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Abstract. With the development of refined numerical fore-
casts, problems such as score distortion due to the division
of precipitation thresholds in both traditional and improved
scoring methods for precipitation forecasts and the increas-
ing subjective risk arising from the scale setting of the neigh-
borhood spatial verification method have become increas-
ingly prominent. To address these issues, a general compre-
hensive evaluation method (GCEM) is developed for cross-
scale precipitation forecasts by directly analyzing the prox-
imity of precipitation forecasts and observations in this study.
In addition to the core indicator of the precipitation accuracy
score (PAS), the GCEM system also includes score indices
for insufficient precipitation forecasts, excessive precipita-
tion forecasts, precipitation forecast biases, and clear/rainy
forecasts. The PAS does not distinguish the magnitude of
precipitation and does not delimit the area of influence; it
constitutes a fair scoring formula with objective performance
and can be suitable for evaluating rainfall events such as gen-
eral and extreme precipitation. The PAS can be used to cal-
culate the accuracy of numerical models or quantitative pre-
cipitation forecasts, enabling the quantitative evaluation of
the comprehensive capability of various refined precipitation
forecasting products. Based on the GCEM, comparative ex-
periments between the PAS and threat score (TS) are con-
ducted for two typical precipitation weather processes. The
results show that relative to the TS, the PAS better aligns with

subjective expectations, indicating that the PAS is more rea-
sonable than the TS. In the case of an extreme-precipitation
event in Henan, China, two high-resolution models were
evaluated using the PAS, TS, and fraction skill score (FSS),
verifying the evaluation ability of PAS scoring for predicting
extreme-precipitation events. In addition, other indices of the
GCEM are utilized to analyze the range and extent of both in-
sufficient and excessive forecasts of precipitation, as well as
the precipitation forecasting ability for different weather pro-
cesses. These indices not only provide overall scores similar
to those of the TS for individual cases but also support two-
dimensional score distribution plots which can comprehen-
sively reflect the performance and characteristics of precip-
itation forecasts. Both theoretical and practical applications
demonstrate that the GCEM exhibits distinct advantages and
potential promotion and application value compared to the
various mainstream precipitation forecast verification meth-
ods.

1 Introduction

Precipitation is one of the most important forecasting ele-
ments in weather forecasting (Bi et al., 2016; Han et al.,
2023). Short-duration heavy rainfall often leads to flooding
and geological disasters, causing widespread and severe im-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4580 B. Zhang et al.: A general comprehensive evaluation method for cross-scale precipitation forecasts

pacts (Zhong et al., 2022; Yang et al., 2023). Precipitation
forecasts, as focuses and challenges in meteorological de-
partment operations, have drawn widespread attention from
governments, societies, and the public (Bi et al., 2016; Hao
et al., 2023). Scientifically evaluating precipitation forecasts
helps people gain a clear understanding of the current precip-
itation forecast levels and maintain appropriate psychologi-
cal expectations for such forecasts. Moreover, such evalua-
tions assist forecasters in rationally analyzing the quality and
characteristics of quantitative precipitation forecast systems
and aid researchers in understanding the level, strengths, and
weaknesses of various types of forecasting systems, which,
in turn, offers valuable insights to improve these systems
(Zhong et al., 2022; Zhang et al., 2022; J. Liu et al., 2022;
Gofa et al., 2018). However, there are several shortcomings
in the current precipitation verification approaches. For in-
stance, with traditional scoring methods, small errors in the
location or timing of convective features can lead to false
alarms and missed events, and their utility is limited regard-
ing diagnosing model errors such as a displaced forecast fea-
ture or an incorrect mode of convective organization; thus,
traditional scoring methods often fail to reflect model per-
formance improvements (Ahijevych et al., 2009). For high-
resolution precipitation forecasts, even if the spatial distri-
bution and intensity of precipitation are consistent with the
observations, slight spatial and temporal deviations between
forecasts and observations may still result in a large false
alarm ratio and missed alarm ratio, leading to lower fore-
cast scores (Zhao and Zhang, 2018). With the rapid devel-
opment of seamless fine quantitative precipitation forecasts,
the need for objective and rational evaluations of the accu-
racy and characteristics of precipitation forecasts has become
increasingly important and urgent (Chen et al., 2021).

Precipitation forecast verification involves various meth-
ods, including traditional contingency-table-based classifica-
tion verification and spatial verification methods. The tradi-
tional verification method can be traced back to 1884 when
Finley introduced a dichotomous contingency table for tor-
nado forecasts and evaluated these forecasts using the pro-
portion correct scoring method (Finley, 1884). Subsequently,
systematic attention was given to the evaluation of fore-
cast classification methods, and Finley’s forecast verification
method became a classic example of the discussion of fore-
cast scoring methods (Murphy, 1996). Gilbert (1884) pro-
posed two scoring methods, namely the ratio of verification
and the ratio of success in forecasting. The ratio of verifica-
tion later became known as the threat score (TS) (Palmer and
Allen, 1949) or the critical success index (Donaldson et al.,
1975; Mason, 1989). The ratio of success is referred to as the
Gilbert skill score (GSS) (Schaefer, 1990) or the equitable
threat score (ETS) (Doswell et al., 1990; Gandin and Mur-
phy, 1992). The TS encourages correct event forecasts (hits)
and accounts for the impacts on the false alarm and missed
alarm ratios, which can better guide forecasters or research
and development personnel in making reasonable subjective

and objective predictions compared to relying solely on sim-
ple “accuracy”. Meanwhile, the ETS eliminates the influence
of random forecasts on the score, resulting in a fairer skill
score (C. Liu et al., 2022).

In addition to the TS and ETS, the methods of tradi-
tional contingency-table-based classification verification in-
clude the Peirce skill score (PSS) (Peirce, 1884; Hanssen and
Kuipers, 1965; Murphy and Daan, 1985; Flueck, 1987), Hei-
dke skill score (HSS) (Doolittle, 1885, 1888; Heidke, 1926),
probability of detection (POD), frequency bias (BIAS), accu-
racy (ACC), false alarm ratio (FAR), missing ratio (MR), and
probability of false detection (POFD). The PSS is a fair score
index that is equal to the hit rate minus the false detection
probability; the HSS eliminates the influence of random fore-
casts, and the results can reflect the forecast skill (C. Liu et
al., 2022). Many studies have reviewed and compared these
two scoring methods (Doswell et al., 1990; Schaefer, 1990;
Marzban, 1998; Mason, 2003). In extreme-weather-event
verification (including severe convective weather such as
short-duration heavy rainfall), the traditional scoring meth-
ods (such as the TS and ETS) for dichotomous events of-
ten yield scores of zero when the occurrence probability of
the object being verified is very low. Therefore, Stephenson
et al. (2008) proposed the extreme-dependency score (EDS)
for evaluating extreme events. The EDS has the advantage
that different forecast systems converge to different values
and has no explicit dependence on the bias of the prediction
system (Stephenson et al., 2008; Casati et al., 2008).

It has been more than a century since Gilbert (1884) pro-
posed two scoring concepts, i.e., the ratio of verification
and the ratio of success in forecasting (later known as the
TS and ETS). The TS and ETS have been widely used for
the performance evaluation of threshold-based event fore-
casts despite their evident shortcomings (Stephenson et al.,
2008). Today, in various forecast verification applications,
including high-resolution quantitative precipitation and ex-
treme weather forecast verification, the TS and ETS remain
mainstream approaches (Tang et al., 2017; Wei et al., 2019;
Chen et al., 2021; Liu et al., 2023). With the continuous in-
troduction of new scoring methods, several problems in tra-
ditional verification have been solved. However, the advan-
tageous position of the TS remains unchallenged. Although
the reasons for this are varied, its objectivity and practicality
merit attention.

