

Supplement of

Hector V3.2.0: functionality and performance of a reduced-complexity climate model

Kalyn Dorheim et al.

Correspondence to: Kalyn Dorheim (kalyn.dorheim@pnnl.gov)

The copyright of individual parts of the supplement might differ from the article licence.

1 Table S1. Radiative forcings (RF) included in Hector.

Source	Name as it appears in Hector	Description
Externally defined as user-input	RF_albedo	surface albedo
	RF_misc	RF from miscellaneous sources
	RF_vol	RF from volcanic activity
Calculated by Hector from emissions	RF_aci	RF from aerosol-cloud interactions
	RF_BC	black carbon RF
	RF_NH3	ammonia RF
	RF_OC	organic carbon RF
	RF_SO2	sulfur dioxide RF
Calculated by Hector from	FCH4	methane RF
concentrations	RF_CO2	carbon dioxide RF
	RF_H2O_strat	stratospheric water vapor RF
	RF_N2O	nitrous oxide RF
	RF_O3_trop	tropospheric ozone RF
	FadjC2F6	C ₂ F ₆ RF
	FadjCF4	CF4 RF
	FadjCFC11	CFC11 RF
	FadjCFC113	CFC113 RF
	FadjCFC114	CFC114 RF
	FadjCFC115	CFC115 RF
	FadjCFC12	CFC12 RF
	FadjCH3Br	CH3Br RF
	FadjCCl4	CCl4 RF
	FadjCH3CCl3	CH3CC13 RF
	FadjCH3Cl	CH3Cl RF
	Fadjhalon1211	halocarbon 1211 RF
	Fadjhalon1301	halocarbon 1301 RF
	Fadjhalon2402	halocarbon 2402 RF

FadjHCFC141b	HCFC141b RF
FadjHCFC142b	HCFC142b RF
FadjHCFC22	HCFC22 RF
FadjHFC125	HFC125 RF
FadjHFC134a	HFC134a RF
FadjHFC143a	HFC143a RF
FadjHFC227ea	HFC227ea RF
FadjHFC23	HFC23 RF
FadjHFC245fa	HFC245fa RF
FadjHFC32	HFC32 RF
FadjHFC4310	HFC4310 RF
FadjSF ₆	SF6 RF

Table S2: Equations and parameter values for N₂O.

$$\frac{d[N_2 O]}{dt} = \frac{E_{N_2 O}(t)}{4.8} - \frac{[N_2 O](t)}{T_{N_2 O}}$$
(S1)

$$\tau_{N_2O} = \tau_0 \times \left(\frac{[N_2O](t)}{[N_2O]_0}\right)^{-0.05}$$
(S2)

$$SARF_{N_{2}0}(t) = \left(a_{2}\sqrt{[CO_{2}](t)} + b_{2}\sqrt{[N_{2}0](t)} + c_{2}\sqrt{[CH_{4}](t)} + d_{2}\right)\left(\sqrt{[N_{2}0](t)} - \sqrt{[N_{2}0]_{0}}\right)$$
(S3)
$$RF_{N_{2}0}(t) = \delta_{N_{2}0}SARF_{N_{2}0}(t) + SARF_{N_{2}0}(t)$$
(S4)

$$RF_{N_20}(t) = \delta_{N_20} SARF_{N_20}(t) + SARF_{N_20}(t)$$
(S4)

(S1) Change in N ₂ O concentrations from (Hartin 6	et al., 2015)		
E_{N_2O} (total N ₂ O emissions)	Input	Tg N yr ⁻¹	
(S2) Lifetime of N ₂ O from (Hartin et al., 2015)			
$ au_0$ (initial N ₂ O lifetime)	132	years	(Hartin et al., 2015)
$[N_2O]_0$ (preindustrial N ₂ O concentrations)	273.87	ppbv	(Smith et al., 2021)
(S3) Stratospheric-temperature-adjusted radiative	e for N ₂ O forcing fro	om (Smith et al., 202	21)
a2	-3.4197×10^{-4}	$W m^{-2} ppm^{-1}$	(Smith et al., 2021)
<i>b</i> ₂	2.5455×10^{-4}	$W m^{-2} ppb^{-1}$	
C2	-2.4357×10^{-4}	$W m^{-2} ppb^{-1}$	
d2	0.12173	W m ⁻² ppb ^{-1/2}	
$[CO_2]$ (atmospheric CO ₂ concentrations)	Equation 20	ppmv	
[<i>CH</i> ₄] (CH ₄ concentrations)	Equation 5	ppbv	
(S4) Effective Radiative Forcing for N2O from (Sn	nith et al., 2021)		•
$\delta_{\scriptscriptstyle N_2O}$	0.07	unitless	(Smith et al., 2021)

Table S3: Equations and parameter values for CH4.

