all available
observations between t3 and t0 contribute to the analysis. The true (unknown) signal is represented by the solid line. Observations (stars),
predictions (dark circles) and analyses (squares) are surrounded by ellipsoids of a size proportional to the estimated model uncertainty.
Modified from Carrassi et al. (2018) and Davies et al. (2023).

cus on regional geological events, as recorded in the geo-
logical record of the Americas (e.g. Spasojevic et al., 2009;
Liu and Gurnis, 2010; Shephard et al., 2010) and the At-
lantic realm (e.g. Colli et al., 2018). To supplement these
findings, Ghelichkhan et al. (2021) undertook a systematic
global-scale comparison between adjoint model predictions
and independent geological constraints, with implications
for the expected rates of gravitational and dynamic elliptic-
ity changes resulting from convection within Earth’s man-
tle (Ghelichkhan et al., 2018, 2020).

While substantial strides have been made in the appli-
cation of adjoint-based methods in geodynamics, there re-
main widespread obstacles to the broader use of these tech-
niques within the geodynamic modelling community. One
key challenge is the complexity involved with deriving, im-
plementing and validating adjoint models for large-scale,
non-linear, time-dependent problems, core features of global
mantle convection models. Owing to these difficulties, stud-
ies that have used the adjoint method to explore the thermo-
chemical evolution of Earth’s mantle often resort to a simpli-
fied strategy. This typically involves either a highly idealised
treatment of mantle rheology (e.g. Colli et al., 2018; Ghe-
lichkhan et al., 2021), omitting certain coupling terms in the
adjoint equations, or doing both (e.g. Liu et al., 2008; Spa-
sojevic et al., 2009; Liu and Gurnis, 2010; Shephard et al.,
2010). Such simplifications limit the applicability of these
results. The work of Li et al. (2017) is a notable exception
to this trend, although its focus on a 2-D rectangular domain,

specifically aimed at reconstructing the dynamics of subduc-
tion, inherently limits its applicability to global mantle con-
vection simulations. Furthermore, previous global applica-
tions of the adjoint approach have been hampered by their
reliance on legacy community codes (e.g. Bunge et al., 2003;
Liu et al., 2010; Shephard et al., 2010; Colli et al., 2018; Ghe-
lichkhan et al., 2021). These codes are not easily extensible
to different geometries or approximations of the underlying
physics, employ solver strategies that have since been super-
seded, and often have limits on model resolution due to the
fully structured discretisations encoded. Moreover, the com-
plex and extensive low-level code implementation of coupled
adjoint and forward calculations remains obscured, making it
difficult to extend and validate, thus restricting the types of
observational datasets that can be incorporated. An example
of these datasets are the (uncertain) constraints provided by
plate tectonic reconstruction models that are prescribed kine-
matically (e.g. Spasojevic et al., 2009; Shephard et al., 2010;
Zhou and Liu, 2017; Colli et al., 2018; Ghelichkhan et al.,
2021) as opposed to being formally incorporated through
the objective functional. The kinematic prescription of the
surface velocities, however, can only improve mantle recon-
structions forward in time and therefore prohibits their influ-
ence on previous system states. In light of these limitations,
there is a need for a general framework that can robustly han-
dle the rheological complexities of Earth’s mantle and is eas-
ily extensible and transferable to other problems in mantle
and lithosphere dynamics. Such a framework must also be
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capable of utilising a variety of observational constraints to
comprehensively unravel the historical evolution of Earth’s
interior and its diverse impacts at Earth’s surface (Davies
et al., 2023).

In this paper, we introduce the Geoscientific ADjoint Op-
timisation PlaTform (G-ADOPT), research software infras-
tructure that allows us to overcome these limitations. G-
ADOPT is built around three state-of-the-art software li-
braries – (i) Firedrake, an automated system for solving a
range of partial differential equations using the finite-element
method (Rathgeber et al., 2016), recently validated for geo-
dynamics (Davies et al., 2022); (ii) Dolfin-Adjoint, which au-
tomatically derives the discrete adjoint equations in a form
compatible with Firedrake (Farrell et al., 2013a; Mitusch
et al., 2019); and (iii) the Rapid Optimisation Library (ROL),
a Trilinos package for performing highly efficient large-scale
optimisation (The ROL Project Team, 2022). When com-
bined, they provide a geodynamic inversion framework that
is highly efficient, with fully consistent forward and ad-
joint calculations that achieve theoretical computational ef-
ficiency.

We structure our paper as follows: in Sect. 2.1 we describe
the geodynamic forward problem and our solution strategy
using G-ADOPT. Section 2.2 describes the inverse problem
considered herein, where we focus on finding the (unknown)
initial condition using an objective functional that accounts
for observations of surface velocity over time and the final
state temperature field. This is broken into three subsections:
(i) Sect. 2.2.1 describes discrete and continuous approaches
for obtaining the adjoint systems followed by a detailed
derivation of the discrete adjoint systems; (ii) Sect. 2.2.2
introduces Dolfin-Adjoint, the underlying approach utilised
in G-ADOPT to compute the discrete adjoint and deriva-
tive fields; and (iii) Sect. 2.2.6 provides an overview of the
gradient-based optimisation approach utilised here, facili-
tated by ROL. We demonstrate the applicability of our ap-
proach in Sect. 3 using two sets of twin experiments with
increasing complexity, where we reconstruct the spatial and
temporal evolution of a reference simulation. The first set of
experiments (Sect. 3.1) involves a simple isoviscous simula-
tion within an enclosed square domain, while the second set
(Sect. 3.2) examines convection with a non-linear (tempera-
ture, depth and strain rate dependent) rheology at Earth-like
convective vigour within an annular domain, which has direct
applicability to convection within Earth’s mantle. We finish
by discussing our results and conclusions in Sects. 4 and 5,
respectively.

2 Method

2.1 Forward problem

2.1.1 Governing equations and boundary conditions

Mantle flow is described by conservation laws for mass,
momentum and energy. We solve these equations in their
simplest form, assuming incompressibility and the Boussi-
nesq approximation. The three non-dimensional conserva-
tion equations are

−∇ · (2ηε̇ (u))+∇p+RaT k̂ = 0, (1a)
∇ ·u= 0, (1b)

∂T

∂t
+u · ∇T − κ∇2T −H = 0, (1c)

with the vector field u and scalar fields p and T as the princi-
pal unknowns of velocity, pressure and temperature, respec-
tively. Table 1 summarises other symbols used in Eqs. (1a)–
(1c) and elsewhere. In Eq. (1a), the strain-rate tensor ε̇(u) is
given by

ε̇(u)=
1
2

(
∇u+ (∇u)T

)
, (2)

and the Rayleigh number is defined by

Ra=
ρ0α1Tgd

3

µ0κ
. (3)

For this problem, we define the time interval of interest as
I = [tI, tF], with the computational domain V bounded by
∂V , and S and C denoting the top and bottom boundaries,
respectively. For all simulations, free-slip and impermeable
velocity boundary conditions are specified on all boundaries,
whilst temperature boundary conditions are set to constant
values of TS and TC at top and bottom boundaries, respec-
tively. For the simulations considered in an enclosed square
domain, natural temperature boundary conditions (zero heat
flux) are specified on side walls. The set of boundary condi-
tions, for top and bottom boundaries, are listed in Eqs. (4a)–
(4d):

u(x, t) ·n= 0, x ∈ ∂V, t ∈ I, (4a)
[η ε̇ (u(x, t)) ·n] · s = 0, x ∈ ∂V, t ∈ I, (4b)

T (x, t)= TS, x ∈ S, t ∈ I, (4c)
T (x, t)= TC, x ∈ C, t ∈ I. (4d)

In Eqs. (4a)–(4d), n denotes the outer normal vector and s
any tangential vector. Finally, as mantle convection is an ini-
tial value problem, we require a prescribed temperature field
at initial time tI:

T (x, tI)= TIC(x), x ∈ V. (5)
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Table 1. Symbols used in this study.

Symbol Description Symbol Description

η Dynamic viscosity ρ0 Reference density
k̂ Unit vector in opposite gravity direction α Thermal expansion coefficient
H Internal heating rate 1T Temperature difference between domain top and bottom
ε̇ Strain rate g Gravitational acceleration
Ra Rayleigh number d Depth of domain
κ Thermal diffusivity µ0 Reference dynamic viscosity
u Velocity p Dynamic pressure
T Temperature δ(x) Dirac delta function
βu,d,s Weightings in objective functional αu,d,s User-defined scaling for functional terms
uobs “Observed” surface velocity Tobs “Observed” present-day temperature
G(r) Radial profile for damping

2.1.2 Solution strategy: leveraging Firedrake through
G-ADOPT

We use the finite-element method to solve the coupled sys-
tem of partial differential equations presented in Eqs. (1a)–
(1c). For the Stokes system, we use a Q2−Q1 (piecewise
biquadratic and bilinear, respectively) finite-element pair for
velocity and pressure, with Q2 elements used for tempera-
ture. We strongly impose Dirichlet boundary conditions for
temperature at top and bottom boundaries. Free-slip veloc-
ity boundary conditions are imposed in two ways: (i) in our
square domain cases, we impose strong Dirichlet boundary
conditions for u; (ii) in our annular domain cases, where
boundaries do not align with Cartesian directions, we employ
a symmetric Nitsche penalty method (Nitsche, 1971), which
weakly enforces boundary conditions via a modification of
the variational formulation. An implicit mid-point scheme is
used for time integration in the energy equation.

To solve the coupled system of forward (and adjoint) equa-
tions, we employ Firedrake, which provides an automated
system designed for the solution of partial differential equa-
tions using the finite-element method (Ham et al., 2023). It
incorporates principles and some aspects of the code-base
from the FEniCS project (Logg et al., 2012), including its
use of the Unified Form Language (UFL) (Alnæs et al., 2014)
for the representation of variational problems. UFL is a high-
level language utilised for the symbolic description of the
governing equations in a form that closely mimics their math-
ematical formulation. The key advantage of UFL in this work
lies in its high-level abstraction, which allows for an inno-
vative automatic derivation approach when deriving adjoint
systems. We will address the significance of UFL in auto-
matic derivation of adjoint systems in Sect. 2.2.2.