The traditional TS categorizes precipitation according to
thresholds and performs verification using a dichotomous
contingency table. The TS can be viewed as a measure
of forecast accuracy that excludes hit forecasts for “non-
occurrence” precipitation events (referred to as no precipi-
tation), and its calculation formula is simple, objective, and
standardized. However, there are two main limitations of the
TS. First, precipitation is categorized by thresholds based on
the contingency table, which has limitations in terms of clas-
sification. The drawback of artificially dividing precipitation
into different threshold ranges is that it cannot guarantee that
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two adjacent precipitation values will always fall within the
same threshold range. Slightly different precipitation values
are not within the same threshold, which can lead to precipi-
tation score distortion. The second limitation is related to the
so-called “double-penalty” issue. With the development of
high-resolution numerical weather forecasting and the short-
ening of the spacing between model grid points, some meso-
and small-scale phenomena have been portrayed by models.
However, it is difficult for high-resolution numerical fore-
casts to match the characteristics of the observed meso- and
small-scale forecasts, resulting in traditional scoring meth-
ods often being unable to reflect these improvements in terms
of model performance. Assuming a constant forecast area
when there is a small deviation in the timing and location
of events between a forecast and an observation, both “false
alarms” and “missed alarms” will occur, which is referred to
as the double-penalty phenomenon. This phenomenon leads
to a score lower than the subjectively expected result, mak-
ing it difficult to obtain appropriate verification scores when
a forecast that “looks good” is not as good as one that “looks
bad” (Ahijevych et al., 2009; Wilks, 2006; Ebert, 2008; Chen
et al., 2021). For low-probability events with limited sam-
ple size for verification, such as torrential rain and short-
term heavy rainfall, the double-penalty issue becomes more
prominent. The TS and ETS for torrential rain are often at
the unskilled end of the scoring values (Chen et al., 2019).
In recent years, new mainstream scoring methods have ad-
dressed most of the abovementioned limitations but still have
shortcomings. Such methods include the improved gradient
decreasing method, which still results in poor scores for good
forecasts, and the neighborhood spatial verification method,
which has too many subjective components and may miss
meso- and small-scale information.

To address the limitations of threshold-based precipita-
tion classification and improve the verification effect, e.g.,
the gradient decreasing method (hereinafter referred to as
the magnitude-improved TS) is used to verify the accuracy
of rainstorm forecasts (Yang et al., 2017), and appropriate
weights are assigned to close forecast values to avoid scores
of zero (Table 1). However, the magnitude-improved TS still
has limitations. For example, if the observed 24 h accumu-
lated precipitation is 50 mm when forecast A is 48 mm and
forecast B is 98 mm, then forecast A is evidently better than
forecast B. According to the original TS, forecast B scores
1 point, while forecast A does not score any points. For the
magnitude-improved TS, forecast B scores 1 point as it still
falls within the same magnitude category as the observed pre-
cipitation, while forecast A scores only 0.4 points; this still
fails to reflect the fact that forecast A is superior to forecast B
(Table 2). By employing the new scoring method, i.e., the
precipitation accuracy score (PAS), which will be discussed
later, forecast A scores 0.998 points, while forecast B scores
0.398 points, confirming the rationality and validity of this
new method.

To address the double-penalty issue, a common approach
is to employ the neighborhood spatial verification method
(also known as the fuzzy method) which has two specific pro-
cessing forms. The first approach is simple upscaling, which
uses a certain method (such as value averaging, maximum,
and value weighting) to select values within the scale range
(Chen et al., 2019), adjusting the high-resolution forecast and
observation information to a larger scale to reduce the ac-
cidental information of high-resolution data, and then using
the traditional skill score (Yates et al., 2006; Weygandt et al.,
2004). The other form is the improved neighborhood spatial
verification method proposed by Roberts and Lean (2008).
By referring to the Murphy skill score, this method obtains
comprehensive evaluation information by comparing the oc-
currence frequency (probability) of the precipitation within
different scale windows. If the forecasted occurrence fre-
quency closely approximates the observed occurrence fre-
quency, then the forecast is considered valuable (Zhao and
Zhang, 2018). From the perspective of the precipitation oc-
currence probability within the analysis region, the precipi-
tation occurrence probability for observations and forecasts
is the ratio of the precipitation area to the analyzed area of
the region, which is referred to as the fraction skill score
(FSS). These two processing methods effectively solve the
double-penalty problem, but neither can address the issue of
the excessive smoothness of the precipitation fields during
the upscaling process (Zhao and Zhang, 2018), which may
result in the omission of some small- to mesoscale informa-
tion (Zepeda-Arce et al., 2000).

The neighborhood spatial verification method considers
values that are spatially and temporally adjacent between
forecasts and observations during the matching process, thus
relaxing the strict requirements for spatiotemporal matching
(Ebert, 2008; Casati et al., 2008). However, since the deter-
mination of the neighborhood range is a rather subjective
process, it hinders the standardization of verification scores
and lacks comparability, which may negatively affect ob-
jective quantitative verification. Numerous experiments have
shown that there is an obvious improvement in the scoring
values after adopting the neighborhood spatial verification
method (Chen et al., 2019), particularly for forecasts of large-
magnitude precipitation. Nevertheless, the purpose of scor-
ing is not to achieve a monotonous increase in scoring values
but rather to follow the principle of objectivity as much as
possible. Errors are errors and cannot be solved by simply
lowering the standard. Instead, reasonable and fair criteria
should be utilized to reflect the true extent of errors.

Currently, numerical weather forecasts and intelligent
gridded forecasts have been developed to output high-
resolution precipitation products, while precipitation obser-
vations, whether in the form of gridded or station data, are
already high-resolution. Staying at the dichotomous classi-
fication level for precipitation verification not only wastes
existing data resources but also fails to meet the evalua-
tion requirements of refined forecasts. Therefore, to adapt to
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Table 1. Gradient decrease scoring table for station-by-station (time) rainstorm forecasts. The values are normalized, i.e., score = original
data / 100.

Observation Forecast (mm)

(mm) 25–49.9 50.0–99.9 100.0–249.9 ≥ 250

< 25.0 – 0 0 0
25.0–39.9 – 0.4 0 0
40.0–49.9 – 0.7 0.4 0
50.0–99.9 0.4 1 0.8 0.4
100.0–249.9 0 0.8 1 0.9
≥ 250.0 0 0.4 0.8 1

Table 2. Examples of station-specific rainstorm precipitation scoring.

Observation Forecast A Forecast B Correct, reasonable, or false

Precipitation 50 mm 48 mm 98 mm –

Forecast effect – Good Bad Correct
Classic TS – 0 1 False
Improved TS – 0.4 1 False
PAS – 0.998 0.398 Reasonable

the development of refined forecasts, a new scoring method
is needed. In light of this, a comprehensive verification in-
dex for precipitation forecasts is designed, and the follow-
ing five aspects are considered. (1) The impact of categorical
events on rainstorm forecasts should be reduced. Especially
for the evaluation of high-resolution precipitation forecasts,
the scoring method of continuous variables can be borrowed
for reference. (2) The design of the scoring method should
aim to minimize subjective factors such as the artificial range
division and condition settings, ensuring scoring objectivity
and comparability. (3) The designed scoring performance in-
dices should possess ideal attributes such as fairness that is
independent of climatological probability, suitability for ex-
treme events, and boundedness as much as possible. (4) The
devised scoring method should be easy to promote, concise,
and efficient, with clear concepts and scientific rationality.
(5) Different comprehensive verification indices for precip-
itation forecasts should reflect the forecasting performance
and characteristics of high-resolution quantitative precipita-
tion products from various perspectives.

In this study, on the basis of analyzing the limitations
of traditional verification methods, as well as improved
methods, a new general comprehensive evaluation method
(GCEM) for cross-scale precipitation prediction is proposed.
This method is applied and verified through practical exam-
ples. The remainder of this paper is organized as follows.
Section 2 provides an overview of various scoring indices
and their attributes in the GCEM and introduces the opti-
mization processing method for the PAS index in the ap-
plication. Through ideal experiments, the characteristics of
the scoring methods are analyzed based on the score curves

described in Sect. 3. Section 4 presents comparative exper-
iments, including the new scoring method, the traditional
scoring method, and the neighborhood spatial verification
method based on typical cases. Finally, a summary and dis-
cussion are presented in Sect. 5.

