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Abstract. Biochar (BC) application to croplands aims to se-
quester carbon and improve soil quality, but its impact on soil
organic carbon (SOC) dynamics is not represented in most
land models used for assessing land-based climate change
mitigation; therefore, we are unable to quantify the effects
of biochar application under different climate or land man-
agement conditions. Here, to fill this gap, we implement a
submodel to represent biochar in a microbial decomposition
model named MIMICS (MIcrobial-MIneral Carbon Stabi-
lization). We first calibrate and validate MIMICS with new
representations of the density-dependent microbial turnover
rate, adsorption of available organic carbon on mineral soil
particles, and soil moisture effects on decomposition using
global field-measured cropland SOC at 285 sites. We fur-
ther integrate biochar in MIMICS by accounting for its ef-

fect on microbial decomposition and SOC sorption/desorp-
tion and optimize two biochar-related parameters in these
processes using 134 paired SOC measurements with and
without biochar addition. The MIMICS-biochar version can
generally reproduce the short-term (≤ 6 years) and long-
term (8 years) SOC changes after adding (mean addition
rate of 25.6 t ha−1) biochar (R2

= 0.79 and 0.97, respec-
tively) with a low root-mean-square error (RMSE = 3.73
and 6.08 g kg−1, respectively). Our study incorporates sorp-
tion and soil moisture processes into MIMICS and extends its
capacity to simulate biochar decomposition, providing a use-
ful tool to couple with dynamic land models to evaluate the
effectiveness of biochar application with respect to removing
CO2 from the atmosphere.
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1 Introduction

Soil organic carbon (SOC) is the largest terrestrial carbon
pool, and increasing soil respiration in response to global
warming can cause large carbon emissions to the atmosphere
(Bond-Lamberty et al., 2018). On the other hand, SOC se-
questration through improved land management practices
has the potential to mitigate climate change by increasing
soil carbon accumulation, as is the focus of initiatives such
as the “4 per 1000” project (Minasny et al., 2017). Due to
the limited temporal and spatial coverage of field SOC mea-
surements, soil biogeochemical models have been widely ap-
plied to simulate SOC and its response to climate change
and human activities (Eglin et al., 2010). Soil carbon mod-
els are evolving from first-order kinetics-based models with
a simple representation of pool sizes and their turnover rates
to microbial models with explicit representation of micro-
bial roles in SOC decomposition and stabilization (Manzoni
and Porporato, 2009; Sulman et al., 2018). For example, the
MIcrobial-MIneral Carbon Stabilization (MIMICS) model is
a process-based soil carbon model with explicit represen-
tations of nonlinear SOC decomposition dynamics related
to microbial physiology, substrate quality, and the physical
protection of SOC (Wieder et al., 2014, 2015). This model
has been calibrated with global SOC data, can represent the
current understanding of SOC decomposition and formation
well (Wieder et al., 2015), and outperforms conventional
first-order decomposition models with respect to simulat-
ing the spatial variation in SOC stocks in forest ecosystems
on the continental scale (Zhang et al., 2020). However, the
model has not been evaluated for agricultural sites or misses
processes that theoretically should influence SOC dynamics.

Microbial interactions at the community level (e.g., com-
petition) play a crucial role in controlling SOC dynamics, but
they are usually omitted in microbial models (Georgiou et al.,
2017), resulting in the unrestricted growth of the microbial
community with increasing carbon input, which is unreal-
istic (Buchkowski et al., 2017; Wieder et al., 2013). In addi-
tion, field experiments show that physicochemical adsorption
plays a more important role in controlling dissolved organic
carbon (DOC) fluxes than the biodegradation process (Kalb-
itz et al., 2005). Although the adsorption mechanism is com-
plex, depending on various factors such as pH, clay content,
and the destruction and formation of soil aggregates (Mayes
et al., 2012), some soil carbon models have implemented dy-
namic adsorption and desorption processes controlled by the
DOC concentration and available mineral surface sites for
binding (G. Wang et al., 2020, 2013). The availability of SOC
is influenced by the adsorption process (Michalzik et al.,
2003). Some adsorption kinetic equations, such as the Lang-
muir isotherm, have commonly been employed to depict the
adsorption/desorption process. However, the MIMICS model
lacks consideration of the adsorption process, thus not effec-
tively elucidating its role in stabilizing SOC. Furthermore,
the effect of soil moisture on SOC cannot be ignored, as

soil moisture controls microbial activity, substrate availabil-
ity, and further influences soil respiration and nitrogen min-
eralization (Manzoni et al., 2012; Schimel et al., 2007). A set
of empirical functions for the soil moisture effects have been
proposed for use in Earth system models (ESMs) (Moyano
et al., 2013; Camino-Serrano et al., 2018), and a mechanis-
tic moisture function that incorporates physicochemical and
biological processes has also recently been developed (Yan
et al., 2018). In previous MIMICS versions, an implicit or
explicit density-dependent microbial turnover has been in-
troduced (Wieder et al., 2015; Kyker-Snowman et al., 2020;
Zhang et al., 2020; Georgiou et al., 2017), which causes an
increase in microbial biomass turnover with increasing mi-
crobial community size, reflecting increasing pressure from
competition for resources other than carbon (e.g., space) and
from viral infections (Jansson and Wu, 2023), and a water
scalar has been used to represent the soil moisture effects
(Wieder et al., 2019). The inclusion of a density-dependent
microbial turnover rate improved the accuracy of SOC pre-
diction at the global scale, compared with MIMICS without
this inclusion, and eliminated the correlation between simu-
lated biases and the input of annual litterfall (Zhang et al.,
2020). MIMICS with soil water modifications showed com-
parable predicted global soil carbon stocks compared to other
models, but the extent to which soil water influences SOC
turnover remains uncertain (Wieder et al., 2019). Therefore,
based on these theories and model limitations, it is neces-
sary to integrate the three aspects (density-dependent micro-
bial turnover rate, adsorption processes, and soil moisture
impacts) into one model version to improve the prediction
accuracy of SOC dynamics. For agricultural lands, modeling
the SOC decomposition processes is more challenging due to
management practices, such as tillage and fertilization, that
can significantly interrupt the carbon cycle and require spe-
cific parameterizations.

Biochar application to croplands as a soil amendment can
improve the soil quality and increase crop production (Smith,
2016; Woolf et al., 2010). Moreover, as biochar is produced
from biomass through pyrolysis processes and is recalcitrant
to decomposition, it is also considered to be a promising
negative-emission technology (NET) with respect to climate
change mitigation (Fuss et al., 2018; Minx et al., 2018). The
carbon dioxide removal (CDR) potential of biochar is esti-
mated to be 0.5–2 Gt CO2e yr−1 (where CO2e denotes CO2
equivalent) (Fuss et al., 2018; Minx et al., 2018). However,
biochar application affects SOC mineralization through vari-
ous processes (Palansooriya et al., 2019; Luo et al., 2017), re-
sulting in positive or negative priming effects (PEs, changes
in native SOC mineralization) (Zimmerman et al., 2011).
A recent meta-analysis showed that biochar induced nega-
tive PEs on average (−3.8 %), but the 95 % confidence in-
terval (CI) of −8.1 % to 0.8 % also covered positive val-
ues (Wang et al., 2016). Biochar may induce positive PEs
via the stimulation of microbial activity by providing addi-
tional nutrients for soil microbes (El-Naggar et al., 2019; Li
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et al., 2019). Positive PEs usually occurred over the shorter
term (< 2 years) and then decreased or became negative over
the longer term (Luo et al., 2011; Singh and Cowie, 2014;
Ding et al., 2017). For example, biochar can reduce the SOC
available for microbes by enhancing soil aggregate stability
via associations between soil minerals and biochar (Zheng et
al., 2018). Its porous structure and high surface area with a
strong adsorption affinity for SOC can, thus, cause negative
PEs (Zimmerman et al., 2011; Lehmann et al., 2021). PEs are
also impacted by the properties of biochar (e.g., feedstock
type and pyrolysis temperature) and soil climate (e.g., soil
moisture) (Ding et al., 2017). Therefore, soil moisture could
be closely related to the adsorption capacity of biochar and,
thus, needs to be included in the model for predicting the PEs
of biochar on SOC changes. The biochar decomposition and
impacts on native SOC via PEs are important for the CDR
potential of biochar, but these processes are not represented
in most land carbon models (Lehmann et al., 2021), preclud-
ing the model capacity to fully assess the effectiveness of the
large-scale application of biochar as a NET as well as its en-
vironmental impacts.

