

Supplement of

Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)

Mengjie Han et al.

Correspondence to: Wei Li (wli2019@tsinghua.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supporting information

Table S1 Definitions, values and units of parameters in MIMICS.

Parameter	- Description	Value	Unit
Carbon nools	2 ihnon		
	Metabolic litter pool	_	mg C cm ⁻³
	Structural litter pool		mg C cm ⁻³
MIC	Microorganism with conjustrophic growth strategy		mg C cm ⁻³
MIC	Microorganism with eligotrophic growth strategy	-	mg C cm ⁻³
SOC	Physically protected SOC pool	-	mg C cm ⁻³
SOC_p	Chamical protected SOC pool	-	mg C cm ⁻³
soc	Available SOC pool	-	mg C cm ⁻³
I :tton input now	Available SOC pool	-	
	Partitioning of litter inputs to LIT	0.85, 0.012 (lignin/N)	
Jmet f	Fraction of littler inputs transformed to SOC	0.85-0.013 (lightin/N)	-
Ji,met f	Fraction of little inputs transferred to SOC_p	0.05	-
Ji,stru	Fraction of futer inputs transferred to SOC _c	0.05	-
Nitcrobial decom	position parameters		
V _{max}	Microbial maximum reaction velocity	-	$mg C (mg MIC)^{-1} n^{-1}$
Λ _m	Pail-saturation constant	-	
Vslope	Regression coefficient (Eq. 2)	0.063 -	In (mg C (mg MIC)
17		5 47 A	
V _{int}	Regression intercept (Eq. 2)	5.47	In (mg C (mg MIC) ⁻ n ⁻)
av	Tuning coefficient (Eq. 2)	8×10°°	-
V _{mod-r}	Modifies V_{max} for fluxes into MIC _r	10, 2, 10 *	-
V _{mod-k}	Modifies V_{max} for fluxes into MIC _k	3,3,2 °	-
K _{slope}	Regression coefficient (Eq. 3)	0.017, 0.027, 0.017 55	$\ln \left(\operatorname{mg} C \operatorname{cm}^{3} \right) C^{4}$
K _{int}	Regression intercept (Eq. 3)	3.19*	$\ln (\text{mg C cm}^3)$
ak V	Tuning coefficient (Eq. 3)		-
K _{mod-r}	Modifies K_m for fluxes into MIC_r	0.125,0.5,0.25×P _{scalar}	-
K _{mod-k}	Modifies K_m for fluxes into MIC_k	$0.5, 0.25, 0.16 \times P_{scalar}$	-
P _{scalar}	Physical protection scalar used in K_{mod}	$(2.0 \times (2.0 \times e^{-2\sqrt{j} \operatorname{ctay}})^{-1})$	-
MGE	Microbial growth efficiency	0.5, 0.25, 0.7, 0.35	mg mg ⁻¹
<i>k_{mic}</i>	Microbial biomass turnover rate	$5.2 \times 10^{-4} \times e^{0.5(met)} \times \tau_{mod}$	h ⁻¹
-		$2.4 \times 10^{-4} \times e^{0.10 \text{ met}} \times \tau_{mod}$	
ι_{mod}		$0.8 < \sqrt{NPP/100} < 1.2$	-
a_{τ}	Tuning coefficient of K_{mic}	1.0 $(1.0, 0.12, \dots, 13(fclay))$	-
J _{rp}	Fraction of K_{mic} of MIC _r partitioned to SOC _p	$min(1.0, 0.13 \times e^{1.0(1000)})$	-
Jkp	Fraction of K_{mic} of MIC _k partitioned to SOC _p	$min (1.0, 0.02 \times e^{0.0(1000)})^{-1}$	
Jrc C	Fraction of K_{mic} of MIC _r partitioned to SOC _c	$\min(1.0 - f_{rp}, 1.06 \times e^{-2.6(fmet)})$	-
J _{kc}	Fraction of K_{mic} of MIC _k partitioned to SOC _c	$min(1.0 - f_{kp}, 8.93 \times e^{-2.00})^{-1}$	
Ĵra C	Fraction of K_{mic} of MIC _r partitioned to SOC _a	$1.0 - f_{rp} - f_{rc}$	-
J_{ka}	Fraction of K_{mic} of MIC _k partitioned to SOC _a	$1.0 - f_{kp} - f_{kc}$	
ß	Density-dependence exponent	Eq. 6	-
Protected carbo	n parameters		. 1
D	Desorption rate from SOC _p to SOC _a	Eq. 5	h-1
KO	Further modifies K_m for oxidation of SOC_c	4, 4 ^e	-

