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Abstract. Earth system models (ESMs) participating in
the latest Coupled Model Intercomparison Project Phase 6
(CMIP6) simulate various components of fine particulate
matter (PM2.5) as major climate forcers. Yet the model per-
formance for PM2.5 components remains little evaluated due
in part to a lack of observational data. Here, we evaluate
near-surface concentrations of PM2.5 and its five main com-
ponents over China as simulated by 14 CMIP6 models, in-
cluding organic carbon (OC; available in 14 models), black
carbon (BC; 14 models), sulfate (14 models), nitrate (4 mod-
els), and ammonium (5 models). For this purpose, we collect

observational data between 2000 and 2014 from a satellite-
based dataset for total PM2.5 and from 2469 measurement
records in the literature for PM2.5 components. Seven mod-
els output total PM2.5 concentrations, and they all under-
estimate the observed total PM2.5 over eastern China, with
GFDL-ESM4 (−1.5 %) and MPI-ESM-1-2-HAM (−1.1 %)
exhibiting the smallest biases averaged over the whole coun-
try. The other seven models, for which we recalculate total
PM2.5 from the available component output, underestimate
the total PM2.5 concentrations partly because of the miss-
ing model representations of nitrate and ammonium. Con-
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centrations of the five individual components are underes-
timated in almost all models, except that sulfate is over-
estimated in MPI-ESM-1-2-HAM by 12.6 % and in MRI-
ESM2-0 by 24.5 %. The underestimation is the largest for
OC (by −71.2 % to −37.8 % across the 14 models) and the
smallest for BC (−47.9 % to −12.1 %). The multi-model
mean (MMM) reproduces the observed spatial pattern for OC
(R= 0.51), sulfate (R= 0.57), nitrate (R= 0.70) and ammo-
nium (R= 0.74) fairly well, yet the agreement is poorer for
BC (R= 0.39). The varying performances of ESMs on total
PM2.5 and its components have important implications for
the modeled magnitude and spatial pattern of aerosol radia-
tive forcing.

1 Introduction

Fine particulate matter (PM2.5) influences air quality, human
health, and climate change. Exposure to near-surface PM2.5
is associated with millions of global premature deaths each
year (Zhang et al., 2017; World Health Organization, 2021).
PM2.5 affects the radiative budget of the climate system di-
rectly through scattering and absorption and indirectly via
clouds. The effects of atmospheric aerosols on cloud droplet
concentrations, cloud distributions, and radiative properties
pose large uncertainties in the estimating radiative forcing
(Carslaw et al., 2013; Seinfeld et al., 2016). Earth system
models (ESMs) are essential tools for studying global cli-
mate change. The accuracy of PM2.5 simulations in ESMs
exhibits a crucial constraint on the reliability of these models
in climate change simulation and projection. The Coupled
Model Intercomparison Project Phase 6 (CMIP6) provides
an opportunity to evaluate PM2.5 and its components simu-
lated by the current-generation ESMs which implement in-
teractive aerosol and atmospheric chemistry (Turnock et al.,
2020). A total of 21 ESMs participating in CMIP6 provide
total PM2.5 and/or several component simulations, although
the aerosol component species vary across these models. Of
these 21 ESMs, 14 models include organic aerosol (OA; con-
verted to organic carbon (OC) in this study by assuming
OA/OC= 1.6), black carbon (BC), sulfate, dust (DST), and
sea salt (SSLT). Of these 14 models, 4 also include nitrate,
and 5 include ammonium (Table S1).

Aerosol optical depth (AOD) during 2000–2014 simulated
in CMIP5 and CMIP6 is in broad agreement with satellite re-
trievals over most parts of Europe, North America, and India
(L. Zhang et al., 2022; Cherian and Quaas, 2020). CMIP6
models better capture satellite-based AOD trends in western
North America and eastern China, whereas CMIP5 models
failed to reproduce the trends in AOD (Mortier et al., 2020;
Cherian and Quaas, 2020). Studies have emerged over recent
years to assess the CMIP model performance of individual
aerosol components. An assessment of CMIP5 dust aerosol
simulations using independent data from 1851 to 2011 over

North Africa shows a common underestimate (Evan et al.,
2016). Another analysis of the CMIP3 and CMIP5 models
suggests sea salt aerosols over the tropical Pacific to be sig-
nificantly underestimated (Chen et al., 2020). Evaluation of
the vertical distribution of BC in CMIP5 models based on
aircraft measurements shows an overestimate in the upper
troposphere, especially over the central Pacific (Allen and
Landuyt, 2014). Several CMIP5 models produce high sul-
fate burdens over eastern China, the Indian Peninsula, and
the northern Indochinese Peninsula, although the transport
difference among these models results in distinctive spatial
distributions (Li et al., 2020). Overall, global climate models
struggle to accurately reproduce observed aerosol component
concentrations over different world regions.

