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Abstract. Land ecosystems are important sources and sinks
of atmospheric components. In turn, air pollutants affect the
exchange rates of carbon and water fluxes between ecosys-
tems and the atmosphere. However, these biogeochemical
processes are usually not well presented in Earth system
models, limiting the explorations of interactions between
land ecosystems and air pollutants from regional to global
scales. Here, we develop and validate the interactive Model
for Air Pollution and Land Ecosystems (iMAPLE) by up-
grading the Yale Interactive Terrestrial Biosphere Model with
process-based water cycles, fire emissions, wetland methane
(CH4) emissions, and trait-based ozone (O3) damage. Within
iMAPLE, soil moisture and temperature are dynamically cal-
culated based on the water and energy balance in soil layers.
Fire emissions are dependent on dryness, lightning, popula-
tion, and fuel load. Wetland CH4 is produced but consumed
through oxidation, ebullition, diffusion, and plant-mediated
transport. The trait-based scheme unifies O3 sensitivity of
different plant functional types (PFTs) with the leaf mass per
area. Validations show correlation coefficients (R) of 0.59–
0.86 for gross primary productivity (GPP) and 0.57–0.84 for
evapotranspiration (ET) across the six PFTs at 201 flux tower
sites and yield an average R of 0.68 for CH4 emissions at 44
sites. Simulated soil moisture and temperature match reanal-
ysis data with high R above 0.86 and low normalized mean

biases (NMBs) within 7 %, leading to reasonable simulations
of global GPP (R = 0.92, NMB= 1.3 %) and ET (R = 0.93,
NMB=−10.4 %) against satellite-based observations for
2001–2013. The model predicts an annual global area burned
of 507.1 Mha, close to the observations of 475.4 Mha with a
spatial R of 0.66 for 1997–2016. The wetland CH4 emis-
sions are estimated to be 153.45 Tg [CH4]yr−1 during 2000–
2014, close to the multi-model mean of 148 Tg [CH4]yr−1.
The model also shows reasonable responses of GPP and ET
to the changes in diffuse radiation and yields mean O3 dam-
age of 2.9 % to global GPP. iMAPLE provides an advanced
tool for studying the interactions between land ecosystems
and air pollutants.

1 Introduction

As an important component on the Earth, land ecosystems
regulate global carbon and water cycles. Every year, the ter-
restrial ecosystem assimilates ∼ 120 Pg (1Pg= 1015 g) of
carbon from the atmosphere through vegetation photosyn-
thesis (Beer et al., 2010). However, most of this carbon up-
take returns to the atmosphere due to plant and soil respira-
tion (Sitch et al., 2015), as well as other perturbations such
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as biomass burning and biogenic emissions (van der Werf et
al., 2010; Carslaw et al., 2010), leading to a net carbon sink
of only ∼ 2 PgCyr−1 during 1960–2021 (Friedlingstein et
al., 2022). Meanwhile, land ecosystems affect atmospheric
moisture and soil wetness through both physical (e.g., evap-
oration and runoff) and physiological (e.g., leaf transpiration
and root hydrological uptake) processes. Observations show
that transpiration accounts for 80 %–90 % of the terrestrial
evapotranspiration (ET) (Jasechko et al., 2013) and makes
significant contributions to land precipitation, especially over
the tropical forests (Spracklen et al., 2012).

Different approaches have been applied to depict the spa-
tiotemporal variations of ecosystem processes. The eddy co-
variance technique provides direct measurements of land car-
bon and water fluxes (Jung et al., 2011). However, the lim-
ited number and uneven distribution of ground sites result in
large uncertainties in the upscaling of site-level fluxes to the
global scale (Jung et al., 2020). Satellite retrieval provides a
unique tool for the continuous representation of land fluxes
in both space and time (Worden et al., 2021). However, most
of the ecosystem variables (e.g., gross primary productivity,
GPP) can only be derived using available signals from re-
mote sensing through empirical relationships (Madani et al.,
2017). As a comparison, process-based models build physi-
cal parameterizations based on field and/or laboratory exper-
iments and validate against the available in situ and satellite-
based observations (Niu et al., 2011; Castillo et al., 2012).
These models can be further applied at different spatial (from
site to global) and temporal (from days to centuries) scales to
identify the main drivers of the changes in carbon and water
fluxes (Sitch et al., 2015). For example, a total of 17 vegeta-
tion models were validated and combined to predict the land
carbon fluxes in the past century (Friedlingstein et al., 2022);
the ensemble mean of these models revealed a steadily in-
creasing land carbon sink from 1960 with the dominant con-
tribution by CO2 fertilization.

While many studies have quantified the ecosystem re-
sponses to the effects of CO2, climate, and human activities
(Piao et al., 2009; Sitch et al., 2015), few have explored the
interactions between air pollution and land ecosystems. Such
biogeochemical processes are becoming increasingly impor-
tant in the Anthropocene period with significant changes in
atmospheric compositions. For example, observations found
that nitrogen and phosphorus constrain the CO2 fertilization
efficiency of global vegetation (Terrer et al., 2019), but such
a limiting effect is ignored or underestimated in most of the
current models (Wang et al., 2020). Tropospheric ozone (O3)
damages plant photosynthesis and stomatal conductance, in-
hibiting carbon assimilation and the ET from the land surface
(Sitch et al., 2007; Lombardozzi et al., 2015). Atmospheric
aerosols can enhance photosynthesis through diffuse fertil-
ization effects (Mercado et al., 2009) but meanwhile decrease
photosynthesis by reducing precipitation (Yue et al., 2017).
In turn, ecosystems act as both sources and sinks of atmo-
spheric components. Biomass burning emits a large quantity

of carbon dioxide, trace gases, and particulate matter, fur-
ther influencing air quality (Chen et al., 2021), ecosystem
functions (Yue and Unger, 2018), and global climate (Tian
et al., 2022). Biogenic volatile organic compounds (BVOCs)
are important precursors for both surface O3 and secondary
organic aerosols (Wu et al., 2020), which can feed back to
affect biogenic emissions (Yuan et al., 2016) and carbon as-
similation (Rap et al., 2018). Wetland methane (CH4) emis-
sions account for the dominant fraction of natural sources
of CH4 and are projected to increase under global warming
scenarios (Rosentreter et al., 2021; Zhang et al., 2017). On
the other hand, stomatal uptake dominates the dry deposition
of air pollutants over the vegetated land (Lin et al., 2020).
Meanwhile, ET from forest results in the increase of water
vapor in atmosphere (Spracklen et al., 2012), affecting the
consequent rainfall and wet deposition of particles.