2 Cross-scale general comprehensive evaluation
method

2.1 Overview of the general comprehensive evaluation
method

To address the issues of “distorted scores due to the divi-
sion of precipitation thresholds and increased subjective risks
brought about by the setting of the neighborhood spatial ver-
ification method” in traditional and improved precipitation
scoring methods, this study refers to the verification method
for heavy-rainfall forecasts based on predictability (Chen et
al., 2019) and combines the advantages of relative and abso-
lute errors. A GCEM is constructed by directly analyzing the
proximity of forecasted precipitation to observed precipita-
tion. It primarily includes the PAS, and the expression of its
core scoring function is as follows:

PAS=

 sin
(
π
2 ·

x
u

)
, 0≤ x < u

e−(
x−u
u )

2
, 0< u≤ x,

(1)

where PAS represents the scoring value, x is the forecasted
precipitation (mm), and u is the observed precipitation (mm).
The PAS falls between 0 and 1, where a higher score indi-
cates a better precipitation forecast effect. When PAS= 1,
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Figure 1. Schematic diagram of the precipitation accuracy score (PAS) curves when the observed precipitation amounts are 10, 25, 50, and
100 mm.

it signifies a perfect forecast, indicating that the forecasted
and observed precipitation match entirely. For Eq. (1), given
the observation value u > 0 mm, when the forecasted precip-
itation is 0 mm, then PAS= 0, indicating that the model has
no forecast skill. When the forecasted precipitation amount
is sufficiently large, PAS→ 0, indicating no forecast skill as
well (Fig. 1). Additionally, considering the large fluctuation
characteristics of the function curve when the observed pre-
cipitation is less than 10 mm, Eq. (1) was smoothed and op-
timized (see Sect. 2.2 for details).

The GCEM system also includes the following indices:

1. An insufficient precipitation index (IPI), whose core
scoring function expression is as follows:

IPI= sin
(π

2
·
x

u

)
− 1, 0≤ x < u, (2)

where IPI represents the scoring value, reflecting the de-
gree of underestimation in precipitation forecasts when
the forecasted value is less than the observed value. The
IPI falls within [−1, 0), where a value closer to 0 indi-
cates a lower degree of underestimation.

2. An excessive precipitation index (EPI), whose core
scoring function expression is as follows:

EPI= 1− e−(
x−u
u )

2
, 0< u < x, (3)

where EPI represents the scoring value, reflecting the
degree of overestimation in precipitation forecasts when
the forecasted value exceeds the observed value. The
EPI falls within (0, 1), where a value closer to 0 indi-
cates a lower degree of overestimation.

3. An insufficient and excessive precipitation index (IEPI),
whose core scoring function expression is as follows:

IEPI=

{
sin
(
π
2 ·

x
u

)
− 1, 0≤ x < u

1− e−(
x−u
u )

2
, 0< u≤ x,

(4)

where IEPI represents the scoring value, reflecting the
degree of deviation of the forecasted precipitation from

the observed precipitation. The IEPI falls within [−1,
1), where a value closer to 0 indicates a lower degree of
forecast deviation. An IEPI less (more) than 0 indicates
an insufficient (excessive) forecast, and an IEPI equal to
0 represents an unbiased forecast.

Additional explanation is as follows: Eqs. (2)–(4) are
a series of theoretical indicator formulas derived from
Eq. (1); therefore, Eqs. (2)–(4) are referred as the core
calculation formulas for the IPI, EPI, and IEPI, respec-
tively. In practical applications, the optimized solution
will be used (see Sect. 2.2) to calculate the IPI, EPI, and
IEPI for the situations of u≥ 0.1 mm or x ≥ 0.1 mm.

4. A PAS clear/rainy forecast accuracy score (PASC),
whose scoring function expression is as follows:

PASC=
{

1 0≤ u < 0.1 and 0≤ x < 0.1
PAS|ux0.1 u≥ 0.1 or x ≥ 0.1,

(5)

where PASC represents the PAS scoring value for
clear/rainy forecasts. “0≤ u < 0.1 and 0≤ x < 0.1” de-
notes the correctly forecasted non-precipitation event
with PASC= 1. PAS|ux0.1 denotes the overall PAS for
precipitation forecasts under specific conditions where
the observed precipitation u≥ 0.1 mm or the forecasted
precipitation x ≥ 0.1 mm.

The discussion below pertains to the characteristics of the
PAS scoring method. As an ideal performance indicator, the
PAS has the attributes of boundedness, fairness, sensitivity
disparity, suitability for extreme events, and moderate sym-
metry.

1. Boundedness. The PAS scoring values range between
0 and 1. A PAS score of 1 represents an ideal fore-
cast, while a score of 0 indicates that there is observed
precipitation but no forecasted precipitation or that the
forecasted precipitation is sufficiently large. The scoring
range is consistent with that of traditional TS, making it
easy to compare and evaluate the scoring methods and
suitable for practical forecast verification applications.
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2. Fairness. The PAS scoring method constitutes a scor-
ing formula in an objective form without a subjective
boundary definition. Precipitation forecasts are verified
without magnitude or delimitation of the area of influ-
ence, and the closer to the observed situation the fore-
cast is, the higher the score will be, which is fair.

3. Sensitivity disparity. According to the Chinese national
standard GB/T 28592–2012 grade of precipitation on
the classification of precipitation grades, the public is
more sensitive to low-grade precipitation forecasts. As
the rainfall intensity increases, so too will the public’s
sensitivity gradually decrease; that is, the public has
a higher tolerance for errors in response to heavier-
rainfall forecasts. In other words, large errors in the
forecasts of heavy-rainfall events may be considered
equivalent to smaller errors in weaker-rainfall events in
terms of forecast scoring. As shown in Fig. 1, the inter-
section point on the PAS scoring curves for the observed
precipitation amounts of 25 and 100 mm corresponds
to a forecasted amount of 42.4 mm. That is, the fore-
cast errors are 17.4 and 57.6 mm for the observed 24 h
accumulated precipitation amounts of 25 and 100 mm,
respectively, while the scores are both 0.62. From the
perspective of forecast service effectiveness, this aligns
with general public perception.

4. Suitability for extreme events. From the PAS scoring
curves for forecasts corresponding to different observed
precipitation amounts (u= 10, 25, 50, and 100 mm)
(Fig. 1), it is evident that the PAS scoring method per-
forms well in evaluating precipitation event forecasts at
the level of torrential rain and above. For example, when
the observed precipitation is 100 mm, with forecasted
amounts of 59 and 147.2 mm, the PASs are both 0.8,
whereas the TSs are 0 and 1, and the improved TSs are
0.8 and 1, respectively. This result indicates that the PAS
is suitable for scoring heavy-rainfall events, meeting the
general applicability requirements as a scoring method
that does not degrade due to extreme events.

5. Moderate symmetry. In Eq. (1), let the observed precip-
itation be the independent variable u and the forecasted
precipitation be the parameter x. Similarly, for differ-
ent magnitudes of forecasted precipitation (parameter
x = 10, 25, 50, and 100 mm) and observed precipitation
(variable u) ranging from 0 to 300 mm, the correspond-
ing scores are shown in Fig. 2. The scores also vary with
the degree of proximity between forecasts and observa-
tions. Figures 1 and 2 exhibit similar trends but are not
identical, illustrating that the PAS possesses moderate
symmetry.

2.2 PAS verification for precipitation forecasts

From the properties of the core verification function of the
PAS, it is noted that when the observed precipitation u <
10 mm, there is a large gradient in the PAS curve. A slight
change in the forecasted value (x) can result in a large fluctu-
ation in the PAS. To account for this characteristic, based on
a comprehensive analysis in combination with the sensitivity
of forecasters and the public to small-scale precipitation, a
smoothing optimization scheme is applied to the PAS curve
for accumulated precipitation below 10 mm. Similarly, the
IPI, EPI, IEPI, and PASC curves are appropriately smoothed
and optimized according to their respective definitions.

