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Abstract. NOx is an important primary air pollutant of ma-
jor environmental concern which is predominantly produced
by anthropogenic combustion activities. NOx needs to be ac-
counted for in national emission inventories, according to
international treaties. Constructing accurate inventories re-
quires substantial time and effort, resulting in reporting de-
lays of 1 to 5 years. In addition to this, difficulties can arise
from temporal and country-specific legislative and protocol
differences. To address these issues, satellite-based atmo-
spheric composition measurements offer a unique opportu-
nity for the independent and large-scale estimation of emis-
sions in a consistent, transparent, and comprehensible man-
ner. Here we test the multi-source plume method (MSPM)
to assess the NOx emissions over Germany in the COVID-
19 period from 2019–2021. For the years where reporting is
available, the differences between satellite estimates and in-
ventory totals were within 75–100 kt (NO2) NOx (< 10 % of
inventory values). The large reduction in the NOx emissions
(∼ 15 %) concurrent with the COVID-19 lockdowns was ob-
served in both the inventory and satellite-derived emissions.
The recent projections for the inventory emissions of 2021
pointed to a recovery of the 2021 emissions towards pre-
COVID-19 levels. In the satellite-derived emissions, how-
ever, such an increase was not observed. While emissions
from the larger power plants did rebound to pre-COVID-19
levels, other sectors such as road transport did not, and the
change in emissions is likely due to a reduction in the num-

ber of heavier transport trucks compared to the pre-COVID-
19 numbers. This again illustrates the value of having a con-
sistent satellite-based methodology for faster emission es-
timates to guide and check the conventional emission in-
ventory reporting. The method described in this work also
meets the demand for independent verification of the official
emission inventories, which will enable inventory compilers
to detect potentially problematic reporting issues, bolstering
transparency and comparability, which are two key values for
emission reporting.

1 Introduction

Nitrogen monoxide (NO) and dioxide (NO2) play an impor-
tant role in the atmospheric chemistry as they influence the
abundance of tropospheric ozone (Seinfeld and Pandis, 2006)
and lead to aerosol formation. These primary air pollutants
are collectively called nitrogen oxides (NOx≡NO+NO2).
Since NO2 is for the most part formed primarily through
rapid oxidation of NO, their concentrations are strongly re-
lated. NO2 is a major source of air pollution, and exposure
can result in significant health problems that cause an as-
sociation between long-term exposure and reduced life ex-
pectancy (Atkinson et al., 2018; Belch et al., 2021). Hence,
objective concentration limits are set by the European Union
on the hourly (200 µgm−3) and yearly (40 µgm−3) NO2 ex-
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posure levels, with recent World Health Organization (WHO,
2021) limits reducing the annual mean limit to 10 µgm−3.
As well as adverse health effects, NO2 also places a strain
on the environment through soil and water acidification and
eutrophication (Galloway et al., 2003).

Many anthropogenic activities contribute to the atmo-
spheric NO2 concentration since NO2 is formed in combus-
tion processes where air (being about 80 % nitrogen) is the
oxidant. Natural sources of NOx include lightning and soil
emissions. The main sources of NOx emissions are the in-
ternal combustion engines that burn fossil fuels in motor ve-
hicles and industry. The overall atmospheric evolution and
budget of NOx in the atmosphere has been determined with
ever-increasing accuracy over the last few decades. National
environmental agencies are required to monitor the level of
NOx and the contribution of human activity to it according
to international agreements, such as the Convention on Long-
Range Transboundary Air Pollution (CLRTAP, https://unece.
org/environment-policy/air, last access: 1 November 2022)
by the United Nations Economic Commission for Europe
(UNECE). Efforts undertaken to limit NOx emissions have
resulted in strong reductions in the ambient NO2 concentra-
tion in many parts of the world (Jamali et al., 2020).

Inventories of NOx emissions are commonly compiled us-
ing a bottom-up approach based on proxies, as well as di-
rect emission measurements, for example, in stacks. Retriev-
ing data at detailed levels and the creation of representative
emission factors that translate an activity into emissions is,
however, a very labour-intensive task. For example, emis-
sions from road transport depend on several factors such as
fleet composition, type of fuel, engine maintenance and de-
sign, outside temperature, usage profile, and road conditions.
New technology standards, reported numbers, and real-life
measures (or lack thereof compared to emission estimates)
are slow to be incorporated in the emission inventories, as
they need to fulfil the good practice guidelines of the re-
spective protocol commonly agreed upon by the EU mem-
ber states. Therefore, inventories cannot reflect the latest ac-
tual emission trends in “near-real time”. This is problematic,
especially when large deviations from business-as-usual sce-
narios occur, which are then only reflected in the invento-
ries with a great time lag. For example, air quality forecasts
depend on accurate emission inventories to represent these
changes. A recent example is the large changes in emissions
following the COVID-19 lockdowns and the post-lockdown
recovery phase of the emissions, which are both poorly rep-
resented in current air quality applications (Goldberg et al.,
2020; Griffin et al., 2020; Barré et al., 2021).

A potential solution to speed up the creation of up-to-date
emissions from inventories, in a harmonized way, is the us-
age of satellite observations of air pollutants (Beirle et al.,
2011; Fioletov et al., 2011; Mijling et al., 2009; Miyazaki
et al., 2012; McLinden et al., 2016; Goldberg et al., 2019;
Griffin et al., 2020; Dammers et al., 2019; Ding et al., 2020)
which can be used to verify the reported emissions, constrain

emission sources, and analyse trends. Furthermore, meth-
ods that allow for independent verification can potentially
be used to trace and reveal significant discrepancies in the
current emission inventories and have proven to be accurate.
An example would be the “dieselgate” scandal (Jonson et al.,
2017) which revealed that diesel cars had been emitting at
least 4 times more NOx in on-road driving than in approval
tests. Timely verification of the inventories could potentially
identify such discrepancies more rapidly.

Over the past decade, the data availability of satellite-
based atmospheric composition measurements has increased
tremendously. Furthermore, due to increased instrument sen-
sitivity and spatial and temporal resolution, these satellite-
based measurements are becoming more and more attractive
for air quality monitoring and emission studies. Recent scien-
tific developments have shown the viability of various meth-
ods in estimating emissions based on satellite observations.
In the case of NOx , the earliest methods were mostly devel-
oped to estimate the emissions of individual point sources
(Beirle et al., 2011), followed by regional estimates at lower
spatial resolutions (Mijling et al., 2009; Miyazaki et al.,
2012). The more recent TROPOspheric Monitoring Instru-
ment (TROPOMI), with its unprecedented spatial resolution
of 3.5 × 5.5 km2, improved the resolvability of individual
and clusters of emission sources (Ding et al., 2020; McLin-
den et al., 2024).

The TROPOMI NO2 product offers an inventory indepen-
dent source to verify NOx emissions. These observations
of spatiotemporal trends offer the possibility for inventory
agencies to independently check their findings on, for ex-
ample, emission reduction in NOx throughout the country
without having to rely on bottom-up inventory data products,
such as the Emission Database for Global Atmospheric Re-
search (EDGAR) (Crippa et al., 2019), the Copernicus Atmo-
spheric Monitoring Service (CAMS) database (Granier et al.,
2019; Kuenen et al., 2022), or other country-specific gridded
data products like the Gridding Emission Tool for ArcGis
(GRETA) (Schneider et al., 2016). Fast-changing spatiotem-
poral patterns may only be captured by spaceborne data in a
timely manner in comparison to the abovementioned gridded
data products.

A major driver behind the research work presented here is
the provision of a tool, developed for the Umweltbundesamt
(UBA, German Environment Agency), to compare satellite-
derived emissions with inventory emissions for air pollutants
in order to verify the bottom-up computed emissions with in-
dependent data from spaceborne measurements. This should
help inventory compilers to build trust in their work and
identify potentially problematic issues in case large devia-
tions between inventory data and spaceborne data trends are
present. Furthermore, the tool should allow for fast checks if
a country is compliant with its national air pollutant reduc-
tion targets, which have been initiated by the EU (EU, 2022),
or if adjustments need to be made (Dore, 2022).
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In this study, we apply one of the more recently de-
veloped methods (Fioletov et al., 2017) to TROPOMI
NO2 observations to derive the NOx emissions for Ger-
many for the period of 2019–2021. The plume-based fit-
ting method relies on wind data and a parameterization
of multiple Gaussian plumes originating from correspond-
ing point sources to estimate the strength of the emis-
sions at these point source locations. These estimates are
then compared to the emissions in the current invento-
ries for 2019 and 2020, as well as the projected emis-
sions of 2021, to assess their validity and analyse the ex-
pected variations due to the COVID-19 lockdowns. The
plume-based fitting routine is part of an open-access stan-
dalone tool (UBA Emissionssituation/Development/space-
emissions, GitLab (http://opencode.de, last access: Novem-
ber 2022)). Besides the plume-based fitting routine, two ad-
ditional methods were implemented during the development
phase, which is a simple mass-balanced approach for which
we coined the term “naive method”, and the divergence ap-
proach, as described by Beirle et al. (2019). Furthermore, the
simple mass-balanced method was employed in an online
web tool (https://space-emissions.net/, last access: Novem-
ber 2022) geared towards emission inventory agencies that
are interested in comparing their national total emissions to
an independent, yet easily comprehensible, spaceborne emis-
sion estimate. More details on the implementation and com-
parison of these methods can be found in Dammers et al.
(2023). In this study, we focus on the results of the plume-
based fitting method.