China is a major region with heavy aerosol pollution,
dense population, and complex climate, and thus it is critical
to understand the performance of ESMs for aerosol simu-
lations over this country. Several studies have evaluated to-
tal PM2.5 simulations of CMIP models over China, using
AOD data from satellite retrievals (Sockol and Small Gris-
wold, 2017; Michou et al., 2020) and ground-based aerosol
networks (Mortier et al., 2020). They find that CMIP5 mod-
els reproduce the spatial pattern of AOD reasonably well
over eastern China but with a tendency to underestimate
AOD magnitudes (Liu and Liao, 2017; Park et al., 2014;
Allen et al., 2013). The Geophysical Fluid Dynamics Labo-
ratory Coupled Model 3 (GFDL CM3) performs best among
CMIP5 models in simulating AOD over eastern China, partly
because it includes nitrate and ammonium, which most mod-
els lack (Li et al., 2020). Other studies suggest that CMIP6
models simulate the magnitude of annual mean AOD bet-
ter than CMIP5 over eastern China, in part due to the no-
table increase in sulfate (Cherian and Quaas, 2020; Fan et al.,
2018b). Nonetheless, the CMIP6 models fail to capture the
seasonal north–south shift of the AOD maximum center over
China during 2000–2014 (Li et al., 2021) and the observed
dipole pattern of AOD trends between China and India dur-
ing 2006–2014 (Z. Wang et al., 2021).

Different PM2.5 components exhibit distinctive radiative
effects; thus, understanding the performance of ESMs in sim-
ulating individual PM2.5 components is important. Due to the
absence of publicly available observational component data
over China, only a few studies target single aerosol compo-
nents (such as sulfate and dust) over a large region of the
country or different PM2.5 components over a short period or
a small region (Pu and Ginoux, 2018; Zhao et al., 2022). For
example, a model evaluation based on the Acid Deposition
Monitoring Network in East Asia (EANET) suggests that
sulfate concentrations simulated by CMIP5 and CMIP6 show
a rising trend similar to observations (Mulcahy et al., 2020),
but the simulations are still lower than observed concentra-
tions (Fan et al., 2018a; Mortier et al., 2020). A recent study
compares PM2.5 components (dust, sea salt, BC, OC, and sul-
fate) in CMIP6 models with the Modern Era Retrospective
analysis for Research and Applications Aerosol Reanalysis
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(MERRAero) in Asia from 2005 to 2020 (Su et al., 2022;
Buchard et al., 2016). The study shows that CMIP6 model
uncertainties in the total PM2.5 over East Asia are mainly at-
tributable to sulfate and mineral dust simulations. However,
the model biases may partly come from other components
(nitrate and ammonium) that are not analyzed in their study,
and the MERRAero data might contain errors as well (Ma
et al., 2021; Mahesh et al., 2019).

In this study, we evaluate near-surface concentrations of
PM2.5 and its five main components (OC, BC, sulfate, ni-
trate, and ammonium) from 2000 to 2014 over China sim-
ulated by 14 CMIP6 models driven by historical emissions.
For this purpose, we employ a satellite-based dataset for total
PM2.5 concentrations and a self-compiled PM2.5 component
dataset from 221 ground stations during 2000–2014 collected
from the literature. Section 2 introduces CMIP6 model sim-
ulations, satellite-based total PM2.5 concentration data, and
literature-based PM2.5 component data. Section 3 assesses
the performance of CMIP6 models for total PM2.5. Section 4
evaluates the simulated PM2.5 components. Section 5 dis-
cusses the climate implications of the inadequacies in total
PM2.5 and its components in CMIP6 models. Section 6 con-
cludes the study.

2 Data and method

2.1 CMIP6 simulations

Near-surface concentrations of total PM2.5 and its compo-
nents can be converted from dry aerosol mass mixing ra-
tios (MMRs) in CMIP6 models. Monthly mean near-surface
MMRs (in the lowest model layer) of PM2.5 and its main
components are taken from 14 CMIP6 models to assess
the performance of ESMs over China (Table S1). Data are
obtained from the “historical” experiments covering 1850–
2014, which serve as the entry cards for participating in
CMIP6 (Eyring et al., 2016). They are coupled atmosphere–
ocean simulations that include all CMIP6 historical forc-
ings and are well suited for quantifying and understanding
model characteristics. The ensemble mean is taken for each
model by averaging all available ensemble members. For
GISS models, the ensemble members use two physics config-
urations with drastically different aerosol parameterizations.
We average the ensemble members using the same physics
configurations in GISS models, named GISS-E2-1-OMA
(physics version= 3) and GISS-E2-1-MATRIX (physics ver-
sion= 5), respectively (Bauer et al., 2020). Simulation re-
sults over 2000–2014 are selected and re-gridded to 1°× 1°
for comparison with available satellite- and ground-based
data.

The anthropogenic emission data (version 2016-07-26)
to drive historical CMIP6 simulations are produced by the
Community Emissions Data System (CEDS) (Hoesly et al.,
2018). An updated version of CEDS (version 2017-05-18)

corrected several errors in the spatial distribution within each
country but does not change the total emissions by country
and sector (Feng et al., 2020). The CEDS emissions (ver-
sions 2016-07-26 and 2017-05-18) of OC, BC, CO, NOx , and
SO2 in China after 2000 are higher than those in the Multi-
resolution Emission Inventory for China (i.e., MEIC) (Paulot
et al., 2018; Zheng et al., 2018) and the Peking University
(PKU) inventory (Wang et al., 2014; Huang et al., 2015; Tao
et al., 2018) which use more detailed Chinese data. This dif-
ference in China has been reduced when CEDS was used to
derive future Shared Socioeconomic Pathway (SSP) scenar-
ios in the CMIP6 simulations (published on ESGF on 28 June
2018 at https://esgf-node.llnl.gov/search/cmip6, last access:
21 February 2024) and has been included in a post-CMIP6
version of CEDS (McDuffie et al., 2020).