Parameter	Description	Value	Unit
k _d	Tuning coefficient of the desorption rate	Eq. 5	-
K _{ads}	The sorption rate of SOC _p	Eq. 8	h^{-1}
k _{ba}	The binding affinity (Eq. 8)	1~16 ^g	(mg C·mg ⁻³) ⁻¹
Q_{max}	The maximum sorption capacity of $\ensuremath{\text{SOC}}_{\ensuremath{\text{p}}}$	Eq. 9	mg C cm ⁻³
Biochar-related	parameters		
f_{bp}	Fraction of biochar carbon partitioned into $\mathrm{SOC}_{\mathrm{p}}$	0.6	-
fba	Fraction of biochar carbon partitioned into $\ensuremath{\text{SOC}}_a$	0.03-0.3 ^h	-
f_{bc}	Fraction of biochar carbon partitioned into $\mathrm{SOC}_{\mathrm{c}}$	$1.0 - f_{bp} - f_{ba}$	-
floss	Biochar fraction loss during addition	0.02 h	-
f_d	Coefficients for adjusting the desorption rate of \ensuremath{SOC}_p	-0.15 ~0.15 h	ha t ⁻¹ C
	with biochar addition (Eq. 15)		
f_v	Coefficients for adjusting the microbial decomposition	-0.15 ~0.15 ^h	ha t ⁻¹ C
	velocity with biochar addition (Eq. 16)		

^a From observations in German et al. (2012), as used in Wieder et al. (2014, 2015).

 $^{\text{b}}$ For $\text{LIT}_{\text{m}},$ $\text{LIT}_{\text{s}},$ and $\text{SOC}_{\text{a}},$ fluxes entering $\text{MIC}_{\text{r}},$ respectively.

5 ^c For LIT_m , LIT_s , and SOC_a , fluxes entering MIC_k , respectively.

d 0.5 is the MGE of C fluxes from LIT_m and SOC_a to MIC_r, 0.25 is for C flux from LIT_s to MIC_r, 0.7 is for fluxes from

 LIT_s and SOC_a to $MIC_k,\,0.35$ is for C flux from LIT_m to $MIC_k.$

^e For MIC_r and MIC_k, respectively.

^f Values from Zhang et al. (2020).

10 ^g Values from Wang et al. (2020).

^h Ranges from Archontoulis et al. (2016).

Table S2 Definitions and values of modified parameters used in default MIMICS.

Parameters ^d	Description	Original values ^a	Modified values
cn_leaf	The ratio of carbon to nitrogen in leaf	30	25 ^b
cn_root	The ratio of carbon to nitrogen in root	75	45 ^b
cn_stem	The ratio of carbon to nitrogen in stem	200	50 ^b
lig_c_leaf	The ratio of lignin to carbon in leaf	0.1	0.12 ^b
lig_c_root	The ratio of lignin to carbon in root	0.1	0.40 ^b
lig_c_stem	The ratio of lignin to carbon in stem	0.15	0.15 ^b
HI	Harvest index	-	0.45 ^c

15

^a Values based on Zhang et al. (2020).

^b Estimated values from Abiven et al. (2005).

^c Value from Hicke and Lobell (2004).

^d These parameters were assumed unchanged with biochar addition.