2 Methodology and datasets

2.1 Datasets

2.1.1 Emission inventory

The reporting of the national air pollutants follows in-
ternational guidelines that are available via the European
Monitoring and Evaluation Programme (EMEP) Centre
on Emission Inventories and Projections (https://www.ceip.
at/reporting-instructions, last access: 1 November 2022).
The reported inventory data for Germany, in the form of
the detailed informative inventory report (IIR), describ-
ing the technical methodology may be found at https://iir.
umweltbundesamt.de/2022/ (last access: 1 November 2022).

The data are arranged in time series per gas species, con-
sidering the different emission sources of NOx in sectors
such as, for example, public power, industry, and traffic in
a very detailed, disaggregated form at the national level. The
bottom-up creation of these inventories is driven by statis-
tical data provided by the German Federal Statistical Office
(Destatis), and complex models use this data to compile the
emissions for a specific gas (or aerosol) for a specific emis-
sion source in a specific sector and year. The uncertainties

for each reported emission source depend on the availability
of the data used for the emission calculation and may vary
considerably. As an example, uncertainties in emissions from
sectors, which are quite accurately described by statistical
data and models such as emissions from large power plants,
show much lower uncertainties than sectors that are governed
by a great complexity such as the natural variability in the
NOx from agricultural emissions in soils (e.g. uncertainties
can be more than 300 % for agricultural soils; UBA, 2023).

In this study, both the gridded (CLRTAP, 2021) and non-
gridded (CLRTAP, 2022) reported emission datasets are re-
trieved directly from the respective Convention on Long-
range Transboundary Air Pollution (CLRTAP) inventories,
which follow the Nomenclature for Reporting (NFR) stan-
dard. The gridded dataset is only available for 2019, while
the non-gridded data are available for both 2019 and 2020.
The 2021 data are a prognosis based on the trends observed
between 2012–2019 for all emission classes under the as-
sumption that the patterns in most emission sectors rebound
after the 2020 COVID-19 lockdowns. An overview of the rel-
ative contributions of individual sectors to the total gridded
emissions is shown by sector in Fig. A1.

All emissions except the MEMO items (MEMO items are
additional reported emissions on non-standard emission such
as volcanoes and forest fires) are selected from the CLRTAP
inventories. Two natural sources are added to this set, namely
non-agricultural soils and lightning. Globally, the lightning
NO constitutes about 3 % of the total NOx emission budget
(EEA, 2019). According to the guidebook (EEA, 2019), only
20 % of the lightning NO is formed in the lowest 1000 m of
the atmosphere and the remaining 80 % at higher altitude (all
inter-cloud lightning above 5 km height). A rough estimate
for the lightning emissions can be made on the basis of the
number of flashes per kilometre squared and the expected
NOx emissions released per flash. A study by Anderson and
Klugmann (2014) gives an average of about two flashes per
kilometre squared throughout Germany, with fewer flashes in
the central and northern parts. Assuming that on average the
number of lightning flashes did not increase significantly in
combination with a production of about 180 mol NO per flash
(Bucsela et al., 2019) and a German surface area of about
357 000 km2 gives us a German lightning NOx emission to-
tal of about 5 kt (NO2) NOx per year. This emission total is
very minor and spread out over a large domain and is not ex-
pected to be a significant source of error when comparing the
satellite-derived emission estimates with the emission inven-
tory. From this point forward in this work, kt (NO2) NOx is
written as kt NOx .

Due to widespread nitrogen pollution and deposition
in Germany, it is complicated to make an estimate of
purely non-anthropogenic and non-agricultural soil emis-
sions. There are several studies that looked at soil NOx emis-
sions for the European domain, which are mostly based on
the anthropogenic emissions Yienger and Levy (1995) re-
ported but with few that focus on purely natural emissions.
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Simpson et al. (1999) gave an estimate of 3–90 kt NOx for
forest emissions and 20 kt NOx for grassland soils. This es-
timate was more recently updated by Simpson and Darras
(2021) and is available as the CAMS-GLOB-SOIL inven-
tory (Simpson, 2022), with a reported 2018 German emission
total of about 160 kt NOx . Within the inventory, the emis-
sions are split between fertilizer-induced, biome, deposition-
related, and pulsed-soil emissions. There is always a dan-
ger of double counting such emissions, but the fertilizer-
induced emissions of 100 kt NOx match closely to those in-
cluded within the 2019 GNFR (Gridded Nomenclature for
Reporting) data of approximately 110 kt NOx (classed under
L_AgriOther sources). The remaining 60 kt of NOx per year
is a combination of biome, deposition-related, and pulsed-
soil emissions. The non-agricultural source emissions are
quite uniformly distributed throughout Germany, peaking
somewhat towards the northeastern part of the country. Note
that Simpson and Darras (2021) stress that the derived soil
emissions still have a large uncertainty range, mostly related
to a lack of observations, missing data for some biomes, and
the uncertainty in the input parameters such as soil tempera-
tures. Annual variations are expected to be large, depending
on variations in the soil temperatures. Simpson and Darras
(2021) do not provide an upper and lower range of the emis-
sions.

Additionally, we use the European Pollutant Release and
Transfer Register (E-PRTR) for the emission locations and
strengths of the largest industrial emission sources within
Germany. The latest dataset (v18) can be accessed via
https://www.eea.europa.eu/data-and-maps/data/industrial-
reporting-under-the-industrial-6 (last access: 1 Novem-
ber 2022). Only sources with an emission strength above
0.25 kt NOx per year are selected for later comparison to the
satellite-derived emissions. Note that the most recent data
available are based on reported emissions of the year 2017,
and thus we only use the data as a rough indication of source
strength.

2.1.2 TROPOMI NO2

The TROPOMI instrument, on the Sentinel-5P satellite
platform, was launched on 13 October 2017. The satel-
lite instrument achieves almost full daily coverage of
the globe through a sun-synchronous orbit with a local
overpass at around 13:30 LST (Veefkind et al., 2012).
TROPOMI has an unprecedented horizontal resolution
of 3.5 × 5.5 km2 for the NO2 product. Details on the
retrieval are described in the Copernicus user manu-
als (Algorithm Theoretical Basis Document, ATBD,
https://sentinels.copernicus.eu/documents/247904/2476257/
Sentinel-5P-TROPOMI-ATBD-NO2-data-products, last
access: 1 November 2022), as well as in earlier publications
such as van Geffen et al. (2022). The TROPOMI NO2 op-
erational product has three data streams: the near-real-time
product available within 3 h (NRTI), the offline (OFFL)

version that follows 1 d later and receives a more stringent
quality control (now spanning 2019–2021), and a complete
reprocessed version that is provided at more irregular inter-
vals (RPRO or reprocessed, April 2018–November 2018).
Over time, several improvements in the retrieval algorithm
lead to processor updates and new product versions. Finally,
independently from the operational steams, a reanalysis
of the full dataset with the most up-to-date retrieval al-
gorithm became available at the end of 2021, named the
PAL product, which is currently available until the end of
November 2021, connecting seamlessly to OFFL v2.3.1
from November 2021 to July 2022. The TROPOMI NO2
product went through several upgrades concerning its
product versions over the years, with the most recent three
upgrades from version v1.3.2 to version v1.4.0, then v2.2.0,
then v2.3.1, and then v2.4.0 taking place, respectively, in
November 2020, July 2021, November 2021, and July 2022.
The most recent upgrade to version 2 involved a more major
overhaul that greatly improved the overall quality of the
retrieval (van Geffen et al., 2022; Zhao et al., 2022).

The TROPOMI NO2 PAL product includes a reanalysis of
the earlier data and provides a consistent version through-
out (v2.3.1). This product is recommended to be used for
any longer time series analysis and has been used in this
study. We combine this product with 2 months of the newest
OFFL data (v2.3.1) to complete the data series for 2021.
The PAL product is available through the PAL data por-
tal (https://data-portal.s5p-pal.com/, last access: 1 Novem-
ber 2022).