$$\frac{d[CH_4]}{dt} = \frac{E_{CH_4}}{2.78} - \frac{[CH_4](t)}{\tau_{OH}} - \frac{[CH_4](t)}{\tau_{strat}} - \frac{[CH_4](t)}{\tau_{soil}}$$
(S5)

$$\tau_{OH}(t) = \tau_{OH_0} \times e^{0.32 \ln \left(\frac{[CH_4](t)}{[CH_4]_0}\right) - 0.0042 \left(E_{NO_X}(t) - E_{NO_{X_0}}\right) + 0.000105 \left(E_{CO}(t) - E_{CO_0}\right) + 0.000315 \left(E_{NMVOC}(t) - E_{NMVOC_0}\right)}$$
(S6)

$$SARF_{CH_4} = \left(a_3\sqrt{[CH_4](t)} + b_3\sqrt{[N_2O](t)} + d_3\right)\left(\sqrt{[CH_4](t)} - \sqrt{[CH_4]_0}\right)$$
(S7)

$$RF_{CH_4} = \left(\delta_{CH_4} + 1\right) SARF_{CH_4} \tag{S8}$$

et al., 2015)		
Input	Tg CH4	(Hartin et al., 2015)
Equation 6	years	
120		
160		
artin et al., 2015)		
6.6	years	(Hartin et al., 2015)
731.41	ppb	(Smith et al., 2021)
Inputs	Tg	
e forcing for CH4 for	rcing from (Smith et a	l., 2021)
-8.9603×10^{-5}	$W m^{-2} ppb^{-1}$	(Smith et al., 2021)
-1.2462×10^{-4}	$W m^{-2} ppb^{-1}$	
0.045194	W m ⁻² ppb ^{-1/2}	
nith et al., 2021)		
-0.14	unitless	(Smith et al., 2021)
	et al., 2015) Input Equation 6 120 160 artin et al., 2015) 6.6 731.41 Inputs re forcing for CH4 for -8.9603 × 10 ⁻⁵ -1.2462 × 10 ⁻⁴ 0.045194 atth et al., 2021) -0.14	Input Tg CH4 Equation 6 years 120 160 artin et al., 2015) 6.6 6.6 years 731.41 ppb Inputs Tg Inputs Tg re forcing for CH4 forcing from (Smith et al., 2015) re forcing for CH4 forcing from (Smith et al., 2021) -0.14 unitless

Table S4: Equations and parameter values for tropospheric O₃ and stratospheric water vapor.

$$[O_3](t) = 5ln [CH_4](t) + 0.125E_{NO_X}(t) + 0.0011E_{CO}(t) + 0.0033E_{NMVOC}(t)$$
(S9)

$$-0.125E_{NO_X}(t) + 0.0011E_{CO}(t) + 0.0033E_{NMVOC}(t)$$
(S9)

$$RF_{O_3}(t) = 0.042 [O_3](t)$$
(S10)

$$RF_{strat_{H_2O}} = 0.0485 \frac{[CH_4](t) - [CH_4]_0}{1831 - [CH_4]_0}$$
(S11)

$[CH_4]$ (CH ₄ concentrations)	Equation 5	ppb	
$[CH_4]_0$ (preindustrial CH ₄ concentrations)	731.41	ppb	(Smith et al., 2021)
$E_{NO_X}(NO_x \text{ emissions})$	Inputs	Tg	
$E_{CO}(\text{CO emissions})$			
E_{NMVOC} (volatile organic compounds)			
(S10) Effective radiative forcing of tropospheric O ₃	from (Hartin et al., 2	2015)	
$[O_3]$ (tropospheric O ₃ concentrations)	Equation 9	DU O ₃	(Hartin et al., 2015)

17 Table S5: Equations and parameter values for aerosol forcings.

18 Direct aerosol radiative forcings for black carbon (BC), organic carbon (OC), SO₂, and NH₃, are modeled as a product of the 19 emissions of that aerosol in that timestep (E; in units of Tg) and the aerosol's specific radiative efficiency, ρ . Hector 3.0 is

calibrated to forcing values in the AR6, which were informed by analysis of ESM model results as documented in Smith et

al. (2021). We adjust aerosol forcing parameters in this version of the model from the values documented in Smith et al.

22 (2021) to account for the new analysis by (Zelinka et al., 2023). Zelinka et al. find, due to a coding error, a higher absorbing

23 forcing, which is largely countered by a larger cloud indirect forcing. We therefore scale the magnitude of BC, other cooling

24 aerosols, and F_ACI by the ratio of average CMIP6 model values from Zelinka et al. (2023, Table 2) and Smith et al. (2020)

25 (Table 6). These changes largely offset each other, but result in a slightly higher net negative forcing for the current day and also result in slightly different total aerosol forcing pathways over time.

27

$$RF_{BC}(t) = \rho_{BC}E_{BC}(t) \tag{S12}$$

$$RF_{OC}(t) = \rho_{OC}E_{OC}(t) \tag{S13}$$

$$RF_{SO_2}(t) = \rho_{SO_2} E_{SO_2}(t) \tag{S14}$$

$$RF_{NH_3}(t) = \rho_{NH_3} E_{NH_3}(t)$$
(S15)

$$RF_{aci}(t) = -\rho_{aci} ln \left(1 + \frac{E_{SO_2}(t)}{s_{SO_2}} + \frac{E_{BC+OC}(t)}{s_{BC+OC}} \right)$$
(S16)