Of the 14 models, all 14 output the MMRs of OA, BC,
sulfate, dust, and sea salt, 5 output ammonium, and 4 output
nitrate (Table S1). Moreover, 7 models output the MMRs of
total PM2.5, as the sum over all components with suitable par-
ticle sizes. The MMRs are converted to mass concentrations
(µgm−3) based on air density in each model. In evaluating
PM2.5 components (Sect. 4), the evaluation of dust and sea
salt concentrations is excluded due to the lack of available
ground-based observations. We compare OC, BC, sulfate,
nitrate, and ammonium simulations with the observed data
available for these components. Modeled OA is converted
to organic carbon (OC) to be comparable with the observa-
tional dataset. Modeled OA refers to total organic aerosol,
including primary organic aerosol (POA) and secondary or-
ganic aerosol (SOA). For the GFDL-ESM4 model, the “mm-
roa” variable for OA only includes POA; thus, we calculate
the total OA of GFDL-ESM4 as mmroa plus mmrsoa. The
OA/OC ratios in the literature range from 1.4 to 2.1 (Bürki
et al., 2020; Lin et al., 2016). We choose an OA/OC ratio
of 1.6, which is the same as the ratio used in converting near-
surface OA observations to OC. This ratio is slightly higher
than the value of 1.4 recommended by CMIP6 for POA, but
it does not affect the relative (percentage) model bias found
in this study because the same ratio is used for models and
observations.

For the seven models that do not output total PM2.5, we
follow the previous work to estimate total PM2.5 concen-
trations (Eq. 1) (Turnock et al., 2020). Here, OA, BC, sul-
fate, and certain portions of sea salt (SSLT; a1) and dust
(DST; a2) are assumed to be present in fine particles (diame-
ter < 2.5 µm).

PM2.5 = OA+BC+SO2−
4 + a1×SSLT+ a2×DST (1)

For most models, specific values of a1 and a2 are provided
by model developers (Table S2). BCC-ESM1 does not pro-
vide the coefficients. Instead, the model outputs concentra-
tions in four size bins for each of dust (DST01 is 0.1–1.0 µm,
DST02 is 1.0–2.5 µm, DST03 is 2.5–5.0 µm, and DST04 is
5.0–10 µm) and sea salt (SSLT01 is 0.2–1.0 µm, SSLT02 is
1.0–3.0 µm, SSLT03 is 3.0–10 µm, and SSLT04 is 10–20 µm)
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(Su et al., 2022; Wu et al., 2019). Thus, the first two bins
are assumed to belong to PM2.5. Ammonium and nitrate are
not available in most of these six models (except GISS-E2-
1-MATRIX) and are thus not included in Eq. (1).

2.2 Satellite-based total PM2.5

We take satellite-based near-surface total PM2.5 concentra-
tions from the V4.CH.03 product of the Washington Uni-
versity Atmospheric Composition Analysis Group (Ham-
mer et al., 2020). The dataset is constructed by combin-
ing multiple satellite products of AOD with simulations
from a chemical transport model (GEOS-Chem) to predict
PM2.5 and then constraining these estimates by ground-level
PM2.5 monitoring. The GEOS-Chem aerosol simulations in-
clude primary and secondary carbonaceous aerosols, sul-
fate, nitrate, ammonium, mineral dust, and sea salt. The
dataset provides the annual average PM2.5 concentrations
during the period 2000–2014 with a high spatial resolu-
tion of 0.01°× 0.01° (∼ 1 km× 1 km). The adjusted satellite-
derived PM2.5 concentrations over Asia are compared with
surface PM2.5 observations collected from the Global Burden
of Disease (GBD) collaborators during the period 2008–2013
(Meansatellite= 61.5 µgm−3 versus Meanobs= 59.1 µgm−3)
(van Donkelaar et al., 2016) and from the China Na-
tional Environmental Monitoring Center (CNEMC) dur-
ing the period 2015–2019 (Meansatellite= 45.9 µgm−3 versus
Meanobs= 43.4 µg m−3) (van Donkelaar et al., 2021). De-
tailed data descriptions are provided elsewhere (van Donke-
laar et al., 2019; van Donkelaar et al., 2016). Here the
satellite-based total PM2.5 data are re-gridded to 1°× 1° for
model evaluation purposes.

2.3 Ground-based PM2.5 component data

Since national-scale continuous measurements of near-
surface PM2.5 components are unavailable in China, we col-
lect observational PM2.5 component data from the literature.
Our collected dataset includes 2469 component records of
OC, BC, sulfate, nitrate, and ammonium nationwide (627,
66, 645, and 1131 records in western regions, Northeast
China, North China, and Central and South China, respec-
tively), as shown in Fig. 1. Here a record represents one mea-
sured PM2.5 component at the specific sample site and pe-
riod. These records cover 30 provinces (including provinces
and provincial-level municipalities) and multiple land use
types (urban, rural, near the road, and industrial park). The
dataset does not cover Ningxia, Guizhou, Heilongjiang, and
Taiwan. A total of 472, 459, 518, 519, and 501 records are
available for OC, BC, sulfate, nitrate, and ammonium over
China, respectively. The site locations, sampling periods,
data sources, and other information are summarized in Ta-
ble S4 in the Supplement.