The quality of the TROPOMI NO2 PAL and OFFL prod-
ucts based on the v2.3.1 processor version is discussed by
van Geffen et al. (2022). Furthermore, the previous dataset
versions 1.2.x and 1.3.x were relatively well validated
(Verhoelst et al., 2021). The TROPOMI NO2 data correlate
well when compared to ground-based MAX-DOAS and
PANDORA instruments (Verhoelst et al., 2021) but tend to
show an underestimation of the tropospheric column. The
median negative bias ranges from −15 % to −35 % in most
clean to slightly polluted regions and up to −50 % over
highly polluted regions for versions 1.2.x and 1.3.x. This
bias is reduced in the PAL dataset (van Geffen et al., 2022),
with reported improvements for the tropospheric columns
from an average low bias of −32 % to −23 %. The range of
the differences for individual sites are, however, quite wide
with, for example, MAX-DOAS in De Bilt, the Netherlands,
showing a range of around−75 % up to around+50 % (25th
and 75th percentiles) with a median of around −20 %. The
negative bias can be explained by the low spatial resolution
of the a priori profiles, as well as the treatment of clouds
and aerosols in the retrieval Lange et al. (2023). As for the
TROPOMI data quality criteria, the requirements recom-
mended in the ATBD were used, which means observations
with a cloud fraction below 0.03 were used, based on the
cloud_fraction_crb_nitrogendioxide_window
variable in the data files. Furthermore, observations with a
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Figure 1. TROPOMI NO2 (PAL product, v2.3.1) year-averaged vertical column density concentrations over Germany for the years 2019–
2021.

quality value (qa_value) below 0.75 were filtered from
the dataset. It is important to note that the MAX-DOAS
and PANDORA instruments are not completely free of
bias themselves; however, the ground-based instruments
typically have much lower uncertainties than the TROPOMI
NO2 product, as stated in Verhoelst et al. (2021).

Figure 1 shows yearly averages of the TROPOMI NO2
(PAL, v2.3.1) data. Here the reduced column densities that
occur concurrent with the COVID-19 lockdown measures in
2020 is clearly visible. The industrialized Ruhr valley at the
western border of Germany shows far reduced levels of NO2
if compared to 2019. The same is also observed in the in-
dustrial centres further to the south-southwest, which almost
vanishes in 2020 and shows only a very slow recovery of
emissions in 2021.

2.1.3 Wind data

The methodology in this study makes use of the wind ro-
tation approach, as explained in detail in Pommier et al.
(2013), Fioletov et al. (2015), and Dammers et al. (2019).
The required wind data are taken from ECMWF’s ERA5
dataset (Hersbach et al., 2020, 2018) which was downloaded
at a 0.25°× 0.25° resolution and 1 h temporal resolution.
To match each of the satellite footprints, the meteorological
fields are interpolated (spatially and temporally) to each of
the observations. We assume that the majority of the NOx
mass from local emissions is located in the lower bound-
ary layer (Beirle et al., 2019; McLinden et al., 2024; Griffin
et al., 2020), and for the transport of NOx , an average of the
wind fields of the first 100 hPa (around the first kilometre) is
taken above the surface. These are approximately the levels
between∼ 1000–900 hPa for a typical sea level location, and
for a location with a surface pressure of 800 hPa, winds be-
tween 800 and 700 hPa are averaged. The surface pressure at
the location of the satellite observations is used to determine
the 100 hPa layer.

2.2 Emission estimation tool

The plume-based fitting routine presented here was devel-
oped together with two other methods to form the core of the
satellite-based emission tool as developed for the UBA. The
other two methods are a simple mass-balanced approach,
which was coined the naive method, and a third method,
which is the divergence approach described by Beirle et al.
(2019). The tool is available in two forms, namely the
aforementioned open-access standalone offline tool (UBA
Emissionssituation/Development/space-emissions, GitLab
(http://opencode.de, last access: 10 May 2024)) and an on-
line web tool. The focus in this study is on the plume-based
fitting method. More details on the other methodologies and
inter-comparison of these other methods can be found in
Dammers et al. (2023). The tool is offered as a web-based
application available at https://space-emissions.net/ (last
access: November 2022). The data processing is hosted
by the German national Copernicus data service initiative
(https://code-de.org/de/, last access: November 2022), which
offers a direct link to the required Sentinel-5P data products
especially tailored for governmental agencies of Germany.
This web-based application tool is directly targeted at users
from the emission inventory community and, therefore,
uses the TEMIS monthly L3 data product available at
https://www.temis.nl/ (last access: November 2022). The
design of the tool is based on a modular structure that
encourages later additions of other compatible air pollutants
to the tool chain, such as SO2, or additions of more technical
and more computationally demanding methods, other than
the mass-balanced technique employed currently in the
online tool, in later development steps. This was necessary
as it offers a concise development framework to which more
advanced techniques may be added later on, as driven by the
emission inventory community.

The online tool works as follows (also shown in Fig. 2): a
user is required to select the country of the world that they
want to target with their analysis, as well as the desired air
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Figure 2. Screenshots from the satellite-based emissions tool https://space-emissions.net/ (last access: November 2022) for Germany.
Panel (a) illustrates the interface and the visualization of the result. While panel (b) illustrates the result in context with respect to the
reported NOx values.

pollutant (in this case NO2), from the respective dropdown
menus of the processing options (online) or by providing
a shapefile of the region of choice (offline). After that, the
time span for the observations needs to be selected, covering
the period for which the data are available. The user initiates
the computation, which returns the analysis results to the
graphical user interface. The user may then download the
graphical results, as well as the analysis results, as a comma-
separated value (.csv) file and/or other ancillary data using
the post-processing options (netCDF4 files). Advanced users
and software developers are also encouraged to visit UBA
Emissionssituation/Development/space-emissions, GitLab
(http://opencode.de, last access: 10 May 2024) for the source
code of the project.

2.2.1 Multi-source plume method (MSPM)

Emissions were derived using the multi-source plume
method (MSPM) (Fioletov et al., 2017; McLinden et al.,
2024; Dammers et al., 2022), which was originally developed
by Fioletov et al. (2017) and can be used for an assessment of
emissions from both area and point sources. For a more de-
tailed explanation, we refer readers to those publications. In
short, the method relates observations and emission sources
by creating a linear system of plume functions, which effec-
tively establish a system of source and receptor relations in
which the total tropospheric column density of each observa-
tion is described as a combination of the total column densi-
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ties of all source plume functions. This is expressed as

Ax = B, (1)

where A is the linear system of source–receptor relations, x

is the emission sources, and B is the satellite-observed ver-
tical column density (in our case the TROPOMI NO2 tropo-
spheric columns). Several additional terms can be incorpo-
rated in x to account for regional product biases and for back-
ground concentrations. While the TROPOMI NO2 product
does have local biases, the small number of validation sta-
tions hampers an accurate determination and correction for
the product bias. To account for the bias, we apply a correc-
tion on an overpass to overpass basis, following Beirle et al.
(2019), removing the lowest 5 % of the observed total col-
umn density within the larger domain. The short lifetime of
NO2 ensures that further corrections to background concen-
trations are not needed.

Any plume function can be used to represent the relations
in matrix A; here we use the exponentially modified Gaus-
sian (EMG) plume function, which has been successfully ap-
plied in previous studies (de Foy et al., 2014; Fioletov et al.,
2017; McLinden et al., 2020; Dammers et al., 2019). Using
this method, observations are rotated around a single point,
the emission source, so that each is positioned in a similar
upwind–downwind frame (Pommier et al., 2013) with re-
spect to the wind direction. This enables us to describe the
position of each observation as a point within a downwind
plume. For more details on the plume rotation method see,
Fig. S4 in Pommier et al. (2013). The EMG plume function
describes the vertical column density (VCD) concentrations
downwind of a source. The VCD at each position x,y near
a source can be described by Eq. (2), where a represents
the emission enhancement, f (x,y) the crosswind diffusion
(Eq. 4), and g(y,s) (Eq. 6) a convolution of the downwind
advection and diffusion. Within all functions, x represents
the crosswind position, y the downwind position, and s the
wind speed.

V (x,y,s)= a · f (x,y) · g(y,s)+B, (2)

σ1 =

{ √
σ 2− 1.5y ,y < 0

σ ,y ≥ 0
, (3)

f (x,y)=
1

σ1
√

2π
exp

(
−
x2

2σ 2
1

)
, (4)

λ1 =
λ

s
, (5)

g(y,s)=
λ1

2
exp

(λ1(λ1σ
2
+ 2y)

2

)
erfc

(λ1σ
2
+ y

√
2σ

)
. (6)

Parameters σ and λ represent the plume spread and decay
rate of NO2, with τ = 1/λ being the decay time or lifetime.
The parameters σ1 and λ1 shown in Eqs. (3) and (5) represent
the adjusted form of a plume upwind of the source (σ1) and
the decay rate divided by the wind speed (λ1). Each observa-
tion j can then be described by the sum of the enhancements

of all sources i, forming Eq. (7).