(S12) Black Carbon Effective Radiative Fo	orcing based on (Smi	th et al., 2021)	
$ ho_{\scriptscriptstyle BC}$	0.06386286	W yr m ^{-2} Tg C ^{-1}	See text above
E_{BC} (Black Carbon Emissions)	Input	Tg C	
(S13) Organic Carbon Effective Radiative	Forcing based on (S	nith et al., 2021)	
ρ_{oc}	-0.006407143	W yr m $^{-2}$ Tg C $^{-1}$	See text above
<i>E</i> _{<i>OC</i>} (Organic Carbon Emissions)	Input	Tg C	
(S14) SO ₂ Effective Radiative Forcing base	ed on (Smith et al., 20)21)	
$\rho_{_{SO_2}}$	-7.469841e-06	W yr m ⁻² Gg S ⁻¹	See text above
$E_{SO_2}(SO_2 \text{ emissions})$	Input	Gg S	
(S15) NH ₃ Effective Radiative Forcing bas	ed on (Smith et al., 2	021)	
$ ho_{_{NH_3}}$	-0.002146032	W yr m $^{-2}$ Tg NH $_3^{-1}$	See text above
E _{NH3}	Input	Tg	
(S16) Effective Radiative Forcing from aer	osol cloud interactio	ns based on (Smith et al.,	2021)
$ ho_{aci}$	2.279759	unitless	See text above
S _{SO2}	130303.3	Gg S	(Smith et al., 2021)

	S _{BC+OC}	111.05064063	Tg C	
29				

30 Table S6: Equations and parameters for halocarbon concentrations and forcing.

$$C_i(t) = C_{i0} \times e^{\frac{-1}{\tau_i}} + E_i \times \tau_i \times \left(1 - e^{\frac{-1}{\tau_i}}\right)$$
(S17)

$$SARF_i = \rho_i C_i(t) \tag{S18}$$

$$RF_i = SARF_i + \delta_i SARF_i \tag{S19}$$

31

(S17) Concentration for single halocart	bon (<i>i</i>) (Hartin et al., 2015)
	C_{i0} (pre industrial concentration for halocarbon <i>i</i>)
	τ_i (life time for halocarbon <i>i</i>)
	E_i (emissions for halocarbon <i>i</i>)
(S18) Stratospheric-temperature-adjus	ted radiative forcing for halocarbons from (Hartin et al., 2015)

 C_i (concentration for halocarbon *i*)

(S19) Effective radiative forcing for halocarbons based on (Smith et al., 2021)

32 33

34 Table S7: Parameters for halocarbon concentrations and forcing.

Halocarbon (i)	au (lifetime)	$ ho Wm^{-2}ppt^{-1}$ (Radiative efficiency)	δ unitless (tropospheric adjustments)	Source
CF ₄	50000.0	0.000099	0	(Smith et al., 2021)
C ₂ F ₆	10000.0	0.000261	0	
HFC-23	228.0	0.000191	0	
HFC-32	5.4	0.000111	0	
HFC-4310	17.0	0.000357	0	
HFC-125	30.0	0.000234	0	
HFC-134a	14.0	0.000167	0	

HFC-143a	51.0	0.000168	0
HFC-227ea	36.0	0.000273	0
HFC-245fa	7.9	0.000245	0
SF ₆	3200.0	0.000567	0
CFC-11	52.0	0.000259	0.13
CFC-12	102.0	0.00032	0.13
CFC-113	93.0	0.000301	0
CFC-114	189	0.000314	0
CFC-115	540	0.000246	0
CCl ₄	32	0.000166	0
CH ₃ CCl ₃	5	0.000065	0
halon-1211	16.0	0.0003	0
halon-1301	72.0	0.000299	0
halon-2402	28.0	0.000312	0
HCFC-22	11.9	0.000214	0
HCFC-141b	9.4	0.000161	0
HCFC-142b	18.0	0.000193	0
CH ₃ Cl	0.9	0.000005	0
CH ₃ Br	0.8	0.000004	0

38 Table S8: Carbon cycle equations and parameters.

$$\frac{d[CO_2]}{dt} = F_E(t) + F_O(t) + F_L(t)$$
(S20)

$$F_E(t) = E_{FFI}(t) - U_{DACCS}(t)$$
(S21)

$$F_0(t) = E_{HL}(t) - U_{HL}(t) + E_{LL}(t) - U_{LL}(t)$$
(S22)

$$F_{L}(t) = E_{LUC}(t) + Rh_{d}(t) + Rh_{s}(t) - NPP(t) - U_{LUC}(t)$$
(S23)

$$NPP(t) = NPP_0 \times f([CO_2](t), \beta) \times f(LUC_v(t))$$
(S24)

$$f([CO_2](t),\beta) = 1 + \beta \times \log\left(\frac{[CO_2](t)}{C_0}\right)$$
(S25)
(S26)

$$f(LUC(t)_{v}) = \frac{C_{v}(t=0) - \sum_{i=0}^{t} LUC_{v}(t)}{C_{v}(t=0)}$$

$$\frac{C_v}{dt} = f_{nv}NPP(t) - (f_{vd} + f_{vs})C_v(t) - f_{lv}(t)E_{LUC}(t) + f_{lv}(t)U_{LUC}(t)$$
(S27)

$$f_{lv}(t) = \frac{C_v(t)}{C_v(t) + C_d(t) + C_s(t)}$$
(S28)

$$Rh_s(t) = f_{rs}C_s(t)Q_{10}^{T_{land}(t)/10}$$
(S29)