At a given site, the records are not continuous in time.
These records cover varying sampling periods ranging from

a few days to several years, although most are monthly data.
We treat a record as seasonal if its data length is equal to
or shorter than a season or as annual when its data length is
longer than 6 months. The records are not evenly scattered
across years and are more available in later years in general.
From 2000 to 2008, the numbers of records range from 50
to 150 per year, except for 2003 (207 records), while from
2009 to 2014, the numbers of records vary between 150 and
550 per year (Fig. S1). To compare with CMIP6 simulations,
we calculate for each site the multi-year mean PM2.5 com-
ponent concentrations by averaging over the seasonal or an-
nual observational records. If there is more than one site in
a given model grid cell, we average data from all sites in
that grid cell. To consider the effect of interannual variability
(caused by an incomplete temporal match in data availabil-
ity between models and observations), we compute for each
CMIP6 model the average and maximum of annual mean
values during 2000–2014 from all grid cells with available
observational data and then compare with the multi-year-
averaged observations from these grid cells. As detailed in
Sect. 5, the model biases are not caused by imperfect model–
observation matching in time.

3 Evaluation of near-surface total PM2.5

3.1 Spatial distribution

The spatial distribution of satellite-based annual mean total
PM2.5 concentrations (Fig. 2p) exhibits high values over pop-
ulous and industrial North China (including Beijing, Tianjin,
Hebei, Shandong, and Shanxi provinces; 52.6 µgm−3) and
eastern Sichuan (60.9 µgm−3). Central and South China ex-
hibits PM2.5 concentrations (46.5 µgm−3) lower than North
China due to lower emissions, higher vegetation coverage,
better ventilation conditions, and more precipitation. PM2.5
concentrations are modest over dusty southern Xinjiang
(33.6 µgm−3). Low PM2.5 concentrations (< 8 µgm−3) are
distributed over the plateaus or forested regions with small
populations, such as Tibet and northern Heilongjiang. Over-
all, PM2.5 concentrations in the southern and coastal regions
are lower than in the northern and inland regions.

Among the seven models that directly output total PM2.5
concentrations (Fig. 2a–g), GFDL-ESM4 and MPI-ESM-1-
2-HAM show similar patterns and magnitudes to satellite
data with small national average biases (−1.5 % and−1.1 %,
respectively) because of better performance in BC, sulfate,
and ammonium simulations (Figs. S4–S7) which are related
to the aerosol–chemistry–climate schemes within CMIP6
models (Turnock et al., 2020). Over the eastern regions (in-
cluding Northeast China, North China, and Central and South
China), all models exhibit spatially averaged negative biases
ranging from −47.9 % to −3.3 % (Fig. S2). Nevertheless,
the spatial pattern over the eastern regions is well simulated
by four models (GFDL-ESM4, GISS-E2-1-OMA, MIROC-
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Figure 1. Observational records of PM2.5 components during 2000–2014 collected from the literature. (a) The map depicts individual
provinces in four regions, including the western regions in red colors, Northeast China in purple, North China in blue, and Central and South
China in green. The provinces without observational records are in gray. The number denotes each province. (b) Provincial observation
records in China. The number on the upper x axis and the color in each bar match the province in panel (a). Publisher’s remark: please note
that Figs. 1a, 2a–p, 4a–n, and 5a–o contain disputed territories.

Figure 2. Multi-year mean annual average near-surface total PM2.5 concentrations over China during 2000–2014. (a–g) Model-outputted
PM2.5 concentrations in seven models. (h–n) Calculated PM2.5 concentrations in the other seven models according to Eq. (1). (o) Multi-
model mean. (p) Satellite-based total PM2.5 dataset. R stands for spatial correlation, and NMB stands for normalized mean bias.
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ES2L, and MPI-ESM-1-2-HAM) (R > 0.9, as shown in Ta-
ble S2), with the maximum center over North China correctly
reproduced. Over the western regions, four models (GFDL-
ESM4, MRI-ESM2-0, NorESM2-LM, and NorESM2-MM)
reproduce the maximum center over southern Xinjiang, al-
though each of the seven models can underestimate or over-
estimate the peak values substantially.

For the seven models with total PM2.5 derived from
Eq. (1), their simulated PM2.5 concentrations underestimate
the satellite-based data from −65.5 % to −48.0 %, with the
values averaged over the country (Fig. 2h–n). The negative
biases are in part because nitrate and ammonium are not in-
cluded. About 15.1–20.6 % and 11.4–14.6 % of PM2.5 are
nitrate and ammonium in the models that do contain them,
as shown in Table S3. Over the eastern regions, HadGEM3-
GC31-LL and UKESM1-0-LL exhibit the least underestima-
tion, and they also capture the observed maximum center
over North China. Five of these seven models do not repro-
duce the PM2.5 peaks over dusty regions in the west, pointing
to model deficiencies in dust simulations (Zhao et al., 2022).