ColumnNO2 j (ψj ,θj ,sj )=
∑
i

aif (xi,j ,yi,j )g(yi,j , sj )+Bi,j (7)

The emission rate of each source i can then be calculated by
dividing the emission enhancement ai by the decay rate τ ;
E = a/τ = aλ.

In this work, a grid with a resolution of 0.1°× 0.1° is used
to describe the emission, covering the full domain of Ger-
many, with a 2° padding added to the edges to reduce any
edge effects (Dammers et al., 2022). The resolution is chosen
as a compromise between computational burden, the limita-
tions of the instrument, the level of detail required, and the
conditioning of the linear system in Eq. (1).

The lifetime of NOx depends on both the chemical decay
rate and loss to surfaces (dry deposition). Within our domain
of interest, the chemical decay will be the dominant factor.
Commonly used lifetimes in the literature are typically based
on either modelled lifetimes or derived lifetimes from (satel-
lite) observed plumes. Modelled lifetimes are commonly es-
timated via the availability of OH and production thereof (of-
ten including radiation) (Valin et al., 2013; Lorente et al.,
2019). Several studies have explored this route before and
either estimate the availability of OH by some basic assump-
tions on production or by using modelled OH fields (with
the drawback of a potential bias within the simulated con-
centrations). Either route is possible, and estimates for the
effective lifetimes end up at around 2–5 h for spring and
summertime values (Valin et al., 2013; Lorente et al., 2019).
Outer estimates for wintertime lifetimes are 12–24 h (Shah
et al., 2020). Alternatively, lifetimes can be derived from tag-
ging emitted molecules and tracking these within the model
domain (Curier et al., 2014). The study reported that for a
region representative of Germany (Benelux), approximately
50 % of the modelled satellite signal (Ozone Monitoring In-
strument, OMI; Levelt et al., 2018) result from NOx emis-
sions in the 3 h prior to OMI overpass. Assuming a relatively
constant source, this translates to a lifetime of about 4 h (at
column level and assuming a basic mass balance). Several
other studies report on effective lifetimes derived from fits to
observed plumes from cities and large industrial areas. Using
the EMG plume functions, the studies derived lifetimes be-
tween 2–5 h, based on the decay downwind of major sources
worldwide (Beirle et al., 2011; de Foy et al., 2015; Goldberg
et al., 2021; Lange et al., 2022; Fioletov et al., 2022), with a
recent study by Fioletov et al. (2022) giving a value of 3.3 h
representative of larger emissions within the US and Canada
(2018–2022).

Following the modelled and observed lifetimes, we as-
sume a mean lifetime of 4± 1 h to account for local and sea-
sonal variations. A potential point of concern remains with
respect to how representative the lifetime is for the whole
year. Most of the estimates are biased towards spring, sum-
mer, and autumn as there are typically more observations
available within these months. To correct for the representa-
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tivity bias, a seasonal variation factor (1.11) will be included
(explained in next section); additionally, by choosing a value
of 4.0 h, we remain on the high end of the lifetime estimates.
The standard deviation of ±1 h ensures that common values
within 3–5 h remain within the uncertainty range. Further-
more, Fioletov et al. (2022) also notes that while lifetime has
a large impact on the emission estimates, relative changes do
not have a major impact when comparing individual years to
one another. They point out that 1 h deviations from the 3.3 h
mean only changed the emission estimates between years by
about 1 %.

The plume spread can be seen as a combination of the
diffusion, satellite footprint size, and the spatial size of the
sources (McLinden et al., 2024). Taking into account the ef-
fective TROPOMI footprint, as well as the added diffusion,
we use a value of 7 km for the plume spread (similar plume
spreads are used in Griffin et al., 2021, and Fioletov et al.,
2022). A dampening factor is added to the linear system in
Eq. (1), forming Eq. (8) to reduce oscillation effects within
the solution. The resulting sparse linear system can be solved
efficiently with the SciPy sparse.linalg.lsqr package (Paige
and Saunders, 1982; Virtanen et al., 2020).[

A
γC

]
x =

[
B

0

]
(8)

Satellite observations of short-lived species are only repre-
sentative of emissions near the overpass time. A correction
factor should be applied to the satellite-based estimated emis-
sions to account for the diurnal variability. To account for
this, we can use a basic box model to approximate the mass
over time and apply a posterior correction. Assuming a mass
m(t) and a constant lifetime (τ = 1/lifetime) and the emis-
sion E at time t , the mass can be calculated with

m(t)=m(t − 1)e−τ +E(t). (9)

This equation is applied to the domain-wide emissions that
are injected into the domain for a whole year, including a
few days of spin-up, and averaged and normalized for a se-
lection of expected lifetimes. For the temporal distribution,
we use the average NOx emission profile for all NOx sources
within the German domain, as used in the LOTOS-EUROS
model (Manders et al., 2017). A lifetime of about 4 h and
an overpass time of around 13:00 LST results in a correction
factor of 1.24, meaning that the estimated emissions can be
expected to be overestimated by around 24 %.

Depending on the source location and time of year, this
value is expected to vary due to variations in the temporal
emission profile. However, as actual measurements of diur-
nal cycles of NO2 emissions are rare and only exist for larger
power plants, only the variability in the model emissions can
be used to create a regional adjustment parameter. Surface
concentration observations should in turn be used to analyse
and optimize the modelled diurnal emission profiles for in-
dividual sectors. To calculate the viability of such a regional

factor, the adjustment parameter was calculated for each cell.
The standard deviation of the regional parameters is around
∼ 0.05. Therefore, to reduce complexity, the value of 1.24
is assumed for the entire domain. A similar parameter is de-
rived to account for the seasonal variability in the emissions
in combination with the variable availability of TROPOMI
NO2 observations passing the data quality filters. The cor-
rection parameter is calculated as the weighted mean of the
number of observations per month and the mean correction
factor for each month. Using this approach, a value of 1.05
is found. Combined with the diurnal parameter, this gives a
factor of approximately 1.30.

TROPOMI is only capable of observing NO2. There-
fore, an additional correction is needed to account for the
NO mass. The NOx :NO2 concentration ratio depends on
the local chemistry that is influenced by ozone concen-
tration, photolysis frequency of NO2 (solar-zenith-angle-
and cloud-cover-dependent), and the rate constant of the
NO+O3 reaction (temperature), with values commonly
falling within the 1.2–1.5 range for polluted regions (Beirle
et al., 2011, 2019, 2021; Lange et al., 2022). In this study, we
apply the 1.32± 0.26 factor, as used by Beirle et al. (2019),
and include the standard deviation of 0.26 (20 %) to further
account for the variations in the uncertainty budget.

2.2.2 Method uncertainties

Based on the methods and choice of parameters described
in the previous sections, a summary can be made of the to-
tal expected uncertainty in our method. An overview of the
uncertainty parameters with a short summary of the chosen
parameter values and impact on the emissions is given in Ta-
ble 1.

One of the major parameters of uncertainty is the
TROPOMI NO2 data product. As stated earlier, the cur-
rent TROPOMI NO2 product overestimates concentrations
in background/low-emission regions (± a few percent) while
having a negative bias in source regions, with −35 % up to
−50 % in extreme cases (Verhoelst et al., 2021), which, ac-
cording to van Geffen et al. (2022), adds up to a potential
mean bias of around −32 % to −23 %. Assuming −23 %
for a larger industrialized region such as Germany, we end
up with an underestimation of the emissions by a factor
of −30 %. Locally, these values can decrease further (high-
emission zones) or increase (low-emission zones; up to a pos-
itive percentage). The main cause for the bias can be found
in the inaccuracies of the air mass factor (AMF) which come
from uncertainties in the underlying modelled concentration
fields and missing variations in the stratospheric NO2 con-
centrations (van Geffen et al., 2022). Local variations due to
errors in the AMF cannot be corrected without the use of a
chemistry transport model (CTM) and lead to an under- or
overestimation of emissions in high source and background
regions. A recent approach using the modelled CAMS Eu-
rope profiles (Douros et al., 2023) shows that the large nega-
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tive bias can be resolved with the help of higher-resolution a
priori profiles. Beside this systematic uncertainty, the VCDs
will also have a random uncertainty (of up to 30 %–50 % for
individual observations). Due to the large number of obser-
vations used to constrain each source, the impact of those
uncertainties is expected to be minor. Furthermore, there is
the detection limit of the TROPOMI instrument, which lim-
its the ability to detect smaller sources. The study by Beirle
et al. (2019) gives a limit of about 0.11 kg s−1, based on the
divergence method. An emission source of 0.11 kg s−1 equals
about 3.5 kt NOx per year. This is based on a peak fit which
typically has a radius of 25 km, which roughly gives us a
2500 km2 area that, when divided the detection limit over
the area, results in a detection limit of around 1.4 t km−2. To
summarize, the total expected uncertainty in the emissions
due to the TROPOMI product will add up to around −30 %.