Firedrake provides an array of features that are particu-
larly conducive to tackling problems in geophysical fluid dy-
namics. Key among these features is support for a variety
of finite-element discretisations, including a highly efficient
implementation of discretisations based on extruded meshes;
programmable non-linear solves; and operator-aware solver

preconditioners that can be combined in a flexible manner
to create linear or non-linear systems, which are solved by
PETSc (e.g. Balay et al., 1997; Dalcin et al., 2011; Balay
et al., 2023). The suitability of Firedrake for geodynamics
has been demonstrated via comparison with a comprehen-
sive set of analytical solutions and community benchmarks
in Davies et al. (2022). We refer the reader to this study,
alongside Rathgeber et al. (2016), for a more in-depth discus-
sion on Firedrake and its dependencies, alongside an outline
of the solution strategy employed herein.

Building upon the foundations provided by Firedrake, G-
ADOPT introduces an array of features tailored for cutting-
edge geodynamical simulations. It integrates smoothly with
Firedrake’s advanced data-loading capabilities, enabling
finite-element consistent point-data interpolation (Nixon-
Hill et al., 2023) and facilitating the integration of diverse
observational and physical datasets. Various non-linear rhe-
ological laws can be effortlessly incorporated using the sym-
bolic representation provided by UFL. G-ADOPT provides a
selection of time discretisation schemes, including second-
order Runge–Kutta and backward/forward Euler methods.
Visualisation capabilities are provided through integration
with the “Visualization Toolkit” (VTK), allowing compre-
hensive analysis in ParaView, among other visualisation
packages. Compatibility with meshes generated by gmsh and
seamless integration with NETGEN provide straightforward
support for a range of mesh configurations and adaptive
mesh refinement. G-ADOPT offers a diverse array of bound-
ary conditions, encompassing free- and no-slip conditions,
a free-surface (Kramer et al., 2012), and kinematic forcing,
for example, via seamless integration with pyGPlates (Gurnis
et al., 2012; Müller et al., 2018). The collection of features,
elaborately detailed in the Firedrake and G-ADOPT online
documentation and referenced in Davies et al. (2022), high-
lights the platform’s robustness and adaptability for geody-
namical research.
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2.2 Inverse problem: an optimisation approach

Representative reconstructions of the spatial and temporal
evolution of mantle flow require knowledge of the initial
condition (i.e. the thermo-chemical state of the mantle at
some point in the past), the determination of which is an in-
verse problem. We therefore seek the best-fitting initial con-
dition (TIC) that results in the minimum of an objective func-
tional that measures the difference between predictions and
observations of mantle states and irregularity in the solutions.
We use the following mathematical description of the objec-
tive functional:

J =
1
2

∫
I

∫
V

(T − Tobs)
2δ(t − tF)dx dt

+
βu

2

∫
I

∫
S

(u−uobs) · (u−uobs) ds dt

+
βd

2

∫
I

∫
V

G(r)
(
T − T̄

)2
δ(t − tI)dx dt

+
βs

2

∫
I

∫
V

[
∇
(
T − T̄

)]2
δ(t − tI)dx dt . (6)

The first term in Eq. (6) accounts for the misfit between
model predictions and temperature recorded at the final in-
stance, whilst the second term measures the misfit in surface
velocities through time. The other terms are Tikhonov regu-
larisation components (Tikhonov, 1963; Hansen, 1992), the
first of which penalises deviations from an a priori depth-
averaged profile, T̄ (i.e. the damping term), and the second
penalises the gradient of these deviations to produce less
complex solutions (i.e. the smoothing term). For the damping
term, we employ a depth-dependent pre-factor, G(r), that is
zero within the mid-mantle but transitions to one in the ther-
mal boundary layers. In these areas, lateral material trans-
port and diffusive processes dominate, leading to diminished
sensitivity between the choice of initial condition and the fi-
nal temperature field. G(r), therefore, helps to minimise the
amplitude of the solution within the top and bottom thermal
boundary layers, removing noise that would otherwise dif-
fuse over the simulation. The three weighting terms, βu, βs
and βd, in Eq. (6) are defined as

βu = αu

∫
V

T 2
obs dx

1t
∫
S

(
u
t=tF
obs ·u

t=tF
obs

)
dx
, (7a)

βd = αd

∫
V

T 2
obs dx∫

V

(
T̄
)2dx

, (7b)

βs = αs

∫
V

T 2
obs dx∫

V

(
∇T̄

)2dx
. (7c)

Note that 1t is the total duration of the simulation. The inte-
grals in Eqs. (7) are employed to ensure normalised objective
terms relative to the final temperature misfit (first term on the
right-hand side of Eq. 6). The three scaling parameters, αu, αs
and αd, can be set to adjust the importance of these terms rel-
ative to the final temperature misfit. We perform a parameter
search to find the best-performing combinations of α values.

For our inverse problem we are interested in optimising
J described by Eq. (6). J depends on some “control” pa-
rameters, which in this case is the initial temperature field,
and some “state” variables (i.e. surface velocity and the fi-
nal temperature), which are solutions of the forward problem
in Eqs. (1a)–(1c), with the forward system itself depending
again on the control. To solve this problem, we define a “re-
duced” functional, which is a function of the initial condition,
TIC, alone. This reduced functional is typically defined by
first solving the forward partial differential equations (PDEs)
(Eqs. 1a–1c) for a given value of the control and then sub-
stituting the solutions into the expression for the functional
(Eq. 6). The result is a functional that depends only on the
control parameters, not the state variables directly (hence the
name reduced).

Non-linear optimisation methods provide the means to
find the optimal TIC by minimising a reduced functional de-
fined by J . These methods are iterative. They begin with an
initial guess of TIC to generate a sequence of improved es-
timates (called iterates) until certain conditions, e.g. resid-
ual tolerance, in the objective functional are achieved. Cru-
cial for the efficiency of these iterations are derivatives of
Eq. (6) with respect to TIC. Owing to the large number of
unknowns in 3-D spherical mantle convection models with
Earth-like parameters, obtaining the derivative by means of
classical finite differencing techniques is impractical. The
adjoint method serves as a mathematically elegant and com-
putationally efficient way to obtain the derivatives (e.g. Ta-
lagrand, 1997; Giles and Pierce, 2000; Plessix, 2006; Hinze
et al., 2008).

2.2.1 Continuous versus discrete adjoints

Approaches to deriving, implementing and obtaining deriva-
tives using the adjoint method primarily fall into two cate-
gories: (i) continuous, or the differentiate-then-discretise ap-
proach, and (ii) discrete, or the discretise-then-differentiate
approach (Gunzburger, 2000).

The continuous approach commences with the derivation
of the adjoint equations. The resemblance between the for-
ward and resulting adjoint equations allows the adjoint PDEs
to be discretised in a consistent manner and, subsequently,
implemented within a numerical framework. By deriving the
continuous adjoint PDEs, one can develop an understanding
of the key characteristics of adjoint sensitivities, the phys-
ical implications of individual terms in the PDEs and their
boundary conditions. Moreover, the continuous method af-
fords complete autonomy in the discretisation and imple-
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mentation of the adjoint system, often leading to simplified
but more cost-effective approximations of the solutions, as
demonstrated by Ismail-Zadeh et al. (2004).

By contrast, the discrete approach relies on already dis-
cretised forward equations and then differentiates and trans-
poses them to obtain the adjoint equations. This method’s
primary advantage lies in maintaining consistency in spatial
and temporal discretisations, allowing for the automatic de-
termination of the exact gradient of the (discrete) objective
functional (Giering and Kaminski, 1998; Gunzburger, 2002).
Such consistency ensures full convergence of second-order
Newtonian optimisation methods and simplifies the debug-
ging of adjoint programs (Giles and Pierce, 2000). For exam-
ple, with the discrete approach, even minor inconsistencies in
the derivative can highlight numerical or programming errors
that must be rectified. It also permits the automatic creation
of the adjoint program, stemming from the property that a
transposed (adjoint) matrix shares the same eigenvalues with
the original linear matrix, ensuring convergence for the ad-
joint problem’s iterative solution methods (Giles and Pierce,
2000). This advantage has facilitated the development of var-
ious automatic differentiation (AD) tools in recent decades,
including those used in TensorFlow (Abadi et al., 2015), Py-
Torch (Paszke et al., 2019) and Enzyme (Moses et al., 2022).
It is essential to note that the continuous and discrete meth-
ods are equivalent in the limit of infinite spatial and tempo-
ral resolution. However, in practical terms, it is the discrete
method that typically provides more accurate gradient infor-
mation. For more details on both approaches we refer the
reader to Giles and Pierce (2000) and Gunzburger (2002).

2.2.2 Dolfin-Adjoint

Robust and efficient derivative calculations for large-scale
simulations using automatic differentiation is challenging
and often too slow for the purpose of large-scale optimi-
sation problems (Naumann, 2011). This inefficiency is of-
ten attributed to the usually employed approach of treating
a numerical model as a sequence of elementary instructions
such as addition, multiplication or exponentiation, known as
blocks. Once the AD tool establishes a sequence of blocks
with their dependencies (a process often called taping), each
block is individually differentiated, and one arrives at the
derivative of the entire model using the chain rule.

Dolfin-Adjoint uses an innovative approach to achieve the-
oretical efficiency by using so-called operator overloading
differentiation (Tijskens et al., 2002). By leveraging the high-
level mathematical language used by Firedrake and FEn-
iCS (UFL), Dolfin-Adjoint performs the taping process at
the highest abstraction level. This can result in blocks that
symbolise whole PDE system solves, for which the adjoint
derivation is performed at the same level of abstraction. The
derived adjoint operation to a block is itself a Firedrake oper-
ation. This facilitates the generation of the low-level adjoint
code using the same finite-element form compiler as the for-

ward model; i.e. while the taping operation is, in essence,
similar to the fundamental abstraction in automatic differen-
tiation techniques, Dolfin-Adjoint operates at a higher level
of abstraction and, accordingly, can achieve maximum effi-
ciency and robustness. Consequently, platforms such as Fire-
drake and FEniCS have incorporated Dolfin-Adjoint for pre-
cise derivative computations, which are essential for solving
various optimisation and inverse problems. We note the pur-
suit of similar automatic differentiation techniques, which
have been central to the development of numerical tools
like PETSc’s TSAdjoint (Zhang et al., 2022) and JuliaAd-
FEM (Xu and Darve, 2022).