2 Materials and methods

2.1 Modifications of the MIMICS model

2.1.1 The default version of MIMICS (MIMICS-def)

There are seven carbon pools in MIMICS: two litter pools,
two microbial biomass pools, and three SOC pools (Fig. 1).
The litter inputs (LIT) are divided into metabolic (LITm) and
structural (LITs) pools according to the litter quality (fmet,
i.e., fraction of litter to LITm), which is linearly related to
the lignin-to-nitrogen ratio (lignin : N; Table S1 in the Sup-
plement). Microbial growth efficiency (MGE) determines the
carbon fluxes from the two litter pools and the available SOC
pool (SOCa) for microbial biomass pools and heterotrophic
respiration. The turnover of microbial biomass (τ ) depends
on the functional types of soil microbes (MICr and MICk for
the r- and k-strategy, respectively). Three SOC pools repre-
sent the available (SOCa), physically protected (SOCp), and
chemically recalcitrant SOC (SOCc). SOC in the protected
pools (i.e., SOCp and SOCc) is released to the available SOC
pool (SOCa) over time. A more detailed description of the
model parameters and carbon fluxes can be found in Table S1
in the Supplement and in Wieder et al. (2015). The carbon
decomposition rate (mg C cm−3 h−1) of the litter and SOC
pools is based on temperature-sensitive Michaelis–Menten
kinetics (Allison et al., 2010; Schimel and Weintraub, 2003):

dCs

dt
=MIC×

Vmax×Cs

Km+ Cs
, (1)

where Cs (mg C cm−3) is the size of a substrate carbon pool
(LIT or SOC) and MIC (mg C cm−3) is the size of the micro-

bial carbon pool (MICr or MICk). Vmax and Km are the mi-
crobial maximum reaction velocity (mg C (mg MIC)−1 h−1)
and the half-saturation constant (mg C cm−3), respectively,
which depend on temperature, T (in °C).

Vmax = e
Vslope×T+Vint × av ×Vmod (2)

Km = e
Kslope×T+Kint × ak ×Kmod (3)

Here, Vmod andKmod represent the modifications of Vmax and
Km, respectively, based on their dependence on litter quality,
microbial functional type, and soil texture; av and ak are the
tuning coefficients of Vmax and Km, respectively; Vslope and
Kslope are the regression coefficients; and Vint and Kint are
the regression intercepts.

The turnover of MICr and MICk (MICτ , mg C cm−3 h−1)
at each time step depends on their specific turnover rate
(kmic, h−1), annual total litter input (LITtot, g C m−2 yr−1),
and fmet:

MICτ = aτ × kmic× e
c×fmet

×max(min
(√

LITtot,1.2
)
,0.8)×MIC, (4)

where aτ (= 1.0, dimensionless) is the tuning coefficient
of kmic and c is the regression coefficient of MICr (0.3)
and MICk (0.1). The carbon inputs from microbial biomass
to SOC pools are determined by the microbial biomass
turnover.

The carbon transfer from SOCp to SOCa (D,
mg C cm−3 h−1) represents the desorption of SOCp from
mineral surfaces or the breakdown of aggregates, calculated
as a function of soil clay content (fclay):

D = 1.5× 10−5
× kd× e

−1.5×fclay , (5)

where kd (= 1.0, dimensionless) is a tuning coefficient of the
desorption rate. The parameter values of the default MIMICS
version can be found in Table S1.

2.1.2 MIMICS considering the density-dependent
microbial turnover rate (MIMICS-T)

Similar to the logistic growth model in population ecol-
ogy, various regulatory mechanisms (e.g., competition and
viruses) can limit the microbial population size (Buchkowski
et al., 2017; Jansson and Wu, 2023). The absence of restric-
tions other than carbon on population size results in pre-
dictions of microbial biomass that increase indefinitely with
carbon input. Consequently, the response of predicted SOC
to changes in carbon inputs is close to zero, which contra-
dicts field observations (Georgiou et al., 2017). A density-
dependent microbial turnover rate with β > 1 was adopted
to regulate the responses of soil microbial biomass to exter-
nal environmental variations, such as carbon input, and thus
SOC dynamics in previous microbial models (Georgiou et
al., 2017; Zhang et al., 2020). We incorporated the density-
dependent microbial turnover rate into MIMICS following
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Zhang et al. (2020). In the MIMICS-T version, we modified
Eq. (4) to represent the increased microbial turnover rate with
growing microbial biomass density (MIC, mg C cm−3):

MICτ = aτ × kmic× e
c×fmet×

max(min
(√

LITtot,1.2
)
,0.8)×MICβ , (6)

where β is the density-dependent exponent.

2.1.3 MIMICS-T with the additional representation of
sorption (MIMICS-TS)

Although the MIMICS model can simulate the desorption
process (yellow arrow from SOCp to SOCa in Fig. 1), the
adsorption process is still missing. In the original version
of MIMICS, fixed fractions of litter and microbial turnover
are transferred to the physically protected SOC pool (SOCp
in Fig. 1); the SOCp is then unprotected from mineral sur-
faces or the breakdown of aggregates using a desorption rate
which is a function of the clay fraction. Therefore, we do
not think that the original MIMICS model actually simulates
sorption as a process, as sorption is dependent on the sub-
strate concentration; therefore, the sorption rate should vary
with the dissolved organic carbon concentration, rather than
being proportional to the microbial carbon turnover rate as
assumed in the original MIMICS. Thus, we further added the
adsorption of available SOC to MIMICS, following Wang et
al. (2013) and Mayes et al. (2012). The MIMICS-TS version
includes a new sorption process (purple arrow from SOCa
to SOCp in Fig. 1), but the original desorption process (i.e.,
yellow arrow from SOCp to SOCa in Fig. 1) remains un-
changed. The sorption capacity of SOCa (Qmax) increases
with increasing clay content, and the carbon flux of the sorp-
tion process is calculated as follows:

Fads =Kads×

(
1−

SOCp

Qmax

)
×SOCa, (7)

Kads = kd× kba, (8)

Qmax = 10(c1×log(%clay)+c2), (9)

where Fads is the carbon flux from SOCa to SOCp
(mg C cm−3 h−1); kba is the binding affinity;Kads is the sorp-
tion rate of SOCp, which is associated with the desorption
rate (kd); Qmax is the maximum sorption capacity of SOCp
(mg C cm−3 soil); and c1 and c2 are the coefficients for esti-
mating Qmax from Mayes et al. (2012).

2.1.4 MIMICS-TS with soil moisture effects
(MIMICS-TSM)

Finally, based on MIMICS-TS, we added soil moisture ef-
fects on decomposition into MIMICS. We tested two empiri-
cal functions for soil moisture used in the CENTURY model
(Eq. 10; Parton et al., 2000) and the ORCHIDEE-SOM
model (Eq. 11; Camino-Serrano et al., 2018), respectively.