The second major parameter with a large uncertainty is the
choice of lifetime. An underestimation of the chemical losses
could lead to an overall overestimation of the emissions, and
conversely, an overestimation of the lifetime can lead to an
underestimation of the emissions. A doubling of the lifetime
roughly halves the emissions, which shows the importance
of the parameter. Lifetimes, as stated, are location-dependent
and to more accurately estimate them will require further de-
tailed plume and chemistry (model) studies. Examples of re-
cent studies (Beirle et al., 2011, 2019, 2021; Lange et al.,
2022) give an indication of the typical ranges of the NOx
(chemical) lifetime and give a range of 2–5 h, with the study
by Lange et al. (2022) giving a value of 3–5 h representative
of the Germany domain. The 4± 1 h results lead to a −33 %
to +20 % under-/overestimation of the emissions.

The NOx :NO2 ratio can also have local variations which
affect the total emissions. At source level, the majority of
NOx is emitted as NO, which can rapidly turn into NO2, af-
ter which an equilibrium is reached, the speed of which de-
pends on the availability of O3. Beirle et al. (2021) recently
gave a modelled estimate of the ratio, which was very close
to the factor 1.32 (±20 %) given in his original study, with
values moving towards 1.0 for industrial areas just north of
the Equator, while values tended towards higher ranges (1.6)
for less industrialized and high-latitude regions.

Next up, there is the influence of the wind speed and di-
rection for which we assume an uncertainty of up to 1 m s−1

(McLinden et al., 2024) in both the u and v wind field param-
eters, leading to the realistic situation of a higher uncertainty
in direction at low wind speeds. The effect translates to an
uncertainty of around 15 %–20 % for average conditions over
Germany (based on the matched wind fields), which matches
earlier uncertainty estimates by Griffin et al. (2021), McLin-
den et al. (2024).

Finally, the diurnal and seasonal variations show some
variations of the order of a few percent (< 5 %). Note that
a fixed parameter was determined for the whole German do-
main, but locally the diurnal correction factor can be low-
er/larger for the more continuous/strongly varying emissions.

For example, in the case of power plants, which run more
continuously than road transport, this can result in a negative
bias for the emissions.

Taken together, these error terms result in a Germany-
averaged error range between −50 % and +35 % for the
Gaussian plume method. The low error estimate corresponds
to source regions where the low bias of the TROPOMI
VCDs, effectively biasing the emissions low, are counter-
acted by the potentially high bias in the emissions of the
NOx : NO2 ratio and effective lifetimes. Both values should
be seen as conservative estimates which would occur in the
unlikely case that the inaccuracy in the NOx : NO2 ratio, life-
time, AMF, and wind fields all nudge the estimate in the same
direction for all locations in the domain of interest. In reality,
not all errors point in a similar direction (like the product bias
pointing in opposite directions for background and source re-
gions).

2.2.3 Sector-specific emissions

A direct sector-based attribution of emissions is not feasi-
ble when using the satellite data only. Therefore, additional
data need to be taken into account to attempt to estimate a
potential sectoral attribution of the emission. We used the
GNFR/CLRTAP sector outputs to create a spatial index fil-
ter for the emission data. The GNFR data are used as a ba-
sis and summed and regridded for all the NFR classes to
match the 0.1°× 0.1° grid used in this study. A Gaussian fil-
ter (scipy.ndimage; Virtanen et al., 2020) is applied to the
data with a sigma of one grid cell. The posteriori smooth-
ing is only there to bridge the limitations of the method and
instrument. The spatial limit to resolve two sources of a sim-
ilar size depends on the effective lifetime, the pixel size, and
meteorological factors such as typical diffusion. Of these,
the pixel size and lifetime are dominant at the TROPOMI
pixel limit (5.5× 3.5 km2). The pixel size combined with
diffusion gives us a typical plume width of around 7 km
(e.g. σ 2

= σ 2
plume+σ

2
pixel+σ

2
source). This value varies, depend-

ing on typical size of a source, but most sources of NO2
are limited in size (except for large mines, very large cities,
etc.). Based on McLinden et al. (2024), a plume width of
7 km combined with a lifetime of 4 h gives an effective re-
solvability limit of 15–20 km, which for 0.1°× 0.1° source
cells (e.g. ∼ 10× 10 km2) explains the choice for a sigma of
one grid cell. More smoothing can produce better results but
also reduces the observable details. The structural similarity
index measure (SSIM) should be seen more as a metric to
judge the comparability and not the accuracy of the emis-
sions, as the inventory emissions are not perfect either. The
resulting masks are divided by the total emissions of all sec-
tors to derive each sector’s fraction of all emissions (emission
fraction) and are shown in the Appendix Fig. A1 for the non-
smoothed version and Fig. A2 for the Gaussian smoothed
version. For further sectoral emissions, analysis-only loca-
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Table 1. Summary of uncertainty parameters for emission estimates.

Parameter Summary Impact on final emissions(%)

TROPOMI: AMF/other bias −23 % mean bias −30 %

TROPOMI: noise 30 %–50 % for individual observations, de-
pending on the VCD range

Minor; large number of observations re-
duces uncertainty

TROPOMI: detection limit 3.5 kt NOx for isolated individual sources ±1.4 t km−2

Total: TROPOMI −30 %

Lifetime 4 h±25 % −33 % to +20 %

NOx : NO2 ratio 1.32± 0.26 ±20 % (a factor of 1.41 gives an increase of
+7 %)

Wind fields ±1 m s−1
±15 %–20 %

Diurnal and seasonal emission
cycles

1.3± 0.05 ±5 %

Total uncertainty −50 % to +35 %

tions with an emission fraction above 50 % are selected, and
the resulting mask is shown in Fig. A3.

3 Results

3.1 Inter-comparison with the emission inventory

For a comparison with the gridded inventory data, we used
the 2019 data from the satellite-derived emissions and the
respective NOx data from the GNFR inventory (CLRTAP,
2021). Figure 3 gives a visual comparison of the 2019
datasets. Both sets were compared using the structural simi-
larity index measure (SSIM) (Wang et al., 2004) for a quan-
titative comparison of the images. The SSIM operator is a
metric which was developed to evaluate the image quality of
video frames. It uses a window-based comparison analysis
to track the subtle differences between two images so that
the spatial structure of both images is also taken into account
when calculating the SSIM score. In this way, the similarity
and dissimilarity between two 2D datasets may be quantified
with the SSIM score in a way which assesses image the sim-
ilarity in a more human-vision-based mode. Since its intro-
duction, SSIM has become a standard comparison operator
for computing the similarity between 2D datasets and is now
also available in standard open-source data analysis packages
such as scikit-image (van der Walt et al., 2014).

The resulting SSIM analysis for the 2019 GNFR- and
TROPOMI-derived emission data shows a SSIM score value
of 0.6 between both datasets. However, to consider the dif-
ferent approaches of both datasets and to harmonize effects
of a different baseline resolution, a Gaussian filter is applied
to both sets of data that compensates the effect of the larger
point spread function (PSF) of the sensor. If both images are

Figure 3. The structural similarity index measure (SSIM) of 0.6
was calculated between the gridded inventory data (a) and the emis-
sions derived with the TROPOMI data for 2019 (b). Please note
that the details in the (image) data structure (location of major road
networks and urban areas) are very similar between both sets of
data. This is highlighted by a SSIM score of 0.6, which quanti-
fies as the similarity between the data as highly significant. If the
data are Gaussian-filtered, the effects of spatially sharper GNFR
data (c), compared to TROPOMI data (d), are compensated and
yield a SSIM score of 0.79.
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Gaussian-filtered and compared, the resultant SSIM score is
0.79 and now closer to a score of 1.0, which would depict
spatial structure identity between the two sets of data. This
illustrates that the spatial structure of both datasets show a
high similarity, and spaceborne-derived emissions from the
method presented here capture similar large emission sources
such as major cities, road networks, and industrial areas as
the GNFR dataset.

3.2 Multi-year emissions

The satellite-derived emissions for the individual years be-
tween 2019–2021 are shown in Fig. 4. The rightmost plot
shows the emissions as part of the GNFR inventory. A com-
parison between the satellite-derived emissions of individ-
ual years and the inventory emissions for 2019 is shown in
Fig. 5. Figure 6 shows the change in the spatial satellite-
derived emission distribution of the largest sources in Ger-
many between 2019–2020 and 2019–2021. As the gridded
inventory emissions are only available for 2019, we can only
compare the individual years to that year’s inventory emis-
sions.