The assumptions are as follows:

1. PAS= 0.6PAS|u→0 when u= 0 mm and x 6= 0 mm;
PAS|u→0 denotes the PAS for the case of the observed
precipitation at 0< u≤ 0.1 mm.

2. PAS= 0.6PAS|x→0 when x = 0 mm and 0< u <
10 mm; PAS|x→0 denotes the PAS for the case of the
forecasted precipitation at 0< x ≤ 0.1 mm.

(a) When the observed precipitation is u= 0 mm, and
the forecasted precipitation is x > 0 mm (Fig. 3a), let
PAS= 0.6PAS|u→0, and then

PAS= 0.6e−(
x
10 )

2
x > 0. (6)

(b) When the forecasted precipitation is x = 0 mm, and the
observed precipitation is 0< u < 10 mm (Fig. 3b), let
PAS= 0.6PAS|x→0, and then

PAS= 0.6sin
(
π
2 ·

10−u
10

)
, 0< u < 10. (7)

The coefficient was set to 0.6. According to Eqs. (6)–
(7), when the situation is the observation with u= 0 mm
and forecast with x = 0.1 mm or the observation is u=
0.1 mm and forecast is x = 0 mm, then PAS= 0.6, sug-
gesting that the forecast effect has just reached the stan-
dard, like when the ACC reaches 0.6, which indicates
that the model forecast effect is available (Zhao and
Zhang, 2018).

(c) When the observed precipitation is 0< u < 10 mm, and
the forecasted precipitation is x 6= 0 (Fig. 3c), then

PAS=

{
sin
(
π
2 ·

x−u+10
10

)
, 0< x < u, 0< u < 10,

e−(
x−u
10 )

2
, u≤ x, 0< u < 10.

(8)

(d) When the observed precipitation is u≥ 10 mm
(Fig. 3d), then

PAS=

{
sin
(
π
2 ·

x
u

)
, 0≤ x < u, u≥ 10,

e−(
x−u
u )

2
, u≤ x, u≥ 10.

(9)
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Figure 2. PAS curves corresponding to different forecasted precipitation amounts (10, 25, 50, and 100 mm).

Figure 3. PAS curves of precipitation forecasts when (a) the observed precipitation u= 0 mm and the forecasted precipitation x > 0 mm,
(b) the observed precipitation 0< u < 10 mm and the forecasted precipitation x = 0 mm (the horizontal coordinate denotes the observed
precipitation u), (c) the observed precipitation 0< u < 10 mm and the forecasted precipitation x > 0 mm, and (d) the observed precipitation
u≥ 10 mm.

To compare with the traditional scoring method, the
new scoring method for precipitation forecasting adopts
the “classification before verification, no classification
during verification” approach. Scoring for precipitation
processes over different accumulation periods is refer-
enced but not limited to the commonly used precipita-

tion classification approaches in practical operations, as
shown in Tables 3–5.
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Table 3. Classification of PAS for short-term heavy rainfall.

Scoring name Notes on the scoring application

PAS|ux10 PAS score for 1 h observed precipitation u≥ 10 mm or forecasted precipitation x ≥ 10 mm
PAS|ux20 PAS score for 1 h observed precipitation u≥ 20 mm or forecasted precipitation x ≥ 20 mm

Table 4. Classification of PAS for 12 h accumulated precipitation.

Scoring name Notes on the scoring application

PASC 12 h PAS clear and precipitation accuracy score

PAS|ux0.1 12 h PAS overall precipitation prediction verification score
PAS score for observed precipitation u≥ 0.1 mm or forecasted precipitation
x ≥ 0.1 mm

PAS|ux10 PAS score for 12 h observed precipitation u≥ 10 mm or forecasted precipitation
x ≥ 10 mm

PAS|ux25 PAS score for 12 h observed precipitation u≥ 25 mm or forecasted precipitation
x ≥ 25 mm

PAS|ux50 PAS score for 12 h observed precipitation u≥ 50 mm or forecasted precipitation
x ≥ 50 mm

PAS|ux100 PAS score for 12 h observed precipitation u≥ 100 mm or forecasted precipita-
tion x ≥ 100 mm

3 Ideal experimental validation of the new verification
method

3.1 Validation of forecast scoring results for general
precipitation

General precipitation refers to precipitation ranging from
light rain to heavy rain, i.e., 24 h accumulated precipita-
tion within [0.1, 50 mm). Figure 4 shows the schematic dia-
gram of PAS scores for general precipitation. The forecasted
amounts are compared under conditions when the 24 h ac-
cumulated precipitation is 10, 25, and 45 mm and the PAS
scores are 0.8, 0.7, 0.5, and 0.3 (Table 6). When the ob-
served precipitation is 10 mm, the forecasted amounts of 5.9
and 14.7 mm both have a PAS score of 0.8, with differences
from the perfect forecast value (10 mm) of 4.1 and 4.7 mm,
respectively; the forecasted amounts with a PAS score of 0.3
are 1.9 and 21.0 mm, differing by 8.1 and 11.0 mm from the
perfect forecast value (10 mm), respectively. When the ob-
served precipitation is 25 mm, the forecasted amounts with
a PAS score of 0.8 are 14.7 and 36.8 mm, with differences
from the perfect forecast value (25 mm) of 10.3 and 11.8 mm,
respectively; the forecasts with a PAS score of 0.5 are 8.3
and 45.8 mm, differing by 16.7 and 20.8 mm from the per-
fect forecast value (25 mm), respectively.

For forecasts with the same observed precipitation and the
same scores, the absolute errors in an insufficient forecast
and observation are smaller than those of an excessive fore-
cast and observation, and the higher the scores are, the closer

the absolute errors in the forecasts will be. When the ob-
served precipitation is 50 mm, only the insufficient precipita-
tion forecast is scored since a precipitation forecast exceed-
ing 50 mm is not considered within the scope of general pre-
cipitation evaluation. The scoring experimental results align
with expectations.

3.2 Validation of forecast scoring results for
precipitation at the level of torrential rain and
above

Figure 5 shows a schematic diagram of the PASs when the
amount of precipitation exceeds the storm magnitude. The
predicted precipitation is compared when the 24 h cumula-
tive observed precipitation is 25, 50, and 100 mm with PAS
scores of 0.877, 0.7, 0.5, 0.3, and 0.1 (Table 7). When the ob-
served precipitation is 25 mm, only forecasts of ≥ 50 mm are
involved in the rating, with PASs of 0.3 and 0.1 for forecasts
of 52.4 and 62.9 mm, respectively.

When the PAS is 0.877 and the observed precipitation is
50 mm, the predicted values are 34.1 and 68.1 mm, respec-
tively; when the observed precipitation is 100 mm, the pre-
dicted values are 68.1 and 136.2 mm, respectively. When
the observed precipitation is 50 or 100 mm, the predic-
tion is 68.1 mm, with a score of 0.877. The absolute er-
ror is 18.1 mm for the excessive precipitation forecast and
31.9 mm for the insufficient precipitation forecast. This re-
sult indicates that the scoring tolerance increases as the
grade of observed precipitation increases and gradually ex-
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Table 5. Classification of PAS for 24 h accumulated precipitation.

Scoring name Notes on the scoring application

PASC 24 h PAS clear and precipitation accuracy score

PAS|ux0.1 24 h PAS overall precipitation prediction verification score
PAS score for observed precipitation u≥ 0.1 mm or forecasted precipitation
x ≥ 0.1 mm

PAS|ux10 PAS score for 24 h observed precipitation u≥ 10 mm or forecasted precipitation
x ≥ 10 mm

PAS|ux25 PAS score for 24 h observed precipitation u≥ 25 mm or forecasted precipitation
x ≥ 25 mm

PAS|ux50 PAS score for 24 h observed precipitation u≥ 50 mm or forecasted precipitation
x ≥ 50 mm

PAS|ux100 PAS score for 24 h observed precipitation u≥ 100 mm or forecasted precipita-
tion x ≥ 100 mm

Figure 4. PAS curves of the forecasts under general precipitation conditions (u= 10, 25, and 45 mm). The solid line part of the curve in the
figure is involved in the comparison. The dashed line part is not involved in the comparison. The 10 mm observed precipitation is represented
by the orange line, the 25 mm observed precipitation is represented by the blue line, the 45 mm observed precipitation is represented by the
red line, and the 50 mm observed precipitation is represented by the green line.

pands through continuous changes, avoiding discontinuous
increases caused by changes in magnitude.