We also attempted to implement one mechanism-based func-
tion that captures the main physicochemical and biological
processes of soil moisture in regulating soil respiration from
Yan et al. (2018) (Eq. 12). The three functions of soil mois-
ture are illustrated in Fig. S1.

fm1 (w)=
1

1+p1× e(p2×w)
, (10)

fm2(θ)=max(0.25,min
(

1,k1× θ
2
+ k2× θ + k3

)
, (11)

fm3

(
θ

ϕ

)
=

{
Kθ+θop
Kθ+θ

× ( θ
θop
)(1+a×ns ),θ < θop

(
ϕ−θ
ϕ−θop

)b,θ ≥ θop,
(12)

where fmi (i = 1,2,3, unitless value in range from 0 to 1)
is the response factor to soil moisture; w is the soil moisture
indicator (AI, mm mm−1); p1 and p2 are empirical param-
eters of the soil moisture scalar with values of p1 = 30 and
p2 =−8.5, respectively (Parton et al., 2000); θ is soil mois-
ture (m3 m−3); k1, k2, and k3 are soil moisture coefficients
with values of 1.1, 2.4, and 0.29, respectively (Camino-
Serrano et al., 2018); ϕ is the soil porosity related to soil bulk
density; θ/ϕ is the relative water content in soil pores; θop
is an optimum soil moisture content parameter at which the
heterotrophic respiration rate peaks; Kθ is moisture constant
depending on organic–mineral associations; ns is a satura-
tion exponent depending on soil structure and texture; and a
and b are respective SOC–microbial collocation and oxygen
supply restriction factors (Yan et al., 2018).

We assumed that the kinetic parameters Vmax and Km
respond to soil moisture, similarly to temperature in the
Michaelis–Menten equation, by affecting enzyme activ-
ity and enzyme–substrate affinity, respectively. The soil
enzyme–substrate affinity was found to increase with soil
moisture due to the increased diffusion and movement of
substrate, but the affinity may also decrease due to decreased
substrate concentrations (Zhang et al., 2009). Thus, we trans-
lated the impacts of soil moisture on the enzyme–substrate
affinity to changes in Km. In MIMICS-TSM, the effects of
soil moisture on the SOC decomposition rate are represented
by multiplying the response factor by Vmax and Km as fol-
lows (Eqs. 13, 14):

Vmax = e
Vslope×T+Vint × av ×Vmod× fmi, (13)

Km = e
Kslope×T+Kint × ak ×Kmod× fmi . (14)

The MIMICS models with three soil moisture functions –
fm1 (Eq. 10), fm2 (Eq. 11), and fm3 (Eq. 12) – are referred
to as MIMICS-TSMa, MIMICS-TSMb, and MIMICS-TSMc,
respectively. The modifications in all MIMICS versions are
summarized in Table 1.

2.1.5 Adjusted parameters for cropland SOC

Crop net primary productivity (NPP) at each site was used as
the litter input to soil, but different crop types (e.g., maize,
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rice, and wheat) were not specified in the model. The leaf,
root, and stem litter values were assumed as a fixed frac-
tion of crop NPP. The ratio of carbon to nitrogen (C : N) and
the ratio of lignin to carbon (lignin : C) of the leaf, root, and
stem (Table S2) were used to calculate the metabolic frac-
tion in the total crop litter (fmet); it was calculated as the
mean metabolic fractions in the leaf, root, and stem weighted
by the NPP in the three parts. In order to adapt MIMICS to
simulate cropland SOC, we modified C : N and lignin : C in
the three parts based on field measurements of the main crop
types (Table S2; Abiven et al., 2005). A harvest index (HI)
of 0.45 (Hicke and Lobell, 2004) was also applied to remove
the harvested part of crop and obtain the litter input to soil
(calculated as the crop aboveground NPP× (1-HI)).

2.2 Implementing biochar modeling in MIMICS

When applying biochar in croplands, a fraction of biochar
was assumed to be lost during application (floss = 2 %; Ar-
chontoulis et al., 2016). Although biochar is recalcitrant to
decomposition with a long turnover time (556± 484 years)
in general, it contains a labile fraction (108± 196 d), and its
stability varies with different biochar feedstocks, pyrolysis
temperatures, and soil properties (Wang et al., 2016). Be-
cause the sizes of the SOCp and SOCc pools in MIMICS are
not measured directly in the field studies, the 98 % remaining
fraction of added biochar is partitioned into three MIMICS
SOC pools by assuming that 60 % goes to SOCp, based on
the measured proportions of added biochar within aggregates
(Yoo et al., 2017); 20 % goes to SOCa, according to the labile
C portion in biochar (Roberts et al., 2010); and 20 % goes to
SOCc (Fig. 1). Note that biochar is not treated as a separate
carbon pool but is rather assumed to mix with other carbon
in the existing pools (Fig. 1). In addition to the increase in
total SOC, some important processes controlling SOC accu-
mulation and decomposition are affected by biochar addition.
Thus, we modified the parameters related to decomposition
and desorption of SOC (Fig. 1). The associated rationales,
equations, and parameters are described in the following sec-
tions.

The negative PEs of biochar addition on SOC may be
caused by (1) the inhibition of microbial activity via changes
in the soil environment due to biochar or (2) by SOC pro-
tection against microbial utilization through mineral adsorp-
tion or aggregates (Zimmerman et al., 2011). We assumed
that biochar addition decreased the mineralization of native
SOC (negative PE) because of its porous structure and strong
adsorption affinity to organic matter (Kasozi et al., 2010),
which was reported to have significantly contributed to the
negative PE mechanism due to biochar addition (Zheng et
al., 2018; Zimmerman et al., 2011). A desorption coefficient
(fd, ha t−1 C) was defined as a function of the biochar appli-
cation rate (Rate_BC) based on Woolf and Lehmann (2012)
and Archontoulis et al. (2016); thus, Eq. (5) was modified as

Figure 1. Framework of the MIMICS model with biochar addition
(MIMICS-BC; adapted from Wieder et al., 2015). The turnover of
microbial biomass (τ , blue arrows) is modified with the density-
dependent microbial turnover rate (MIMICS-T; Eq. 6). The adsorp-
tion process of SOCp to SOCa (purple arrow) is newly added and is
associated with the adsorption rate (Kads) and the maximum sorp-
tion capacity (Qmax) (MIMICS-TS; Eqs. 7–9). The carbon decom-
position processes (red arrows) are modified further with three soil
moisture scalers that are applied to the microbial maximum reaction
velocity (Vmax) and the half-saturation constant (Km) (MIMICS-
TSMa, MIMICS-TSMb, and MIMICS-TSMc; Eqs. 10–12). When
biochar is added to soil, the biochar (BC) carbon with an assumed
fraction loss (floss) is partitioned into SOCp, SOCa, and SOCc
based on fbp, fba, and fbc, respectively (purple arrows from the BC
to SOC pools). The desorption process (orange arrow from SOCp to
SOCa) is modified through changes in the desorption rate of SOCp
(D′) with biochar addition. The carbon decomposition processes
(red arrows) are modified by adjusting the microbial maximum re-
action velocity (V ′max) with biochar addition.

follows:

D′ =D× (1+ fd×Rate_BC×BC_C), (15)

where D′ (mg C cm−3 h−1) is the new desorption rate of
SOCp with biochar addition, and a negative value of fd in-
dicates a negative PE. The Rate_BC is the application rate
of biochar (t BC ha−1) and BC_C is the carbon content in
biochar (tons of carbon per ton of BC). Because the adsorp-
tion and desorption of SOC are interrelated dynamic process,
modification of the desorption process with biochar addition
also impacts the adsorption process. Therefore, we only mod-
ified fd in Eq. (15) to represent the negative PE of biochar.