Figure 4 shows that the spatial data from the 2019 space-
borne emission estimates have elevated NOx emission val-
ues of around 5–7 t km−2 that seem to coincide with the ma-
jor motorway network in Germany. Most notable is the en-
hancement observed near the A2 motorway (westwards from
Berlin, via Magdeburg and Hanover, towards the Rhine–
Ruhr region). Another high-emission region seems match
with the A1 motorway from the Ruhr area of North Rhine-
Westphalia towards Bremen and Hamburg. The motorway
ring and spider-like road networks and settlements fanning
out from around Berlin also seem to be visible in 2019.
Caution has to be taken with attributing emissions to road
networks, since other high-emission sources, e.g. industrial
cites, tend to be located in close vicinity to major traffic ar-
teries.

While the TROPOMI instrument represents a huge step in
the capability to spot individual emission sources, there are
still limits to the spatial resolvability. The top row of Fig. 5
shows a direct comparison, while the bottom row shows the
same results but now with the application of the Gaussian fil-
ter, as previously used in Fig. 3. The main difference between
these two rows is the large positive/negative swings around
the more localized emissions and/or major point source like
emitters such as power plants, which are visible in the top
row without the Gaussian filter. Such variations are, however,
not observed around emitters with large spatial footprints
such as cities. This is an excellent example of the limits of
the method and TROPOMI’s spatial resolution. Through the
size of the satellite pixel’s footprint and the misrepresenta-
tions of the wind fields (i.e. artefacts), there is an actual limit
to the overall spatial resolvability of individual sources. This
limit was reported by McLinden et al. (2024) to be around 5–
10 km for TROPOMI, which matches well to the size of the

source grid used here. The 0.1°× 0.1° spatial resolution used
in this study is thus at the limit of the method’s capability to
constrain individual neighbouring sources, and some smear-
ing is thus expected around the strongest point-like sources.
The Gaussian (smearing) filter can be used as a first-order
correction, which results in the lower row of plots. Com-
pared to the inventory emissions of 2019, Fig. 5d, e, and f
show similar patterns between the years, with strong neg-
ative differences observed around the major sources, while
the background regions (i.e. regions with emissions below
2 t km2) show a consistent positive difference of around 0–
1 t km2. There are several potential causes of these system-
atic patterns which will be evaluated in Sect. 4.

Outside of the systematic patterns, there are several vari-
ations visible between the years. The year 2020 shows a
noticeable drop in NOx emissions around industrial areas,
cities, and highways (Fig. 6). The largest reduction in the
NOx emissions between 2019 and 2020 is in the industrial
areas in the Rhine–Ruhr region and the upper Rhine area.
The rise in emissions from 2020 to 2021 in the TROPOMI
data in Figs. 4 and 6 is most noticeable in the larger urban
areas, which is most notable in Fig. 6. However, the 2021
NOx emissions are still lower than in 2019, for example,
in the industrial centres of the Rhine–Ruhr region (note the
red dots indicating the major industrial emitters) and further
south along the Rhine. Only the A1 motorway (the line of
emissions between the major emissions clusters at C and H)
is still clearly visible in the 2020 and 2021 emission esti-
mates (Fig. 4), while the data from other settlement and road
networks (e.g. around Berlin) are much less obvious than in
the 2019 emission estimates. This is also visible in Fig. 6 in
the area with roads leading away from Berlin, where the dif-
ference between the 2021 and 2019 estimated emissions still
shows a negative difference of the order of 0–1 t km−2.

Two of the most prominently visible changes (2019–2020)
shown in Fig. 6 are the industrial Ruhr region, which is the
largest and oldest industrial core of Germany in the west-
ernmost part of the country, and the area of Lusatia in the
eastern part of the country, with a large-scale lignite mining
industry to supply coal-fired power plants. These two areas
are shown as detailed maps in Fig. 7. Compared to 2019,
the emissions have dropped substantially in 2020 and 2021
(up to <−5 t km−2). The power generation in Germany has
seen an increase in the usage of coal-fired power stations for
power generation in 2021 compared to the COVID-19 year
of 2020, as reported by the DESTASIS in its press briefing
(https://www.destatis.de/DE/Presse/Pressemitteilungen/
2022/03/PD22_116_43312, last access: November 2022)
which stated that coal had been the most important source of
electricity generation in Germany in 2021. This can be seen
in Fig. 7, where there is an increase near one of the large
emission centres right at the eastern border of Germany. The
Schwarze Pump (SP) and Lippendorf (LD) power plants
even show an increase in emissions compared to 2019.
Meanwhile, the emissions from the Jänschwalde (JAN)
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Figure 4. From left to right: NOx satellite-derived yearly emissions for 2019–2021 and the GNFR inventory emissions of 2019. The rightmost
figure shows H for Hamburg, B for Berlin, C for Cologne, LU for Lusatia, LE for Leipzig, M for Munich, S for Stuttgart, and F for Frankfurt.

Figure 5. Difference between the satellite-derived and inventory emissions (2019) for the years 2019–2021 (a–c). The red values indicate
a higher value for the satellite-derived emissions compared to the inventory emissions. Panels (a)–(c) show the original difference between
both emission sets. Panels (d)–(f) show the same sets but with the Gaussian filter applied to both sets before subtracting the 2019 inventory
emissions (d–f). The letters in the figure represent H for Hamburg, B for Berlin, C for Cologne, LU for Lusatia, LE for Leipzig, M for
Munich, S for Stuttgart, and F for Frankfurt.
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Figure 6. Difference between 2019–2020 and 2019–2021 satellite-derived emissions. A Gaussian filter has been applied to both derived
emission sets. The red dots indicate the locations of the largest NOx emitters within Germany, with the size of the dots being a reflection
of the individual source strength. The red triangles indicate the larger power plants, with the letter combinations indicating the names of the
power plants: NEU (Neurath), NIE (Niederaußem), WW (Weisweiler), LD (Lippendorf), JAN (Jänschwalde), SP (Schwarze Pump), and BB
(Boxberg).

power plant show a strong reduction in 2020 that continued
into 2021, which was expected, as the power plant reduced
its operation capacity as planned (Vattenfall, 2015; EPH,
2022). The three large power plants in the west show similar
patterns, with the Neurath (NEU) and Niederaußem (NIE)
plants showing a strong decrease in 2020 that rebounded
and moved upwards in 2021. The Weisweiler power plant
reduces in 2020 while reducing further in 2021. This drop
can be explained by two potential causes: first, there was
a planned reduction in operation capacity, and second,
there was flooding from exceptional rainfall in mid-July
2021 that also affected the nearby lignite mining pits
(RWE statement at https://www.rwe.com/en/press/rwe-ag/
2021-07-17-rwe-power-stations-affected-by-flood-disaster,
last access: November 2022/link to news
item at https://www.n-tv.de/wirtschaft/
RWE-erleidet-durch-Flut-Millionenschaden-article22688478.
html, last access: November 2022).

3.3 Sector-specific emissions

An aggregated version of the spatially distributed results is
shown in the bar plot of Fig. 8 in which the country-wide
fitted emissions are compared to the country-wide sector-
specific emission totals. Note that we added 60 kt NOx from
natural soil emissions and 5 kt NOx from lightning emis-
sions to the N_Natural class. These emissions were not in-

cluded in the previous spatial plots. In line with the previ-
ously discussed results, both the satellite and inventory emis-
sions show a large drop from 2019 to 2020 of comparable
size. The slight increase in the projected inventory emissions
from 2020–2021 is, however, not matched by a change in the
satellite emissions.

Emission sources that have a strong spatiotemporal im-
print on TROPOMI data should show independent patterns
for regions where the sources cause the majority of emis-
sions. To find out what type of source is causing this mis-
match, we make use of the sectoral masks (e.g. Fig. A3) to
derive sector-specific patterns from the spatiotemporal data
taken from the satellite-derived and inventory emission data.

Only five sectors (public power, industry, road transport,
shipping, and agricultural sources other than livestock)
have locations which are dominated (e.g. above 50 % of the
total emissions) by a single emission sector of which the
public power sector has the largest emissions in a single
location, while the road transport emissions are more spread
out over roads and pastures throughout the country. Note
that the public power, shipping, and industrial emissions
cover a very limited area, with only public power showing
very high emissions. Figure 9 shows the sector-specific
emissions as indexed by the 2019 emissions for the public
power, industry, road transport, and shipping sources. Based
on earlier projections and trends over the previous years,
the 2021 inventory emissions are expected to be just over
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Figure 7. Difference between 2019–2020 and 2019–2021 satellite-derived emissions. The upper row depicts the industrial Ruhr region, while
the lower two panels show Lusatia at the eastern border of Germany. A Gaussian filter has been applied to all datasets prior to subtraction.
The red dots indicate the locations of the largest NOx emitters within Germany, with the size of the dots being a reflection of the individual
source strength. The black diamonds indicate the larger power plants, with the letter combinations indicating the names of the power plants:
NEU (Neurath), NIE (Niederaußem), WW (Weisweiler), LD (Lippendorf), JAN (Jänschwalde), SP (Schwarze Pump), and BB (Boxberg).