When the observed precipitation is 50 mm and the PAS
is 0.3, the insufficient forecast is 9.7 mm, and the exces-
sive forecast is 104.9 mm. When the observed precipitation
is 100 mm, the predictions for a PAS of 0.3 are 19.4 and
209.7 mm, respectively. When the observed precipitation is
50 mm, the insufficient forecast with a PAS of 0.1 is 3.2 mm,
and the excessive forecast is 125.9 mm. When the observed
precipitation is 100 mm, the predictions with a PAS of 0.1 are
6.1 and 251.7 mm, respectively.

Under constant observed precipitation conditions for fore-
casts with the same score, the absolute error between the in-
sufficient forecast and the observed precipitation is smaller
than that between the excessive forecast and the observed
precipitation. The higher the score is, the smaller the ab-
solute error between the forecast and the observation will
be. Moreover, the scoring tolerance increases with increas-
ing observed precipitation. The scoring experimental results
conform to expectations.
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Table 6. Examples of forecast verification scores for general precipitation (u= 25, 50, and 100 mm).

PAS value Observation Observation Observation Observation u= 50 mm
u= 10 mm u= 25 mm u= 45 mm (No comparison)

Insufficient Excessive Insufficient Excessive Insufficient Insufficient
forecast x forecast x forecast x forecast x forecast x forecast x

PAS= 0.8 5.9 14.7 14.7 36.8 26.6 29.5
PAS= 0.7 4.9 16.0 12.3 39.9 22.2 24.7
PAS= 0.5 3.3 18.3 8.3 45.8 15.0 16.7
PAS= 0.3 1.9 21.0 4.8 – 8.7 9.7

Figure 5. Same as Fig. 4 but for precipitation at the level of torrential rain and above (u= 25, 50, and 100 mm). The solid line part of the
curve in the figure is involved in the comparison. The dashed line part is not involved in the comparison. The 10 mm observed precipitation
is represented by the orange line, the 25 mm observed precipitation is represented by the blue line, the 50 mm observed precipitation is
represented by the green line, and the 100 mm observed precipitation is represented by the red line.

4 Example-based comparative experiments for the new
verification method

Different examples are selected for the new precipitation
verification method, and its multifaceted characteristics are
demonstrated through comparative experiments. In Sect. 4.1,
two typical cases are selected, the performance characteris-
tics of the PAS and TS are compared, and the indicators of
insufficient and excessive forecasts and spatial verification
in the GCEM are analyzed. In Sect. 4.2, a typical case of
extreme-precipitation event is selected, and the forecast re-
sults of different high-resolution models using the PAS, TS,
and FSS methods are evaluated to verify the advantages and
characteristics of the new precipitation verification method
for extreme-precipitation events.

4.1 Comparative experiments of two typical processes

4.1.1 Introduction of typical cases

Comparative experiments of PAS and traditional TS are con-
ducted for 12 h accumulated precipitation for two typical
cases. One case pertains to the precipitation weather pro-
cess occurring during 00:00 to 12:00 UTC on 16 July 2019
(referred to as “Case 1”), which is dominated by a weak
weather system. The other case relates to the precipitation
weather process occurring during 00:00 to 12:00 UTC on
13 June 2020 (referred to as “Case 2”), which is predomi-
nantly associated with a strong weather system.

Both precipitation cases are associated with precipitation
during the Meiyu period. Case 1 occurred during the Meiyu
period of 2019 and was characterized by scattered precipi-
tation under weak synoptic-scale forcing. The low-intensity
shear line system is located south of the Yangtze River.
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Table 7. Same as Table 6 but for precipitation at the level of torrential rain and above (u= 25, 50, and 100 mm).

PAS value Observation u= 25 mm Observation u= 50 mm Observation u= 100 mm

Excessive Insufficient Excessive Insufficient Excessive
forecast x forecast x forecast x forecast x forecast x

PAS= 0.877 – 34.1 68.1 68.1 136.2
PAS= 0.7 – 24.7 79.9 49.4 159.7
PAS= 0.5 – 16.7 91.6 33.3 183.3
PAS= 0.3 52.4 9.7 104.9 19.4 209.7
PAS= 0.1 62.9 3.2 125.9 6.4 251.7

There are two precipitation concentration areas: one at the
intersection of Hunan province and Jiangxi province and
the other covering the majority of Zhejiang province. The
precipitation process in Case 2 (12–13 June) was the first
round of widespread rainstorms during the Meiyu period
of 2020, including heavy precipitation affected by a low-
level vortex shear system. The western section of the low-
level vortex shear is relatively stable, while the eastern sec-
tion slightly presses southwards. Southwesterly airflow de-
veloped and pushed northwards, and a strong wind speed belt
persisted for a long time in the Jianghuai region. Moreover,
the Jianghan–Jianghuai region maintained a high-energy and
high-moisture state, resulting in persistent heavy rainfall.

A subjective analysis of these two weather processes re-
veals that for the event on 16 July 2019 (Fig. 6), the fore-
casted precipitation intensity and rainfall areas are rela-
tively consistent with the observations. There are two distinct
heavy-rainfall areas in the eastern and southern parts of the
Yangtze River, with particularly high accuracy in forecasting
scattered rainstorms in Zhejiang province located in the east-
ern section. In contrast, for the precipitation weather process
on 13 June 2020 (Fig. 7), it is evident that there is an overes-
timation of the precipitation forecast.

4.1.2 Data and methods

The observed precipitation data are provided by the China
Meteorological Administration multi-source merged precip-
itation analysis system (CMPAS), as developed by the Na-
tional Meteorological Information Centre of China. The
CMPAS integrates hourly precipitation data from nearly
40 000 automatic meteorological stations in China and pro-
vides radar-based quantitative precipitation estimation and
satellite-retrieved precipitation products with a spatial reso-
lution of 0.05°× 0.05°. The predicted precipitation data with
3 km resolution are from the Precision Weather Analysis and
Forecasting System (PWAFS) model, a regionally refined
forecast model, developed by the Jiangsu Provincial Mete-
orological Bureau. These data are output once per hour.

The specific methods are as follows.

1. Determine the verification domain and verification
points. The verification domain covers the Huang–Huai

region of China (28–38° N, 111–123° E). The verifica-
tion points are defined based on the grid points of the
observed precipitation data; their spatial resolution is
0.05°× 0.05°, and the total number of verification grid
points is 48 000 (200× 240).

2. Prepare the observed and forecasted precipitation data
and interpolate the forecasted precipitation data onto
the observed grid points. The observed 12 h accumu-
lated precipitation data are derived by accumulating the
hourly precipitation data from the CMPAS. The fore-
casted 12 h accumulated precipitation data are obtained
by subtracting the zero-field data from the 12 h fore-
cast field data. Since the grid points of the observed
and forecasted precipitation data do not coincide, and
the grid spacing is small, the nearest-neighbor method
is used in this study to match the forecasted data to the
grid points of the observed precipitation. Specifically,
the forecasted data on the model grid nearest to the ob-
served grid are used as the forecasted value at this ob-
served grid.

3. Analyze the relationship between the forecasted precip-
itation and observed precipitation. The scores for each
verification grid point and the overall scores for each
verification area are calculated based on the scoring for-
mula for each index in the GCEM system. Then, the
verification result file is generated in NetCDF format.
On this basis, distribution maps for the scores of var-
ious indices in the GCEM system are produced. Ad-
ditionally, the total TS and clear/rainy TS for different
precipitation magnitudes within the verification area is
calculated based on the TS and clear/rainy TS formulas.