Table S3 Prior parameter values, optimized values and ranges in the parameter optimization for various MIMICS versions.

Datasets	Model	Param	Prior		Range ^c	Units
		eter	value	Optimized value		
MIMICS	MIMICS-def	a_v	10	13.95	[0,30]	-
		a_k	5	16.36	[0,20]	-
		k_d	0.5	1.73	[0,3]	-
	MIMICS-T	a_v	10	8.34	[0,30]	-
		a_k	5	12.52	[0,20]	-
		k_d	0.5	2.57	[0,3]	-
		β	1	1.15	[0,2]	-
	MIMICS-TS	a_v	10	9.13	[0,30]	-
		a_k	5	17.72	[0,20]	-
		k_d	0.5	2.15	[0,3]	-
		β	1	1.35	[0,2]	-
		k_{ba}	6	8.60	[1,16]	-
		c_1	0.3	0.27	[0,0.8]	-
		С2	3.0	2.16	[0,5]	-
	MIMICS-TSM _a	a_v	10	8.50	[0,30]	-
		a_k	5	15.22	[0,20]	-
		k_d	0.5	2.03	[0,3]	-
		β	1	1.33	[0,2]	-
		k_{ba}	6	8.38	[1,16]	-
		<i>C</i> 1	0.3	0.42	[0,0.8]	-
		<i>C</i> ₂	3	2.61	[0,5]	-
	MIMICS-TSM _b	a_v	10	9.94	[0,30]	-
		a_k	5	19.42	[0,20]	-
		k_d	0.5	1.97	[0,3]	-
		β	1	1.36	[0,2]	-
		k_{ba}	6	6.51	[1,16]	-
		c_1	0.3	0.39	[0,0.8]	-
		<i>C</i> ₂	3	1.55	[0,5]	-
	MIMICS-TSM _c	a_v	10	10.37	[0,30]	-
		a_k	5	17.12	[0,20]	-
		k_d	0.5	1.63	[0,3]	-
		β	1	1.21	[0,2]	-
		k_{ba}	6	9.61	[1,16]	-
		C_1	0.3	0.28	[0,0.8]	-
		С2	3	2.24	[0,5]	-
MIMICS _T -BC	$MIMICS_T$ - BC_{def}	none	none	none	none	none
	MIMICS _T -BC _D	fd	-0.002	-0.0084 ^a (-0.0131 ^b)	[-0.15,0.15]	ha t ⁻¹ C
	MIMICS _T -BC _{DV}	f_d	-0.002	0.0168 ^a (-0.0125 ^b)	[-0.15,0.15]	ha t ⁻¹ C
		f_v	0.05	-0.0086 ^a (-0.0149 ^b)	[-0.15,0.15]	ha t ⁻¹ C
	MIMICS _T -BC _{DV-SOCa}	fd	-0.002	-0.0096 ^a (-0.0030 ^b)	[-0.15,0.15]	ha t ⁻¹ C

		f_v	0.05	0.0082 ^a (-0.0257 ^b)	[-0.15,0.15]	ha t ⁻¹ C
MIMICS _{TSMb} -BC	$MIMICS_{TSMb}\text{-}BC_{def}$	none	none	none	none	none
	MIMICS _{TSMb} -BC _D	f_d	-0.002	-0.0121 ^a (-0.0122 ^b)	[-0.15,0.15]	ha t ⁻¹ C
	MIMICS _{TSMb} -BC _{DV}	f_d	-0.002	0.0020 ^a (0.0934 ^b)	[-0.15,0.15]	ha t ⁻¹ C
		f_{v}	0.05	-0.0092 ^a (-0.0253 ^b)	[-0.15,0.15]	ha t ⁻¹ C
	$MIMICS_{TSMb}\text{-}BC_{DV\text{-}SOCa}$	f_d	-0.002	0.0020 ^a (0.0107 ^b)	[-0.15,0.15]	ha t ⁻¹ C
		f_v	0.05	-0.0098 ^a (-0.0260 ^b)	[-0.15,0.15]	ha t ⁻¹ C

^a The optimized parameter values using the short-term SOC data.