90 % of the 2019 emissions. The emissions related to power
generation have bounced back to the pre-COVID-19 levels,
even though the Jänschwalde power plant in the east reduced
its operation capacity as planned (Vattenfall, 2015; EPH,
2022). The emissions in 2021 showed a recovery to 93 % of
the pre-COVID-19 estimates. Further resurgences are to be
expected (for 2022) by the plans to reactivate old coal-fired
power plants in the wake of the European energy crisis
and the potential fears of a blackout in Germany. While
road transport emissions were expected to show a recovery,
this is not matched by the patterns in the satellite-derived
emissions. The slow recovery can potentially be explained
by the reduced number of kilometres by trucks (vehicles
with a weight above > 3500 kg), which is down by almost
10 % in 2021 compared to 2019 (KBA, 2022, https://www.
kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/vk_
inlaenderfahrleistung/vk_inlaenderfahrleistung_node.html,
last access: November 2022). Shipping emissions have
continued their decline with no sign of recovery. While this
reduction was expected based on past trends, the cause can

be found in the global shipping crisis and disrupted supply
chains.

4 Discussion

As the results showed, the captured spatial variability within
satellite-derived emissions is very similar to those in the anal-
ysed inventory emissions. The values for the NOx emissions
retrieved from the TROPOMI observations diverge on aver-
age by 75–100 kt NOx (< 10 %) from the emissions reported
for Germany (Fig. 8). There are some variations observed
between the years, but the difference between both emission
estimates falls within the uncertainty range of both emis-
sion totals. The uncertainties in both emission estimates are
quite large compared to the yearly variations, which ham-
pers stronger conclusions on the quality of the inventory and
satellite-based estimates. We can, however, discuss the var-
ious causes of uncertainty and how these can be reduced.
The uncertainty range of the reported inventory emissions is
estimated to fall between −9.2 % and +15.8 % (see https://
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Figure 8. Emission changes over the years, as reported by the National Inventory Report for Germany and observed by the TROPOMI
instrument. Black error bars indicate the uncertainties in the inventory emissions, while the red error bars show the uncertainty in the
satellite-derived emissions. Note the slight rise in the reported emissions of 2021 compared to the year 2020 (due to COVID-19 lockdown
measures).

iir.umweltbundesamt.de/2022/, last access: November 2022),
which translates to about −100 to +180 kt NOx in 2019 for
the inventory. Note that this range does not include poten-
tially missed sources, such as stronger-than-expected natural
emissions (e.g. soil emissions) and any of the MEMO items.

Besides the above-discussed items, it should be noted that
the emissions from road transport are required to be based
on the fuel-sold approach. Additionally, this approach does
not account for all the emissions which occur in Germany
from vehicles which were fuelled abroad and are travelling
in Germany (this might constitute an underestimation in the
inventory). On the other hand, the emissions from foreign
vehicles (for instance, from the Netherlands) which bought
their fuel in Germany and were not driving in Germany are
in this fuel-sold approach allocated to Germany (this might
constitute an overestimation of the German emissions). How-
ever, it is not known how many emissions are associated with
these cross-border phenomena for Germany. Data from the
Netherlands show that this might be a significant difference;
the NOx emissions based on fuel used is approximately 5.5 %
less than the emissions based on fuel sold, as reported in the
GNFR total. However, as fuel prices in Belgium and Ger-
many are cheaper than in the Netherlands, Dutch drivers fre-
quently refuel in those countries; thus, the Dutch case repre-
sents the higher end of the difference between the fuel-sold
and fuel-used approach, only surpassed by Luxembourg with
one of the lowest fuel prices in Europe.

Another source of uncertainty is the emissions near the
border regions. Emissions within the first 10 to 20 km out-
side of the border can be expected to be smeared out in the

satellite-derived emissions due to the limited resolvability of
the instrument and methodology. The stronger the source, the
better the resolvability. So for the larger sources, 10 km can
be assumed. When making a loop around the German bor-
ders, there are a few areas of interest. Starting at the bor-
der of the Netherlands and moving clockwise on both sides
of the border, there are several larger sources, such as the
Weisweiler power plant in Eschweiler, the Dolna Odra power
station in Poland, and several power plants near the border
in the Czech Republic but also in several smaller and larger
cities. By taking a polygon that is 10 km wider and narrower
in shape than the existing German borders, the smeared emis-
sions near the borders can be approximated. Based on the Eu-
ropean CAMS-REG v5.1 inventory (emissions in 2018 based
on the reported emissions in 2020; Kuenen et al., 2022), we
find that around 120 kt NOx of the German emissions take
place within Germany and within 10 km of the borders and
around 75 kt NOx just outside of Germany within 10 km of
the border. Assuming that at most half of the full amount of
these emissions smears out past the border, the smeared loss
in emissions is about 22 kt on the total emissions. This should
be seen as an upper limit. Furthermore, of these emissions,
a large majority takes place in the western part of Germany,
where the most common wind direction is wind coming from
the west. In effect, it can be expected that the smearing of
those emissions will be reduced further.

A more probable source for the 100 kt NOx mismatch,
however, can be found in the satellite-derived estimates. As
stated in Sect. 2.2.2, the TROPOMI-based emission esti-
mates can have an uncertainty in the range of 35 %–50 %,
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Figure 9. Satellite-derived and inventory emissions for each source sector as indexed by the 2019 emissions. A clear decline is visible for
most sectors for 2020 in comparison to 2019. Dotted lines indicate the inventory emissions, and the solid line indicates the satellite-derived
emissions.

translating to about ±400 kt NOx . A more complete error
analysis based on simulated observations with controlled
conditions and a subsequent Monte Carlo analysis of error
propagation could give a more accurate estimate but falls
outside of the scope of this study. A study by Dammers et al.
(2022), however, did perform such an analysis. While using a
very similar set of input parameters, the study derived a mean
uncertainty between 15 %–20 % which increases when close
to large mountains. Two important differences between this
work and that study (Dammers et al., 2022) are the uncer-
tainties and bias in the satellite product (which only shows
a minor negative bias) and the lack of a NOx : NO2 ratio.
Without both parameters, the 15 %–20 % uncertainty would
translate to an uncertainty of around ±150–200 kt NOx .

For the regional emission mismatches of the uncertainties
studied in Dammers et al. (2022) and in this study, only the
lifetime, the satellite product bias, and NOx : NO2 parame-
ters can have a large enough systematic effect on the esti-
mated emissions to explain the observed differences. Addi-
tionally, one could argue that the wind fields around larger
hills and mountains can have a systematic effect. However,
throughout our region of interest, most of the mismatches

(Fig. 5) are observed away from the main mountainous re-
gions. The negative bias observed around the major emit-
ters (up to and over 50 %) can be explained by the product
bias, an increase in the NOx : NO2 ratios near the source
(Lange et al., 2022; Griffin et al., 2021), and a mismatch in
the NOx lifetime. The product bias by itself can be expected
to cause an underestimation of at least −20 % (van Geffen
et al., 2022). A higher NOx : NO2 ratio of 1.5 at the upper end
of the literature values (Lange et al., 2022; Beirle et al., 2021;
Griffin et al., 2021) would result in an additional underesti-
mation of about −15 %. The lifetime values reported in the
literature show a more random variation. Assuming that the
3.3 h estimate from Fioletov et al. (2022) is more accurate
for emission zones, this would add an additional 20 % low
bias to our estimates. Taken altogether, these values add up
to an underestimation of about −45 %, which is close to the
observed difference. The positive difference observed away
from the major emitters, and especially in regions with in-
tensive use of arable land (https://www.eea.europa.eu/data-
and-maps/figures/agricultural-land-use-intensity-1, last ac-
cess: November 2022), could potentially hint at the underes-
timation of soil emissions throughout Germany (Fig. 5). As
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discussed in Sect. 2.1.1, soil emissions show a large range
in the literature, with strong variations due to the availabil-
ity of nitrogen, soil type, humidity, and temperature. Some
variations are observed between the years which could re-
flect changes in any of these parameters. The detection limit
of the instrument does not seem like a likely candidate, as
it would result in low bias; similarly, the slightly high bias
of the product cannot explain the larger differences observed
in the northwest. The other two parameters that can cause a
systematic offset, the NOx : NO2 ratios and lifetime, also do
not seem to be a logical suspect. The NOx : NO2 ratio can
at most cause a few percent difference leading to a positive
bias (i.e. a ratio of 1.25 would only result in a few percent
difference), while the lifetime would need to double or triple
to explain the difference observed in the northwest.