4.1.3 Analysis of the comparative experiment results

For the precipitation process on 16 July 2019, the tradi-
tional TSs for different rainfall categories, such as clear/rainy
and 12 h accumulated precipitation of≥ 0.1,≥ 10 mm,≥ 25,
and ≥ 50 mm are all lower than the traditional TSs for the
weather process on 13 June 2020. For example, the TS is
0.381 for 12 h accumulated precipitation of ≥ 0.1 mm dur-
ing 00:00 to 12:00 UTC on 16 July 2019 (Table 8), while
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Figure 6. Accumulated precipitation (a) observed and (b) forecasted from 00:00 to 12:00 UTC on 16 July 2019.

Figure 7. Accumulated precipitation (a) observed and (b) forecasted from 00:00 to 12:00 UTC on 13 June 2020.

this score is 0.625 for that during 00:00 to 12:00 UTC on
13 June 2020 (Table 9), which differs from the subjective
judgment.

For the precipitation process during 00:00 to 12:00 UTC
on 16 July 2019, the PASs for clear/rainy and 12 h accu-
mulated precipitation of ≥ 0.1, ≥ 10, and ≥ 25 mm are all
higher than those for the precipitation process during 00:00
to 12:00 UTC on 13 June 2020. For instance, the overall PAS

is 0.617 for 12 h accumulated precipitation of ≥ 0.1 mm dur-
ing 00:00 to 12:00 UTC on 16 July 2019. This PAS is higher
than the PAS of 0.457 for the precipitation process during
00:00 to 12:00 UTC on 13 June 2020, which aligns with the
subjective judgment.

For the precipitation process during 00:00 to 12:00 UTC
on 16 July 2019, the PAS for each magnitude is higher than
the corresponding TS, thereby addressing the issue of TSs
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Table 8. PAS and TS of 12 h accumulated precipitation from 00:00 to 12:00 UTC on 16 July 2019.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm

PAS 0.808 0.617 0.256 0.200 0.104
TS 0.690 0.381 0.194 0.076 0.006

Table 9. Same as Table 8 but from 00:00 to 12:00 UTC on 13 June 2020.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm

PAS 0.734 0.457 0.228 0.185 0.116
TS 0.816 0.625 0.338 0.149 0.036

being lower. For the precipitation process during 00:00 to
12:00 UTC on 13 June 2020, the PASs for clear/rainy and
the magnitudes of ≥ 0.1 and ≥ 10 mm are lower than the
corresponding TSs, whereas the PASs for the magnitudes
of ≥ 25 and ≥ 50 mm are higher than the corresponding
TSs. This result indicates that the PAS is different from the
magnitude-improved TS and the neighborhood spatial veri-
fication method. Both the magnitude-improved TS and the
neighborhood spatial verification method increase the toler-
ance, leading to a monotonous increase in scores. This result
also demonstrates that the PAS has good discrimination abil-
ity for extreme events. The PAS assigns scores based on the
proximity of the forecast to the observation, making it more
reliable for precipitation evaluation than the TS.

4.1.4 Analysis of the indices in the new verification
method

Modern forecast verification is based mainly on spatial ver-
ification methods to compensate for the shortcomings of
traditional methods. The literature review of Gilleland et
al. (2009) defines four main categories of the methods: neigh-
borhood, scale separation, features-based, and field deforma-
tion (Ahijevych et al., 2009). These methods can analyze
more comprehensively in specific individual cases but seem
to be less able to provide direct overall scoring results than
traditional scoring methods in the statistics of long time se-
ries. GCEM is based on point-to-point scoring statistics with-
out a radius of influence, no isolation of features at each
scale, and no definition of objects in the forecast and obser-
vation to analyze the similarity of the objects or to fit the
forecast objects through deformation operations. However,
the GCEM still has spatial attributes that can discriminate
spatial forecast characteristics (e.g., insufficient or excessive
forecasting scenarios) for different categories of precipita-
tion, and the GCEM can carry out statistical verification of
long time series and produce overall scoring results.

Regarding the issue of analyzing the sources of errors from
the verification results, objectively tracing these errors back
from a single score can only determine whether an error was
“insufficient” (missed alarm) or “excessive” (false alarm).

However, the advantage of the GCEM lies in its ability to
decompose the score for each verification point and examine
the forecasting performance at each point, which is differ-
ent from the dichotomous evaluation approach with only 0
and 1 outputs. These indices not only provide overall scores
for individual cases similar to the TS but also offer two-
dimensional score distribution plots which can comprehen-
sively reflect the performance and characteristics of precipi-
tation forecasts.

Figure 8 shows the distributions of the 12 h accumulated
precipitation PASC scores. In these two cases, due to the high
accuracy of non-precipitation forecasts, the overall PASC
scores are relatively high. However, for Case 1, the scores
in Zhejiang are lower and scattered within a small area. In
contrast, for Case 2, there is a large area occupying most of
the Jianghuai region with low scores. Therefore, the PASC
score of Case 1 (0.808) is higher than that of Case 2 (0.734).

Figure 9 shows the PAS distributions of 12 h accumulated
precipitation with magnitudes of ≥ 0.1, ≥ 10, and ≥ 25 mm.
The blank points in the figure are the points that are excluded
in the scoring, following the scoring principle of “classifi-
cation before verification, no classification during verifica-
tion” described in Sect. 2. From the PAS distributions of dif-
ferent magnitudes, for Case 1, the high and low scores in
the Zhejiang region are scattered among them. In contrast,
for Case 2, the scoring areas in the Jianghuai region have a
larger area of low scores than high scores. Therefore, Case 1
has higher PASs for the three categories (≥ 0.1, ≥ 10, and
≥ 25 mm) than Case 2, and the distributions also allow dis-
tinguishing the areas with better and worse forecasting per-
formance.

Figure 10 shows the IPI, EPI, and IEPI distributions of
12 h accumulated precipitation. In terms of the IPI, for Case
1, the large-value IPI areas are located at the intersection of
Anhui, Zhejiang, and Jiangxi in the Hunan–Jiangxi region,
as well as in the southern part of Hebei. For Case 2, the
large-value IPI areas are situated along the Yangtze River in
Anhui and Jiangxi, as well as at the intersection of Henan
and Shanxi. The IPIs for Case 1 and Case 2 are −0.376 and
−0.400, respectively, indicating that Case 2 shows a slightly
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Figure 8. Distributions of the PAS clear/rainy forecast accuracy score (PASC) of 12 h accumulated precipitation for (a) Case 1 from 00:00
to 12:00 UTC on 16 July 2019 and (b) Case 2 from 00:00 to 12:00 UTC on 13 June 2020.

Table 10. Accuracy indices of insufficient precipitation forecast
(IPI), excessive precipitation forecast (EPI), and insufficient and ex-
cessive precipitation forecast (IEPI) of 12 h accumulated precipita-
tion for two precipitation processes.

IPI EPI IEPI

Case 1 −0.376 0.389 0.057
Case 2 −0.400 0.597 0.325

higher level of insufficient forecasts (Table 10). In terms of
the EPI, for Case 1, the large-value EPI areas are in Zhejiang
and Jiangxi. In contrast, for Case 2, the large-value EPI areas
are located in most of Hunan, Hubei, Anhui and Jiangsu, ex-
hibiting a wide southwest–northeast orientation with a large
area and degree. The EPI for Case 2 is larger than that for
Case 1. The IEPI is a comprehensive reflection of under- and
over-precipitation, and its value reflects the degree of insuf-
ficient and excessive precipitation forecasts. From the distri-
butions of insufficient and excessive precipitation forecasts in
Case 1, it is evident that the insufficient and excessive fore-
casts are roughly equivalent, with an IEPI of 0.057. However,
for Case 2, the distribution of the excessive forecasts is ob-
viously larger than that of the insufficient forecasts, with an
IEPI of 0.325. This result indicates that Case 2 has poorer
forecasting performance, with larger excessive forecasts be-
ing an important factor.