$$Rh_d(t) = f_{ds}C_d(t)Q_{10}^{T_{land}(t)/10}$$
(S30)

$$\frac{C_d}{dt} = f_{nd}NPP(t) + f_{vd}C_v(t) - f_{ds}C_d(t) - Rh_d(t) - f_{ld}(t)E_{LUC}(t) + f_{ld}(t)U_{LUC}(t)$$
(S31)

$$f_{ld}(t) = \frac{C_d(t)}{C_v(t) + C_d(t) + C_s(t)}$$
(S32)

$$\frac{C_s}{dt} = f_{ns}NPP(t) + f_{vs}C_v(t) + f_{ds}C_d(t) - Rh_s(t) - f_{ls}(t)E_{LUC}(t) + f_{ls}(t)U_{LUC}(t)$$
(S33)

$$f_{ls}(t) = \frac{C_s(t)}{C_v(t) + C_d(t) + C_s(t)}$$
(S34)

$$\frac{C_{earth}}{dt} = U_{DACCS}(t) - E_{FFI}(t)$$
(S35)

$$F_i(t) = \kappa(t)\alpha(t)\Delta p C O_2(t)$$
(S36)

2	n
•	ч
~	-

20) Change in atmospheric carbon dioxide concentrations					
F_E (net flux of carbon from fossil fuel and industry emissions or	Equation 21	Pg C yr ⁻¹			
direct air capture carbon storage)					

F_o (net flux of carbon from the ocean to the atmosphere) Equation 22				
F_L (net flux of carbon from the terrestrial carbon cycle to the atmosphere)	Equation 23			
(S21) F_F the net carbon flux from the earth pool via fossil fuel	and industry er	nissions or dire	ect air capture carbon	
storage (daccs), the earth pool represents carbon that was not	t previously activ	ve in the carbo	n cycle	
E_{FFI} (CO ₂ fossil fuel and industry emissions)	Input	Pg C yr ⁻¹		
U_{DACCS} (CO ₂ uptake by direct air capture carbon storage technologies)	ACCS (CO ₂ uptake by direct air capture carbon storage technologies)			
(S22) Net flux of carbon from the ocean to the atmosphere, a	positive <i>F</i> ₀ repro	esents emission	s to the atmosphere	
$E_{HL} \& E_{LL}(t)$ (carbon gas exchange from the high latitude (HL) Equation 35 Pg C yr ⁻¹ and low latitude (LL) ocean surface into the atmosphere)				
$U_{HL} \& U_{LL}$ (uptake of carbon into the HL and LL ocean surfaces)	Equation 35	on 35		
(S23) CO ₂ flux from the terrestrial carbon cycle to the atmos	phere			
E_{LUC} (CO ₂ emissions from land use change)	Input	Pg C yr ⁻¹		
Rh_d (carbon flux from decomposition of detritus) Equation 30				
Rh_s (carbon flux from decomposition of soil) Equation 29				
NPP (net primary production)	Equation 24			
U_{LUC} (carbon flux, uptake by the terrestrial biosphere via land use change)	Input			
(S24) Net Primary Production				
$NPP_0 \text{ (pre-industrial NPP)} 56.2 Pg C yr^{-1}$				
$f([CO_2](t),\beta)$ (effect of atmospheric [CO ₂] on plant growth) Equation 25 unitless				
$f(LUC_v(t))$ (effect of land use change on the terrestrial carbon Equation 26				
(S25) Effect of atmospheric [CO ₂] on plant growth			1	
eta (CO2 fertilization factor)	0.55	unitless	See section 2.2.6 of main text for details	
[<i>CO</i> ₂] (CO ₂ concentrations)	Equation 20	ppmv		
C_0 (preindustrial CO ₂ concentration)	277.15]	(Smith et al., 2021)	
(S26) Effect of land use change on the size of terrestrial vege	tation carbon po	ol		
$C_v(t = 0)$ (Initial size of the vegetation carbon pool)	550	Pg C	(Hartin et al., 2015)	