^b The optimized parameter values using the long-term (extended to 8 yr) SOC data.

^c The prescribed parameter ranges of a_{v} , a_{k} , k_{d} , β are from Zhang et al. (2020). k_{ba} is from Wang et al. (2020). c_{1} and c_{2}

are estimated from Mayes et al. (2012). f_d and f_v are from Archontoulis et al. (2016).

30

40

Fig. S1 Soil moisture functions from (a) the Century model (Parton et al., 2000), (b) the ORCHIDEE-SOM model (Camino-Serrano et al., 2018) and (c) the mechanism-based soil moisture function from Yan et al. (2018). *w* is soil moisture indicator (AI, i.e., precipitation/potential evapotranspiration). θ is soil water content, φ is soil porosity, and θ/φ is relative water content.

Fig. S2 The frequency distribution of (a) biochar application rates (Rate_BC) and (b) biochar addition periods (Age_BC). Red dotted lines indicate the median values.

60 Fig. S3 Temporal changes of seven SOC pools from a simulation of the MIMICS-TSM_b version for 500 years using one random site (Lat, Lon =28.1°N, 113.2°E) as an example.

Fig. S4 The biochar decomposition curve fitted with experimental data from Wang et al. (2016) using a double first-order exponential decay model $(BC_{remain\%} = 3.02 \times e^{(-3.24 \times age_bc)} + 97.02 \times e^{(-0.002 \times age_bc)})$.

Fig. S5 Comparison of R², RMSE and AIC of all MIMICS versions in model calibration (a) and validation (b).

80 Fig. S6 Relationship between observed and simulated SOC concentrations by MIMICS-TSM_b for (a) maize, (b) rice and (c) wheat. The unit of RMSE is g kg⁻¹.

85 Fig. S7 Correlation between SOC concentrations with NPP, MAT and Clay for maize (a-c), rice (d-f) and wheat (g-i).

Fig. S8 Relationships between observed and simulated SOC concentrations aggregated within each 0.5° grid cell by MIMICS-def (a), MIMICS-T (b), MIMICS-TS (c) and MIMICS-TSM_b (d). The unit of RMSE is g kg⁻¹. Blue and red dots represent observation sites for model calibration (80% sites) and validation (20% sites), respectively.

Fig. S9 Comparison between the observed and simulated SOC concentrations by (a) MIMICS-TSM_a, (b) MIMICS-TSM_b and (c) MIMICS-TSM_c. Blue and red dots represent observation sites for model calibration (80% sites) and validation (20% sites), respectively.

Fig. S10 Relationships between observed and simulated SOC concentrations by MIMICS-TSM_b for (a) calibration and (b) validation assuming that the soil moist factor ($f_{m2}(\theta)$, Eq. 11) were multiplied by V_{max} and microbial turnover (τ) of MIC_r and MIC_k, instead of by V_{max} and K_m in Section 2.1.4.

Fig. S11 As Fig. 6 but for model calibration instead of validation.

115 Fig. S12 As Fig. 7 but for model calibration instead of validation.

Fig. S13 As Fig. 8 but for short-term SOC changes with biochar addition.

Fig. S14 Relationships of short-term SOC changes after biochar addition between observations and models with (a) MIMICS_{TSMb}-BC_{def}, (b) MIMICS_{TSMb}-BC_D, (c) MIMICS_{TSMb}-BC_{DV} and (d) MIMICS_{TSMb}-BC_{DV-SOCa}. (f_{ba} =2%). Blue and red dots represent observation sites for model calibration (80% sites) and validation (20% sites), respectively.