Currently, numerical models are in general developed sep-
arately for atmospheric chemistry and ecosystem processes.
Chemical transport models are usually driven with prescribed
emissions of biomass burning (Warneke et al., 2023) and
wetland methane (Heimann et al., 2020), while ecosystem
models often ignore the biogeochemical impacts of O3 and
aerosols (Friedlingstein et al., 2022). In an earlier study, we
developed and validated the Yale Interactive Terrestrial Bio-
sphere (YIBs) model version 1.0 with a special focus on the
interactions between atmospheric chemistry and land ecosys-
tems (Yue and Unger, 2015). Thereafter, the YIBs model
has been used offline to assess O3 vegetation damage (Yue
et al., 2016), aerosol diffuse fertilization (Yue and Unger,
2017), and BVOC emissions (Cao et al., 2021a), as well
as coupled to other models to investigate carbon–chemistry–
climate interactions (Lei et al., 2020; Gong et al., 2021). The
YIBs model joined the multi-model intercomparison project
of TRENDY in the year 2020 and showed reasonable perfor-
mance in the simulation of carbon fluxes (Friedlingstein et
al., 2020). However, the YIBs model failed to predict typical
hydrological variables such as ET and runoff due to missing
carbon–water coupling modules. Furthermore, the model did
not consider the nutrient limitation on plant photosynthesis
and ignored some key exchange fluxes between the land and
atmosphere.

In this study, we develop the interactive Model for Air
Pollution and Land Ecosystems (iMAPLE) by coupling the
process-based water cycle module from Noah-MP (Niu et al.,
2011) to the carbon cycle in YIBs (Fig. 1). In addition, we
update the original YIBs model with some major advances
in biogeochemical processes including dynamic fire emis-
sions, wetland CH4 emissions, nutrient limitations on pho-
tosynthesis, and trait-based O3 vegetation damage. Detailed
descriptions of these updates are presented in the next sec-
tion. iMAPLE is fully validated against available measure-
ments in Sect. 3. The last section will summarize the model
performance and rethink the prospective directions for future
development.
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Figure 1. Illustration of biogeochemical processes in iMAPLE version 1.0. The carbon cycle is connected with the water cycle, wildfire emis-
sions, biogenic volatile organic compounds (BVOCs) emissions, and wetland methane emissions and is affected by air pollutants including
aerosols and ozone. The bold arrows indicate the directions of fluxes and air pollutants. The thin arrows indicate the influential pathways
among different components. The dependences on key parameters are shown for some processes. Red font indicates new or updated processes
in iMAPLE relative to the YIBs model. For detailed parameterizations please refer to Sect. 2.2.

2 Models and data

2.1 Main features of the YIBs model

The YIBs model is a process-based vegetation model pre-
dicting land carbon fluxes with dynamic changes in tree
height, leaf area index, and carbon pools (Yue and Unger,
2015, hereafter YU2015). A total of nine plant functional
types (PFTs) are considered including evergreen broadleaf
forest (EBF), evergreen needleleaf forest (ENF), decidu-
ous broadleaf forest (DBF), tundra, shrubland, C3/C4 grass-
land, and C3/C4 cropland. At each grid box, a mixture of
PFTs with each PFT fraction is used as model input, shar-
ing the temperature or moisture information from the same
soil column. Leaf photosynthesis is calculated using the well-
established Michaelis–Menten enzyme kinetics scheme (Far-
quhar et al., 1980) and is coupled to stomatal conductance
with modulations of air humidity and CO2 concentrations
(Ball et al., 1987). The model applies a two-leaf approach
to distinguish the irradiating states for sunlit and shading
leaves and adopts an adaptive stratification for the radia-
tive transfer processes within canopy layers (Spitters, 1986).
The gross carbon assimilation is further regulated by the
optimized plant phenology, which is mainly dependent on
temperature and light for deciduous trees (Yue et al., 2015)
but temperature and/or moisture for shrubland and grass-
land (YU2015). The assimilated carbon is allocated among
the leaf, stem, and root to support autotrophic respiration
and development, the latter of which is used to update plant

height and leaf area (Cox, 2001). The input of litterfall trig-
gers the carbon transition among 12 soil carbon pools and
determines the magnitude of heterotrophic respiration with
the joint effects of soil temperature, moisture, and texture
(Schaefer et al., 2008). The net carbon uptake is then cal-
culated by subtracting ecosystem respiration (plant and soil)
and environmental perturbations (reforestation or deforesta-
tion) from the gross carbon assimilation (Yue et al., 2021).
The YIBs model reasonably reproduces the observed spa-
tiotemporal patterns of global carbon fluxes and makes con-
tributions to the Global Carbon Project with long-term simu-
lations of land carbon sink in the past century (Friedlingstein
et al., 2020). The model specifically considers air pollution
impacts on land ecosystems (Fig. 1), such as ozone vegeta-
tion damage (Yue and Unger, 2014) and the aerosol diffuse
fertilization effect (Yue and Unger, 2017). YIBs implements
two different schemes for BVOC emissions (Fig. 1), includ-
ing the Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN, Guenther et al., 2012) and a photosynthesis-
dependent (PS_BVOC) scheme (Unger et al., 2013).

2.2 New processes in iMAPLE

2.2.1 Process-based water cycles

The descriptions and units of all parameters used in this study
are shown in Table S1 in the Supplement. We implement
the hydrological module from Noah-MP into iMAPLE (Niu
et al., 2011). The water budget closure is achieved by con-
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structing water-balance equations among precipitation (P ,
Kgm−2 s−1), evapotranspiration (ET, Kgm−2 s−1), runoff,
and terrestrial water storage change (1TWS) on each grid
cell as follows:

P = ET+ runoff+1TWS. (1)

Here, hourly P from MERRA-2 reanalyses is used as the
input.

We then divide ET into three portions including plant tran-
spiration (TRA), canopy evaporation (ECAN), and ground
evaporation (EGRO):

ET= TRA+ECAN+EGRO. (2)

For vegetated grids, TRA is calculated as follows:

TRA=
ρair×CPair×Ctra× (esat− eca)

PC
, (3)

where ρair is air density, CPair is heat capacity of dry air,
and PC is the psychrometric constant. esat is the saturated va-
por pressure at the leaf temperature, eca is the vapor pressure
of the canopy air, and Ctra is leaf transpiration conductance,
which is calculated based on the Ball–Berry scheme of stom-
atal resistance (Yue and Unger, 2015). Meanwhile, ECAN is
calculated as follows.

ECAN=
ρair×CPair×Ccanopy,evap× (esat− eca)

PC
(4)

Ccanopy,evap =
fwet×EVAI

Rleaf,bdy
(5)

Here, Ccanopy,evap is the latent heat conductance from the wet
leaf surface to canopy air. fwet is the wet fraction of canopy,
which is a fraction of the maximum canopy precipitation in-
terception capacity. EVAI is the effective vegetation area in-
dex and Rleaf,bdy is the bulk leaf boundary resistance. EGRO
is calculated as follows:

EGRO= Cground,evap(esat,groundRH− eca). (6)

Here, Cground,evap is the coefficient for latent heat at the
ground, esat,ground is the saturated vapor pressure at the
ground, and RH is the surface relative humidity.