Consequently, analyzing the locations of insufficient and
excessive precipitation forecasts from the figures in conjunc-

tion with the characteristics of the forecasting process can
provide useful insights for improving forecasts.

4.2 Comparison experiment of extreme-rainfall events

4.2.1 Introduction of the “July 2021”
extreme-rainstorm event in Henan, China

From 17 to 23 July 2021, a rare extreme-rainstorm event oc-
curred in Henan province, China. The extremely heavy rain-
storm started in the southeastern region of Henan province
on the morning of 17 July, then extended to the northern
region, and ended on the morning of 23 July, lasting more
than 6 d. The rainstorm occurred against the background of
a typhoon, Huang–Huai vortex, shear line, and convergence
line and was caused by the coupling of the low-level jet and
boundary layer jet combined with the uplift of terrain (Wang
et al., 2022; Su et al., 2021; Shi et al., 2021).

The period from 00:00 UTC on 18 July to 00:00 UTC on
22 July 2021 is the concentrated period of heavy precipi-
tation. To facilitate the study, the heavy-rainstorm process
is divided into three periods: (1) 00:00 UTC on 19 July–
00:00 UTC on 20 July 2021, (2) 00:00 UTC on 20 July–
00:00 UTC on 21 July 2021, and (3) 00:00 UTC on 21 July–
00:00 UTC on 22 July 2021 (Fig. 11a–c).

4.2.2 Data and methods

The observed precipitation data are provided by the CMPAS,
with a spatial resolution of 0.05°× 0.05°, similar to the case
in Sect. 4.1. The forecast data come from two models. One
is the PWAFS model, which has a horizontal resolution of
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Figure 9. Distributions of PAS of 12 h accumulated precipitation of ≥ 0.1 mm for (a) Case 1 from 00:00 to 12:00 UTC on 16 July 2019
and (b) Case 2 from 00:00 to 12:00 UTC on 13 June 2020, of ≥ 10 mm for (c) Case 1 and (d) Case 2, and of ≥ 25 mm for (e) Case 1 and
(f) Case 2.
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Figure 10. Distributions of IPI of 12 h accumulated precipitation for (a) Case 1 from 00:00 to 12:00 UTC on 16 July 2019 and (b) Case 2
from 00:00 to 12:00 UTC on 13 June 2020, EPI for (c) Case 1 and (d) Case 2, and IEPI for (e) Case 1 and (f) Case 2.
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Figure 11. Distribution of observed and forecasted 24 h accumulated precipitation. (a) Observation, (d) PWAFS, and (g) GRAPES from
00:00 UTC on 19 July to 00:00 UTC on 20 July 2021. (b) Observation, (e) PWAFS, and (h) GRAPES from 00:00 UTC on 20 July to
00:00 UTC on 21 July 2021. (c) Observation, (f) PWAFS, and (i) GRAPES from 00:00 UTC on 21 July to 00:00 UTC on 22 July 2021.

3 km, similar to the case in Sect. 4.1. The other is the Glob-
al/Regional Assimilation and PrEdiction System (GRAPES)
model independently developed by the China Meteorological
Administration, which has a horizontal resolution of 3 km.

1. Determine the verification domain and verification
points. The verification domain covers the region of 30–
40° N, 107.5–117.5° E. The verification points are de-

fined based on the grid points of the observed precipita-
tion data; their spatial resolution is 0.05°× 0.05°, and
the total number of verification grid points is 40 401
(201× 201).

2. Prepare the observed and forecasted precipitation data
and interpolate the forecasted precipitation data onto
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the observed grid points. The 24 h cumulative precip-
itation observation data of the three periods were ob-
tained from the 24 h precipitation data of the CMPAS.
The forecast precipitation data in the three periods are
the cumulative precipitation with a forecast time of 12
to 36 h (Fig. 11d–i). For the case described in Sect. 4.1,
the nearest-neighbor method is used to match the fore-
cast data to the grid points of the observed precipitation.

3. Analyze the relationship between the forecasted pre-
cipitation and observed precipitation. PAS, TS, and
FSS were compared for the extreme-rainstorm event in
Henan, China.

As mentioned earlier, the FSS belongs to the neighborhood
category of spatial verification methods and is an advanced
evaluation method that has been widely used in recent years.
It can still yield valuable scores when the model prediction
intensity is spatially biased and can also represent the scale
information of forecasting skills. Therefore, in this case, the
FSS scoring method was added for comparative experiments.
For FSS verification, 15, 25, 45, 75, and 120 km are used as
the neighborhood distances.

The brief steps of FSS calculation are as follows: (1) de-
termine the domain scope. Set the neighborhood point to n,
such that when n= 3 (n is odd), the neighborhood range is
15 km× 15 km. (2) Calculate the spatial density in the ob-
served binary observation fields (Eq. 10). (3) Calculate the
spatial density in the binary forecast fields (Eq. 11). (4) Cal-
culate FSS(n) (Eq. 12). (Please refer to the article of Roberts
and Lean (2008) for details.)
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where i ranges from 1 toNx ,Nx is the number of columns in
the domain, j ranges from 1 to Ny , and Ny is the number of
rows. Io and IM are binary fields. O(n)(i, j) is the resultant
field of observed fractions for a square of length n.M(n)(i, j)

is the resultant field of model forecast fractions obtained.

4.2.3 Analysis of the comparative experiment results

1. Questionnaire survey of the effectiveness of model fore-
casting.

In total, 52 questionnaires were completed by 32 re-
searchers and 20 forecasters. The names of the PWAFS

and GRAPES models used for comparison were omitted
and replaced with Model 1 and Model 2, respectively.

The survey results show that 52 people believe that
the forecasting effect for periods A and C of Model 2
(GRAPES) is good, 19 people believe that the forecast-
ing effect for period B of Model 1 (PWAFS) is good,
and 33 people believe that the forecasting effect for pe-
riod B of Model 2 (GRAPES) is good. A total of 52
people think that Model 2 (GRAPES) is good in gen-
eral.

2. Indices analysis and comparison between the two mod-
els.

The high-resolution regional models used for evaluation
are (1) PWAFS 3 km and (2) GRAPES 3 km, and the
modeled precipitation is the accumulated precipitation
of 24 h in the forecast for 12–36 h. The evaluation re-
sults are as follows (Tables 11–16).

The results show that in this process, the evaluation re-
sults of different methods on the forecast skill of the
PWAFS and GRAPES models are basically consistent
and in line with the subjective evaluation statistical re-
sults. However, PAS scores have obvious advantages in
the evaluation of rainstorms and above, especially for
extreme rainstorms. It can be seen from the six rating
scales that the TS and FSS have almost no ability to
evaluate precipitation above 250 mm, and the scores are
generally at the unskilled end of 0 and no more than 0.2
(Chen et al., 2019). The PAS scores can also distinguish
differences and provide different scores for situations
where the forecasting effect is good.

For example, when evaluating precipitation above
250 mm, the scores of TS for PWAFS in all three pe-
riods are 0.000, and the scores of GRAPES in the three
periods are 0.000, 0.045, and 0.044. The scores of FSS
(45 km) for the PWAFS in all three periods are 0.000,
and the scores of GRAPES in the three periods are
0.000, 0.218, and 0.137, respectively. This indicates that
the TS and FSS (45 km) have little ability to assess the
heavy rainfall of this process.

The PAS scores for PWAFS in the three periods are
0.229, 0.302, and 0.153, and those for GRAPES in the
three periods are 0.338, 0.637, and 0.528, indicating that
PAS has the ability to evaluate heavy rainstorms (above
250 mm) in this process. The evaluation results show
that GRAPES is superior to PWAFS when predicting
heavy rainfall.