To efficiently compute derivatives, Dolfin-Adjoint tracks
and manipulates the computational operations involved in
solving the forward and adjoint problem. Central to Dolfin-
Adjoint’s design is the Tape class, responsible for record-
ing a series of high-level finite-element operations – such
as (non-)linear solutions, functions and interpolations – that
map the initial temperature field TIC into an objective func-
tional J through a series of operations. Operations exe-
cuted during the forward problem are encapsulated within
instances of Block subclasses, each representing a dis-
tinct computational step. These Block instances, by keeping
track of their inputs and outputs through BlockVariable
instances, establish a computational graph that is used by
Dolfin-Adjoint to navigate to compute adjoints. To seam-
lessly integrate this functionality, Dolfin-Adjoint employs
operator overloading, allowing the creation of overloaded
functions and data types that, to the user, behave identi-
cally to their original counterparts but are augmented to
support automatic differentiation. This approach enables the
overloading of data types through inheritance from both
the original data type and the OverloadedType class
in Dolfin-Adjoint, ensuring that each data object carries a
BlockVariable for tracking its computational lineage.
The elegance of Dolfin-Adjoint’s design lies in its ability
to abstract the computational details, allowing the scien-
tific end user to focus on designing the forward problem
and simultaneously leverage the computational efficiency
of automatic differentiation. Mimicking Firedrake’s strat-
egy in utilising Dolfin-Adjoint, the forward operations in
G-ADOPT are overloaded by importing the inverse mod-
ule of G-ADOPT (gadopt.inverse), which will be used
to populate a tape and establish a ReducedFunctional,
providing the necessary functionalities for computing a func-
tional and its derivative with respect to controls.

2.2.3 Discrete forward model

As explained in more detail in Davies et al. (2022), the for-
ward geodynamical model can be described as a series of
linear and non-linear solutions. Although we solve for tem-
perature using Q2 elements, we choose the control TIC to
be in the Q1 function space as a means to regularise the in-
version problem. This means we need to project TIC to the
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discrete function space Q=Q2 to obtain a temperature T 0

used in the first time step. This can be formulated as solving
the following system for T 0:

Fproject(q;T
0,TIC) :=

∫
V

q
(
T 0
− TIC

)
dx = 0

for all q ∈Q, (8)

where q are test functions in Q. Subsequently we solve in
each time step n= 0, . . .N−1 the following two systems for
un,pn and T n+1:

FStokes(v,w;u
n,pn,T n) :=

∫
V

(∇v) : η(un,T n)

·

[
∇un+

(
∇un

)T ]dx−
∫
V

(∇ · v)pndx

−

∫
V

RaT nv · k̂dx

−

∫
V

w∇ ·undx = 0 for all v ∈ V,w ∈W, (9)

Fenergy(q;T
n+1,T n,un) :=

∫
V

q
T n+1

− T n

1t
dx

+

∫
V

qun · ∇T n+θdx+
∫
V

(∇q) ·
(
κ∇T n+θ

)
· dx = 0 for all q ∈Q, (10)

where V and W are the discrete function spaces for veloc-
ity and pressure (here V = [Q2]dim,W =Q1) with test func-
tions v and w. T n+θ is the weighted average θT n+1

+ (1−
θ)T n. Note that we assume a strain rate and temperature-
dependent rheology and thus write η = η(u,T ). This makes
Eq. (9) a non-linear system, which we solve through New-
ton’s method. The discrete functional is calculated as

J (T N ,u0, . . .,uN−1,TIC)=
1
2

∫
V

(
T N − Tobs

)2
dx

+
βu

2

N−1∑
n=0

∫
S

(
un−unobs

)
·
(
un−unobs

)
ds

+
βd

2

∫
V

G(r)
(
TIC− T̄

)2dx

+
βs

2

∫
V

[
∇(TIC− T̄ )

]2dx . (11)

2.2.4 Calculating gradients using the adjoint method

We denote the entire forward solution as z=

(T 0, . . .T N ,u0, . . .uN−1,p0, . . .pN−1) so that the func-

tional can be written as a function J (z,TIC) of z and the
control TIC. The forward solution itself is also dependent
on TIC, as for each choice of TIC we can solve the forward
model to obtain z(TIC). We define the reduced functional Ĵ
as

Ĵ (TIC)= J (z(TIC),TIC). (12)

Thus we can reformulate the PDE-constrained minimisation
problem,

minimise J (z,TIC) under the constraints (8–10),

as an unconstrained minimisation problem for Ĵ (TIC).
To use efficient gradient-based optimisation algorithms we
do, however, need a means of computing its gradient, for
which we will employ the adjoint method. In addition to
the forward solution z, we also define an adjoint solution
λ= (90, . . .9N ,φ0, . . .φN−1,ξ0. . .ξN−1), where each
component is associated with one of the constraints: 90

∈Q

with Eq. (8), φn ∈ V,ξn ∈W with Eq. (9) and 9n+1
∈Q

with Eq. (10) for n= 0, . . .N − 1. Using these we define
the following sum of the constraints, with each constraint
weighted by the corresponding adjoint solution λ:

F(λ;z,TIC)= Fproject(9
0
;T 0,TIC)

+

N−1∑
n=0

FStokes(φ
n,ξn;un,pn,T n)

+

N−1∑
n=0

Fenergy(9
n+1
;T n+1,T n,un). (13)

Since, by definition, for any choice of TIC the associated for-
ward solution z(TIC) satisfies all constraints, we have

F(λ;z(TIC),TIC)= 0,

and thus, for any choice of λ we have

∂F (λ;z(TIC),TIC)

∂TIC
=
∂F (λ;z,TIC)

∂z

∣∣∣∣
z=z(TIC)

∂z(TIC)

∂TIC
+
∂F (λ;z,TIC)

∂TIC

∣∣∣∣
z=z(TIC)

= 0. (14)

If we choose λ to be the solution to the following, so-called
adjoint equation,

∂F (λ;z,TIC)

∂z

∣∣∣∣
z=z(TIC)

=
∂J (z,TIC)

∂z

∣∣∣∣
z=z(TIC)

, (15)

we can work out the gradient of the reduced functional:

∂Ĵ (TIC)

∂TIC
=
∂J (z,TIC)

∂z

∣∣∣∣
z=z(TIC)

∂z(TIC)

∂TIC
+
∂J (z,TIC)

∂TIC

∣∣∣∣
z=TIC

, (16)

=
∂F (λ;z,TIC)

∂z

∣∣∣∣
z=z(TIC)

∂z(TIC)

∂TIC
+
∂J (z,TIC)

∂TIC

∣∣∣∣
z=TIC

, (17)

=−
∂F (λ;z,TIC)

∂TIC

∣∣∣∣
z=z(TIC)

+
∂J (z,TIC)

∂TIC

∣∣∣∣
z=TIC

. (18)
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2.2.5 Discrete backward model

Although the adjoint Eq. (15) is derived symbolically from
the forward model (Eqs. 8–10) and solved for fully automat-
ically by Dolfin-Adjoint, we here briefly work out the dis-
crete adjoint equations to show that these equations can still
be interpreted as the solution process of a backwards-in-time
PDE, similar to the continuous adjoint approach, but that a
specific time discretisation is derived, which is necessary to
obtain a gradient that is consistent with the discrete forward
model. Split out by component, the adjoint equations read

∂F

∂T 0 =
∂J

∂T 0 , (19)

∂F

∂un
=
∂J

∂un
, for n= 0, . . .N − 1, (20)

∂F

∂pn
=
∂J

∂pn
, for n= 0, . . .N − 1, (21)

∂F

∂T n+1 =
∂J

∂T n+1 , for n= 0, . . .N − 1, (22)

which can be solved for 9n,φn and ξn.
These equations can be solved by going backwards

through the time steps n=N − 1. . .0. In each, we first solve
Eq. 22 for 9n+1. Starting at the last time step n=N −1, we
get

∂Fenergy(9
N
;T N ,T N−1,uN−1)

∂T N
δT =

∂J

∂T N
δT , (23)

where we have applied the gradient of F with respect to T N

to an arbitrary perturbation δT . This allows us to interpret
this equation as a weak form, tested with δT , that we can
solve for 9N :∫
V

9N
δT

1t
dx+ θ

∫
V

9NuN−1
· ∇δT dx

+ θ

∫
V

(
∇9N

)
· (κ∇δT )dx

=

∫
V

(
T N − Tobs

)
δT dx for all δT ∈Q. (24)

Defining an auxiliary 9N+1
=1t(T N − Tobs) and integrat-

ing the advection term by parts, we get∫
V

[
9N −9N+1

1t
δT − θ∇ ·

(
9NuN−1

)
δT

+θ
(
∇9N

)
· κ∇δT

]
dx = 0 for all δT ∈Q, (25)

which for θ = 1 we may recognise an advection–diffusion
equation run backwards in time.

For n < N − 1, Eq. (22) contains more terms:

∂Fenergy(9
n+1
;T n+1,T n,un)

∂T n+1 δT

=−
∂Fenergy(9

n+2
;T n+2,T n+1,un+1)

∂T n+1 δT

−
∂FStokes(φ

n+1,ξn+1
;un+1,pn+1,T n+1)

∂T n+1

+
∂J

∂T n+1 δT for all δT ∈Q, (26)

as the energy equation in both forward time steps n and n+1
depends on T n+1, as does the Stokes system in time step
n+ 1. Going backwards through the equations, however, we
can still solve for 9n+1, associated with time step n, as we
have already solved for φn+1,ξn+1 and9n+2 associated with
time step n+ 1. Note that the ∂J/∂T n+1 term vanishes in
this case, as J does not explicitly depend on intermediate
temperature solutions. Similar to Eq. (25), we may rewrite it
to

∫
V

[
9n+1

−9n+2

1t
δT −∇ ·

(
θ9n+1un+ (1− θ)9n+2un+1

)
·δT +∇

(
θ9n+1

+ (1− θ)9n+2
)
· κ∇δT

]
dx

=−

∫
V

∇φn+1
:
∂η(un+1,T n+1)

∂T n+1

·

[
∇un+1

+

(
∇un+1

)T ]
δT dx

+

∫
V

Raφn+1
· k̂ δT dx for all δT ∈Q, (27)

which we can interpret as a backward-in-time θ -weighted ad-
vection diffusion step for 9, with source terms associated
with sensitivity of the rheology and buoyancy to temperature.
Note, however, that here in the advection term we weight
both 9 and u with θ in contrast to the forward time step
Eq. (10).