Runoff includes surface (Rsrf) and subsurface (Rsub) com-
ponents:

runoff= Rsrf+Rsub. (7)

The surface runoff is calculated as follows:

Rsrf =Qsoil,srf−Qsoil,in, (8)

where Qsoil,srf is the incident water in the soil surface and is
the sum of the precipitation, snowmelt, and dewfall. Qsoil,in
is the infiltration into the soil, which is derived from approx-
imate solutions of Richards equations with considerations of

the spatial variations in precipitation and infiltration capac-
ity. Here, we assume exponential distributions of infiltration
capacity in each grid cell following the approach by Schaake
et al. (1996).

Qsoil,in =Qsoil,srf
Ic

Qsoil,srf1t + Ic
(9)

Ic =Wd[1− exp(−K1t1t)] (10)

Here, Ic andWd are the soil infiltration capacity of the model
grid cell and the water deficit of the soil column, respectively.
K1t and 1t are the calibratable parameters and model time
step. We assume free drainage processes in the soil column
bottom, and thus the Rsub is calculated as follows:

Rsub = αslope×K4, (11)

where αslope = 0.1 is the terrain slope index. K4 is the hy-
draulic conductivity in the bottom soil layer parameterized
following the scheme in Clapp and Hornberger (1978) and is
calculated using spatial soil profiles from Hengl et al. (2017).

Terrestrial water storage (TWS) is the sum of groundwa-
ter storage (Wgw), soil water content (Wsoil), and snow water
equivalent (Wsnow):

TWS=Wgw+Wsnow+

Nsoil∑
i=1

Wsoil. (12)

Here, the soil module includes four layers (Nsoil = 4) and
Wsoil is calculated by the volumetric water content (Wi) as
follows:

Wsoil = ρwat×Wi ×1Zi for i = 1,2,3,4, (13)

where water density (ρwat)= 1000 kgm−3, and 1Zi = 0.1,
0.3, 0.6, and 1 m. Hourly Wi depends on variations of soil
water diffusion (D) and hydraulic conductivity (K) as fol-
lows:

∂W

∂t
=
∂

∂z

(
D
∂W

∂z

)
+
∂K

∂z
. (14)

Here, K and D are calculated following the parameteriza-
tions of Clapp–Hornberger curves (Clapp and Hornberger,
1978):

K

Ksat
=

(
W

Wsat

)2b+3

, (15)

D =K ×
∂ϕ

∂W
, (16)

ϕ

ϕsat
=

(
W

Wsat

)−b
, (17)

where ϕsat, Wsat, and Ksat are saturated soil capillary po-
tential, volumetric water content, and hydraulic conductivity.
Exponent b is an empirical constant depending on soil types.
Soil moisture is calculated as the ratio of Ws to Wsat.
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Soil temperature (Ts) is calculated through physical pro-
cesses as follows:

∂Ts

∂t
=

1
C

∂

∂z

(
KT

∂Ts

∂z

)
. (18)

Here KT is soil specific heat capacity,

KT =Ke×
(
Ks−Kdry,

)
+Kdry (19)

where Ke, Ks, and Kdry are Kersten values as a function of
soil wetness, saturated soil heat conductivity, and that under
dry air conditions (Niu et al., 2011). C in Eq. (13) is the spe-
cific heat:

C =Wlip×Clip+Wice×Cice+ (1−Wsat)×Csat

+ (Wsat−W)×Cair.
(20)

Here, Wlip, Clip, and Wice, Cice indicate water content and
heat capacity on soil water and ice.Csat andCair are saturated
and air heat capacity, which are empirical constants (Niu et
al., 2011).

2.2.2 Dynamic fire emissions

We implement the active global fire parameterizations from
Pechony and Shindell (2009) and Li et al. (2012) to iMAPLE.
The fire emissions are determined by several key factors such
as fuel flammability, natural ignitions, human activities, and
fire spread. The fire count Nfire depends on flammability
(Flam), fire ignition (including both natural ignition rate IN
and anthropogenic ignition rate IA), and anthropogenic sup-
pression (FNS):

Nfire = Flam× (IN+ IA)×FNS. (21)

Flam is a unitless metric representing conditions conducive
to fire occurrence. It is parameterized as a function of vapor
pressure deficit (VPD), precipitation (Prec), and leaf area in-
dex (LAI):

Flam= VPD× e−2×Prec
×LAI. (22)

IN depends on the cloud-to-ground lightning, and IA can be
expressed as

IA = 0.03×PD× k(PD), (23)

where PD is population density. The empirical function of
k(PD)= 6.8×PD−0.6 stands for ignition potential by human
activity. The fraction of non-suppressed fires FNS is derived
as

FNS = 0.05+ 0.95× e−0.05×PD. (24)

The burned area of a single fire (BAsingle) is typically taken to
be elliptical in shape associated with length-to-breadth ratio

(LB), head-to-back ratio (HB), and rate of fire spread (UP)
as follows:

BAsingle =
π ×UP2

4×LB
×

(
1+

1
HB

)2

. (25)

Then, LB and HB are related to changes in near-surface wind
speed (U ) as follows.

LB= 1+ 10×
(
1− e−0.06×U ) (26)

HB=
LB+ (LB2

− 1)0.5

LB− (LB2− 1)0.5
(27)

Meanwhile, UP is computed as the function of relative hu-
midity (RH):

UP= UPmax× fRH× fθ ×G(U). (28)

Here, UPmax is the maximum fire spread rate depending on
PFTs, and fRH and fθ represent the dependence of fire spread
on RH and on root-zone soil moisture, respectively. fθ is sim-
ply set to 0.5, and fRH is calculated as

fRH =


1, RH≤ RHlow

RHup−RH
RHup−RHlow

, RHlow < RH< RHup

0, RH≥ RHup.

(29)

In this study, we set RHlow = 30 % and RHup = 70 % as the
lower and upper thresholds of RH following the methods
used in Li et al. (2012). If RH is higher than 70 %, natural
fires will not occur or spread, and RH will no longer be a con-
straint for fire occurrence and spread if RH≤ 30 %. G(U) is
the limit of the fire spread:

G(U)=
LB

1+ 1
HB

. (30)

In general, the eccentricity of burned area is primarily in-
fluenced by near-surface wind speed, while the rate of fire
spread is jointly regulated by near-surface wind speed and
relative humidity. The shape of the fire is converted to a cir-
cular form when the near-surface wind speed reaches zero,
and burning ceases to propagate once the relative humidity is
above a specific threshold. The dependence of BAsingle on U
and RH is shown in Fig. S1 in the Supplement.