We also assumed that biochar stimulated microbial growth
and activity through its nutrient input, inducing a positive PE
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to SOC (El-Naggar et al., 2019). We defined a new decom-
position rate coefficient (fv , ha t−1 C), which is a function of
Rate_BC, and included it in MIMICS by modifying Eq. (2):

V ′max = Vmax× (1+ fv ×Rate_BC×BC_C), (16)

where V ′max is the new microbial maximum reaction velocity
(mg C (mg MIC)−1 h−1) with biochar addition.

Biochar may also have a positive PE on SOC by increas-
ing the degradation rate of available SOC by microbes (i.e.,
SOCa in MIMICS). Therefore, we added a test through mod-
ifying the Vmax as a function of the biochar addition rate only
in the fluxes from SOCa to MICr and MICk , instead of in all
fluxes of decomposition (Eq. 16; red arrows in Fig. 1).

2.3 Model calibration and evaluation

2.3.1 Observational data collection

We collected 387 paired field measurements of SOC concen-
trations (g kg−1) in croplands with or without biochar (BC)
addition from 58 locations (see the site map in Fig. 2) from
the published literature. Soil properties (clay content, Clay;
bulk density, BD; and soil moisture, SM), climatic condi-
tions (mean annual temperature, MAT, and mean annual pre-
cipitation, MAP), a biological variable (net primary produc-
tivity, NPP), and biochar-related characteristics (application
rate, Rate_BC; the interval between biochar application and
soil sampling, Age_BC; feedstock type, Feedstock_BC; and
pyrolysis temperature, Temp_BC) were also collected when
available. Auxiliary information (e.g., location, management,
and crop type) and more detailed information can be found
in Han et al. (2021).

Because some sites have multiple biochar addition experi-
ments (e.g., pyrolysis temperature × aging time of biochar),
the control SOC concentrations at the same site were aver-
aged, and the SOC concentrations with biochar addition for
a given rate (Rate_BC) were also averaged, omitting other
characteristics of the biochar (like pyrolysis temperature).
In total, 134 paired SOC data were used for model calibra-
tion and validation (Fig. 2). The depth of soil sampled varies
among sites but is less than 30 cm in general. The biochar
application rate varies from 0.9 to 120 t ha−1 with a median
value of 20 t ha−1 (Fig. S2a). Most biochar addition experi-
ments are short-term experiments, with a median Age_BC of
1.2 years (Fig. S2b). The main types of cultivated crop are
maize, rice, and wheat.

There are SOC measurements on cropland sites from 58
control treatments (no BC application) and 134 measure-
ments from biochar treatments at the 58 sites. One con-
trol treatment may correspond to multiple biochar treatments
with different applied biochar rates at a single site. Consid-
ering that the 58 site observations may be inadequate to con-
strain all of the new features in the revised model, we also
collected SOC data on croplands (no biochar addition) from
three other published global datasets (227 sites in total; Sun

et al., 2020; Geisseler et al., 2017; M. Zhou et al., 2017).
Therefore, a total of 285 sites were used to calibrate and eval-
uate the model performance for simulating cropland SOC
without biochar addition (Fig. 2). The MIMICS model can
run for each site; however, to be consistent with the model
input resolution of daily temperature in the transient simula-
tion (Sect. 2.3.3), the resolution of 0.5° was used for site ag-
gregation. In detail, all sites within a given 0.5°× 0.5° grid
cell were aggregated on average, and the average value was
used to compare the model result in this grid cell.

The stabilizing processes of SOC after biochar addition
are usually slow, and the long-term impacts of biochar addi-
tion on SOC may be different from the short-term impacts
(Ding et al., 2011). Therefore, long-term SOC observations
with biochar addition are needed to validate possible mech-
anisms and evaluate the model performance of simulating
SOC stability with biochar addition. However, the duration
of most biochar addition experiments is short (74.2 % of data
< 3 years); thus, we extended our collected control SOC data
to 8 years according to the decomposition curve of biochar
in soil fitted by a double first-order exponential decay model
(Fig. S4; Wang et al., 2016). Note that the double exponential
decay function is only applied to the observational records of
measurement data, and this function is not used in the MIM-
ICS model. Specifically, the 8 years of SOC data with biochar
addition is the sum of field control SOC observations (short
term) and the residual biochar carbon in soil after 8 years.
These extended long-term data were also used for model cal-
ibration and model evaluation.

Soil properties that are not reported in the literature were
extracted from gridded datasets using the coordinates of the
sites: clay content was taken from the Global Soil Dataset
for Earth System Models (GSDE; Shangguan et al., 2014),
whereas SM was obtained from observations of the Soil
Moisture Active Passive (SMAP) satellite (Entekhabi et al.,
2010). Missing soil BD information in control treatments
was filled according to the relationship between SOC and
bulk density based on 4765 cultivated soil data from the sec-
ond national soil survey (Song et al., 2005), and a decrease
of 7.6 % (Omondi et al., 2016) from the control soil BD was
assumed to fill the missing BD values in the biochar addition
experiments. The climate variable MAT was extracted from
WorldClim (Fick and Hijmans, 2017), whereas the mean an-
nual aridity index (AI, i.e., the ratio of precipitation to po-
tential evapotranspiration) used in the soil moisture equation
(Eq. 10) was obtained from the Global Aridity Index and Po-
tential Evapotranspiration Database (Zomer et al., 2022). The
biological variable (i.e., NPP) was taken from the MODIS
NPP dataset (Zhao and Running, 2010).

2.3.2 Calibration and validation for MIMICS versions
without biochar

All field SOC observations in the control treatments (with-
out biochar) from the paired measurements and SOC from
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Figure 2. Locations of the field cropland SOC measurements with or without biochar addition collected in this study and SOC measurements
without biochar addition from Sun et al. (2020), Geisseler et al. (2017), and M. Zhou et al. (2017). The number of sites is also shown in
the legend. Note that one site may have multiple paired SOC data due to the various experimental conditions of biochar addition at our
58 collection sites. The cropland area percentage in each 10 km× 10 km grid cell is derived from EarthStat (http://www.earthstat.org, last
access: 7 June 2024; Ramankutty et al., 2008).

the other three global datasets (Fig. 2) were assumed to be
in a steady state: under present climate and continuous in-
put of crop NPP after 45 % removal of grain with a specific
crop litter quality (Sect. 2.1.5, Table S2). SOC pools in MIM-
ICS reached an equilibrium state after about 200 years of
simulation (Fig. S3). To accelerate this process, we used the
Newton–Raphson method (Press et al., 2007) to obtain the
steady SOC state with the site-level inputs of annual mean
crop NPP, MAT, Clay, SM, and BD in the parameter opti-
mization. This approach is constructed based on the funda-
mental principles governing biogeochemical cycle processes
in terrestrial ecosystems (e.g., respiration and carbon distri-
bution). A set of ordinary differential equations were built to
express the dynamics of carbon flows in soil over time, and
these equations can be solved numerically to obtain steady
carbon pool sizes. The solver of “mnewt” is used to solve
equations by iteratively calculating the values of model func-
tion “modelx” and its Jacobian matrix “modeljacx” (see the
codes for details in the “Code and data availability” section).
The Shuffled Complex Evolution Algorithm (SCE-UA) has
been proven to be a robust method for parameter optimiza-
tion (Duan et al., 1994; Muttil and Jayawardena, 2008), and
the SCE-UA method from the “spotpy” package in Python
(Houska et al., 2015; https://pypi.org/project/spotpy/, last ac-
cess: 7 June 2024) was applied here. Parameters are opti-
mal when the root-mean-square error (RMSE; Eq. 17) be-
tween the simulated SOC and observed SOC concentra-
tions is minimized. The Akaike information criterion (AIC;
Eq. 18; Akaike, 1974), which considers both the model error
and the number the model parameters, was also calculated to

evaluate different MIMICS versions.