After solving for 9n+1, we can solve Eq. (20) together
with Eq. (21) for φn and ξn:

∂FStokes(φ
n,ξn;un,pn,T n)

∂un
δu

+
∂FStokes(φ

n,ξn;un,pn,T n)

∂pn
δp

=−
∂Fenergy(9

n+1
;T n+1,T n,un)

∂un
δu+

∂J

∂un
δu, (28)

for all velocity and pressure perturbations δu ∈ V and δp ∈
W . This leads to the following weak-form equation for φn
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and ξn:

∫
V

[
∇φn+

(
∇φn

)]
: η(un,T n)∇δudx

+

∫
V

[
∇φn+

(
∇φn

)]
:
∂η(un,T n)

∂un
δu∇udx

−

∫
V

ξn∇ · δundx−
∫
V

(
∇ ·φn

)
δpdx

=−

∫
V

9n+1δu · ∇T n+θ

+βu

∫
S

(
un−uobs

)
δudx for all δu ∈ V,δp ∈W . (29)

The left-hand side is similar to the Stokes system in Eq. (9),
except for an additional ∂η/∂u term, alongside the fact that
this is now just a linear system as the rheology only depends
on the forward variables un and T n. Instead of a buoyancy
term, we now have forcing terms associated with sensitivity
of temperature advection and the mismatch with observed
velocities at the surface.

Finally, after having solved either Eq. (25) (n=N − 1) or
Eq. (27) (n < N − 1) for 9n+1 and Eq. (29) for φn and ξn

going backward through the time steps n=N − 1→ n= 0,
we can solve Eq. (19) for 90:

∂Fproject(9
0
;T 0,TIC)

∂T 0 δT

=−
∂Fenergy(9

1,T 1,T 0,u0)

∂T 0 δT

−
∂FStokes(φ

0,ξ0
;u0,p0,T 0)

∂T 0 δT for all δT ∈Q, (30)

which can be worked out as a projection:

∫
V

90δT dx =
∫
V

91

1t
δT dx+ (1− θ)

·

∫
V

(
∇ ·91u1

)
δT dx− (1− θ)

·

∫
V

∇ψn+1
· κ∇δT dx

−

∫
V

∇φ1
:
∂η(u1,T 1)

∂T 1

[
∇u1
+

(
∇u1

)T ]

· δT dx+
∫
V

Raφ1
· k̂δT dx for all δT ∈Q. (31)

Finally, the gradient of the reduced functional with respect to
the control is obtained by

∂Ĵ (TIC)

∂TIC
δT =−

∫
V

90 δT dx+
βd

2

∫
V

(
TIC− T̄

)
δT dx

+
βs

2

∫
V

∇
(
TIC− T̄

)
· ∇δT dx . (32)

2.2.6 Gradient-based non-linear optimisation

To find the solution to the inverse problem, the gradi-
ent fields from Firedrake and Dolfin-Adjoint can be redi-
rected to an optimisation package with a Python inter-
face (e.g. scipy.optimize; Virtanen et al., 2020). However,
the majority of well-established optimisation packages are
hard-coded to apply the Euclidean (l2) inner product for
optimisation-specific operations. l2, typically referred to as
a sequence space, is often used in signal processing or dis-
crete mathematics where functions are treated as sequences,
i.e. discrete data, and do not represent continuous func-
tions. The Euclidean inner product is therefore not suit-
able for finite-element function-based optimisation, and, un-
like L2 or Sobolev spaces, it cannot produce mesh- and/or
basis-function-independent convergence (Schwedes et al.,
2017). The Rapid Optimisation Library (ROL; The ROL
Project Team, 2022), a Trilinos package for large-scale op-
timisation, resolves this issue by introducing a generic in-
terface for data structures that can be overloaded to per-
form inner-product aware operations (e.g. in L2 space) and
achieve mesh-independent convergence results (Schwedes
et al., 2016). ROL has been primarily used for the solu-
tion of optimal design, optimal control and inverse prob-
lems in large-scale engineering applications (Iglesias et al.,
2018; Kouri et al., 2021a, b, 2023) and has a comprehen-
sive catalogue of gradient-based optimisation algorithms. For
the results presented herein, we use the Python interface for
ROL in Firedrake, which we have supplemented it with addi-
tional checkpointing functionality. This allows us to check-
point intermediate optimisation states and variables, includ-
ing those related to step lengths or Hessian estimates, and
subsequently restart the optimisation procedure without loss
of performance. This, in particular, is relevant on modern
high-performance computing facilities with strict wall time
limits.

The distinguishing factor between different optimisation
algorithms (in ROL or elsewhere) is the strategy used to
move from one iterate to the next. Broadly speaking, there
are two strategies for moving from the current iterate, xk , to
a new one, xk+1: line-search and trust-region strategies (No-
cedal and Wright, 1999). A fundamental distinction between
line-search and trust-region methods lies in the sequence of
selecting the direction and distance (Nocedal and Wright,
2006). In line-search methods, the direction is initially fixed,
and an appropriate step length is subsequently determined.
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Conversely, trust-region methods commence by establish-
ing an initial size for a trusted region (hence the name) and
then simultaneously constraining the direction and step to
achieve sufficient amount of improvement within this trusted
region. The size of this trusted region around the current it-
erate is determined according to a model, m, that approx-
imates the region around the current iterate, xk , according
to a quadratic approximation. At each iteration, the accu-
racy of this model then is assessed based on its agreement
with the actual changes in the function, f . If the new value,
f (xk +pk), is greater than the current value of f (xk), m is
not a good approximation of the objective functional around
xk and the size of the trusted-region measured by the trust-
region radius is therefore reduced to improve the applicabil-
ity of the model. By bounding the calculations to a trusted re-
gion where model m is applicable, trust-region methods pro-
hibit overly aggressive steps, which make them suitable for
handling negative curvature situations (non-convexity opti-
misation problems) more gracefully compared to line-search
methods. Nonetheless, faster convergence can be achieved by
expanding the trust region in the case of a predictive model,
ensuring robust minimisation of the objective functional.

In this study, we employ the trust-region method of Lin
and Moré (1999) implemented in ROL. Lin–More is a trun-
cated Newton method, consisting of repeated application of
an iterative algorithm to approximately solve Newton’s equa-
tions (Dembo and Steihaug, 1983). Lin–More can effectively
handle provided bound constraints by ensuring that variables
remain within their specified bounds: at each iteration, vari-
ables are classified into “active” and “inactive” sets. Vari-
ables at their bounds and not allowing descent are consid-
ered active and are fixed during the iteration. The remaining
variables, which can change without violating the bounds,
are inactive. The described properties render the algorithm as
a robust and efficient method for solving bound-constrained
optimisation problems.

3 Numerical experiments and results

Twin experiments serve as a means to illustrate the feasibility
of geophysical inverse methods. In our experimental setup,
we generate a synthetic reference simulation that advances
forward in time, starting from a user-defined initial condition.
We use this reference simulation to emulate a real-Earth re-
construction scenario, where the resulting temperature field
at the final time, T (x, t = tF), and the corresponding surface
velocities at all times, u(x = xS, t), are stored for subsequent
use as “observations” in reconstructing the initial state of the
mantle and its evolution through space and time. These fields
are used to mimic fundamental datasets in mantle reconstruc-
tion models, drawing parallels to 3-D models of mantle tem-
perature inferred from seismic tomography images, as well
as surface velocities derived from plate tectonic reconstruc-
tions. We examine two sets of 2-D twin experiments: (i) sim-

ulations of a single upwelling in an enclosed square domain
with an isoviscous rheology and (ii) convection within an an-
nular domain, incorporating a non-linear visco-plastic rheol-
ogy, as has previously been employed to generate plate-like
behaviour in mantle convection models (see Coltice et al.,
2017, for a review).

3.1 A single upwelling in an enclosed square domain

3.1.1 Forward problem

We start our experiments by reconstructing the evolution of a
single upwelling plume within an enclosed square computa-
tional domain (free-slip boundary conditions on all bound-
aries). We assume an isoviscous rheology, incompressible
flow under the Boussinesq approximation assumption and
a Rayleigh number of Ra= 106. The model is heated from
below (TC = 1) and cooled from above (TS = 0). The ini-
tial condition is generated by a Gaussian anomaly of ampli-
tude 0.1, centred at x0 = (0.5,0.2), superimposed on top of
an average temperature profile generated by two error func-
tions representing the top and bottom thermal boundary lay-
ers. Starting from this initial condition, the model is run for
80 time steps of δt = 4×10−6 – the time required for the tem-
perature anomaly to form a plume that reaches the domain’s
top boundary.

Listing 1 shows selected lines of a G-ADOPT script used
to generate this reference synthetic experiment. The first step,
illustrated on line 1, is to import the G-ADOPT module
(which provides access to Firedrake and associated function-
ality). We next need a mesh, for which we use a built-in Fire-
drake meshing function. The computational domain is a unit
square with 150× 150 elements, loaded on lines 4–6. The
function spaces, within which our solutions are defined, are
specified as follows:

1. A vector function space, V, is specified for the velocity
field (line 9), employing a Q2 discretisation.

2. A scalar function space, W, is specified for pressure
(line 10), utilising a Q1 discretisation.

3. These are combined on line 11 to create the mixed func-
tion space, Z, for the Stokes (velocity and pressure) sys-
tem.

4. A function space, Q, is specified for the temperature
field (line 12), using a Q2 discretisation.

We specify functions to hold our solutions on lines 14–18.
The temperature field, T, is initialised on line 20 using a sym-
bolic expression for the coordinates from line 18. The initial-
isation includes a 1-D profile along the y axis (line 21) and a
Gaussian anomaly, as specified above (line 22). This problem
has a constant pressure nullspace, defined as Z_nullspace
on line 24, which will subsequently be passed to the solver,
and PETSc will seek a solution in the space orthogonal
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Listing 1. Selected lines from G-ADOPT code, demonstrating generation of our reference isoviscous simulation in an enclosed square
domain.

to the provided nullspace. A checkpoint file is initiated on
lines 26–27 to retain the necessary fields for the subse-
quent adjoint inversion. Important constants in this problem
(Rayleigh Number, Ra, time-stepping parameters, delta_t
and max_timesteps) are defined on lines 28–31, with the
Boussinesq approximation specified on line 29 (later passed
on to the Stokes and energy systems to determine which
terms are to be assembled). Boundary conditions for veloc-
ity and temperature are specified on lines 34 and 35, re-
spectively. The latter uses integer mesh markers to tag en-
tities of meshes, with boundaries tagged as follows: tag 1
corresponds to the plane x = 0 (left), 2 to x = 1 (right),
"bottom" to y = 0 and "top" to y = 1.

We now solve the variational problem, with solver
objects for the energy, energy_solver, and Stokes,
stokes_solver, systems created on lines 37 and 38. For
the energy system we pass in the solution field T , velocity u,
the physical approximation, time step, temporal discretisa-
tion approach (i.e. implicit middle point) and boundary con-
ditions. For the Stokes system, we pass in the solution fields
z, temperature, the physical approximation, boundary condi-
tions and the nullspace object. The solution of the two vari-
ational problems is undertaken by PETSc. The time loop is
defined on lines 42–45, with the Stokes system solved on
line 43, the energy equation on line 44, and velocities (for
later use as time-dependent surface constraints in our adjoint

inversions) checkpointed on line 45. Figure 2a to e show tem-
poral snapshots of the reference forward simulation. We note
that the final temperature field (Fig. 2e), subsequently utilised
in the adjoint inversion, is also checkpointed on line 47.