$\frac{\sum_{i=0}^{t} LUC_{v}(t) \text{ (total change in the vegetation pool due to land use change)}}{(S27) Change in the vegetation carbon pool}$ $\frac{f_{nv} \text{ (fraction of NPP to vegetation pool)}}{f_{vd} (fraction of vegetation carbon that is transferred to to the set of the set $	Input 0.35 0.034 0.001 Equation 28	unitless	(Hartin et al., 2015)	
(S27) Change in the vegetation carbon pool f_{nv} (fraction of NPP to vegetation pool) f_{vd} (fraction of vegetation carbon that is transferred to	0.35 0.034 0.001 Equation 28	unitless	(Hartin et al., 2015)	
f_{nv} (fraction of NPP to vegetation pool) f_{vd} (fraction of vegetation carbon that is transferred to	0.35 0.034 0.001 Equation 28	unitless	(Hartin et al., 2015)	
f_{vd} (fraction of vegetation carbon that is transferred to	0.034 0.001 Equation 28	-		
detritus)	0.001 Equation 28			
f_{vs} (fraction of vegetation carbon that is transferred to soil)	Equation 28			
f_{lv} (fraction of vegetation lost to land use changes)			See section 2.2.2 of main text for details	
(S28) Fraction of the vegetation pool gained/lost due to land u	ise changes			
C_{ν} (size of the vegetation carbon pool)	Equation 27	Pg C	(Hartin et al., 2015)	
C_d (size of the detritus carbon pool)	Equation 31	-		
C_s (size of the soil carbon pool)	Equation 33	-		
(S29) Soil heterotrophic respiration				
f_{rs} (fraction of respiration carbon transferred to soil)	0.02	unitless	(Hartin et al., 2015)	
Q_{10} (Heterotrophic respiration temperature sensitivity factor)	2.2		See section 2.2.6 of main text for details	
C_s (size of the soil carbon pool)	Equation 33	Pg C	(Hartin et al., 2015)	
T_{land} (land surface temperature)	-	°C		
(S30) Detritus heterotrophic respiration				
f_{ds} (fraction of respiration carbon transferred to detritus)	0.6	unitless	(Hartin et al., 2015)	
C_d (size of the detritus carbon pool)	Equation 31	Pg C		
Q_{10} (Heterotrophic respiration temperature sensitivity factor)	2.2		See section 2.2.6 of main text for details	
(S31) Change in the size of the detritus pool				
f_{nd} (fraction of respiration carbon that is transferred to detritus)	0.25	unitless	(Hartin et al., 2015)	
f_{vs} (fraction of vegetation carbon that is transferred to soil)	0.001			
f_{ds} (fraction of detritus carbon that is transferred to soil)	0.60			
C_v (size of the vegetation carbon pool)	Equation 27	Pg C		
f_{ld} (fraction detritus pool lost or gained from land use change)	Equation 32	unitless		
E_{LUC} (land use change emissions)	Input	Pg C		
U_{LUC} (uptake land use change emissions)	Input			

(S32) Fraction of land use change emissions/uptake portioned	to detritus			
C_{v} (size of the vegetation carbon pool)	Equation 27	Pg C	(Hartin et al., 2015)	
C_d (size of the detritus carbon pool)	Equation 31			
C_s (size of the soil carbon pool)	Equation 33			
(S33) Change in the size of the soil pool		I		
f_{ns} (fraction of NPP carbon that is transferred to soil)	0.05	unitless	(Hartin et al., 2015)	
f_{vs} (fraction of vegetation carbon 0.001 that is transferred to soil)	0.001			
f_{ds} (fraction of detritus carbon that is 0.60 the following fractions (f) transferred to soil)	n that is 0.60 the following 0.60 tions (f) transferred to soil)			
NPP (net primary production)	Equation 24	Pg C		
C_v (size of the vegetation carbon pool)	Equation 27			
C_d (size of the detritus carbon pool)	Equation 31			
Rh_s (Soil heterotrophic respiration) Equation 29				
f_{ls} (fraction of land use change flux from soil)	Equation 34			
E_{LUC} (land use change emissions)				
U_{LUC} (uptake land use change emissions)				
(S34) fraction of land use change flux from soil				
C_v (size of the vegetation carbon pool)	Equation 27	Pg C	(Hartin et al., 2015)	
C_d (size of the detritus carbon pool)	Equation 31			
C_s (size of the soil carbon pool)	Equation 33			
(S35) Change in the earth carbon pool				
U_{DACCS} (Uptake of C by earth pool due to carbon capture storage)	Input	Pg C		
E_{FFI} (C emissions from fossil fuel and industry)				
(S36) Flux of CO ₂ for each box ocean surface box				
κ (CO ₂ gas-transfer velocity)			(Hartin et al., 2016)	
α (solubility of CO2 in water based on salinity, temperature, and pressure)				
ΔpCO_2 (atmosphere-ocean gradient of partial pressure of [CO ₂])				

41 Table S9: Equations and parameter values used to calculate CO₂ radiative forcing.

$$C_{\alpha \max} = C_0 - \frac{b_1}{2a_1}$$
(S37)

$$= \begin{cases} d_1 - \frac{b_1^2}{4a_1}, C_{atm}(t) > C_{a max} \end{cases}$$
(S38)

$$\alpha' = \begin{cases} 4a_1 & \text{d} \text{max} \\ d_1 + a_1(C_{atm}(t) - C_0)^2 + b_1(C_{atm}(t) - C_0), C_0 < C_{atm}(t) < C_{\alpha \max} \\ d_1, C_{atm}(t) \leq C_0 \\ \alpha_{N_2 0} = c_1 \sqrt{N(t)} \end{cases}$$
(S39)

$$SARF_{CO_2}(t) = \left(\alpha' + \alpha_{N_2O}\right) ln\left(\frac{C_{atm}(t)}{C_0}\right)$$
(S40)

$$RF_{CO_2}(t) = \delta_{CO_2} SARF_{CO_2}(t) + SARF_{CO_2}(t)$$
(S41)