Finally, the burned area (BA) is represented as

BA= BAsingle×Nfire. (31)

The fire-emitted trace gases and aerosols (Emis) are calcu-
lated as

Emis= BA×EF, (32)

where EF is the emission factors for different species (such as
black carbon and organic carbon aerosols). It is important to
note that the feedbacks from fire activities onto the terrestrial
ecosystem have not been considered in the current version of
iMAPLE due to the high complexity.
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2.2.3 Wetland methane emissions

We implement process-based wetland CH4 emissions into
iMAPLE. The anthropogenic sources of CH4 from Phase 6 of
the Coupled Model Intercomparison Project (CMIP6, https://
aims2.llnl.gov/search/input4MIPs/, last access: 5 June 2024)
are also used as input for iMAPLE. For each soil layer, the
flux of CH4 (FCH4 ) is calculated as the difference between
production (PCH4 ) and consumption, which includes oxida-
tion (OCH4 ), ebullition (ECH4 ), diffusion (DCH4 ), and plant-
mediated transport through aerenchyma (ACH4 ) as follows:

FCH4 = PCH4 −OCH4 −ECH4 −DCH4 −ACH4 . (33)

The net methane emission to the atmosphere is the sum of
ebullition, diffusion, and aerenchyma transport from the top
soil layer.

The production of CH4 in soil depends on the quantity of
carbon substrate and environmental conditions including soil
temperature Ts, pH, and wetland inundation fraction fwetland
as follows:

PCH4 = RhrfTsfpHfwetland, (34)

where Rh is the heterotrophic respiration estimated at the
grid cell (molCm−2 s−1). r represents the release ratio of
methane and carbon dioxide (Wania et al., 2010). We deter-
mine the dependence on Ts and soil pH in iMAPLE based on
the parameterizations from the TRIPLEX-GHG model (Zhu
et al., 2014). The impact factor of soil temperature fST can be
calculated as follows (Zhang et al., 2002; Zhu et al., 2014).

fST =


0, Ts < Tmin

vtxt exp(xt(1− vt)), Tmin ≤ Ts ≤ Tmax

0, Ts > Tmax

(35)

vt= (Tmax− Ts)/(Tmax− Topt) (36)

xt= [log(Q10)(Tmax− Topt)]
2(1.0+ at0.5)2/400.0 (37)

at= 1.0+ 40.0/[log(Q10)(Tmax− Topt)] (38)

Tmin, Tmax, and Topt represent the lowest, highest, and opti-
mum temperature for the process of methane production and
oxidation, respectively. In this study, Tmin = 0 °C, Tmax =

45 °C, and Topt = 25 °C (Zhu et al., 2014).
For the temperature dependence, theQ10 relationships are

applied as follows:

Q10 = rbQ
Ts−Tbase

10
b . (39)

Here rb is set to 3.0 and Qb is 1.33 with a base tempera-
ture (Tbase) of 25 °C (Zhu et al., 2014; Paudel et al., 2016).
The inundation fraction of wetland at each cell describes the
proportion of anaerobic conditions (Zhang et al., 2021). We
ignore the impact of redox potential (Eh) because global ob-
servations are not available and the Eh-related processes are
poorly characterized in current models (Wania et al., 2010).

The oxidation of CH4 is a series of aerobic activities re-
lated to temperature and CH4 concentrations:

OCH4 = [CH4]fTsfCH4 , (40)

where [CH4] is the methane amount in each soil layer
(gCm−2 per layer). fCH4 is the CH4 concentration factor
representing a Michaelis–Menten kinetic relationship:

fCH4 =
[CH4]

[CH4] +KCH4

, (41)

where KCH4 = 5 µmolL−1 is the half-saturation coefficient
with respect to CH4 (Walter and Heimann, 2000). For tem-
perature dependence of oxidation, the Q10 relationship with
rb = 2.0, Qb = 1.9, and Tbase = 12 °C is adopted (Zhu et al.,
2014; Paudel et al., 2016).

The diffusion of CH4 follows Fick’s law with dependence
on CH4 concentrations and the molecular diffusion coeffi-
cients of CH4 in the air (Da = 0.2 cm2 s−1) and water (Dw =

0.00002 cm2 s−1), respectively (Walter and Heimann, 2000).
For each soil layer i, the diffusion coefficient Di can be cal-
culated as follows:

Di =Da× (Rsand× 0.45+Rsilt× 0.2+Rclay× 0.14)

× ftort× Sporo× (1−WFPSi)+Dw×WFPSi,
(42)

where Rsand, Rsilt, and Rclay are the relative content of sand,
silt, and clay in the soil, ftort = 0.66 is the tortuosity coef-
ficient, Sporo is soil porosity, and WFPS represents the pore
space full of water (Zhuang et al., 2004).

The ebullition of CH4 occurs when the CH4 concentra-
tion is above the threshold of 0.5 molCH4 m−3 (Walter et
al., 2001). Since the process of ebullition occurs in a very
short time, the bubbles will generate at once and all the
flux will be released to the atmosphere if the concentration
reaches the threshold. The plant-mediated transport of CH4
through aerenchyma is dependent on the concentration gra-
dient of CH4 and plant-related factors (Zhu et al., 2014).
The ACH4 is determined by the oxidation factor for roots
and the aerenchyma factor for plants. The baseline value of
the oxidation factor in roots is 0.5, with a regulatory range
from 0.2 to 1.0 determined by the wetland plant types. The
plant aerenchyma factor is calculated by the ratio of the plant
root length density (typical value: 2.1 cmmg−1) and the root
cross-sectional area (typical value: 0.0013 cm2), along with a
plant root to atmosphere diffusion factor for methane which
is modulated by plant type within a range of 0 to 1 (Zhang et
al., 2002).

2.2.4 The downregulation on photosynthesis

We implement the downregulation parameterization from
Arora et al. (2009) to indicate the nutrient limitations on leaf
photosynthesis. A downregulating factor ε is calculated as a
function of CO2 concentrations (C) as follows:

ε(C)=
1+ γgd ln(C/C0)

1+ γg ln(C/C0)
, (43)

Geosci. Model Dev., 17, 4621–4642, 2024 https://doi.org/10.5194/gmd-17-4621-2024
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where C0 is a reference CO2 concentration set to 288 ppm.
The values of γgd = 0.42 and γg = 0.90 are derived from
multiple measurements to constrain the CO2 fertilization.
Then the downregulated photosynthesis is calculated by scal-
ing the original value with the factor of ε.

2.2.5 Trait-based O3 vegetation damaging scheme

The YIBs model considers O3 vegetation damage using the
flux-based scheme proposed by Sitch et al. (2007) (hereafter
S2007), which determines the damaging ratio F of plant pho-
tosynthesis as follows:

F = aPFT×max{fO3 − tPFT,0}. (44)

Here, fO3 denotes O3 stomatal flux (nmolm−2 s−1) defined
as

fO3 =
[O3]

r +
[

kO3
gp×(1−F)

] , (45)

where [O3] represents the O3 concentrations at the refer-
ence level (nmolm−3). r is the sum of boundary and aero-
dynamic resistance between the leaf surface and reference
level (sm−1). gp is the potential stomatal conductance for
H2O (ms−1). kO3 = 1.67 is a conversion factor of leaf resis-
tance for O3 to that for water vapor. The level of O3 damage
is then determined by the PFT-specific sensitivity aPFT and
threshold tPFT, which are different among PFTs.