3.1.2 Inverse problem

Only trivial changes are required to convert the forward
problem outlined in Listing 1 into its corresponding adjoint,
which are outlined in Listing 2. We first augment our im-
ports with gadopt.inverse (line 2): this provides ac-
cess to crucial Dolfin-Adjoint functionalities harnessed by
Firedrake, enabling overloading differentiation and taping of
finite-element operations. On line 4, we activate disc check-
pointing of intermediate forward solutions, ensuring that
these fields – otherwise retained in memory – are available
as inputs for solving the adjoint equations. For this problem,
we select the initial temperature as the control, symbolised as
Tic on line 7, using a Q1 function space defined on line 6.
On line 8, we define the average temperature field for regular-
isation terms using the sameQ1 function space. Despite util-
ising Q2 elements for the forward temperature computation,
opting for a basis function with a lower polynomial degree
for the control is advantageous, as it curtails computational
expense during the internal optimisation algorithm’s opera-
tions by reducing the number of degrees of freedom in the
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Figure 2. Reference forward simulation: the initial condition is generated by superimposing a Gaussian anomaly of maximum amplitude 0.1
centred at x0 = (0.5,0.2) on top of an adiabatic profile. The simulation runs forward in time from this initial condition, until the plume-like
feature approaches the top boundary after 80 time steps. Also visualised at the top of each snapshot are the normal stresses acting on the top
boundary, which are proportional to dynamic topography. Boxed in dashed red is the final state of the simulation that is subsequently used
as Tobs in our synthetic adjoint simulation.

solution. Furthermore, using a lower polynomial degree re-
duces the complexity and regularisation requirements of the
optimisation problem, helping to avoid over-fitting of the so-
lution (e.g. Hastie et al., 2009).

On line 10, a checkpoint file is opened. The reference fi-
nal temperature field is subsequently loaded on line 11, with
our guess at the initial temperature condition specified on
line 12 (noting that it corresponds to the terminal tempera-
ture field of the reference simulation). We specify the con-
trol for Dolfin-Adjoint on line 15, followed by projection of
the initial temperature condition onto T on line 18. During
execution of the time loop (lines 20–24), we solve Stokes
and energy systems, after which we load velocities from
the reference simulation on line 24, used when accumulat-
ing contributions to the surface velocity misfit, u_misfit,
on line 24. After the time loop, we define several com-
ponents of the objective functional. Specifically, we estab-
lish the damping term and its associated normalisation fac-
tor (lines 29–31), the smoothing term and associated nor-
malisation (lines 32–33), two normalisation terms associ-
ated with final state temperature and surface velocity misfits
(lines 34–35), and the misfit associated with the final temper-
ature field (line 36). These terms are combined on lines 38–
42 as our objective, using weights (αu, αd and αs) spec-
ified on line 37, and are later utilised on line 44 to define the
reduced functional. We note that values for αu, αd and αs are
systematically tested herein.

3.1.3 Investigating the derivative

Our initial guess for TIC is set to the final “observed” tem-
perature field Tobs (i.e. the terminal temperature field of the
forward model). This choice is grounded in the findings of
Horbach et al. (2014) and our own tests, which demonstrate

that the minimisation problem possesses a strong minimum,
rendering it insensitive to the initial guess. The first opti-
misation iteration starts from this initial guess (Fig. 3a) and
runs forward in time to arrive at the first modelled terminal
temperature field Tt=tF (Fig. 3b). Compared to the reference
Tobs (Fig. 3c), the model is further advanced in time, with
the plume tail in the lower mantle narrower and hot buoyant
anomalies spread throughout the upper part of the domain,
generating a cold return flow and resulting in a thinning of
the thermal boundary layers.

Previously, we noted that for our reconstruction simula-
tions, the objective functional, denoted as J , encompasses
four distinct terms: (i) final temperature field, (ii) surface ve-
locity misfit, (iii) smoothing terms and (iv) damping terms.
The relevance of the three latter terms is gauged by their
respective weighting factors, namely, αu, αs and αd. When
combining terms linearly in the objective functional, the su-
perposition principle dictates that the gradient of the entire
objective functional is essentially the cumulative sum of the
gradients of its constituent terms in J . Consequently, it be-
comes instructive to visualise and validate the gradient of
each individual term within the objective functional.

Figure 3d to g display the gradient fields corresponding to
the four terms in the objective functional. The gradient for the
final temperature misfit is presented in Fig. 3d: it implies that
a better match to the final state temperature field is achiev-
able through changes to the initial condition that include a
major reduction in temperature in the domain’s centre, com-
plemented by an increase in temperature moving towards the
domain’s edges, particularly towards the domain’s upper re-
gions. In Fig. 3e, we illustrate the gradient of the cumulative
surface velocity misfit with respect to TIC: it reveals sensitiv-
ities extending to the domain’s base, indicating that to better
align with the “observed” surface velocities, an optimal TIC
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Listing 2. Changes compared to the forward script in Listing 1 required to define the reduced functional used in the adjoint problem. The
three alpha parameters on line 36 denote the three weighting parameters for surface, damping and smoothing terms, respectively.

should be decreased in the middle but increased towards the
domain’s boundaries. For the smoothing term (Fig. 3f), the
highest values emerge in areas with the most abrupt changes
in TIC. Given our optimisation strategy works by moving to-
wards corrections opposite to the gradient’s direction, this
subsequently results in iterative refinement and smoothing of
the solution. For the damping term (Fig. 3g), the gradient
aims to minimise fluctuations in the field in relation to the
ambient temperature profile (T̄ ), adjacent to the top and bot-
tom boundaries, implying that this can be achieved by reduc-
ing boundary layer temperatures in the centre but increasing
boundary layer temperatures towards the domain’s sides.

3.1.4 Verification of gradients: Taylor remainder
convergence test

A fundamental tool used in verification of gradients is the
Taylor remainder convergence test (Farrell et al., 2013b). For
the reduced functional, J (TIC), defined in Eq. (6) and its
derivative, dJ

dTIC
, it can be proven that

|J (TIC+hδTIC)− J (TIC)−h
dJ

dTIC
· δTIC| −→ 0 at O(h2). (33)

The expression on the left-hand side of Eq. (33) is termed
the second-order Taylor remainder. This term’s convergence
rate of O(h2) serves as a strong foundation for verifying any
computational implementation meant for determining dJ

dTIC
(the adjoint code) with respect to a specific functional that

computes J (TIC) (the forward code). Given any arbitrary se-
lection of h and δTIC, halving the value of h should decrease
the magnitude of the second-order Taylor remainder by a fac-
tor of 4. Grounded in this theoretical prediction, we employ
these so-called Taylor tests to confirm the accuracy of the
determined gradients.

We conduct a second-order Taylor remainder test for each
term of the objective functional. The results are displayed
in Fig. 4, where the gradient fields are calculated for random
perturbations of the initial temperature field TIC, with the am-
plitude of these perturbations successively halved (h/2, h/4,
h/8, ...). Notably, all four Taylor remainder tests demonstrate
a convergence rate of O(2.0), extending down to floating-
point precision, defined as the smallest positive ε such that
1.0+ ε is distinguishable from 1.0. Our results demonstrate
consistency with theoretical expectations, highlighting the
robustness of our approach.

3.1.5 Efficiency

Another metric that can be used to assess the suitability
of our framework for large-scale mantle convection optimi-
sation problems is the efficiency of derivative calculations.
Given the iterative nature of our inverse problem, where
derivatives are computed frequently, any efficiency gain, or
the lack thereof, can have profound implications for the over-
all computational cost and feasibility of our automated ap-
proach. The computational efficiency can be measured by
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Figure 3. First forward run and associated gradients: (a) is the first guess for TIC. For all experiments in this study we choose the “observed”
temperature field (i.e. the final state) as the initial guess for our optimisations. Panel (b) is the final temperature field after integrating forward
in time from (a) for 80 time steps. Panel (c) is the reference final temperature field, Tobs, which is used in the definition of the misfit
functional. Panels (d)–(g) illustrate the gradient fields. Panel (e) is gradient of the final temperature misfit. Panel (e) is the gradient of the
total surface velocity misfit. Panels (f) and (g) are for the regularising smoothing and damping terms, respectively.

Figure 4. Second-order Taylor remainder test: for each gradient field, the test is performed by computing the functional and the associated
gradient when randomly perturbing the initial temperature field TIC and subsequently dividing the perturbations by a factor of 2 at each
level. The dashed line is the theoretical convergence rate of O(2.0). Residuals show accuracy of gradient information down to floating-point
precision (defined as the smallest positive ε, such that 1.0+ ε is distinguishable from 1.0.)
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comparing the computational time of a derivative calculation
to that of a forward calculation. Using this reference, a the-
oretical optimum is defined which measures the ratio of the
time that is required to calculate one set of forward and ad-
joint calculations to one forward calculation. For the Stokes
problem we have detailed, in which a linear rheology has
been employed, this ratio is considered to be 2.0 (Naumann,
2011; Funke and Farrell, 2013). This is primarily due to the
similarity of the forward and adjoint systems. For the simu-
lations presented in this section, we achieve a ratio of 2.01,
consistent with theoretical expectations, thus demonstrating
the efficiency of our approach.

3.1.6 Optimisation

Executing an optimisation task with G-ADOPT is straight-
forward. Once the reduced functional is set up (see Listing 2),
only a few additional lines of Python are required (see List-
ing 3). As we use a bounded method for our optimisation
problem, we specify a set of upper and lower bounds for the
algorithm on lines 3–4. Subsequently, a minimisation prob-
lem is outlined (line 6) using both the reduced functional and
the designated bounds. This minimisation problem, together
with the associated parameters for optimisation, are passed to
the Lin–More optimisation algorithm in ROL (line 8), which
is executed on line 9.

Using this framework, we perform a suite of 81 differ-
ent inverse simulations that aim to find the most optimal
combination of the three weightings (αu, αd and αs) that
results in the best solution for TIC when compared to the
reference initial temperature field. The simulations are ob-
tained by sweeping through values in ranges of [10−1,10−3

],
[10−2,10−4

] and [101,10−7
] for αd, αs and αu, respectively.