3.2 Trend and interannual variability

Over the eastern regions (Northeast China, North China,
and Central and South China), data from satellite
(0.72 µgm−3 yr−1) and all models (0.32–1.14 µgm−3 yr−1)
exhibit significant increases (p value < 0.05) in annual
mean total PM2.5 concentrations over 2000–2014, with
temporal correlation between 0.63 and 0.87 (Fig. 3a and
Table S2). The positive trend of satellite data over the eastern
regions is consistent with findings from previous studies (de
Leeuw et al., 2022; Geng et al., 2021), as caused mainly by
emission changes (Hoesly et al., 2018; Wang et al., 2022).
GFDL-ESM4 and MPI-ESM1-2-HAM have exhibited
annual average PM2.5 concentrations and trends similar
to the satellite data since 2004. Regionally, the 14 models
capture the interannual variations in the satellite PM2.5
over Northeast China (R > 0.9) and North China (R > 0.8)
(Fig. 4). The temporal consistency reflects that the models
capture the temporal changes in anthropogenic emissions
over these polluted regions, although the models might not
align with natural (meteorology-driven) variability.

Over the western regions where natural dust dominates the
aerosol loadings, satellite-based PM2.5 concentrations expe-
rience no significant trend over 2000–2014, whereas 11 mod-
els increase significantly (0.10–0.28 µgm−3 yr−1) (Fig. 3b).
There is a notable decline over 2000–2005 in satellite data
(−1.12 µgm−3 yr−1 at the significance level of 0.1) con-
sistent with the previous studies that use dust aerosol op-
tical depth (DOD) and ground-based observations of dust
storm (S. Wang et al., 2021; Song et al., 2016). However,
the dramatic drop is not captured by any model, reflecting
large uncertainties and inter-model diversities in dust sim-
ulations stemming from many factors such as the driving
mechanisms, dust particle size, and model structural differ-

ences (Zhao et al., 2022). Over 2000–2014, NorESM2-LM,
NorESM2-MM, and MPI-ESM-1-2-HAM show large inter-
annual variations, whereas other models do not. The mod-
els do not align with the yearly changes found in the satel-
lite data, with modestly positive, low, or even negative cor-
relation coefficients (−0.6 to 0.6; Fig. 4). The inaccuracy in
aerosol trend and variability might exert an erroneous forcing
upon the climate system.

4 Evaluation of near-surface PM2.5 components

4.1 Organic carbon and black carbon

Ground-based observations of carbonaceous aerosols (OC
and BC) are mostly available in the eastern regions. The na-
tional average multi-year mean observed OC concentration
reaches 15.9 µgm−3. Observed OC concentrations peak over
North China (> 25 µgm−3) and are also high over Central
and South China (5–25 µgm−3) (Fig. 5a). The national av-
erage of the 14-model mean (6.5 µgm−3; normalized mean
bias (NMB)=−59.0 %) which is spatially coincidently sam-
pled with the ground-based observations (i.e., model val-
ues are obtained from grid cells with available observa-
tions) severely underestimates the observations, especially
over parts of North China, with the bias reaching−40 µgm−3

(Fig. 5b). Nevertheless, the spatial pattern of OC observa-
tions is captured modestly well by the 14-model mean with a
correlation coefficient of 0.51. Furthermore, a negative bias
exceeding −50 % occurs in 11 models, even though they can
simulate the spatial pattern moderately well (R ranges from
0.40 to 0.58; Fig. S4).

The national average multi-year mean observed BC con-
centration is 4.3 µgm−3. Observed BC concentrations are
high (> 10 µgm−3) over parts of North China with mining
and other heavy industries, such as in the Hebei and Shanxi
provinces (Fig. 5d). However, the 14-model mean (3 µgm−3)
does not capture the spatial pattern very well (R= 0.39),
and it underestimates the observations (NMB=−27.2 %).
The 14-model mean presents the largest negative bias over
Shanxi (−15.2 µgm−3) and the greatest positive bias over
Shandong (3.9 µgm−3; Fig. 5e); both provinces are in North
China. Of the 14 models, 12 underestimate the BC observa-
tions (from −47.9 % to −12.1 % for the national average),
whereas 2 models (HadGEM3-GC31-LL and UKESM1-0-
LL) exhibit positive biases (21.1 % and 26.2 %, respectively)
(Figs. 6 and S5). Most models produce high concentrations
of BC over the whole of North China, including Beijing and
Shandong which exhibit relatively low observational values.
The spatial distributions of carbonaceous aerosol concen-
trations are mainly influenced by CEDS emissions used in
models, with higher spatial correlation coefficients that are
greater than 0.85 (Fig. S3).

The underestimation of carbonaceous aerosol concentra-
tions might be associated with anthropogenic emissions,
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Figure 3. Time series of annual mean regional average total PM2.5 concentrations (a) over the eastern regions (including Northeast China,
North China, and Central and South China) and (b) over the western regions. The bold black lines denote satellite-based PM2.5 concentra-
tions, and the bold red lines denote multi-model mean (MMM) concentrations.