In iMAPLE, we implement the trait-based O3 vegetation
damaging scheme to unify the inter-PFT sensitivities (Ma et
al., 2023):

aPFT =
a

LMA
. (46)

Here, a unified plant sensitivity a (nmol−1 gs) is scaled by
leaf mass per area (LMA, gm−2) to derive the sensitivity of
a specific PFT (aPFT). Accordingly, the damaging fraction F
is modified as follows:

F = a×max
{
fO3

LMA
− t,0

}
. (47)

Here t (nmolg−1 s−1) is a unified flux threshold for O3 veg-
etation damage. The fO3 in Eq. (45) is fed into Eq. (47) to
build a quadratic equation for F . We solve the quadratic
equation and select the F value within the range of [0,1].
The updated scheme considers the dilution effects of O3 dose
through leaf cross-section by incorporating LMA. Plants
with high LMA (e.g., ENF and EBF) usually have low sen-
sitivities, and those with low LMA (e.g., DBF and crops) are
more sensitive to O3 damage. The unified sensitivity a is set
to 3.5 nmol−1 gs and threshold t is set to 0.019 nmol g−1 s−1

by calibrating simulated F values with literature-based mea-
surements (Ma et al., 2023).

2.3 Design of simulations

We perform four sensitivity experiments with iMAPLE. The
baseline (BASE) simulation considers the two-way coupling
between carbon and water cycles so that the prognostic soil
meteorology drives canopy photosynthesis and evapotranspi-
ration. A sensitivity run named BASE_NW is set up by turn-
ing off the water cycle in iMAPLE. In this simulation, the soil
moisture and soil temperature are adopted from the Modern-
Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2) reanalyses (Gelaro et al., 2017). The
third and fourth runs turn on the O3 vegetation damage ef-
fect using either the LMA-based scheme (O3LMA) or the
S2007 scheme (O3S2007). Surface hourly O3 concentrations
are adopted from the chemical transport model simulations
used in our previous study (Yue and Unger, 2018). For all
simulations, iMAPLE is driven with hourly surface meteo-
rology at a spatial resolution of 1°× 1° from the MERRA-2
reanalyses, including surface air temperature, air pressure,
specific humidity, wind speed, precipitation, snowfall, and
shortwave and longwave radiation. We run the model for the
period of 1980–2021 using the initial conditions of the equi-
librium soil carbon pool, tree height, and water fluxes from
a spin-up run of 200 years driven with perpetual forcing for
the year 1980.

iMAPLE is driven with observed CO2 concentrations from
Mauna Loa (Keeling et al., 1976) and the land cover fraction
of nine PFTs derived by combining satellite retrievals from
both the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Hansen et al., 2003) and Advanced Very High
Resolution Radiometer (AVHRR) (Defries et al., 2000). For
fire emissions, we use Gridded Population of the World
version 4 (https://sedac.ciesin.columbia.edu/data/collection/
gpw-v4, last access: 5 June 2024) to calculate human ignition
and suppression. The lightning ignition is calculated using
the flash rate from the Very High Resolution Gridded Light-
ning Climatology Data Collection Version 1 (https://ghrc.
nsstc.nasa.gov/uso/ds_details/collections/lisvhrcC.html, last
access: 5 June 2024). For wetland CH4 emissions, we use the
2000–2020 global dataset of Wetland Area and Dynamics for
Methane Modeling (WAD2M) derived from static datasets
and remote sensing (Zhang et al., 2021), global soil pH from
Hengl et al. (2017), and gridded soil texture from Scholes et
al. (2011). For the LMA-based O3 damage scheme, we use
gridded LMA from the trait-level dataset of TRY (Kattge et
al., 2011) developed by extending field measurements with a
random forest model (Moreno-Martínez et al., 2018).

2.4 Data for validations

We use observational datasets to validate the biogeochemi-
cal processes and related variables simulated by iMAPLE.
For simulated carbon and water fluxes, site-level observa-
tions are collected from 201 sites from FLUXNET (Table S2
in the Supplement and Fig. 2). Among these sites, 95 have
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the ENF tree species as the major PFT and 106 are domi-
nated by non-tree species, especially shrubland. Most (71 %)
of the sites are located at the middle latitudes (30–60° N) of
the Northern Hemisphere (NH), especially in the US and Eu-
rope. Compared to the previous evaluation in YU2015, we
have many more sites in the tropics (22 in this study vs. 5
in YU2015), Asia (20 in this study vs. 1 in YU2015), and
the Southern Hemisphere (28 in this study vs. 7 in YU2015)
in this study. We also use the global gridded observations of
GPP from the satellite retrievals including the solar-induced
chlorophyll fluorescence (SIF) product GOSIF (Li and Xiao,
2019) and the Global Land Surface Satellite (GLASS) prod-
uct (Yuan et al., 2010). The global observations of ET are
adopted from the benchmark product of FLUXCOM (Jung
et al., 2020) and the satellite-based GLASS product. For the
dynamic fire module, we use monthly observed area burned
from the Global Fire Emission Database version 4.1 with
small fires (GFED4.1s) during 1997–2016 (van der Werf et
al., 2010; Randerson et al., 2012). For methane emissions, we
use site-level measurements of CH4 fluxes from FLUXNET-
CH4 (Delwiche et al., 2021). We exclude monthly records
with missing data for more than half of the days and calcu-
late the long-term mean fluxes for the seasonal cycle. In total,
we select 44 sites with at least 6 months of data available for
the validations (Table S3 in the Supplement).

3 Model evaluations

3.1 Site-level evaluations

Simulated GPP shows correlation coefficients (R) of 0.59–
0.86 for the six main PFTs with varied sample numbers
(Fig. 3). The highestR is achieved for ENF, though the model
underestimates the mean GPP magnitude by 20.62 % for this
species. On average, simulated GPP is lower than observa-
tions for most PFTs. Compared to previous evaluation of the
YIBs model (YU2015), iMAPLE with coupled water cycle
improves the R of GPP simulations for ENF (from 0.65 to
0.86) and grassland (from 0.7 to 0.8) but worsens the predic-
tions for other species such as EBF (from 0.65 to 0.59). The
main cause of this degradation is the application of MERRA-
2 reanalyses in the iMAPLE simulations instead of the site-
level meteorology used in YU2015. The biases in the mete-
orological input may cause uncertainties in the simulation of
GPP fluxes (Ma et al., 2021). In addition, the mismatch of
vegetation cover and soil properties between the site location
and the 1°× 1° grid in the simulation may further contribute
to the modeling biases.

Simulated ET matches observations with correlation co-
efficients of 0.57–0.84 at the FLUXNET sites (Fig. 4). Rel-
atively better performance is achieved for ENF (R = 0.83)
and grassland (R = 0.84), for which the model yields good
predictions of GPP as well. In contrast, low correlations and
high biases are predicted for shrubland and cropland. For the

shrubland sites, different land types (e.g., closed shrublands,
permanent wetlands, and woody savannas) share the same
parameters in iMAPLE, resulting in the biases in depicting
the site-specific carbon and water fluxes. For cropland, the
prognostic phenology of grass species is applied in the model
due to the missing plantation information for individual sites.
Even with these deficits, iMAPLE in general captures the
spatiotemporal variations of GPP and ET at most sites.