S37-S41) Equations from (Smith et al., 2021) used to calculate the effective radiative forcing for CO ₂				
<i>a</i> ₁	-2.4785×7	W m ⁻² ppm ⁻²	(Smith et al. 2021)	
b_1	$7.5906 imes 10^{-4}$	$W m^{-2} ppm^{-1}$	-	
<i>c</i> ₁	-2.1492×10^{-3}	W m ⁻² ppb ^{-1/2}		
d_1	5.2488	W m ⁻²		
C_0 (pre-industrial [CO ₂])	277.15	ppm	-	
$\delta_{\scriptscriptstyle CO_2}$	0.05	unitless	-	
N(t) (N ₂ O concentrations)	Equation 1	ppbv yr ⁻¹		
$C_{atm}(t)$ (CO ₂ concentrations)	Equation 20	ppmv yr ⁻¹	1	

44 Table S10: Equations and parameter values related to climate dynamics

$$RF_{total}(t) = \left[\sum_{i}^{all \ GHGs} RF_i(t)\right] + (1-\alpha) \left[\sum_{i}^{all \ aerosols} RF_i(t)\right] + (1-\nu)RF_{vol}(t) + RF_{albedo}(t)$$
(S42)

$$C_{AL}\dot{T}_{L} = RF_{total} - \lambda_{L}T_{L} - \frac{k}{f_{L}}(T_{L} - b_{SI}T_{S})$$
(S43)

$$C_{AS}\dot{T}_{S} = RF_{total} - \lambda_{S}T_{S} - \frac{k}{1 - f_{L}}(b_{SI}T_{S} - T_{L}) - F_{O}$$
(S44)

$$F_O(t) = -c_v \kappa_v \left. \frac{d}{dz} T_O(z,t) \right|_{z=0}$$
(S45)

$$k = b_k - a_k \lambda_L \tag{S46}$$

$$\lambda_{L} = \frac{Q_{2x}}{T_{L,2x}} - \frac{k}{f_{L}} \frac{T_{L,2x} - b_{SI} T_{S,2x}}{T_{L,2x}}$$
(S47)

$$\lambda_{s} = \frac{Q_{2x}}{T_{s,2x}} - \frac{k}{1 - f_{L}} \frac{T_{L,2x} - b_{SI} T_{s,2x}}{T_{s,2x}}$$
(S48)

(S42) Total effective radiative forcing			
$\sum_{i}^{all GHGs} RF_i(t)$ (the sum of ERF for all GHGs)	Equations (S4, S8, S11, S19 _i , S41)	W m ⁻²	
$\sum_{i}^{all aerosols} RF_i(t)$ (the sum of ERF for all aerosols)	Equations (S12-S16)		
α (aerosol uncertainty factor)	1	unitless	
v (volcanic uncertainty factor)	1		
$RF_{vol}(t)$ (volcanic radiative forcing)	Input	W m ⁻²	
$RF_{albedo}(t)$ (radiative forcing from albedo)			
(S43) Heat flux/temperature change over land based on ((Tanaka et al., 2007)		
(S44) Heat flux/temperature change over ocean based on	(Tanaka et al., 2007)		
(S45) Heat flux into the interior ocean based on (Tanaka	et al., 2007)		
(S46) Land-sea heat exchange coefficient based on (Tana	ıka et al., 2007)		
(847) Climate feedback parameter over land based on (1	Sanaka et al., 2007)		
(S48) Climate feedback parameter over sea based on (Tanaka et al., 2007)			
C_{AL} (Effective troposphere-land heat capaci	ty) 0.52	W yr m ⁻² K ⁻¹	(Tanaka et al., 2007)
C_{AS} (Effective troposphere-ocean mixed layer heat capaci	C_{AS} (Effective troposphere-ocean mixed layer heat capacity) 7.8		
b _{SI} (Marine surface air warming enhanceme	nt) 1.3	unitless	
f_{L} (Fractional land and	(a) 0.29		

c_{v} (Specific heat capacity of seawater)	0.13	W yr m ⁻² K ⁻¹	
a_k (Heat exchange coefficient parameter)	0.31	unitless	
b_k (Heat exchange coefficient parameter)	1.59	W yr m ⁻² K ⁻¹	
Q_{2x} (Radiative forcing for atmospheric CO2 doubling)	3.75	W m ⁻²	
\mathcal{K}_{v} (ocean heat diffusivity)	2.38	cm ² s ⁻¹	See section 2.2.6 of
			main text for details

47 Table S11. Models and references used to calculate Hector preindustrial sea surface temperatures.

48 Table of the 24 ESM historical output files that were processed to find the global, high latitude, and low latitude mean 49 preindustrial sea surface temperature, which are used by Hector's ocean component.

Model	Citation		
ACCESS-ESM1-5	(Ziehn et al., 2019a, b)		
CanESM5	(Swart et al., 2019a, b)		
EC-Earth3	(EC-Earth Consortium, 2019a)		
MIROC6	(Tatebe and Watanabe, 2018; Shiogama et al., 2019)		
MPI-ESM1-2-HR	(Jungclaus et al., 2019)		
MPI-ESM1-2-LR	(Wieners et al., 2019)		
NorCPM1	(Bethke et al., 2019)		
CNRM-CM6-1	(Voldoire, 2018)		
CNRM-ESM2-1	(Seferian, 2018)		
MIROC-ES2L	(Hajima et al., 2019)		
ACCESS-CM2	(Dix et al., 2019a, b)		
AWI-CM-1-1-MR	(Semmler et al., 2018)		
CMCC-CM2-HR4	(Scoccimarro et al., 2020)		
CMCC-CM2-SR5	(Lovato and Peano, 2020a)		
CMCC-ESM2	(Lovato et al., 2021a, b)		
EC-Earth3-AerChem	(EC-Earth Consortium, 2020)		
EC-Earth3-CC	(EC-Earth Consortium, 2021)		
EC-Earth3-Veg-LR	(EC-Earth Consortium, 2019b)		
MPI-ESM-1-2-HAM	(Neubauer et al., 2019)		
MRI-ESM2-0	(Yukimoto et al., 2019b, a)		
NorESM2-LM	(Seland et al., 2019)		
NorESM2-MM	(Bentsen et al., 2019)		
CNRM-CM6-1-HR	(Voldoire, 2018)		
EC-Earth3-Veg	(EC-Earth Consortium, 2019b)		