Figure 4. Spatial distribution of correlation coefficients between modeled and satellite-based data for interannual variations in the annual
mean total PM2.5 concentrations during 2000–2014. Black dots indicate a significance level of 0.05.

chemical mechanisms, and meteorological conditions. For
China, the CEDS emission data (version 2016-07-26) used
in CMIP6 historical simulations are about 3.8 %–31.3 %
higher than those in MEIC inventory, except for NOx emis-
sions (Fan et al., 2022). However, the positive bias in
emissions cannot explain the model underestimation of OC
and BC concentrations. The model inadequacies in chemi-
cal processes (e.g., using simplified aerosols and chemistry
schemes, which tends to underestimate aerosol formation;
Turnock et al., 2020) might lead to underestimated secondary

organic aerosols (SOA, as a component of OC), especially
over Central and South China (Chen et al., 2016). The inter-
model discrepancies of OC and BC peak over North China
and eastern Sichuan (Fig. 5c). The large absolute discrepan-
cies are in part due to the higher air pollutant concentrations
in these regions. Furthermore, many differences exist among
CMIP6 models in PM2.5 component simulations, including
the representation of aerosol size distribution; the simplifica-
tion of chemical processes with photolytic, kinetic, and het-
erogeneous reactions (e.g., 33 photolytic reactions in BCC-
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Figure 5. Spatial distribution of multi-year averages of modeled PM2.5 components during 2000–2014. The first column shows the multi-
model mean PM2.5 component concentrations overlaid with average ground-based observations in filled circles. The second column shows
the bias of multi-model mean concentrations. The third column shows the standard deviation of PM2.5 component simulations among the
CMIP6 models.
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Figure 6. Multi-year mean spatial correlation and bias for PM2.5 components over 2000–2014 for individual models. Results for total PM2.5
refer to the comparison against the satellite-based dataset, and those for the components are relative to the observations compiled from the
literature. The dotted red lines denote multi-model mean (MMM). The dotted black lines denote the spatial correlation coefficient value
of 0.5.

ESM1 but 43 in GFDL-ESM4) (Turnock et al., 2020; T. Wu
et al., 2020; Dunne et al., 2020); the treatment for transport of
gaseous tracers and aerosols by advection and vertical con-
vection; and the dry deposition and wet scavenging schemes
(Su et al., 2022; Digby et al., 2024).

Meteorological conditions, including temperature, precip-
itation, and surface wind simulations, have critical impacts
on local aerosol concentrations. Temperature simulations
over the eastern regions of China by CMIP6 models are
very close to the observed data (Yang et al., 2021). Over
the western regions, a notable warm bias over Xinjiang in
most CMIP6 models (X. Zhang et al., 2022) may contribute
to higher planetary boundary layer height (Yue et al., 2021)
and stronger vertical mixing, partly explaining the under-
estimation of OC and BC concentrations near the surface
(Fig. 5), whereas the pronounced cold bias over the Tibetan
Plateau (Zhu and Yang, 2020) might contribute to overesti-
mated near-surface aerosol concentrations over there. Precip-
itation affects aerosol concentrations through wet scaveng-
ing, and it is overestimated (wet bias) in CMIP6 models over
North China and Northeast China but close to observations
over Central and South China (Yang et al., 2021). The model
performance in precipitation may partly explain the more se-
vere underestimation of OC concentrations over North China
than over Central and South China. But the overestimation

of BC over North China suggests that other factors offset
the influence of local wet bias. Over the western regions,
most models exhibit wet bias, except over northern Xinjiang,
where local temperature (warm bias) and precipitation (dry
bias) have opposite effects on near-surface aerosol concen-
trations. Furthermore, the overall underestimation of surface
wind speed over China in CMIP6 (J. Wu et al., 2020) is con-
ducive to the accumulation of near-surface aerosol concen-
trations around the anthropogenic emission source regions
which may induce a negative contribution to the underesti-
mation of OC and BC concentrations.

4.2 Sulfate, nitrate, and ammonium

This section evaluates the model performance of secondary
inorganic aerosols (SIOAs; sulfate, nitrate, and ammonium).
Sulfate aerosol in CMIP6 models is dependent on SO2 emis-
sions (the main sulfuric acid precursor), chemical conver-
sion of SO2 to sulfate, and loss through wet scavenging
(T. Wu et al., 2020; Tegen et al., 2019). Some models also
explicitly simulate nitrate and ammonium aerosols using the
sulfate–nitrate–ammonia thermodynamic equilibrium. For
instance, EC-Earth3-AerChem, GISS-E2-1-MATRAX, and
GISS-E2-1-OMA use the Equilibrium Simplified Aerosol
Model (EQSAM) (Metzger et al., 2002; Bauer et al., 2020;
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van Noije et al., 2021), while GFDL-ESM4 treats ammo-
nium and nitrate aerosols with ISORROPIA (Fountoukis and
Nenes, 2007; Paulot et al., 2016; Dunne et al., 2020).

The national average multi-year mean of observed sul-
fate concentrations reaches 14.6 µgm−3, the second-largest
value among the five PM2.5 components (following OC).
The observed sulfate concentrations exceed 15 µgm−3 over
most of North China and eastern Sichuan, as well as cities
over Xinjiang with large population and petroleum indus-
try (Fig. 5g). The 14-model mean, whose national aver-
age is 9.3 µgm−3, has the greatest underestimation over
North China and Xinjiang (Fig. 5h). The 14-model mean
agrees modestly well with the observations in the spatial pat-
tern (R= 0.57). Among the 14 models, the national aver-
age model biases range from −66.1 % (GISS-E2-1-OMA)
to 24.5 % (MRI-ESM2-0), and 5 models better capture the
observed spatial pattern with correlation coefficients exceed-
ing 0.6 (Fig. 6). The cross-model discrepancy in sulfate
(2 µgm−3 in national average) is larger than those for the
other four components (0.4–0.9 µgm−3), particularly over
Central and South China (Fig. 5i).