Fig. S15 Relationships of short-term SOC changes after biochar addition between observations and models simulated with MIMICS_{TSMb}-BC_{DV} version with four parameters optimized (optimized values: f_d =0.1123, f_v =-0.0088, f_{bp} =0.581 and f_{ba} =0.0816). Blue and red dots represent observation sites for model calibration (80% sites) and validation (20% sites), respectively.

Fig. S16 Sensitivity analysis of MIMICS_{TSMb}-BC_{DV} model input variables of (a) NPP, (b) Clay, (c) SM and parameters of (d) MGE (microbial growth efficiency, Fig. 1) and (e) τ (microbial biomass turnover, Fig. 1). The yellow line and green dotted line in boxplot are median and mean values of output variable change (i.e., change of Δ SOC, Eq. 19). The means of Δ SOC changes with perturbations in calibrated sites are plot in (f).

References

160

- Abiven, S., Recous, S., Reyes, V., and Oliver, R.: Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality, Biology and Fertility of Soils, 42, 119-128, 10.1007/s00374-005-0006-0, 2005.
- Archontoulis, S. V., Huber, I., Miguez, F. E., Thorburn, P. J., Rogovska, N., and Laird, D. A.: A model for mechanistic and system assessments of biochar effects on soils and crops and trade - offs, GCB Bioenergy, 8, 1028-1045, 10.1111/gcbb.12314, 2016.
- Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, V., De Vos, B., Gielen, B., Gleixner, G., Jornet-Puig, A.,
 Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J., Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., and Janssens, I. A.: ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe, Geoscientific Model Development, 11, 937-957, 10.5194/gmd-11-937-2018, 2018.
- German, D. P., Marcelo, K. R., Stone, M. M., and Allison, S. D.: The Michaelis Menten kinetics of soil extracellular
 enzymes in response to temperature: a cross latitudinal study, Global Change Biology, 18, 1468-1479, 2012.
 - Hicke, J. A. and Lobell, D. B.: Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information, Geophysical Research Letters, 31, 2004.
- Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., and Jardine, P. M.: Relation between Soil Order and Sorption of Dissolved Organic Carbon in Temperate Subsoils, Soil Science Society of America Journal, 76, 1027-1037, 10.2136/sssaj2011.0340, 2012.
 - Parton, W. J., Morgan, J. A., Kelly, R. H., and Ojima, D.: Modeling soil C responses to environmental change in grassland systems[M] The potential of US grazing lands to sequester carbon and mitigate the greenhouse effect, 2000.
 - Wang, G., Huang, W., Zhou, G., Mayes, M. A., and Zhou, J.: Modeling the processes of soil moisture in regulating microbial and carbon-nitrogen cycling, Journal of Hydrology, 585, 10.1016/j.jhydrol.2020.124777, 2020.
- 180 Wang, J., Xiong, Z., and Kuzyakov, Y.: Biochar stability in soil: meta-analysis of decomposition and priming effects, Global Change Biology Bioenergy, 8, 512-523, 10.1111/gcbb.12266, 2016.
 - Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan, G. B.: Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, Biogeosciences, 11, 3899-3917, 10.5194/bg-11-3899-2014, 2014.
- 185 Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and Bonan, G. B.: Representing life in the Earth system with soil microbial functional traits in the MIMICS model, Geoscientific Model Development, 8, 1789-1808, 10.5194/gmd-8-1789-2015, 2015.
 - Yan, Z., Bond-Lamberty, B., Todd-Brown, K. E., Bailey, V. L., Li, S., Liu, C., and Liu, C.: A moisture function of soil heterotrophic respiration that incorporates microscale processes, Nat Commun, 9, 2562, 10.1038/s41467-018-04971-6, 2018.
 - Zhang, H., Goll, D. S., Wang, Y. P., Ciais, P., Wieder, W. R., Abramoff, R., Huang, Y., Guenet, B., Prescher, A. K., Viscarra Rossel, R. A., Barre, P., Chenu, C., Zhou, G., and Tang, X.: Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon, Glob Chang Biol, 10.1111/gcb.14994, 2020.