51 Table S12. Earth System Models used in the CMIP6 comparison.

Model	Ensemble	Citation
ACCESS-CM2	rlilplfl	(Dix et al., 2019a, b)
ACCESS-ESM1-5	r10i1p1f1	(Ziehn et al., 2019a, b)
CAMS-CSM1-0	r1i1p1f1	(Rong, 2019)
CanESM5	r10i1p1f1	(Swart et al., 2019a, b)
CESM2	r10i1p1f1	(Danabasoglu, 2019a)
CESM2-WACCM	r1i1p1f1	(Danabasoglu, 2019b)
CMCC-CM2-SR5	r1i1p1f1	(Lovato and Peano, 2020b)
CMCC-ESM2	r1i1p1f1	(Lovato et al., 2021a, b)
HadGEM3-GC31-LL	r1i1p1f3	(Good, 2019)
MIROC-ES2L	r10i1p1f2	(Tachiiri et al., 2019)
MIROC6	r10i1p1f1	(Tatebe and Watanabe, 2018; Shiogama et al., 2019)
MRI-ESM2-0	r1i1p1f1	(Yukimoto et al., 2019b, a)
NorESM2-MM	r1i1p1f1	(Bentsen et al., 2019)
TaiESM1	r1i1p1f1	(Lee and Liang, 2020)
UKESM1-0-LL	r10i1p1f2	(Good et al., 2019)

53 SI References

- 54 Bentsen, M., Oliviè, D. J. L., Seland, Ø., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.,
- 55 Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset,
- 56 I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C.,
- 57 Iversen, T., and Schulz, M.: NCC NorESM2-MM model output prepared for CMIP6 ScenarioMIP,
- 58 https://doi.org/10.22033/ESGF/CMIP6.608, 2019.
- 59 Bethke, I., Wang, Y., Counillon, F., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H. R., Chiu, P.-G., Bentsen, M.,
- 60 Guo, C., Tjiputra, J., Kirkevåg, A., Oliviè, D. J. L., Seland, Ø., Fan, Y., Lawrence, P., Eldevik, T., and Keenlyside, N.: NCC
- 61 NorCPM1 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.10894, 2019.
- 62 Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 ScenarioMIP,
- 63 https://doi.org/10.22033/ESGF/CMIP6.2201, 2019a.
- 64 Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 ScenarioMIP,
- 65 https://doi.org/10.22033/ESGF/CMIP6.10026, 2019b.
- bix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O'Farrell, S., Rashid, H.,
- 67 Srbinovsky, J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F.
- 68 B., Domingues, C. M., Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C.,
- 69 Ridzwan, S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output
- 70 prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.4271, 2019a.
- 71 Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O'Farrell, S., Rashid, H.,
- 72 Srbinovsky, J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F.
- B., Domingues, C. M., Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C.,
 Ridzwan, S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output
- 74 Ridzwan, S. M., Koberts, D., Smille, J., Snow, K., Ward, M., and Yang, K.: USIKU-ARUUSS AULESS-UM2 million and far CMIDE Scenario MID. https://doi.org/10.00022/ESCE/CMIDE.0295_2010h
- 75 prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2285, 2019b.
- EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical,
 https://doi.org/10.22033/ESGF/CMIP6.4700, 2019a.
- EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP historical,
 https://doi.org/10.22033/ESGF/CMIP6.4706, 2019b.
- 80 EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP
 81 historical, https://doi.org/10.22033/ESGF/CMIP6.4701, 2020.
- 82 EC-Earth Consortium (EC-Earth): EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP historical,
 83 https://doi.org/10.22033/ESGF/CMIP6.4702, 2021.
- Good, P.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP,
 https://doi.org/10.22033/ESGF/CMIP6.10845, 2019.
- Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Kuhlbrodt, T., and Walton, J.: MOHC UKESM1.0-LL
 model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.1567, 2019.
- Hajima, T., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y., Ogura, T., Ogochi, K., Watanabe, M., Yamamoto, A., Tatebe,
 H., Noguchi, M. A., Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K., Watanabe, S., Kawamiya, M., and Tachiiri, K.:

- 90 MIROC MIROC-ES2L model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.5602, 91 2019.
- 92 Hartin, C. A., Patel, P., Schwarber, A., Link, R. P., and Bond-Lamberty, B. P.: A simple object-oriented and open-source
- 93 model for scientific and policy analyses of the global climate system--Hector v1. 0, Geoscientific Model Development, 8, 94 939-955, 2015.
- 95 Hartin, C. A., Bond-Lamberty, B., and Patel, P.: Ocean acidification over the next three centuries using a simple global 96 climate carbon-cycle model: projections and sensitivities, Biogeosciences, 2016.
- 97 Ito, A.: A historical meta-analysis of global terrestrial net primary productivity: are estimates converging?, Glob. Chang. 98 Biol., 17, 3161-3175, 2011.
- 99 Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M., Legutke, S., Giorgetta, M., Reick, C., Gayler, V.,
- 100 Haak, H., de Vrese, P., Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M.,
- 101 Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L.,
- 102 Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., 103
- Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., 104
- and Roeckner, E.: MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical,
- 105 https://doi.org/10.22033/ESGF/CMIP6.6594, 2019.
- 106 Lee. W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6 ScenarioMIP,
- 107 https://doi.org/10.22033/ESGF/CMIP6.9688, 2020.
- 108 Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical, 109 https://doi.org/10.22033/ESGF/CMIP6.3825, 2020a.
- 110 Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP, 111 https://doi.org/10.22033/ESGF/CMIP6.1365, 2020b.
- 112 Lovato, T., Peano, D., and Butenschön, M.: CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP historical. 113 https://doi.org/10.22033/ESGF/CMIP6.13195, 2021a.
- 114 Lovato, T., Peano, D., and Butenschön, M.: CMCC CMCC-ESM2 model output prepared for CMIP6 ScenarioMIP, 115 https://doi.org/10.22033/ESGF/CMIP6.13168, 2021b.
- 116 Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T.,
- 117 Stemmler, I., Barthel, S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens,
- 118 N., Stanelle, T., Stier, P., Watson-Parris, D., and Lohmann, U.: HAMMOZ-Consortium MPI-ESM1.2-HAM model output
- 119 prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.5016, 2019.
- 120 Rong, X.: CAMS CAMS-CSM1.0 model output prepared for CMIP6 ScenarioMIP,
- 121 https://doi.org/10.22033/ESGF/CMIP6.11004, 2019.
- 122 Scoccimarro, E., Bellucci, A., and Peano, D.: CMCC CMCC-CM2-HR4 model output prepared for CMIP6 CMIP historical, 123 https://doi.org/10.22033/ESGF/CMIP6.3823, 2020.
- 124 Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical,
- 125 https://doi.org/10.22033/ESGF/CMIP6.4068, 2018.

- 126 Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.,
- 127 Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset,
- 128 I. H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C.,
- 129 Iversen, T., and Schulz, M.: NCC NorESM2-LM model output prepared for CMIP6 CMIP historical,
- 130 https://doi.org/10.22033/ESGF/CMIP6.8036, 2019.
- Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: AWI AWI CM1.1MR model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.2686, 2018.
- Shiogama, H., Abe, M., and Tatebe, H.: MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP,
 https://doi.org/10.22033/ESGF/CMIP6.898, 2019.
- Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., Palmer, M. D., and Watanabe, M.: The
 Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material, in: Climate Change 2021: The
 Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
 Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen,
 Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
 Yelekçi, O., Yu, R., and Zhou, B., 2021.
- 141 Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R.,
- 142 Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D.,
- 143 Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 CMIP historical,
- 144 https://doi.org/10.22033/ESGF/CMIP6.3610, 2019a.
- 145 Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R.,
- Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D.,
 Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP,
- 14/ Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 Scer
- 148 https://doi.org/10.22033/ESGF/CMIP6.1317, 2019b.
- Tachiiri, K., Abe, M., Hajima, T., Arakawa, O., Suzuki, T., Komuro, Y., Ogochi, K., Watanabe, M., Yamamoto, A., Tatebe,
 H., Noguchi, M. A., Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K., Watanabe, S., and Kawamiya, M.: MIROC
 MIROC-ES2L model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.936, 2019.
- Tanaka, K., Kriegler, E., Bruckner, T., Hooss, G., Knorr, W., and Raddatz, T.: Aggregated carbon cycle, atmospheric
 chemistry, and climate model (ACC2), Reports on Earth Systems Science, 40, 2007.
- Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP historical,
 https://doi.org/10.22033/ESGF/CMIP6.5603, 2018.
- Voldoire, A.: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical,
 https://doi.org/10.22033/ESGF/CMIP6.4066, 2018.
- 158 Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F.,
- 159 Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M.,
- 160 Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L.,
- 161 Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K.,
- 162 Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A.,
- and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical,
- 164 https://doi.org/10.22033/ESGF/CMIP6.6595, 2019.

- 165 Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka,
- 166 M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared
- 167 for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6842, 2019a.
- 168 Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka,
- 169 M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared
- 170 for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.638, 2019b.
- Zelinka, M. D., Smith, C. J., Qin, Y., and Taylor, K. E.: Comparison of methods to estimate aerosol effective radiative
 forcings in climate models, Atmos. Chem. Phys., 23, 8879–8898, 2023.
- 173 Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens,
- 174 L., Vohralik, P., Mackallah, C., Sullivan, A., O'Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output
- 175 prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.4272, 2019a.
- 176 Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens,
- L., Vohralik, P., Mackallah, C., Sullivan, A., O'Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output
 prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2291, 2019b.