RMSE=

√∑n
i=1(SOCobs,i −SOCsim,i)

2

n
(17)

AIC= n× ln

(∑n
i=1(SOCobs,i −SOCsim,i)

2

n

)
+ 2p (18)

Here, SOCobs,i and SOCsim,i are the observed and simulated
SOC at each i site, respectively; n is the number of observa-
tions; and p is the number of model parameters to be opti-
mized.

We randomly separated 80 % of the 285 sites for the MIM-
ICS versions’ (MIMICS-def, MIMICS-T, MIMICS-TS, and
MIMICS-TSM) calibration, and we used the remaining 20 %
for model validation. The R2, RMSE, and AIC were calcu-
lated by comparing simulated SOC with the observed SOC
in training and test datasets. The parameters optimized in dif-
ferent MIMICS versions are shown in Table S3. Soil depth
was not explicitly considered in this study, and we assumed
that the soil carbon concentrations (g kg−1) are similar within
the top 30 cm. Note that the parameters of soil moisture func-
tions (Eqs. 10–12) are directly derived from the original liter-
ature (Parton et al., 2000; Camino-Serrano et al., 2018; Yan
et al., 2018) and not optimized in MIMICS-TSM. We cal-
ibrated the models against our datasets including SOC and
auxiliary information (Fig. 2) for the main crop types (maize,
rice, and wheat), and the relationships between SOC in these
crop types and model input variables (i.e., NPP, MAT, and
Clay) were analyzed.

To explore possible soil moisture effects on SOC, we also
tried a test assuming that soil moisture affects the micro-

https://doi.org/10.5194/gmd-17-4871-2024 Geosci. Model Dev., 17, 4871–4890, 2024

http://www.earthstat.org
https://pypi.org/project/spotpy/


4878 M. Han et al.: Modeling BC effects on SOC in the MIMICS model

bial growth rate by regulating microbial growth (Vmax) and
turnover (τ ) of MICr and MICk (Wieder et al., 2019); thus,
we added a soil moisture factor (i.e., f (θ) in Eq. 11) on Vmax
and τ . We also conducted a sensitivity test of MIMICS in-
put variables (i.e., MAT, Clay, NPP, SM, and BD) with four
perturbation levels of −50 %, −25 %, 25 %, and 50 % to ex-
plore the effects of possible underrepresented processes on
the cropland steady SOC.

2.3.3 Calibration and validation for MIMICS versions
with biochar (MIMICS-BC)

For the version of MIMICS with biochar addition, for each
site, we ran simulations with a control (without biochar ad-
dition) and experimental (with biochar addition) simulation
for Age_BC year at hourly time steps, restarted from the
previous SOC equilibrium. Note that these simulations for
biochar addition are transient runs; thus, SOC is not in a
steady state. In order to meet the daily time step of transient
runs required by MIMICS, the two model runs are forced
by 6 h surface temperature from Climatic Research Unit and
Japanese reanalysis data (CRU-JRA; Kobayashi et al., 2015;
Harris et al., 2014). Therefore, the climate forcing data are
different from those from WorldClim used for the steady
runs (Sect. 2.3.2), as hourly climate data are not available
in WorldClim. The soil-related inputs of Clay, SM, and BD
were assumed to be invariant in time and consistent with in-
put data for the steady SOC runs. The absolute SOC changes
(1SOC, g kg−1; Eq. 19) in the simulated and observed SOC
concentrations were compared after BC addition. The RMSE
between simulated and observed 1SOC was minimized us-
ing SCE-UA for parameter optimization. AIC and the slopes
of regression lines between the simulated and observed SOC
changes were analyzed.

1SOC=Xt −Xc, (19)

where Xt and Xc are the observed (or simulated) SOC con-
centrations with and without biochar addition, respectively.

The 134 paired observations were randomly split into
training samples for parameter optimization (80 % of the
data) and test samples for model validation (20 % of the
data). Four tests were conducted to evaluate the perfor-
mance of MIMICSTSMb-BC with respect to simulating SOC
changes after biochar addition using the optimized parameter
values in MIMICS-TSMb (i.e., av , ak , kd, β, kba, c1, and c2;
Table S3):

1. without biochar-related parameters (MIMICSTSMb-
BCdef);

2. with only one new biochar-related parameter (i.e.,
the desorption coefficient, fd; Eq. 15) optimized
(MIMICSTSMb-BCD);

3. with a further one new biochar-related parameter (i.e.,
the decomposition rate coefficient, fv; Eq. 16) opti-

mized and fv included in all decomposition processes
(MIMICSTSMb-BCDV);

4. same as (3) but fv only included in the fluxes from
SOCa to the MIC pools (MIMICSTSMb-BCDV-SOCa).

Although MIMICS-TSMb is not the model with the high-
est R2 and lowest RMSE and AIC, the differences in the R2,
RMSE, and AIC among various versions are relatively small
(Fig. S5). The new processes (density-dependent processes,
sorption, and soil moisture scalars) are based on a theoretical
understanding and have been shown to improve predictions
of soil carbon in previous studies (Zhang et al., 2020; Liang
et al., 2019; Abramoff et al., 2022). Thus, this version was
used for further development of biochar processes in MIM-
ICS. As an alternative model version, we also tested the im-
plementation of biochar processes in MIMICS-T, which has
the highest R2 and lowest RMSE and AIC in model valida-
tion (Fig. S5b). The model versions and simulation settings
are shown in Table 1 and Fig. 3, and the optimized parame-
ters values in these tests are shown in Table S3.

The relationships between observed 1SOC and model
input variables and the partial correlations between biases
(simulated minus observed 1SOC) from the four tests and
model input variables (soil-, climate-, biology-, and biochar-
related variables) were also analyzed to detect the possi-
ble missing processes. The availability of carbon in biochar
may affect the magnitude of PEs. Thus, we tested the
MIMICSTSMb-BC versions using a different initial value of
the partitioning coefficient from biochar carbon to SOCa
(fba) (2 % according to Lychuk et al., 2014, compared with
the original value of 20 % in Sect. 2.2). The partitioning
coefficients of fbp and fba were also optimized to evalu-
ate the model performance. Considering the uncertainties
in the MIMICS-BC parameters, we conducted a sensitiv-
ity test of biochar-related parameters (i.e., fd, fv , fbp, and
fba), microbe-related parameters (MGE and τ ), and input
variables (i.e., Rate_BC, Age_BC, NPP, Clay, and SM) by
perturbing one parameter at a time while keeping all others
unchanged for each site. Four perturbation levels of −50 %,
−25 %, 25 %, and 50 % were set.

3 Results of model calibration and validation

3.1 Performance of different MIMICS versions
without biochar for simulating cropland SOC

3.1.1 Calibration and validation for MIMICS versions
without biochar

We split the data for calibration (80 %) and validation
(20 %) of MIMICS versions without biochar-related pro-
cesses. When using 20 % of the data for the indepen-
dent model validation, MIMICS-T also performs best,
with the highest accuracy (R2

= 0.56), the lowest RMSE
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Table 1. Modifications in various MIMICS versions.