The national average multi-year mean of observational ni-
trate concentrations is 8.7 µgm−3. The observed spatial pat-
tern of nitrate is similar to sulfate, with high values over
North China, eastern Sichuan, and populous cities of Xin-
jiang (Fig. 5j). Only four models (GFDL-ESM4, GISS-E2-1-
OMA, GISS-E2-1-MATRIX, and EC-Earth3-AerChem) in-
clude nitrate simulations. The four-model mean has a na-
tional average of 5.5 µgm−3, with a NMB of −36.5 %, but it
captures the observed spatial pattern very well with a correla-
tion coefficient reaching 0.7. All four models exhibit negative
NMBs ranging from −41.4 % to −25.4 %; they reproduce
high values over the eastern regions but have an underesti-
mation over Xinjiang (Fig. S7).

The observed multi-year mean ammonium concentrations
have a national average value of 6.7 µgm−3. The observa-
tional values peak over North China (> 10 µgm−3), partic-
ularly over the agricultural regions from which ammonia
emissions are the greatest (Fig. 5m). Five models perform
ammonium simulations. The five-model mean, with a na-
tional average of 3.4 µgm−3, has negative and positive bi-
ases between −12.2 and 1.5 µgm−3 at different locations
(Fig. 5n). The five-model mean captures the observed spatial
pattern of ammonium (R= 0.74) better than for other com-
ponents (R= 0.39–0.70). The five models exhibit varying
performances in magnitude and spatial pattern. The NMBs
range from −89.0 % to −13.6 % across these models. Four
models simulate the spatial patterns of ammonium well,
with high correlation coefficients between 0.67 and 0.76, al-
though the spatial agreement is poor for CESM2-WACCM
(R= 0.21).

Emissions, meteorological conditions, and chemical pro-
cesses affect the formation and loss of secondary inorganic
aerosols. As explained in Sect. 4.1, the potentially overesti-
mated CEDS emissions over China, the cold bias over the

Tibetan Plateau, and the dry bias over northern Xinjiang tend
to overestimate aerosol concentrations which are in contrast
with the negative model biases over the respective regions.
On the other hand, the warm bias over northern Xinjiang and
the wet bias over North China and Northeast China are in
line with the underestimation of aerosol concentrations. Fur-
thermore, the formation of nitrate from nitric acid depends
on the amount of residual ammonia left from the formation
of ammonium sulfate. Over the regions where ammonia is
not sufficient to neutralize both nitric acid and sulfuric acid
(such as Shanxi and Shandong), decreased sulfate formation
might promote nitrate formation with the released ammo-
nium (Zhai et al., 2019; Zhai et al., 2021). This partly ex-
plains why the underestimation of nitrate simulations is less
than sulfate over these regions.

5 Discussion

Over the eastern regions, the concentrations of total PM2.5
and its 5 components are underestimated by the 14 mod-
els in general. The slight underestimation of three mod-
els (GFDL-ESM4, MPI-ESM-1-2-HAM, and MRI-ESM2-0)
can be traced to positive biases in sulfate simulations, partly
offsetting the negative biases in OC and BC. Over the west-
ern regions, most models underestimate the total PM2.5 con-
centrations dominated by dust aerosols, whereas three mod-
els (GFDL-ESM4, NorESM2-LM, and NorESM2-MM) pro-
duce overly high values over Xinjiang due to overestimated
dust concentrations. Meanwhile, all models underestimate
the five PM2.5 components over the west.

Figure 7 shows little difference between the maximum and
average annual concentrations over 2000–2014 for national
mean PM2.5 components simulated by individual models.
Furthermore, we average over all seasonal and annual obser-
vational records to compare with annual mean model results.
A test using the seasonal (annual) model results to match sea-
sonal (annual) observational records shows very similar com-
parison results (Fig. S8). These tests suggest that the model
underestimation cannot be attributed to imperfect temporal
matching between models and observations or the potential
mis-phase (or variability) in models.

Among the five PM2.5 components evaluated, absorbing
aerosol (BC) and four scattering aerosols (OC, sulfate, ni-
trate, and ammonium) have opposite direct radiative forc-
ing at the top of atmosphere (TOA). The underestimation
of BC is less than for the other four scattering aerosols. If
this difference persists in the troposphere, the underestimated
PM2.5 components might cause an underestimation of nega-
tive radiative forcing at the TOA. The underestimation of BC
and scattering aerosols might result in more solar radiation
reaching the ground (Chen et al., 2022; Tang et al., 2022).
This is consistent with the overestimation of maximum daily
maximum temperature over the eastern regions (Zhu et al.,
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Figure 7. Maximum and average concentrations over 2000–2014 for national mean PM2.5 components simulated by individual models. In
each year, model values are sampled from grid cells with available observations.

2020), likely serving as a positive feedback between nega-
tive aerosol biases and overestimated surface temperature.