Figure 5 provides an overview of the outcomes from a
subset (16 out of 81) of these optimisation exercises. Min-
imisation of the objective functional is shown in Fig. 5a,
alongside two additional metrics: (i) the misfit between the
reconstructed final temperature field and Tobs, termed the fi-
nal misfit (Fig. 5b), and (ii) the misfit between the recon-
structed initial condition, TIC, and the reference initial con-
dition, highlighting the quality of the reconstructed initial
condition (Fig. 5c). The reduction in the metrics in all cases
is reported versus the cost, which is the sum of the num-
ber of forward and adjoint calculations. A consistent pattern
is observed across all reconstruction simulations for these
three metrics. Firstly, the solutions are unique, as all con-
verge to a consistent initial condition following roughly 100
iterations (a cost of 200 forward and adjoint calculations).
However, the trajectory to this solution varies based on the
smoothing weight, denoted by αs. A significant portion of
the simulations with αs = 10−1 exhibit sub-par performance
in the initial stages due to over-smoothing, with most of the
best-performing simulations utilising αs = 10−2. Neverthe-
less, despite differences in convergence rates, all simulations
eventually converge to similar misfits in all three metrics.

Figure 6 showcases multiple iterations from the best-
performing simulation using αu = 10−2, αs = 10−3 and αd =

10−2. As mentioned previously, the reference final condi-
tion (Fig. 6b) is used as our starting guess for the inverse
simulation (Fig. 6c), which yields substantial differences in
the modelled final state (Fig. 6k), as illustrated through the
squared difference between reconstructed and reference tem-
perature (Fig. 6o). Leveraging derivative information, the in-
verse simulation corrects the initial condition through an it-
erative approach. The initial conditions obtained after 20,
50 and 100 iterations are shown in Fig. 6d, e and f, respec-
tively. These solutions reveal that most corrections occur dur-
ing the initial iterations, with significant improvement in the
domain’s upper part by iteration 20, albeit with some remain-
ing noise in the solution (see misfit in Fig. 6h). By iteration
100, the solution (visible in Fig. 6f and n) closely mirrors the
reference initial condition, represented by misfit values that
have diminished by 3 orders of magnitude (Fig. 5b and c).

Figure 7 compares the evolution of reference forward (a–
e) and reconstructed simulations (f–j), with differences high-
lighted (k–o). Furthermore, surface normal stresses are dis-
played as indicators of surface dynamic topography. For the
reconstructed simulation (Fig. 7f), the initial condition is
well captured as a Gaussian anomaly in the domain’s lower
section, superimposed on a depth-dependent field, similar
to the reference initial condition. This initial temperature
anomaly ascends, culminating at the surface after 80 time
steps. The precision of the reconstruction is evident from the
misfit panels, with negligible differences between reference
and reconstructed simulations throughout the model’s evolu-
tion (less than 0.01). This is further substantiated by a reduc-
tion, by over 4 orders of magnitude, in the objective func-
tional for both initial and end states (Fig. 5b and c). The ac-
curacy of reconstructed surface normal stresses is evidenced
by negligible discrepancies in the associated misfit visualisa-
tion.

3.2 Convection in an annulus, incorporating a
visco-plastic rheology

We next analyse a set of reconstructions which utilise a refer-
ence twin that more closely mimics Earth’s geometrical and
rheological characteristics. We use a 2-D annular domain,
generated by extruding 128 times radially from a circular
manifold consisting of 512 cells. Inner and outer radii are set
to 1.22 and 2.22, respectively, ensuring unit depth and main-
taining a comparable ratio between surface and cosmic mi-
crowave background (CMB) radii as Earth’s mantle. We set
Ra= 107 and adopt a composite visco-plastic rheology, with
effective viscosity determined via a harmonic mean, repre-
sented as

Geosci. Model Dev., 17, 5057–5086, 2024 https://doi.org/10.5194/gmd-17-5057-2024



S. Ghelichkhan et al.: Automatic adjoint optimisation schemes for geodynamics 5073

Listing 3. Necessary changes to solve the minimisation problem. T_lb and T_ub are the lower and upper bounds for the minimisation
problem, respectively.

Figure 5. An overview of optimisation results across all experiments: (a) illustrates the minimisation of the objective functional. Panel (b) de-
picts the final misfit, representing the difference between the reconstructed final temperature field and Tobs. Panel (c) highlights the initial
misfit, characterising the discrepancy between the reconstructed initial condition TIC and the reference initial condition. The bottom hori-
zontal axis in all figures reports the cost, here defined as the sum of forward and derivative calculations. The top axis shows the approximate
equivalent number of iterations, which simply is the cost divided by 2. Across all metrics, simulations exhibit a consistent pattern: they con-
verge to the same solution approximately after 100 iterations, though the path to this solution diverges depending on the smoothing weight,
αs.

1
µ
=

1
µp
+

1
µlin

,

µp = µ
∗
+
σyield

εii
,

µlin = µ0(r) exp
(
1µ,T

T

)
. (34)

Parameters specified in Eq. (34) are listed in Table 2. As
demonstrated by Davies et al. (2022), the changes necessary
to transform our forward model from a square to an annular
domain and from an isoviscous to a visco-plastic rheology
are only minor, noting that Firedrake has already been vali-
dated for simulations of this nature (see Davies et al., 2022,
and repository accompanying this paper for a comprehensive
script).

To determine the reference simulation’s initial condition,
we commence from a starting state with small-scale spheri-
cal harmonic perturbations and advance forward in time un-
til a quasi-steady state is achieved (i.e. when basal and sur-

face heat fluxes are roughly in balance). The resulting state
(Fig. 8.1.A and 2.A), which contains downwellings that de-
scend from the upper thermal boundary layer and upwelling
plumes that rise from the lower thermal boundary layer,
forms our reference initial condition. We subsequently ad-
vance forward for a duration of t = 200×(5×10−6) to reach
the reference final state shown in Fig. 8.1.G. While the non-
dimensional time of 10−3 translates into 256 Myr of convec-
tion, the domain velocities suggest an equivalent Earth-like
time of ≈ 100 Myr (due to a marginally reduced Ra relative
to estimates for Earth’s mantle). The sequence presented in
Fig. 8.1.A–G and 2.A–G trace the temporal development of
reference temperature and viscosity fields, respectively. The
viscosity field spans approximately 3 orders of magnitude,
extending from low asthenospheric values of ≈ 1.0, rising
to 140 within the cooler segments of the lower mantle, and
decreasing to 0.4 in locations of high strain rates at surface
convergent boundaries.
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Figure 6. Iterative optimisation process visualised: (a) and (b) depict the reference initial and final conditions. Panels (c)–(f) present the
reconstructed initial conditions at the 0th, 20th, 50th and 100th iterations. Panels (g)–(j) highlight the misfits, representing the squared
differences between the reconstructed initial temperature fields and the reference temperature. Similarly, (k)–(n) display the reconstructed
final temperature fields after the 0th, 20th, 50th and 100th iterations, with their respective misfits demonstrated in (o)–(r).

3.2.1 Verification of gradients

As with the previous Cartesian case examined, reconstruc-
tion simulations are conducted with an objective functional
encompassing the misfit component related to the terminal
temperature field, accumulative surface velocity misfits and

regularisation terms. For consistency with the previous case,
we first confirm the accuracy of the calculated gradient fields
corresponding to each component in the objective functional
by performing second-order Taylor remainder convergence
tests. To further analyse the robustness of our results against
solver tolerances, specifically concerning the final temper-
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Figure 7. Comparison of reference forward and reconstructed simulations over time: (a)–(e) present the evolution in the reference forward,
while (f)–(j) depict the evolution in the reconstructed simulations. The misfits between the reference and reconstructed scenarios at each time
step are illustrated in (k)–(o). Note that surface dynamic topography is represented by visualising the normal stresses at the top boundary.

Figure 8. Reference forward simulation spanning a duration of t = 200× (5× 10−6), as depicted in (1.A) to (1.G). Panels (1) (upper row)
detail the temporal evolution of the reference temperature field, while Panels (2) (lower row) show the viscosity field at each time. The
viscosity demonstrates a variation of nearly 3 orders of magnitude: approximately 1.0 in the asthenosphere, 140 within colder lower-mantle
slabs and 0.4 in convergent regions exhibiting elevated strain rates.
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Table 2. Parameters employed for 2-D annulus twin experiments.

Parameter Symbol Value

Viscosity [] µ –
Plastic viscosity [] µp –
Linear (temperature-dependent) viscosity [] µlin –
Principal strain rate tensor εi i –
Ambient viscosity µ(r) –
Yield stress (at Earth’s surface) σyield 2× 104

Minimum plastic viscosity µ∗ 0.1
Temperature dependence of viscosity 1T ln(80)

ature field and surface velocities, we conduct a set of two
additional convergence tests. The first set utilises a Newton
(SNES) relative solver tolerance of 10−10 and is depicted us-
ing solid colours in Fig. 9, while the second set, using a rel-
ative tolerance of 10−5, is represented by semi-transparent
colours. Our findings indicate that with tighter tolerances, re-
sults adhere to an O−2 trend consistent with theoretical pre-
dictions, confirming accuracy down to the smallest floating-
point representation. Conversely, when the tolerance is re-
laxed to 10−5, this behaviour holds only up to perturba-
tions of similar magnitude (h≈ 10−5), demonstrating a di-
vergence from the expected O(h2) trend for smaller pertur-
bations.

3.2.2 Efficiency

In the experiments detailed in this section, an efficiency of
1.45 is achieved. This exceeds the previously outlined the-
oretical efficiency of 2.0 for the isoviscous Stokes model
in Sect. 3.1.5 due to a major difference in the forward and
adjoint momentum equations: while the forward momentum
equation employs a non-linear visco-plastic rheology and re-
quires multiple linear Newton solves per time step, the ad-
joint momentum remains linear. The forward model is there-
fore more computationally demanding, explaining the im-
proved efficiency ratio.

3.2.3 Optimisation

As highlighted with our previous example, absolute and rel-
ative variations in weighting of different objective functional
components can generate solutions with distinct properties,
some of which provide an improved match to the reference
simulation. Accordingly, it is vital to assess the consequences
of these distinct weight combinations for the case considered
here. To address this, we have undertaken 21 simulations,
adjusting the parameters αu, αs and αd within the intervals
[0.05,0.1], [0.01,0.1] and [0.01,0.1], respectively, with val-
ues motivated by the results of our previous set of simula-
tions. The collective convergence of all 21 simulations is il-
lustrated in Fig. 10.