Model Model version Description

MIMICS MIMICS-def The default model version with modified parameters related to crop properties
(Sect. 2.1.5)

MIMICS-T Considering the density-dependent microbial turnover rate (denoted as T ; Eq. 6)

MIMICS-TS Adding the sorption process of SOCp based on MIMICS-T (S; Eqs. 7–9)

MIMICS-TSMa Including soil moisture effects from the CENTURY model (Ma) based on
MIMICS-TS

MIMICS-TSMb Including soil moisture effects from the ORCHIDEE-SOM model (Mb) based
on MIMICS-TS

MIMICS-TSMc Including soil moisture effects from Yan et al. (2018) (Mc) based on MIMICS-
TS

MIMICST-BC MIMICST-BCdef Including the density-dependent microbial turnover rate but without biochar-
related parameters for biochar addition

MIMICST-BCD Including biochar effects on SOC by modifying the desorption rate of SOCp in
MIMICS-T (Eq. 15)

MIMICST-BCDV Including further biochar effects on SOC by modifying the microbial maximum
reaction velocity in all decomposition processes in MIMICS-T (Eq. 16)

MIMICST-BCDV-SOCa Including further biochar effects on SOC by modifying the microbial maxi-
mum reaction velocity only in microbial decomposition of SOCa in MIMICS-T
(Eq. 16)

MIMICSTSMb-BC MIMICSTSMb-BCdef Including the density-dependent microbial turnover rate, sorption process, and
soil moisture effects but without biochar-related parameters for biochar addition

MIMICSTSMb-BCD Similar to MIMICST-BCD but biochar is added in MIMICS-TSMb

MIMICSTSMb-BCDV Similar to MIMICST-BCDV but biochar is added in MIMICS-TSMb

MIMICSTSMb-BCDV-SOCa Similar to MIMICST-BCDV-SOCa but biochar is added in MIMICS-TSMb

(4.82 g kg−1), and the lowest AIC (187.2) among all model
versions (Figs. 4, S5b). Compared with MIMICS-def (R2

=

0.51, RMSE= 4.97 g kg−1, AIC= 188.8) (Figs. 4e, S5b),
MIMICS-TS and MIMICS-TSMb have a better correlation
(R2
= 0.52 and 0.52) but a higher RMSE (RMSE= 5.01 and

5.05 g kg−1) and AIC (AIC= 197.7 and 198.6) between the
observed and simulated cropland SOC concentration. TheR2

of the MIMICS-TSM versions ranges from 0.46 to 0.52, and
R2 of MIMICS-TSMb is the highest among the model ver-
sions. We also evaluated the performance of the MIMICS-
TSMb version calibrated with cropland SOC data under dif-
ferent crop types. The model performance varies among dif-
ferent crop types (i.e., maize, rice, and wheat). The R2 be-
tween the simulated SOC concentrations by MIMICS-TSMb
and observations is higher for maize and wheat (0.84 and
0.74, respectively; Fig. S6a, c) but lowest for rice (0.38;
Fig. S6b). This is probably because the flooded condition in
the paddy field limits SOC decomposition, which is partly
supported by the weaker correlation between SOC and NPP
for rice (R2

= 0.06; Fig. S7d) than that for maize and wheat
(R2
= 0.77 and 0.54; Fig. S7a, g). Although MIMICS-TSMb

has the soil moisture processes (Sect. 2.1.4), the flooding
conditions in the paddy field are not available and are not
explicitly forced in these rice sites.

To align with the resolution of climate input variables used
in the transient simulations (Sect. 2.3.1), we tested MIMICS
after aggregating cropland SOC sites within each 0.5°× 0.5°
grid cell instead of using each site directly, and the model
can reproduce about 45 %–55 % of the SOC spatial varia-
tion (Fig. S8), slightly lower than that using site-specific data
(R2
= 0.51–0.56; Fig. 4e). This shows that site-specific data

are more accurate for model simulation, but the small differ-
ence also suggests that using grid climate data (0.5°× 0.5°)
to drive the model has a relatively small impact on predicting
SOC in the transient simulations.

3.1.2 Sensitivity analyses for MIMICS versions without
biochar

To explore the possible effects of soil moisture on SOC
dynamics by affecting different processes (Sect. 2.3.2), we
assumed that the microbial turnover (τ ) was also affected
by soil moisture in addition to the microbial reaction ve-
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Figure 3. Diagram of field measurement SOC data and the model simulation settings. The simulated or observed1SOC is equal to SOC with
the biochar addition treatment minus that in the control treatment (without biochar addition). Note that one control treatment may correspond
to multiple BC treatments with different applied BC rates at one single site.

locity (Vmax). The model with the soil moisture effects
does not predict SOC concentrations more accurately (R2

=

0.46, RMSE= 5.06 g kg−1, AIC= 198.9; Fig. S10b) than the
MIMICS-TSMb version in which Vmax and Km are affected
(R2
= 0.52, RMSE= 5.05 g kg−1, AIC= 198.6; Figs. 4d,

S5b). This may be because the inclusion of soil moisture ef-
fects on Vmax and τ complicates the model processes, and
other microbe-related observations, such as soil microbial
carbon and soil heterotrophic respiration, are needed to fur-
ther constrain these processes in MIMICS.

We analyzed the responses of the MIMICS model to
changes in input variables, in order to identify the impor-
tant variables and explore possible missing processes related
to these variables (Sect. 2.3.2). The perturbation of MIM-
ICS input variables shows that the size of the steady SOC
pool is positively correlated with NPP and Clay but nega-
tively correlated with MAT and BD. The responses of steady
SOC to the perturbation of BD, MAT, and NPP are rela-
tively large (Fig. 5). Improving processes associated with
these variables in MIMICS will enhance the prediction ac-
curacy of the model.

3.2 Calibration and evaluation of MIMICS-BC

3.2.1 Calibration and validation for MIMICS-BC
versions

For the model validation using short-term observation
data that were not used for calibration (Figs. 6, 7,
S11, S12), the performance of MIMICST-BCDV-SOCa
(R2
= 0.80, RMSE= 3.38 g kg−1, AIC= 69.8; Fig. 6e–

g) is slightly better than MIMICST-BCD (R2
= 0.79,

RMSE=3.43 g kg−1, AIC= 68.5) and MIMICST-BCDV
(R2
= 0.76, RMSE= 3.66 g kg−1, AIC=74.1), except that

the AIC (69.8) is higher than that of MIMICST-BCD (68.5)
(Fig. 6). By comparison, the performance of MIMICST-
BCdef is poorer than these three versions. Among the
MIMICSTSMb-BC versions, MIMICSTSMb-BCDV performs
best with respect to reproducing SOC changes with biochar
addition, with the highest R2 (0.79), the lowest RMSE
(3.73 g kg−1), and AIC (75.0) (Fig. 7e–g).

For the model validation using the long-term (ex-
tended to 8 years based on biochar decomposition curve;
Wang et al., 2016) SOC changes after biochar addition,
MIMICST-BCdef and MIMICSTSMb-BCdef underestimate
the extrapolated observations of SOC change (Figs. 6a,
7a). MIMICST-BCD shows the best performance, with
the lowest RMSE (3.84 g kg−1) and AIC (74.7), among
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Figure 4. Comparison between the observed and simulated SOC concentrations by (a) MIMICS-def, (b) MIMICS-T, (c) MIMICS-TS, and
(d) MIMICS-TSMb. Blue and red dots in panels (a)–(d) represent observation sites for model calibration (80 % sites) and validation (20 %
sites), respectively. Panel (e) presents the R2, root-mean-square error (RMSE), and Akaike information criterion (AIC) from the model
calibration (left) and validation (right) for the four MIMICS versions. The values for the bar graphs in Fig. 4e can be found in Fig. S5.
Relationships for the other MIMICS versions can be found in Fig. S9.

all of the MIMICST-BC versions (Fig. 6). Compared
with MIMICSTSMb-BCdef (R2

= 0.88, RMSE= 9.35 g kg−1,
slope= 0.08, AIC= 120.7; Fig. 7a, e, f, g), predic-
tions of MIMICSTSMb-BCD, MIMICSTSMb-BCDV, and
MIMICSTSMb-BCDV-SOCa are more accurate, with a smaller
RMSE (8.12, 6.08 and 6.78 g kg−1; Fig. 7f), a smaller AIC
(115.1, 101.5 and 107.4; Fig. 7g), a linear slope closer to 1
(0.29, 1.68 and 1.74; Fig. 7a–d), and a reasonable R2 ac-
curacy (0.45, 0.97 and 0.94; Fig. 7e). Among the different
MIMICSTSMb-BC versions, MIMICSTSMb-BCDV shows the
best performance (Fig. 7). When assuming that biochar pro-
duces a PE only through affecting the utilization rate of SOCa
by microbes (MIMICSTSMb-BCDV-SOCa), the model accu-
racy is slightly poorer, with a lower R2 (= 0.94), a higher
RMSE (= 6.78 g kg−1), and a higher AIC (= 107.4) than
MIMICSTSMb-BCDV which assumes that all decomposition
processes are affected (Fig. 7).