We further compare the simulated wetland CH4 fluxes
from the BASE experiment with observations at the
FLUXNET-CH4 sites. Similar to the carbon flux sites, most
of these CH4 flux sites are located in the NH (Fig. 5a).
However, different from the carbon fluxes which usually
range from 0 to 15 gCm−2 d−1, the CH4 fluxes show
a wide range across several orders of magnitude from
10−2 to 103 g [CH4]m−2 yr−1 (Fig. 5b). Such a large con-
trast requires a more realistic configuration of model pa-
rameters to distinguish the large gradient among sites.
For example, US-Tw1 and US-Tw4 are two nearby sites
within a distance of 1 km, where our simulations give
a CH4 flux of 14.35 g [CH4]m−2 yr−1 during 2011–2017.
However, the average CH4 flux shows a difference of
3.7 times with 66.31 g [CH4]m−2 yr−1 at US-Tw1 and
18.16 g [CH4]m−2 yr−1 at US-Tw4 during 2011–2017. In the
model, these two sites share the same land surface proper-
ties because they are located on the same grid. On average,
simulated CH4 fluxes are correlated with observations at a
moderate R of 0.68 and a normalized mean bias (NMB) of
−28 %.

3.2 Grid-level evaluations

The coupling of the Noah-MP module enables the dynamic
prediction of soil parameters by iMAPLE. We compare the
simulated soil moisture and soil temperature from the BASE
experiment with MERRA-2 reanalyses (Fig. 6). Both sim-
ulations (Fig. 6a) and observations (Fig. 6b) show low soil
moisture over arid and semiarid regions with the minimum
in North Africa. The model also captures the high soil mois-
ture in tropical rainforest. However, the prediction underes-
timates soil moisture in boreal regions in the NH (Fig. 6c).
On the global scale, simulated soil moisture matches obser-
vations with a high R of 0.86 and a low NMB of −6.9 %.
These statistical metrics are further improved for the sim-
ulated soil temperature with R of 0.99 and NMB of 0.5 %
against observations (Fig. 6f). The simulation reproduces the
observed spatial pattern with a uniform warming bias.

Driven with the prognostic soil moisture and temperature,
iMAPLE predicts reasonable land carbon and water fluxes
(Fig. 7). Simulated GPP (Fig. 7a) reproduces observed pat-
terns (Fig. 7b) with high values in the tropical rainforest,
moderate values in the boreal forests, and low values in the
arid regions. On the global scale, our simulations yield a to-
tal GPP of 129.8 PgCyr−1, similar to the observed amount
of 125.4 PgCyr−1. The predicted GPP is higher than obser-
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Figure 2. Spatial distributions of 201 sites from global FLUXNET. The colors indicate various plant functional types (PFTs) including
evergreen broadleaf forest (EBF, 13 sites), evergreen needleleaf forest (ENF, 57 sites), deciduous broadleaf forest (DBF, 25 sites), shrub (52
sites), grass (37 sites), and crop (17 sites). The black triangles indicate sites with at least 1 year of observations of diffuse radiation.

Figure 3. Comparisons between observed and simulated monthly GPP from 201 FLUXNET sites. Each point indicates the average value of
1 month at a site. The red line represents linear regression between observations and simulations from the BASE experiment. The correlation
coefficient (R), normalized mean bias, and numbers of samples (N ) are shown in each panel. The comparisons are grouped into six PFTs
including EBF, ENF, DBF, shrub, grass, and crop. The unit is gCm−2 d−1.

vations over the tropical rainforest (Fig. 7c). However, such
overestimation may instead be an indicator of biases in the
ensemble observations, which are derived from the empirical
models instead of direct measurements (Yuan et al., 2010;
Running et al., 2004). Our site-level evaluations show that
iMAPLE predicts reasonable GPP values at the EBF sites
(Fig. 3). Despite this inconsistency, the model yields a high
R of 0.92 and a small NMB of 1.3 % for GPP against obser-

vations on the global scale (Fig. 7c). Simulated ET (Fig. 7d)
matches the observations (Fig. 7e) with high values in the
tropical rainforest and secondary high values in the boreal
forest. In general, the prediction is lower than observations
except for the eastern US and eastern China (Fig. 7f). On av-
erage, iMAPLE showsR of 0.93 and NMB of−10.4 % in the
simulation of ET compared to the ensemble of observations.
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Figure 4. The same as Fig. 3 but for ET. The unit is mmmonth−1.

Figure 5. (a) Spatial distribution of global FLUXNET-CH4 sites and (b) comparisons between observed and simulated monthly methane
flux from the BASE experiment. Filled triangles indicate sites with at least 6 months of observations of wetland CH4 fluxes. Each point
represents an average value of monthly methane emission at one site. The correlation coefficient (R), normalized mean bias, and numbers of
samples (N ) are shown in the right panel. The unit is g [CH4]m−2 yr−1.

We further compare the simulated GPP with (BASE) or
without (BASE_NW) a dynamic water cycle (Fig. 8). Rela-
tive to the simulations driven with MERRA-2 soil moisture
and temperature, iMAPLE coupled with the Noah-MP wa-
ter module predicts very similar GPP over the hotspot re-
gions such as tropical rainforest and boreal forest (Fig. 8a).
However, the coupled model predicts lower GPP for grass-
land in the tropics (e.g., South America and central Africa)
but higher GPP in arid regions (e.g., South Africa and Aus-
tralia). Since the baseline GPP is very low in arid regions, the
relative changes are even larger than 100 % over those areas.
These GPP differences are mainly driven by the changes in
soil moisture, which increases over the arid regions with the
dynamic water cycle (Fig. 6c). The reduction of soil moisture
in the high latitudes of the NH shows limited impacts on the

predicted GPP, likely because the boreal ecosystem is more
dependent on temperature than moisture (Beer et al., 2010).