Our objective functional (Fig. 10a) has initial values that
range between∼ 1×10−1 and 2×10−1. We consistently ob-

serve a reduction of an order of magnitude or more in this
measure. Notably, the steepest decline is seen within the ini-
tial 50 iterations (cost ∼ 100). The simulations denoted as X
and XI exhibit the largest reduction, with a consistent re-
duction trajectory even when approaching iteration 200 (cost
∼ 400).

The final temperature misfit (Fig. 10b) exhibits different
trends to the objective functional. In the initial iterations,
the largest reductions in final misfit are observed for simu-
lations I and II, with simulation XII trailing behind. Despite
displaying a lower misfit reduction up until iterations 140 and
180 (cost ∼ 280–360), simulations X and XI eventually dis-
play a similar misfit by iteration 200 (cost ∼ 400). When we
turn to reduction in the initial misfit (Fig. 10c), an entirely
different trend comes to light: simulations I and II sustain
their reduction until around iteration 150 (cost ∼ 300), af-
ter which they plateau. Conversely, many other simulations
plateau at misfit values that are, on average, twice as high.

In our analysis, the reconstruction quality is predomi-
nantly governed by three key weighting parameters: sur-
face velocity misfit (αu), smoothing (αs) and damping (αd).
These parameters calibrate the significance of different ob-
jective terms in relation to the final temperature misfit term.
Thus, the primary metric to assess a reconstruction is the
simultaneous reduction in misfits for both initial and final
states. Incorporating the misfit associated with surface ve-
locities enhances the quality of the reconstructions, noting
that higher weightings of the surface velocities require higher
values of smoothing. Among the weighting parameters, αs is
shown to have the highest effect in convergence outcomes:
higher values for αs lead to over-regularisation, thereby lim-
iting the role of sensitivity information tied to misfit terms
in the solution. αd offers a more varied range of effective
values, which aligns with its role confined to thermal bound-
ary layers and, consequently, its lesser impact on the over-
all numerical domain. Therefore, Case I, characterised by
(αu,αs,αd)= (1×10−1,1×10−1,1×10−2), emerges as the
optimal set of weighting parameters for our reconstructions.

In contrast to the reduction of 3 orders of magnitude in
the misfit functions from the isoviscous experiment, our non-
linear experiment exhibits a modest reduction of O(1). The
key factor contributing to this is the extended total simula-
tion time for the non-linear experiment. Representing a far
longer reconstruction period, this implies more information
loss during the inversion process. Additionally, while the iso-
viscous experiment focused on a single temperature anomaly,
this simulation tackles whole-mantle convection, with nu-
merous and occasionally complex and highly time-dependent
anomalies, reflecting the more intricate visco-plastic rheol-
ogy. Nonetheless, this reduction of an order of magnitude in
misfit translates into a satisfactory reconstruction of the ini-
tial condition, demonstrating the efficacy and robustness of
the numerical approaches employed.

This is confirmed by visual inspection of the best recon-
struction model, with temperature, viscosity and surface nor-
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Figure 9. Second-order Taylor remainder test for convection with a temperature-, depth- and stress-dependent rheology. The semi-transparent
markers are cases where the relative solver tolerance of Newton solves (SNES) is set to 10−5. With such tolerances, perturbations beyond
solver tolerance exhibit divergence from the O(h2) trend. When setting this tolerance to 10−10 (larger solid markers), residuals show
accuracy of gradient information down to floating-point precision.

Figure 10. Summary of optimisation outcomes from 2-D annulus experiments. Panel (a) visualises the process of objective functional min-
imisation. Panel (b) illustrates the final misfit, representing the misfit between the reconstructed final temperature field and Tobs. Panel (c) de-
picts the initial misfit, indicating the difference between the reconstructed initial condition TIC and the reference initial condition. Notably,
despite significant reduction in the objective functional and final misfit in simulations XI and XII, these simulations do not perform as well
in terms of the initial misfit, which is a key measure in our experiments.

mal stresses presented and compared to the reference case in
Fig. 11 (marked case I in Fig. 10, using values of αu = 10−1,
αs = 10−1 and αd = 10−2). At t = 0, the reconstructed tem-
perature field exhibits upwelling and downwelling features
that are reconstructed in the correct locations, although tem-
perature anomalies are generally smoother than those of the
reference case (Fig. 11.1.A). The corresponding viscosity
field mirrors this smoothness despite capturing weaker con-
vergence zones at the surface. Despite these variations, the
spatial misfit is generally below 10−2 (Fig. 11.5.A) with er-
rors over 0.05 restricted to sharper features that are inevitably
smoothed in the reconstruction process. This smoothness

is also reflected in recovered surface normal stresses, with
highs and lows correctly positioned, albeit at longer wave-
lengths than the reference case.

Given the application of a free-slip boundary condition
at the surface of this simulation, a prominent outcome of
this set of experiments is the emergence of sharp subducting
slabs and weak zones at the top boundary as the simulation
evolves (Fig. 11.3.B and 4.B). The marked decrease in mis-
fit over time (Fig. 11.5.B) confirms the development of more
detailed convective patterns. As the simulation evolves, re-
constructed plume features become more precise, and recon-
structed surface normal stresses more closely resemble the
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Figure 11. Comparing the reference (1, 2) and the best reconstruction simulation (3, 4). Temperature and viscosity fields are shown in
panels (1, 3) and (2, 4), respectively. The misfit, which is the squared difference between the reconstructed and reference temperatures, is
shown in panel (5). To highlight the effectiveness of the reconstruction of the evolution of surface dynamic topography, a field representing
the normal stresses acting on the top boundary is visualised alongside the temperature fields in (1) and (3). The reconstruction simulation
employs values of αu = 10−1, αs = 10−1 and αd = 10−2 and is marked with I in Fig. 10.

reference case. This enhancement progresses up to the final
time step, where the reconstructed thermal field and surface
normal stresses are indistinguishable from those in the refer-
ence simulation, reflected via an order of magnitude reduc-
tion in the spatial misfit field.

4 Discussion

Robust reconstructions of the spatial and temporal evolu-
tion of Earth’s mantle and its diverse surface expressions
are critical to scientific progress across the geosciences. It
requires the construction of a digital twin: a vital instru-
ment for analysing and revealing the complex interplay be-
tween the mantle and Earth’s other systems. To this end,
the adjoint method provides the necessary means for obtain-
ing and analysing model sensitivities with respect to ear-
lier mantle states. A burgeoning number of studies exploit-
ing this methodology for reconstructions of mantle convec-

tion have emerged in recent years (e.g. Bunge et al., 2003;
Ismail-Zadeh et al., 2004; Liu et al., 2010; Spasojevic et al.,
2009; Li et al., 2017; Price and Davies, 2018; Ghelichkhan
et al., 2021). Nevertheless, the derivation, implementation
and validation of adjoint systems for coupled, non-linear,
time-dependent systems remain notoriously difficult. It is due
to these difficulties that existing applications of the geody-
namic adjoint method often include major simplifications,
either incorporating an oversimplified treatment of mantle
rheology (e.g. Colli et al., 2018; Ghelichkhan et al., 2021),
neglecting certain (coupling) terms in the adjoint equa-
tions (e.g. Ismail-Zadeh et al., 2004) or both (e.g. Liu and
Gurnis, 2010): they are therefore likely limited in their appli-
cability to realistic Earth scenarios. In this study, we leverage
the latest advances in scientific computing to overcome these
limitations and develop G-ADOPT, an open-source numeri-
cal framework for geoscientific adjoint reconstructions, de-
veloped in full compliance with FAIR (Findable, Accessible,
Interoperable, Reusable) principles (Wilkinson et al., 2016).
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G-ADOPT is underpinned by three primary software ele-
ments. The first is Firedrake (Ham et al., 2023), an automated
system for solving partial differential equations using the
finite-element method. In our previous work (Davies et al.,
2022) we examined the applicability of Firedrake to geo-
dynamical simulations, confirming its accuracy, efficiency,
extensibility and parallel scalability through comprehensive
benchmarks and state-of-the-art mantle convection simula-
tions. The second element is Dolfin-Adjoint (Farrell et al.,
2013a; Mitusch et al., 2019), a system that automatically gen-
erates the discrete adjoint from forward models designed in
Firedrake. Dolfin-Adjoint elevates the conventional abstrac-
tion of automatic differentiation from individual floating-
point operations to complete systems of differential equa-
tions, leveraging the high-level mathematical abstraction of
finite-element problems and their symbolic representation in
UFL (Alnæs et al., 2014). The adjoint systems derived by
Dolfin-Adjoint are UFL expressions and valid Firedrake in-
puts. Therefore, they inherit the parallel support native to the
forward model, which results in optimal computational effi-
ciency. The third element is the Rapid Optimisation Library,
ROL, a Trilinos package for large-scale optimisation prob-
lems (The ROL Project Team, 2022), enhanced herein with
intra-optimisation checkpointing functionality.

We have demonstrated the applicability of G-ADOPT for
time-dependent geodynamic reconstructions herein. The ob-
jective functional utilised in our reconstructions is com-
posed of two distinct misfit components. The first is a term
that quantifies the misfit corresponding to the observed fi-
nal state temperature field, analogous to the present-day tem-
perature field within Earth’s mantle as obtained through a
combination of mantle mineralogical models (e.g. Stixrude
and Lithgow-Bertelloni, 2011; Chust et al., 2017) and seis-
mic imaging (e.g. Rawlinson et al., 2010; French and Ro-
manowicz, 2014; Simmons et al., 2015; Bozdağ et al., 2016;
Koelemeijer et al., 2016; Fichtner et al., 2018). The sec-
ond term corresponds to observed surface velocities, accessi-
ble through plate tectonic reconstruction models (e.g. Müller
et al., 2019). Additionally, smoothing and damping terms
have been incorporated to enforce regularity in our solutions.

Our study analysed two sets of reconstructions of system-
atically increasing complexity. We first examined the evolu-
tion of a single ascending hot anomaly in an enclosed iso-
viscous square domain. By taking advantage of the simplic-
ity of the geometry and rheological properties, we were able
to deliver an in-depth examination of the gradients for each
term, including a parameter-space search to ascertain opti-
mal weighting parameters. Our results reveal a general con-
vergence of the solutions, notwithstanding substantial vari-
ations in convergence rates subject to the weightings. Addi-
tionally, although not detailed in this paper, we have explored
a number of different optimisation methods and parameters.
Through this comprehensive analysis, we are confident that
the problem possesses a stable solution that can be found
through an appropriate combination of weighting parame-

ters. The second set of reconstruction experiments explored
convection with a stress-, depth- and temperature-dependent
rheology at the convective vigour of Earth’s mantle, demon-
strating the feasibility of reconstruction studies for Earth’s
mantle with a non-linear rheology. The weightings selected
for this series of experiments were broadly consistent with
the first set. Given the success at reproducing surface veloci-
ties and normal stresses, our findings suggest that reconstruc-
tion models of Earth’s mantle can serve as a powerful means
for probing changes in the landscape at Earth’s surface in-
duced by mantle dynamics (e.g. Friedrich et al., 2018; Hog-
gard et al., 2021; Davies et al., 2023).