3.2.2 Error analysis for MIMICS-BC versions

The biases between the simulated and observed short-term
SOC changes with biochar addition are significantly cor-
related with Rate_BC and Clay (p < 0.05), but they only
vary marginally with SM, MAT, and NPP when additional
parameters are optimized (Fig. S13). The biases between

long-term observations and simulations by MIMICSTSMb-
BCdef are significantly correlated with Rate_BC (r =−0.81)
(Fig. 8), suggesting that the model may underrepresent pro-
cesses related to Rate_BC. By considering biochar effects on
the SOC desorption (MIMICSTSMb-BCD), the correlations
of model biases with Rate_BC, BD, SM, and NPP become
weaker (Fig. 8). MIMICSTSMb-BCDV, which incorporates
the biochar impacts on the microbial decomposition rate,
further reduces the correlations between model biases and
the variables of Rate_BC, Age_BC, and BD, but it increases
biases related to SM. MIMICSTSMb-BCDV-SOCa, which in-
cludes the impacts on microbial decomposition rate only in
the fluxes from the SOCa to MIC pools, can also reduce
the correlations between model biases and the variables of
Rate_BC and BD, but the correlations change little with Clay
and Age_BC (Fig. 8).

3.2.3 Sensitivity analyses for MIMICS-BC versions

The test of the partitioning coefficient from biochar to SOCa
(fba) with 2 % for the MIMICSTSMb-BC model (Sect. 2.3.3)
shows a similar R2 (0.35–0.79; Fig. S14) to that from
fba = 20 % in the short term (0.25–0.79; Fig. 7). The op-
timization of the partitioning coefficient from biochar car-
bon to SOCp (fbp) and fba shows a better performance
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Figure 5. Sensitivity analysis of responses of the steady SOC simulated by MIMICS to the input variables (a) MAT, (b) Clay, (c) NPP,
(d) SM, and (e) BD with different perturbation levels. The yellow lines and the dotted green lines in the box plots are the respective median
and mean values of the output steady SOC changes at calibrated sites. The average SOC changes at calibrated sites for the four perturbation
levels are shown in panel (f).

Figure 6. Relationships of short-term (≤ 6 years; black) and long-term (i.e., extended to 8 years; red) SOC changes after biochar addition
(1SOC) between observations and models in the validation dataset. The MIMICS versions used include MIMICST-BCdef (a), MIMICST-
BCD (b), MIMICST-BCDV (c), and MIMICST-BCDV-SOCa (d). Comparisons of R2 (e), the root-mean-square error (RMSE, f), and the
Akaike information criterion (AIC, g) among the four MIMICST-BC versions are shown separately. For information on the model versions,
the reader is referred to Table 1.
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Figure 7. Same as Fig. 6 but for models based on MIMICS-TSMb instead of MIMICS-T.

Figure 8. Correlations between the MIMICSTSMb-BC biases (i.e.,
simulated long-term1SOC minus observed1SOC) and input soil-
related (Clay, BD, and SM), climate-related (MAT), biology-related
(NPP), and biochar-related (Rate_BC and Age_BC) variables for
MIMICSTSMb-BCdef, MIMICSTSMb-BCD, MIMICSTSMb-BCDV,
and MIMICSTSMb-BCDV-SOCa. Asterisks indicate significant cor-
relations (p < 0.05).

(R2
= 0.80, RMSE= 3.44 g kg−1, AIC= 66.7; Fig. S15)

than MIMICSTSMb-BCDV without these two parameters op-
timized (Fig. 7).

The responses of 1SOC to parameter perturbations show
that fv and fd affect 1SOC with biochar addition in the
opposite directions and that 1SOC is more sensitive to the
partitioning coefficient fbp than to fd, fv , and fba (Fig. 9).
1SOC is more sensitive to Rate_BC than Age_BC. The
sensitivity of the 1SOC to τ is greater than that to MGE
(Fig. S16), and the two parameters may be influenced by
biochar but are not considered in the current MIMICS-BC
versions. The sensitivity tests for the model input variables,

i.e., crop net primary productivity (NPP), soil clay content
(Clay), and soil moisture (SM), show that Clay is very im-
portant to the model outputs, while the impacts of NPP and
SM are relatively smaller (Fig. S16).

4 Discussion

4.1 Cropland SOC-related processes

4.1.1 Missing processes in the MIMICS model

We presented a framework to quantify the impact of density-
dependent microbial turnover, sorption, and soil moisture ef-
fects on cropland SOC dynamics. Regulatory mechanisms
(e.g., competition) may limit microbial population sizes, and
neglecting this process could lead to indefinite microbial
biomass growth with increasing litter inputs (Georgiou et
al., 2017). Our analysis demonstrates that restricting mi-
crobial biomass size through density-dependent microbial
turnover (MIMICS-T) slightly improves the model perfor-
mance (Fig. 4), but further including sorption and soil mois-
ture effects (MIMICS-TS and MIMICS-TSM) has a negli-
gible contribution to the model performance. One possible
reason for this is that the inclusion of these new processes
greatly increases model complexity; however, in the param-
eter calibrations, SOC is still the only observational variable
to constrain all of the newly added processes. Therefore, the
model parameters may not be fully constrained due to the
lack of direct observations of these new processes.

https://doi.org/10.5194/gmd-17-4871-2024 Geosci. Model Dev., 17, 4871–4890, 2024



4884 M. Han et al.: Modeling BC effects on SOC in the MIMICS model

Figure 9. Sensitivity analysis of MIMICS-BC model parameters of (a) fd (desorption coefficient; Eq. 15), (b) fv (decomposition rate
coefficient; Eq. 16), (c) fbp (partitioning coefficient from biochar carbon to SOCp; Fig. 1), (d) fba (partitioning coefficient from biochar
carbon to SOCa; Fig. 1), and the biochar-related input variables of (e) Rate_BC and (f) Age_BC. The yellow lines and the dotted green line
in the box plots are the respective median and mean values of the changes in model output (i.e., change in 1SOC; Eq. 19). The mean values
of change in output 1SOC at calibrated sites are shown in panel (g).

Another reason is that some other possibly important
processes are missing from the model. For example, the
MIMICS-TS version considers the impacts of soil clay on
the adsorption capacity of SOCa, but soil pH, ionic strength,
and mineral content are also found to be important to the
sorption–desorption of SOC (Kothawala et al., 2009; Mayes
et al., 2012). The metal ion Ca2+ can form bonds between
negatively charged clay minerals and available SOC via
cation bridging, enhancing the adsorption of available SOC
by soil clay minerals (Roychand and Marschner, 2014; Se-
tia et al., 2013). Soil pH can also impact SOC sorption
by altering the ionization degree and the surface change in
SOC molecules (Shen, 1999). Moreover, iron minerals can
preferentially bind to lignin components through sorption
and coprecipitation, protecting them from microbial degra-
dation and, consequently, increasing SOC (Liao et al., 2022).
In addition to the sorption–desorption process that is as-
sociated with microbial accessibility to SOC, other factors

that influence microbial activity are also underrepresented
in MIMICS, such as the soil nutrient availability (e.g., ni-
trogen), which greatly impacts microbial use efficiency and
growth rate (Manzoni et al., 2017). These processes im-
prove our understanding of the mechanisms of SOC dynam-
ics and should be incorporated in the model to represent the
microbe–mineral processes realistically and mechanistically.