3.3 Ecosystem perturbations to air pollution

Within the iMAPLE framework, the land ecosystem perturbs
atmospheric components through emissions from biomass
burning, wetland CH4, and BVOCs. We compare the sim-
ulated burned fraction and fire-emitted organic carbon (OC)
emissions with observations from GFED4.1s (Fig. 9). The
largest burned fraction is predicted over the Sahel region and
the countries of Angola and Zambia, surrounding the low
center of the Congo rainforest. Moderate burnings could be
found in northern Australia and eastern South America. Most
of these hotspots are located on grassland and shrubland in
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Figure 6. Comparisons of simulated (a) soil moisture (m3 m−3) and (d) soil temperature (K) from iMAPLE with (b, e) the MERRA-2
reanalyses. Both simulations from the BASE experiment and observations from MERRA-2 reanalyses are averaged for the period of 1980–
2020. The spatial difference, correlation coefficient (R), normalized mean bias (NMB) between simulations and observations, and numbers
of points (N ) are shown in (c) and (f).

the tropics, where the high temperature and limited rainfall
promote regional fire activities. The model reasonably cap-
tures the observed fire pattern with a spatial correlation of
0.66 and NMB of 6.05 % (Fig. 9c), though the model overes-
timates the area burned in southern Africa. The predicted fire
area is used to derive biomass burning emissions of air pollu-
tants (e.g., carbon monoxide, nitrogen oxides, black carbon,
organic carbon, and sulfur dioxide) with the specific emis-
sion factors (Tian et al., 2023). Furthermore, we compare
fire-emitted OC from the model with GFED4.1s. The spatial
pattern of OC emissions is similar to that of burned area. The
simulations yield a total of 16.8 Tgyr−1 for the global fire-
emitted OC, slightly higher than the amount of 16.4 Tgyr−1

from GFED4.1s with some overestimations in tropical Africa
(Fig. 9f).

The wetland emissions of CH4 show hotspots over tropi-
cal rainforests (Fig. 10a), where the dense soil carbon pro-
vides abundant substrates for emissions and the warm cli-
mate promotes emission rates. The secondary hotspots are
located in the boreal regions in the NH. This spatial pattern is
very similar to the map of wetland CH4 emissions predicted
by an ensemble of 13 biogeochemical models (Saunois et
al., 2020). On the global scale, the total wetland emission is
153.45 Tg [CH4]yr−1 during 2000–2014, close to the aver-
age of 148± 25 Tg [CH4]yr−1 for 2000–2017 estimated by
multiple models. As a comparison, anthropogenic sources

of CH4 show a high amount in China and India due to the
large emissions from fossil fuels and agriculture (Fig. 10b).
On the global scale, the wetland emissions are equivalent
to 45.3 % of the total anthropogenic emissions. As impor-
tant factors driving CH4 emissions, heterotrophic respiration
shows higher values over tropical regions and eastern China
with a total amount of 73.2 PgCyr−1 (Fig. 10c), and rela-
tively high wetland coverage is found in boreal Asia and the
Amazon (Fig. 10d).

Isoprene emissions from the two schemes in iMAPLE
show similar spatial distributions with hotspots over tropical
rainforest (Fig. 11), where the warm climate and abundant
light are favorable for biogenic emissions. Compared to the
MEGAN scheme, the PS_BVOC scheme yields higher emis-
sions in the tropical rainforest and boreal forest but lower
emissions for shrubland and grassland in semiarid regions
(Fig. 11c). Such differences are attributed to the varied pro-
cesses as well as the emission factors. Our earlier study
showed that the PS_BVOC scheme predicts stronger trends
in isoprene emissions than MEGAN (Cao et al., 2021a) be-
cause the former considers both CO2 fertilization and inhibi-
tion effects, while the latter considers only the inhibition ef-
fects. On the global scale, isoprene emissions are 550 Tgyr−1

with PS_BVOC (Fig. 11a) and 611 Tgyr−1 with MEGAN
(Fig. 11b). These amounts are higher than the ensemble mean
of 448 Tgyr−1 from the CMIP6 models (Cao et al., 2021b)
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Figure 7. Comparisons of simulated (a) gross primary productivity (GPP, gCm−2 d−1) and (d) evapotranspiration (ET, mmmonth−1) with
ensemble products from (b, e) observations. Simulated GPP and ET are performed by iMAPLE driven with meteorology from MERRA-2
reanalysis (BASE) during 2001–2013. Ensemble GPP products are from the average values of SIF-based GOSIF and satellite-based GLASS
GPP products. Ensemble ET products include FLUXCOM and GLASS products during 2001–2013. The spatial difference, correlation
coefficient (R), normalized mean bias (NMB) between simulations and observations, and numbers of points (N ) are shown in (c) and (f).
Only land grids with vegetation are shown in each panel, and their area-weighed values are shown in titles.

Figure 8. Absolute (gCm−2 d−1) and relative (%) differences of global GPP between simulations with (BASE) and without (BASE_NW)
two-way carbon–water coupling processes. Simulation results are averaged for the period of 1980–2020.

but in general within the range of 412–601 Tgyr−1 as sum-
marized by Carslaw et al. (2010).

3.4 Air pollution impacts on ecosystem fluxes

We assess the damaging effects of surface O3 on GPP
with two schemes (O3LMA–BASE and O3S2007–BASE)
(Fig. 12). Simulated GPP losses show similar patterns with
high damage in the eastern US, western Europe, and east-
ern China, where the surface O3 level is high due to an-

thropogenic emissions. Limited GPP damage is predicted in
the tropics though with abundant forest coverage due to the
low level of O3 pollution. Compared to the S2007 scheme,
predicted GPP loss is further alleviated in tropical rainforest
with the LMA-based scheme because the latter scheme de-
termines lower O3 sensitivity for evergreen trees due to their
higher content of chemical resistance with larger LMA val-
ues (Ma et al., 2023). On the global scale, the average GPP
loss is −2.9 % with the LMA scheme and −3.2 % with the
S2007 scheme. Such damage to GPP is weaker than the esti-

Geosci. Model Dev., 17, 4621–4642, 2024 https://doi.org/10.5194/gmd-17-4621-2024



X. Yue et al.: Development and evaluation of iMAPLE version 1 4633

Figure 9. Comparisons of global burned fraction (%) and fire-emitted OC emissions (10−3 kgkm−1 yr−1) between (a, d) simulations and
(b, e) observations. Simulations are performed using iMAPLE and observations are from GFED V4.1 fire emissions products. Both simula-
tions from the BASE experiment and observations are averaged for the 1997–2016 period. The global total area burned is shown in (a) and
(b), and total OC emissions are shown in (d) and (e). The spatial difference, correlation coefficient (R), and normalized mean biases between
simulations and observations are shown in (c) and (f).

mate of−4.8 % in Ma et al. (2023) because of the differences
in O3 concentrations, vegetation types, and photosynthetic
parameters.

Atmospheric aerosols cause perturbations to both direct
and diffuse radiation, which have different efficiencies in en-
hancing plant photosynthesis. Here, we separate the diffuse
(diffuse fraction > 0.75) and direct (diffuse fraction < 0.25)
components using the observed diffuse fraction and solar ra-
diation at six FLUXNET sites and aggregate the GPP and
ET fluxes for different radiation periods at certain intervals
(Fig. 13). At the six selected sites, observed GPP is higher
and grows faster with more diffusive light than that under
direct light conditions (Fig. 13a–f). Simulations in general
reproduce such features with the comparable variability. In
the earlier study, simulated diffuse fertilization efficiency for
GPP (changes of GPP per unit diffuse radiation) was well
validated against observations at more than 20 sites (Yue and
Unger, 2018). Such amelioration of GPP suggests that mod-
erate aerosol loading is beneficial for ecosystem carbon up-
take (Yue and Unger, 2017). However, dense aerosol loading
may instead weaken plant photosynthesis due to the large re-
duction in direct radiation.