The year-to-year variations in the TROPOMI NO2-derived
emissions are of the order of a few percent to 10 % (Fig. 8).
While the estimated errors in the individual years are larger
than those variations, most error components will stay con-
sistent between the years. A similar conclusion was made by
Fioletov et al. (2022), who performed various experiments
to test the impact of a common offset in lifetime and plume
width on emission estimates of several years. In our case,
the consistency of the TROPOMI product version ensures
that the negative bias in the TROPOMI product can be ex-
pected to stay stable between the years over the high VCD
regions while staying slightly positive over background re-
gions. The only terms that are expected to change slightly are
the NOx : NO2 ratio, the effective lifetime, and the changes
in wind patterns. The changes in wind patterns will only
matter for regions in the border regions, as misinterpreta-
tion of the wind fields will typically result in the wrong-
ful attribution of emissions within Germany. This leaves the
NOx : NO2 and effective lifetime as the main source of un-
certainty, with both related to the timing of emissions and
the chemistry. A potential method to constrain this effect is
performing a CTM run over the same period but with fixed
yearly emissions over the whole period. The emission esti-
mate methodology of this study can then be used to estimate
the emissions of the individual years and thus derive the in-
fluence of changing chemistry and meteorology. This, how-
ever, falls outside of the scope of this study.

5 Conclusions and outlook

This work has shown that TROPOMI can be used as a veri-
fication tool for emission inventories, even for those inven-
tory compilers which are unfamiliar with remote sensing
data. Emission inventory compilers may monitor near-real-
time trends in NOx emissions with the tool via top-down
spaceborne data without the need to wait for the comple-
tion of the statistical data required for the classic statisti-
cal “bottom-up” approach for the calculation of emissions.
This is of particular importance for the quantification of un-

foreseen events such as the outbreak of the COVID-19 pan-
demic, which has been shown in this paper by comparing
the 2019 emission data to the COVID-19 (2020) and post-
COVID-19 years (2021). Individual sectors are, however, dif-
ficult to assess given the low spatial resolution of TROPOMI.
However, if we look at single large contributors to emissions
such as the public power sector shown in Fig. 9, it is pos-
sible to track the rebound in emissions after the COVID-19
year 2020 which has been due to the increased usage of coal-
fired power plants for power generation in 2021 compared
to 2020. Similar trends and changes in NO2 concentration
may now be assessed by the emission inventory community
worldwide as they are now able to compare their country’s
results to others using the fully transparent methods pre-
sented here. This has previously not been possible in a con-
venient way for inventory compilers. As at least comprehen-
sive data science knowledge is required to access and query
other data products, e.g. from the ECMWF atmospheric data
storage (ADS, https://ads.atmosphere.copernicus.eu, last ac-
cess: November 2022), the web tool is complemented by the
source code offer which specifically invites other developers
to extend the spaceborne emissions code base and web tool
through their own contributions.

Spaceborne data from TROPOMI and other satellites
contain valuable information that can be used as a verifi-
cation tool for emission inventories. NOx retrievals from
spaceborne sensors such as OMI and TROPOMI can be
used to monitor the quite dramatically decreasing evolution
of NOx emissions over the years with new emission esti-
mation methods, as seen in Fioletov et al. (2017). Although
the sub-sector and facility-related data still are difficult
to assess, the data still deliver valuable insights into the
coarser spatial distribution of emission clusters, such as
the chemical industry parks around Halle and Leipzig or
large coal-fired power stations in the east of Germany. This
may help to directly monitor the emission reductions of
these large industrial clusters. This satellite-based emis-
sion estimate, based on a single, consistent methodology
applied to several countries, can be used to verify the
compliance towards meeting the air pollution reduction
targets throughout the whole of the European Union, which
ensures maximum transparency for all stakeholders. This
ultimately values the principals of the European Green
Deal initiative (https://commission.europa.eu/strategy-and-
policy/priorities-2019-2024/european-green-deal_en, last
access: November 2022), which tries to leverage new
technology for a sustainable EU.

With the presented space emissions tool, other emission
inventory compilers without remote sensing expertise are en-
couraged to employ space emissions to verify their inven-
tories. This would make the space emissions tool a critical
building block of emission compliance reporting, thanks to
the Copernicus Sentinel dataset (i.e. TROPOMI) that is pro-
vided by ESA. We are looking forward to the feedback from
the emission inventory community and their results using the
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online and offline tools. The methodology and online (and
offline) tool developed here were initially focused on NOx
emission estimates from TROPOMI observations. In the fu-
ture, the incorporation of OMI data would extend the time
series to the year 2005, which is of great importance for
the verification of a more complete time series of the inven-
tory. The coarser resolution of the OMI observations (being
coarser that the 0.1°× 0.1° resolution used in this analysis)
will, however, lead to a less detailed emissions map. The ad-
dition of other pollutants should also be envisioned for fu-
ture work under the reservation that the respective method
is applicable to the selected pollutant. In the near future, the
geostationary Sentinel-4 satellite is scheduled for launch and
will provide hourly data on tropospheric constituents over
Europe. This will allow tools such as those used in this work
to explore additional functionality, such as the measurement
of time profiles, and might allow emission estimates on a
weekly or even daily basis and provide information on the
diurnal emission cycle. While the methodology was only ap-
plied on a yearly basis in this study, TROPOMI has enough
spatiotemporal coverage to move to seasonal or monthly es-
timates, potentially trading the spatial resolution of the emis-
sion fields for an increase in temporal resolvability.

Future improvements to the methodology should focus on
updating the AMF with the help of higher-resolution mod-
elled fields, the addition of a location-dependent lifetime (for
example, based on concentration of NO2, O3, and OH), and
the addition of local NOx : NO2 ratios and local corrections
for diurnal and seasonal cycles, which would make sense
from a physical perspective and form the largest uncertainty
in the method apart from satellite bias. Some of these im-
provements require simulated model fields, of which some
are available in the form of (open-access) CAMS ensemble
runs. Other required variables such as temperature, UV ra-
diation, precipitation, and humidity, which would be used
for adjusted lifetimes, are also available from the various
ECMWF data storage locations. These quantities and/or es-
timates can be downloaded with the ERA download tool and
already make a relatively easy improvement to the lifetime
estimates and thereby reduce the overall uncertainty in those
terms.
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Appendix A: Additional figures

Figure A1. Fraction of NOx emissions emitted by each emission sector for each grid cell within the German domain. Yellow indicates
locations with emissions dominated (> 50 %) by an individual source sector. The displayed data are based on gridded GNFR inventory
emissions of 2019.
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Figure A2. Fraction of NOx emissions emitted by each emission sector for each grid cell within the German domain and smoothed with
Gaussian method. The displayed data are based on gridded GNFR inventory emissions of 2019.
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Figure A3. Emission source locations selected to produce sectoral trends. The produced masks are based on the results shown in Fig. A2
for all locations with an emission fraction above 50 %. This was used to distinguish different source sectors in the emissions derived from
satellite data.

Figure A4. Difference between the satellite-derived and inventory emissions (2019) for the years 2019–2021 over two zoomed-in regions.
The red values indicate a higher value for the satellite-derived emissions compared to the inventory emissions. The upper row depicts the
industrial Ruhr region, while the lower three panels show Lusatia at the eastern border of Germany.
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Code and data availability. An offline version of the emis-
sion code is available at https://gitlab.opencode.de/uba-emsit/
dev/space-emissions (last access: 26 June 2024) and
https://doi.org/10.5281/zenodo.11618328 (Umweltbundesamt,
2024). All code used to produce further results, figures, etc., can be
provided on request to the corresponding author. The TROPOMI
L2 data product versions (OFFL/PAL) can be accessed through
the ESA Sentinel-5P data hub (https://doi.org/10.5270/S5P-
9bnp8q8, Copernicus Sentinel-5P, 2021). The emission inventory
datasets can be accessed via https://iir.umweltbundesamt.de/2022/
(Umweltbundesamt, 2023), and the GNFR/NFR datasets via
https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envygjjnq/
index_html (European Environment Agency, 2022) and
https://cdr.eionet.europa.eu/de/un/clrtap/gridded/envyizg6q/
(European Environment Agency, 2021). ECMWF ERA5 data
(Hersbach et al., 2020) were downloaded from the Coper-
nicus Climate Change Service (C3S) Climate Data Store
(https://doi.org/10.24381/cds.bd0915c6, Hersbach et al., 2023).
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