However, as shown in our results, without further obser-
vational constraints on each respective process, the model
performance only relying on calibrations against total SOC
contents may not improve. Therefore, various versions of
MIMICS, representing different levels of our understanding
of microbe–mineral processes, are retained in our study for
further calibrations when sufficient observations emerge.

4.1.2 Cropland management impacts

Cropland management disturbs soils frequently, and the as-
sumed equilibrium state of SOC may not be realistic, which

Geosci. Model Dev., 17, 4871–4890, 2024 https://doi.org/10.5194/gmd-17-4871-2024



M. Han et al.: Modeling BC effects on SOC in the MIMICS model 4885

also partly explains the mismatch between simulated and ob-
served SOC. Agricultural management (e.g., irrigation and
tillage) is an important factor that affects SOC decomposi-
tion and accumulation in croplands. The poor performance of
MIMICS for rice is probably due to the inability of MIMICS
to simulate SOC dynamics under anaerobic conditions stem-
ming from the irrigation practice (Figs. S6–S7). Tillage may
disrupt soil aggregates and release physically protected SOC,
which is more susceptible to decomposition than that pro-
tected by soil aggregates (Six et al., 1999). Juice et al. (2022)
modeled tillage effects on SOC loss via the transfer of pro-
tected SOC into unprotected pools, i.e., from SOCp to SOCa
in this study, and the model can well capture the histori-
cal SOC dynamics in the agricultural system with intensive
managements, such as different crop types, tillage, or fertil-
ization. Our results from variable perturbation suggest that
BD is the key driver of SOC changes, followed by MAT and
crop NPP (Fig. 5), suggesting that processes related to these
variables have a great effect on the SOC. The soil BD was
also found to be affected by tillage practices (Osunbitan et
al., 2005), and crop NPP may vary due to crop rotation and
fallow practice, which are missing in the model.

In addition, managements such as fertilizer application
and possible residue retention can increase SOC stock. Previ-
ous evidence indicates that SOC is increased by 11.3 % with
residue return (X. Wang et al., 2020) and by 13.3 % with
straw return and balanced nitrogen–phosphorus–potassium
(NPK) fertilizer (Islam et al., 2023) compared with residue
removal. However, these management processes of fertiliza-
tion and residue retention are not represented in the MIM-
ICS model due to the absence of quantitative management
data and the poor understanding of the mechanisms. This
may explain the underestimation of SOC by the calibrated
MIMICS models at sites with a high carbon density (Fig. 4).
Therefore, field measurements of the effects of agricultural
practices on SOC dynamic are urgently needed to further im-
prove the model processes (Campbell et al., 2007; Congreves
et al., 2015).

4.2 Biochar-related processes

4.2.1 Tested processes in the MIMICS-BC model

Biochar can absorb SOC due to its large specific surface area,
high porosity, and further promotion of soil macroaggregate
formation (Han et al., 2020; Huang et al., 2018). Consis-
tently, the optimized desorption coefficient (fd =−0.0121
and −0.0122 for the short term and long term, respectively;
Table S3) in MIMICSTSMb-BCD is negative, indicating that
the carbon desorption from SOCp to SOCa is reduced with
biochar addition. Incorporating the biochar impacts on mi-
crobial decomposition velocity in MIMICSTSMb-BCDV fur-
ther improved the model with biochar addition, but the corre-
lations between model–observation biases and the input vari-
ables of biochar application rate (Rate_BC) and soil moisture

(SM) are still significant in the long term (p < 0.05; Fig. 8),
implying that some processes related to these variables are
not well represented in the model. For example, biochar ad-
dition could increase soil moisture (Razzaghi et al., 2020)
and further alter the composition and activity of soil mi-
crobial communities (Lehmann et al., 2011). Moreover, the
direction and magnitude of biochar effects on SOC are de-
pendent on the biochar addition rate and Age_BC (Ding
et al., 2017). Compared with MIMICST-BCDV, MIMICST-
BCDV-SOCa performed better with respect to the short-term
SOC response to biochar addition but worse in the long-term
response (Fig. 6). When biochar is applied, the labile car-
bon fraction may be immediately utilized by microbes; thus,
including the biochar effects on the SOCa process is impor-
tant for the short-term response. In the long term, the SOC
mineralization may be gradually suppressed via physical pro-
tection (Zimmerman et al., 2011), but both MIMICST-BCDV
and MIMICST-BCDV-SOCa do not include the adsorption pro-
cess. In the MIMICSTSMb-BC versions, which include the
adsorption process, the available SOC may be partly ad-
sorbed by soil minerals and become physically protected.
This could lead to the positive PE of biochar on SOC being
less evident (Fig. 7).

4.2.2 Missing processes in current MIMICS-BC model

The effects of biochar on SOC are controlled by various fac-
tors, such as soil physicochemical and biological properties
(e.g., clay, pH, and microbial activity), biochar properties
(e.g., feedstock and pyrolysis temperature), and incubation
conditions (e.g., periods and crop types) (Ding et al., 2017;
Han et al., 2020). Some of these effects are not explicitly
considered in the MIMICS biochar version. Biochar addi-
tion may change the composition of microbial community,
and a previous study reported increased copiotrophic bacte-
ria with a higher growth rate and decreased oligotrophic bac-
teria in acidic soils with biochar addition (Sheng and Zhu,
2018). This is related to the competition between r- and k-
strategy microbes in MIMICS. Microbial carbon use effi-
ciency (CUE) determines the relational proportions of micro-
bial carbon uptake between growth and respiration (H. Zhou
et al., 2017), and an increased CUE and reduced turnover
time (1/τ ) of microbial biomass were found with biochar
addition, although the changes depended on the soil texture
(Pei et al., 2021). This is consistent with our results that the
1SOC is more sensitive to changes in τ and soil clay than
other parameters and variables (Fig. S16). Therefore, pro-
cesses and parameters related to τ and soil clay need to be
accounted for in future with additional evidence.

In the MIMICS-BC version, we assumed that biochar, with
a longer turnover time (about 1000 years; Schmidt et al.,
2002) than SOC, is evenly mixed with SOC and is treated
as a homogenous pool without an explicit vertical profile,
which may also introduce uncertainties. In addition, due to
the lack of long-term biochar addition experiments, the ex-
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tended long-term SOC concentrations with biochar addition
are calculated as the sum of SOC at the control site without
biochar addition and the remaining biochar carbon based on
the biochar degradation curve (Fig. S4; Wang et al., 2016).
Although they are not direct observations and may induce
uncertainty, the long-term model validation is important to
assess the model ability to simulate the SOC stability with
biochar addition. Therefore, long-term and comprehensive
field measurements of SOC and other soil and microbe prop-
erties after biochar addition are urgently needed to under-
stand the underlying mechanisms of biochar impacts on SOC
changes, all of which will help improve the model perfor-
mance.

5 Conclusions

Our study shows that the updated MIMICS versions with
new processes (e.g., adsorption and soil moisture) improves
the model performance with respect to simulating SOC dy-
namics on croplands. The model versions implemented with
biochar processes can generally capture the SOC changes
after biochar application from observations. Biochar is be-
lieved to have a large CDR potential, and its application on
soils would affect the soil carbon and nutrient cycles. These
impacts need to be incorporated ESMs to accurately simu-
late the mitigation potential of biochar under future climate
change.
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