We further evaluate the ET responses to diffuse and direct
radiation from iMAPLE (Fig. 13g–l). Although ET is slightly
higher in diffusive conditions, the growth rates are weaker

than that of GPP. The main cause of such difference is related
to the varied light dependence of ET components, which con-
sist of canopy evaporation and transpiration. Transpiration is
tightly coupled with photosynthesis and will increase by dif-
fuse radiation at a similar rate. However, evaporation is more
dependent on light quantity which will decrease with the ex-
tinction of aerosols. As a result, the weakened evaporation in
part offsets the increased transpiration, leading to the smaller
growth rate of ET than the responses of photosynthesis and
the consequent enhancement in water use efficiency (Wang
et al., 2023). iMAPLE reasonably captures the lower growth
rates of ET than GPP in response to diffuse radiation at the
selected sites.

4 Conclusions and discussion

We develop iMAPLE by coupling the Noah-MP water mod-
ule with the YIBs vegetation model. Validations show that
iMAPLE predicts a reasonable distribution of soil moisture
and soil temperature. Driven with these prognostic soil con-
ditions and meteorology from reanalyses, the model rea-
sonably reproduces the observed spatiotemporal variations
of both GPP and ET fluxes at 201 sites and on the global
scale. We further update the biogeochemical processes in
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Figure 10. Global simulated CH4 emissions (g [CH4]m−2 yr−1) from (a) wetland and (b) anthropogenic sources, (c) heterotrophic respira-
tion (gCm−2 d−1), and (d) fraction of wetland area. The simulations are from the BASE experiment. Anthropogenic sources are adopted
from CMIP6 including the sectors of energy, agriculture, industrial, residential, shipping, solvents, and transportation. The global total emis-
sions and heterotrophic respirations are shown in each panel. All variables are averaged for 2000–2014.

iMAPLE to extend the model’s capability in quantifying in-
teractions between air pollution and land ecosystems. The
model reasonably predicts wetland CH4 emissions at 44 sites
and yields a similar global map of CH4 emissions compared
to an ensemble of 13 biogeochemical models. In addition,
predicted biomass burning and biogenic emissions are con-
sistent with either satellite retrievals or results from other
models. We assess the impacts of surface O3 and aerosols
on ecosystem fluxes. The LMA-based scheme links the O3
sensitivity with vegetation LMA and predicts a global map
of GPP loss that is consistent with the traditional scheme
using the PFT-specific sensitivity. The updated scheme ef-
fectively reduces modeling uncertainties by decreasing the
number of parameters for O3 sensitivity and provides an op-
tion to apply the advanced LMA map from remote sensing.
The model also reproduces the observed responses of GPP
and ET to diffuse radiation with a lower growth rate for ET
than GPP.

There are several limitations in the current version of
iMAPLE. First, it does not include the dynamic nutrient cy-
cle. Although we implement the downregulation from Arora
et al. (2009) to constrain CO2 fertilization, this limitation is
dependent only on the ambient CO2 concentrations and could
not represent the heterogeneous distribution of nutrients. As

a result, the model could not reveal the biogeochemical ef-
fects of nitrogen and phosphorus deposition on land ecosys-
tems. Second, the feedback of fire activities to ecosystems is
ignored. iMAPLE considers the impacts of fuel load on area
burned at each modeling time step. However, these fire per-
turbations do not in turn change the vegetation distribution
and composition. The vegetation model does not consider the
competition among PFTs so that fire perturbations are not al-
lowed to change vegetation coverage. As a result, the interac-
tions between fire and ecosystems are underestimated in the
current model framework, potentially leading to overestima-
tions of wildfire activity due to remaining fuel loads. Third,
iMAPLE does not consider the dynamic changes in wetland
area for CH4 emissions. Although the Noah-MP module pre-
dicts runoff and underground water, the changes in hydrolog-
ical cycles are not connected with wetland area in the model.
Instead, a prescribed wetland dataset is applied to reduce the
possible uncertainties but meanwhile limits the explorations
of CH4 changes in the historical and future periods. Mean-
while, iMAPLE considers only dynamic soil water and tem-
perature down to the 2 m level, which may affect the inter-
actions between climate and the land terrestrial ecosystem,
especially during drier conditions. These limitations will be
the focus of model development in the next step.
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Figure 11. Global isoprene emissions (mgCm−2 d−1) from (a) MEGAN, (b) PS_BVOC schemes, and (c) their differences during 1980–
2020. The simulations are from the BASE experiment. The global total emissions are shown in each panel.

Figure 12. Percentage changes in global GPP caused by ozone damage effects based on (a) LMA (O3LMA–BASE) and (b) S2007
(O3S2007–BASE) schemes. The ozone damage schemes include (a) trait leaf mass per area (LMA) based on the O3LMA experiment,
(b) S2007 plant ozone sensitivity from the O3S2007 experiment, and (c) their differences.
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Figure 13. Observed and simulated responses of site-level (a–f) GPP and (g–l) ET to diffuse and direct radiation at the FLUXNET sites.
Photosynthetically active radiation (PAR) reaching the surface is divided into diffuse (diffuse fraction > 0.75) and direct (diffuse fraction
< 0.25) radiation at six FLUXNET sites with more than 10 years of observations. Observations (simulations) are grouped over PAR bins
of 40 Wm−2 with error bars (shading) indicating standard deviations of GPP and ET for each bin. Red (blue) and magenta (green) repre-
sent observed and simulated responses of GPP and ET to diffuse (direct) radiation. Units of GPP and ET are gCm−2 d−1 and mmh−1,
respectively.

iMAPLE inherits the good capability of the original YIBs
model in the simulations of carbon cycle. Furthermore,
iMAPLE upgrades the YIBs model with carbon–water cou-
pling and more biogeochemical processes. With iMAPLE,
we could assess the changes in carbon and water fluxes, as
well as their coupling, in response to environmental perturba-
tions (e.g., climate change, air pollution, land cover change).
Meanwhile, by coupling iMAPLE with climate and/or chem-
ical models, we could further quantify the changes in mete-
orology and atmospheric components in response to the bio-
geochemical and biogeophysical processes. For example, Lei
et al. (2022) revealed the strong vegetation feedback to global

surface O3 during drought periods using the YIBs model cou-
pled to a chemical transport model. Xie et al. (2019) found
a significant increase in atmospheric CO2 concentrations due
to O3-induced vegetation damage using the YIBs model cou-
pled with a regional climate–chemistry model. Gong et al.
(2021) estimated a surface warming in polluted regions due
to ozone–vegetation feedback using the YIBs model cou-
pled with a global climate–chemistry model. These studies
indicate that iMAPLE could be used either offline or online
with other models to explore the interactions among climate,
chemistry, and ecosystems.

Geosci. Model Dev., 17, 4621–4642, 2024 https://doi.org/10.5194/gmd-17-4621-2024
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