The spatial biases in aerosols might also serve as an impor-
tant limiting factor for the performance of meteorological/-
climate simulations. The observed PM2.5 and its five compo-
nents are characterized by high concentrations over the east
and low values over the west (except northern Xinjiang). In a
few models, the large overestimation of PM2.5 over Xinjiang
of the west (dominated by dust) with underestimated PM2.5
(dominated by anthropogenic aerosols) over the east might
exert an incorrect west–east asymmetric climate forcing. The
spatial pattern of the resulting climate response might in-
clude cold–warm biases of surface temperature (cold bias
over the west and warm bias over the east). The difference
in the spatial pattern of model bias between BC and scatter-
ing aerosols might have additional impacts on the climate.
Future work is needed to examine how the model errors in
PM2.5 and its components might affect climate simulations
through aerosol–climate feedback.

6 Summary

In this study, we evaluate the performance of 14 CMIP6
ESMs in simulating total near-surface PM2.5 and its 5 com-
ponents over China during 2000–2014 and discuss the likely
causes for model errors and their climate implications. Our
assessment helps us to understand the capability of the
current-generation models in the simulation of aerosols and
aerosol–climate interactions towards a further improvement

of climate predictions and projections. Our findings are sum-
marized as follows.

Of the 14 CMIP6 models, 12 tend to underestimate the
total PM2.5 concentrations over China (NMB=−65.5 %
to −1.1 %), and the other 2 models overestimate them
(NMB= 17.0 %–39.2 %), as compared to a satellite-based
dataset. The seven models that output total PM2.5 concentra-
tions exhibit underestimation between −47.9 % and −3.3 %
over the eastern regions, although four of them capture the
observed spatial pattern (R > 0.9). Over the western regions,
four of these seven models reproduce the maximum center
over southern Xinjiang. The seven models for which we cal-
culate the total PM2.5 concentrations from outputted com-
ponents underestimate the observed PM2.5 from −65.5 % to
−48.0 % (averaged over the country), in part due to missing
nitrate and ammonium in the models.

Over the eastern regions, all models simulate signifi-
cant increasing trends of total PM2.5 (0.32–1.14 µgm−3 yr−1)
over 2000–2014 that are close to the satellite-based data
(0.72 µgm−3 yr−1). The models also capture the interan-
nual variability in the satellite PM2.5 over Northeast China
and North China. Over the western regions, 11 models
simulate growing PM2.5 concentrations at rates of 0.10–
0.28 µgm−3 yr−1, in contrast to no significant trends in satel-
lite data.

The 14-model mean captures the spatial pattern of ob-
served OC modestly well (R= 0.51), but it exhibits a severe
underestimation nationwide (NMB=−59.0 %), with nega-
tive biases exceeding −50 % in 11 models. The 14-model
mean shows a poor capability with respect to capturing the
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BC spatial pattern (R= 0.39), and it also underestimates the
BC observations (NMB=−27.2 %). Of the models, 2 ex-
hibit positive biases in BC, while the other 12 models exhibit
negative biases.

There are 14, 4, and 5 models which output sulfate, nitrate,
and ammonium, respectively. The 14-model mean of sul-
fate exhibits a modest spatial correlation and bias (R= 0.57;
NMB=−36.5 %), and large discrepancies exist among these
models, with biases ranging from −66.1 % to 24.5 %. The
four-model mean of nitrate captures the spatial pattern well
(R= 0.7), although it still underestimates concentrations na-
tionwide (NMB=−36.5 %). The five-model mean of ammo-
nium has the best performance with respect to reproducing
the spatial pattern (R= 0.74) but with a negative bias in mag-
nitudes (NMB=−46.5 %).

The overall underestimation of PM2.5 and its components
is associated with imperfectness in emissions as input, mod-
eled meteorology, and chemistry. The underestimated PM2.5
and its components might cause an overall underestimated
cooling effect at TOA and stronger warming at the surface
in the models. The model performance in spatial pattern dif-
fers between BC and scattering aerosols, and a few models
also exhibit strong positive biases over the west (associated
with dust) but negative biases over the east. Together, the er-
rors in spatial pattern might have additional consequences for
the modeled climate. Further studies are warranted to quan-
tify how model errors in the magnitude and spatial pattern
of aerosols affect the regional and global climate, for ex-
ample, through the Regional Aerosol Model Intercomparison
Project (RAMIP) (Wilcox et al., 2022).

As a final note, those causes for aerosol underestimation
may also affect ozone, and the underestimated aerosol con-
centrations might also further affect the ozone simulation
through radiative or heterogeneous chemical processes (Ja-
cob, 2000; Lin et al., 2012; Li et al., 2019). In addition, as
CMIP6 models are also used to study the health impacts of
aerosols (Xu et al., 2022; Shim et al., 2021), the aerosol un-
derestimation needs to be corrected to allow a more reliable
estimate of health consequences.

Code and data availability. CMIP6 data are available from the
Earth System Grid Federation (ESGF) and can be freely
downloaded at https://esgf-data.dkrz.de/search/cmip6-dkrz/ (last
access: 8 September 2020, WCRP, 2020), and all relevant
references to the CMIP6 data used are provided in Ta-
ble S1 in the Supplement. Satellite-derived surface PM2.5
concentration products can be accessed from the Washing-
ton University Atmospheric Composition Analysis Group web-
site (as version V4.CH.03) at https://sites.wustl.edu/acag/datasets/
surface-pm2-5-archive/#V4.CH.03 (van Donkelaar et al., 2019).
Observational data used in this paper are provided in the Supple-
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