In both experimental sets, we assessed the numerical effi-
ciency of our framework by evaluating the cost ratio between
forward and adjoint calculations. In the first set, our results
produced a ratio of 2.01, aligning with the theoretical effi-
ciency of 2.0 (e.g. Naumann, 2011). In the second set, where
we solved the non-linear forward equations, we observed a
ratio of 1.45. This efficiency is attributed to the linearised
nature of the adjoint method: even when applying non-linear
rheologies in the forward equations, the adjoint equations re-
main linear. We also conducted second-order Taylor remain-
der convergence tests for each of the objective functional
terms to validate the adjoint calculations. We note our con-
vergence is accurate down to floating-point precision, consis-
tent with results presented by Coltice et al. (2023). Our as-
sessments demonstrate the accuracy of the derivative calcu-
lations (Figs. 4 and 9). These Taylor remainder convergence
tests provide a robust basis for future validations of geody-
namic adjoint frameworks.

Our experiments incorporate two significant simplifica-
tions relative to realistic-Earth scenarios, which were nec-
essary to facilitate the number of reconstruction simulations
analysed: (i) the use of a 2-D computational domain and
(ii) the application of the Boussinesq approximation instead
of more pertinent approximations such as anelastic-liquid
approximations (e.g. Jarvis and McKenzie, 1980). Never-
theless, the composable nature of G-ADOPT should allevi-
ate any concerns regarding the extensibility of our frame-
work to these more realistic problem sets. Our prior work in
Davies et al. (2022) demonstrates the flexible nature of our
approach: for example, transitioning our 2-D annulus sim-
ulations to a 3-D spherical shell domain can be achieved
via changes to only a few lines of Python. The applica-
tion of G-ADOPT for reconstructing Earth’s mantle evolu-
tion using non-linear rheologies and compressibility will be
the subject of future investigations, although we note that
the forward modelling approach has already been developed
(Davies et al., 2022). Moreover, our framework is extend-
able to various other problems in geodynamics. These in-
clude utilising principal stress directions (e.g. Reuber et al.,
2020), surface plate velocities (e.g. Ratnaswamy et al., 2015;
Bocher et al., 2018) and/or residual depth measurements (e.g.
Panasyuk and Hager, 2000; Spasojevic et al., 2009) to ex-
plore the mantle’s rheological properties and to study the
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visco-elastic adjustment of Earth’s surface in response to
the melting of Earth’s polar ice sheets (Al-Attar and Tromp,
2014; Martinec et al., 2015, e.g.) and post-seismic deforma-
tion following significant subduction earthquakes (e.g. Saba-
dini and Vermeersen, 1997).

Reconstructing past mantle states is fraught with substan-
tial theoretical and practical challenges. In this study, we
targeted some of these theoretical and practical hurdles by
introducing G-ADOPT. Nevertheless, significant obstacles
exist that are beyond the scope of this work. We predi-
cated our work on zero uncertainty in our reference fields
(i.e. the present-day temperature field and past surface ve-
locities), thereby committing what is known as the “inverse
crime” (Colton et al., 1998), a term used to describe the situa-
tion when the code employed in the inversions is also utilised
to generate reference simulations. Estimation of the present-
day mantle state from seismic imaging and the assumptions
regarding the thermal and compositional interpretation of
seismic heterogeneity are both fraught with considerable un-
certainty (e.g. Styles et al., 2011; Mosca et al., 2012; Zaroli
et al., 2013; Davies et al., 2015). Furthermore, plate tectonic
reconstructions can be uncertain, particularly further back in
time and within the Pacific region (e.g. Shephard et al., 2012;
Williams et al., 2015; Tetley et al., 2019). However, the ex-
istence of seafloor spreading isochrons up to approximately
125 Ma for all major plates provides confidence in modelling
relative plate movements in more recent geological peri-
ods (Seton et al., 2020). An uncertainty impact study carried
out by Colli et al. (2020) posits that the presence of uncertain-
ties causes reconstructed and reference flow histories to di-
verge exponentially back in time, with unrealistic structures
materialising within and adjacent to thermal boundary lay-
ers. To minimise these impacts, Colli et al. (2020) advocate
for terminating the optimisation after a few iterations. Here,
however, the inclusion of regularisation terms in the objec-
tive functional mitigates these impacts, effectively constrain-
ing the reconstruction to a smoother solution. This becomes
particularly advantageous in real-Earth applications where
observational constraints become sparser and more uncer-
tain back in time. Without a smoothing term, the solution to
the initial condition can contain high-frequency noise, which
would diffuse over the course of the simulation. Smoothing
therefore drives the solution towards a longer-wavelength ini-
tial state whilst maintaining sensitivity to shorter wavelength
information recorded in seismic tomography images.

Moreover, by formally introducing past surface velocities
into the objective functional, we infuse sensitivity informa-
tion that propagates further back in time, refining the flow
trajectory to improve the accuracy of reconstructions in the
upper thermal boundary layer region. This sets our approach
apart from the method used in previous adjoint reconstruc-
tion simulations (e.g. Vynnytska and Bunge, 2015; Zhou and
Liu, 2017; Ghelichkhan et al., 2021), where the sequential-
in-time nature of plate velocity assimilation can improve flow
trajectories only forward in time. Despite this, it is crucial

to recognise that observed surface velocities are the result
of a complex force balance, including contributions from
within Earth’s mantle and at Earth’s surface, including those
at plate boundaries, such as the genesis and destruction of
orogenies, which have been associated with rapid changes
in plate velocities (Colli et al., 2014; Iaffaldano and Bunge,
2015). These forces are not captured in current state-of-the-
art spherical mantle convection models. Although our inver-
sions utilise absolute plate velocities – thereby accounting for
the majority of the forces driving surface movements – it is
essential to emphasise that constraints on Earth’s present-day
thermal field must be prioritised as the primary data source
for such inversions.

Our study lays the foundations for exploring several unre-
solved geodynamical questions. Previous research has shown
that prescribing plate tectonic reconstruction velocities as a
top boundary condition improves the precision of mantle re-
construction models and diminishes noise (e.g. Colli et al.,
2015; Taiwo et al., 2023). Our framework formally incorpo-
rates these constraints through misfit terms, and future stud-
ies should compare this with other methods to find the most
efficient way to integrate these valuable data. Earlier research
advocates solving the reduced adjoint system, effectively
considering velocities as insensitive to initial conditions (e.g.
Ismail-Zadeh et al., 2004; Liu et al., 2008). The second-order
Taylor remainder convergence tests, examined herein, pro-
vides a robust foundation for evaluating the accuracy of such
simplifications. Furthermore, our framework sets the stage
for including hitherto unused observations within our inver-
sions, such as geochemical constraints on mantle tempera-
ture and pressure (Ball et al., 2021). This stems from the
design principle of composable abstractions in the software
packages used in G-ADOPT, ensuring all components’ mod-
ularity, interoperability, reusability, scalability and maintain-
ability. Specifically, Firedrake emphasises a clear separation
between using the finite-element method and implementing
it. Dolfin-Adjoint automates the derivation and computation
of the adjoint systems using high-level symbolic language,
ensuring the same advanced strategies that are applied for the
forward calculation are utilised in the adjoints. Finally, ROL
offers large-scale optimisation algorithms that seamlessly in-
tegrate with Firedrake and Dolfin-Adjoint. Their integration
through G-ADOPT is a ground-breaking development that
opens up adjoint problems to a new class of user and devel-
oper.

5 Conclusions

Transitioning from idealised forward models to data-driven
simulations necessitates an inverse approach that rigorously
incorporates observational constraints and their uncertain-
ties. The adjoint method has emerged as a key technique
for optimising unknown model parameters against observa-
tional data (e.g. Bunge et al., 2003). In this context, we intro-
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duce the Geoscientific ADjoint Optimisation PlaTform (G-
ADOPT), which capitalises on cutting-edge developments in
computational sciences, particularly through innovations in
Firedrake (e.g. Rathgeber et al., 2016; Davies et al., 2022),
Dolfin-Adjoint (Farrell et al., 2013a; Mitusch et al., 2019)
and the Rapid Optimisation Library (ROL) (The ROL Project
Team, 2022).

Our investigation, validated by two distinct sets of twin
experiments, demonstrates G-ADOPT’s efficacy in deducing
the initial conditions for mantle flow and tracing its progres-
sion through space and time. These synthetic experiments
leverage misfit terms to integrate both contemporary con-
straints across the computational domain and temporal con-
straints at Earth’s surface. Additionally, we explored regular-
isation techniques to modulate the amplitude and complex-
ity within the optimal solution. Notwithstanding the simpli-
fications made (e.g. neglecting compressibility and 3-D ge-
ometry), G-ADOPT’s architecture allows for straightforward
adaptation to more complex scenarios with minimal modi-
fications to the Firedrake forward model (as evidenced by
Davies et al., 2022), alongside automated adjoint derivation
and computation via Dolfin-Adjoint. The employment of the
second-order Taylor remainder convergence test further cor-
roborates our methodology, establishing a precedent for the
advancement of geodynamic adjoint frameworks and facili-
tating prompt validation of adjoint models for more complex
analyses.

Historically, geoscientific modelling frameworks were tai-
lored to specific equations, which limited their application
across disciplines. The current progress in adjoint-based
techniques, crucial for data assimilation, sensitivity analy-
sis and optimisation, has markedly benefited meteorology
and oceanography, though similar progress in other fields
has been hindered by derivation and implementation chal-
lenges. G-ADOPT’s modular design seeks to bridge these di-
vides. Its components are designed for ease of assembly and
reusability, promoting a culture of modular, interoperable,
scalable and maintainable methods and frameworks. This
philosophy ensures that G-ADOPT can be readily adapted
to a broad spectrum of geoscientific research areas.

Code and data availability. For the specific components of G-
ADOPT, including the full scripts of the simulations used in this
paper, see https://doi.org/10.5281/zenodo.10050733 (Gibson et al.,
2023). For the specific components of the Firedrake project used in
this paper, see https://doi.org/10.5281/zenodo.10047031 (firedrake-
zenodo, 2023).
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