The evaluation capabilities of PAS, TS, and FSS for
precipitation above 100 mm are further analyzed. The
scores of TS for the PWAFS (GRAPES) are 0.035,
0.257, and 0.042 (0.178, 0.451, and 0.284) in the three
periods, respectively. The scores of FSS (45 km) are
0.129, 0.550, and 0.103 (0.432, 0.767, and 0.613) for
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Table 11. PAS, TS, and FSS scores of PWAFS 24 h accumulated precipitation from 00:00 UTC on 19 July to 00:00 UTC on 20 July 2021.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm ≥ 100 mm ≥ 250 mm

PAS 0.598 0.487 0.301 0.256 0.254 0.246 0.229
TS 0.823 0.774 0.377 0.229 0.115 0.035 0.000
FSS (15 km) – 0.909 0.637 0.452 0.259 0.090 0.000
FSS (25 km) – 0.923 0.680 0.486 0.281 0.102 0.000
FSS (45 km) – 0.939 0.732 0.526 0.307 0.129 0.000
FSS (75 km) – 0.953 0.778 0.559 0.335 0.180 0.003
FSS (120 km) – 0.964 0.820 0.592 0.365 0.226 0.007

Table 12. PAS, TS, and FSS scores of PWAFS 24 h accumulated precipitation from 00:00 UTC on 20 July to 00:00 UTC on 21 July 2021.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm ≥ 100 mm ≥ 250 mm

PAS 0.653 0.578 0.408 0.398 0.427 0.492 0.302
TS 0.789 0.743 0.500 0.429 0.434 0.257 0.000
FSS (15 km) – 0.891 0.750 0.690 0.687 0.475 0.000
FSS (25 km) – 0.908 0.789 0.731 0.725 0.507 0.000
FSS (45 km) – 0.928 0.837 0.782 0.771 0.550 0.000
FSS (75 km) – 0.945 0.878 0.831 0.815 0.598 0.003
FSS (120 km) – 0.958 0.912 0.877 0.858 0.654 0.042

the PWAFS (GRAPES) in the three periods, respec-
tively. The evaluation effect of FSS (45 km) is better
than that of TS. The evaluation feature of FSS is to ex-
amine the predictability scale of the model to reflect its
predictive ability; however, due to the subjectivity of se-
lecting neighborhood scales, its score lacks comparabil-
ity. While the PAS scores are 0.246, 0.492, and 0.253
(0.573, 0.581, and 0.492) for the PWAFS (GRAPES) in
the three periods, it can be seen that the PAS also has a
good ability to assess heavy rainstorms in this process.

In small-magnitude precipitation (above light and mod-
erate rain) verification, the FSS scores tend to approach
1 as the neighborhood distance expands, making it dif-
ficult to compare forecast differences between models.
The PAS scores can also distinguish the differences
in forecast effectiveness for small-magnitude precipita-
tion.

In conclusion, different scoring methods were used to
evaluate the skill of different models to predict extreme-
precipitation events in July 2021 in Henan, China, and
the evaluation characteristics of different scoring methods
were indicated. The results show that the PAS scoring
method has obvious advantages in the evaluation of extreme-
precipitation events and can also reflect the differences in the
small-magnitude precipitation forecasting effects of the mod-
els well compared to those of the TS and FSS methods.

5 Discussion and conclusion

By analyzing the advantages and disadvantages of the tradi-
tional TS, magnitude-improved TS, and neighborhood spa-
tial verification methods, a new precipitation verification
method, GCEM, was designed and constructed from the per-
spective of the proximity of the forecast to the observation.
This method consists of the core indicator of the PAS, as well
as multiple indicators such as IPI, EPI, IEPI, and PASC.

The PAS index consists of sine and e exponential func-
tions. Additionally, considering the characteristics of large
fluctuations in the function curves when observed precipita-
tion is less than 10 mm, the formula has been smoothed for
optimization. The PAS method adopts the principle of “clas-
sification before verification, no classification during veri-
fication”, which can serve as an alternative to skill scores
such as the TS and ETS for verifying quantitative precipita-
tion forecasts. This method is characterized by objective and
transparent rules and easy generalization. Moreover, this ap-
proach possesses attributes of an ideal precipitation scoring
method, such as fairness, boundedness, and moderate sym-
metry. Therefore, it can be used to calculate the accuracy of
numerical models or quantitative precipitation forecasts, as
well as evaluate the comprehensive forecasting capabilities
of various refined quantitative precipitation forecast prod-
ucts. The GCEM can also evaluate the performance of nu-
merical forecasts on clear/rain forecasts, as well as insuf-
ficient precipitation forecasts, excessive precipitation fore-
casts, and precipitation forecast biases. In addition to the
overall score, two-dimensional score distribution maps can
be generated for each index in the GCEM system. These
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Table 13. PAS, TS, and FSS scores of PWAFS 24 h accumulated precipitation from 00:00 UTC on 21 July to 00:00 UTC on 22 July 2021.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm ≥ 100 mm ≥ 250 mm

PAS 0.656 0.533 0.346 0.322 0.296 0.253 0.153
TS 0.802 0.731 0.469 0.318 0.169 0.042 0.000
FSS (15 km) – 0.887 0.714 0.563 0.352 0.093 0.000
FSS (25 km) – 0.905 0.747 0.599 0.381 0.096 0.000
FSS (45 km) – 0.924 0.784 0.644 0.414 0.103 0.000
FSS (75 km) – 0.940 0.813 0.685 0.443 0.111 0.000
FSS (120 km) – 0.952 0.840 0.723 0.474 0.120 0.000

Table 14. PAS, TS, and FSS scores of GRAPES 24 h accumulated precipitation from 00:00 UTC on 19 July to 00:00 UTC on 20 July 2021.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm ≥ 100 mm ≥ 250 mm

PAS 0.665 0.549 0.396 0.414 0.494 0.573 0.338
TS 0.804 0.735 0.422 0.358 0.312 0.178 0.000
FSS (15 km) – 0.884 0.689 0.629 0.576 0.365 0.000
FSS (25 km) – 0.901 0.742 0.688 0.633 0.400 0.000
FSS (45 km) – 0.922 0.809 0.759 0.704 0.432 0.000
FSS (75 km) – 0.939 0.865 0.817 0.758 0.457 0.000
FSS (120 km) – 0.950 0.907 0.862 0.786 0.494 0.000

Table 15. PAS, TS, and FSS scores of GRAPES 24 h accumulated precipitation from 00:00 UTC on 20 July to 00:00 UTC on 21 July 2021.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm ≥ 100 mm ≥ 250 mm

PAS 0.669 0.580 0.438 0.451 0.504 0.581 0.637
TS 0.801 0.746 0.544 0.438 0.431 0.451 0.045
FSS (15 km) – 0.891 0.774 0.693 0.683 0.687 0.127
FSS (25 km) – 0.909 0.808 0.737 0.727 0.721 0.167
FSS (45 km) – 0.930 0.850 0.793 0.787 0.767 0.218
FSS (75 km) – 0.947 0.884 0.843 0.847 0.818 0.233
FSS (120 km) – 0.960 0.913 0.885 0.897 0.864 0.238

Table 16. PAS, TS, and FSS scores of GRAPES 24 h accumulated precipitation from 00:00 UTC on 21 July to 00:00 UTC on 22 July 2021.

Clear/rainy ≥ 0.1 mm ≥ 10 mm ≥ 25 mm ≥ 50 mm ≥ 100 mm ≥ 250 mm

PAS 0.694 0.566 0.407 0.425 0.462 0.492 0.528
TS 0.796 0.710 0.559 0.501 0.410 0.284 0.044
FSS (15 km) – 0.875 0.799 0.752 0.667 0.508 0.092
FSS (25 km) – 0.897 0.842 0.793 0.713 0.548 0.102
FSS (45 km) – 0.924 0.889 0.842 0.772 0.613 0.137
FSS (75 km) – 0.945 0.925 0.883 0.823 0.690 0.192
FSS (120 km) – 0.960 0.949 0.911 0.858 0.757 0.257

maps offer a comprehensive reflection of the precipitation
forecasting performance of the numerical models and serve
as a reference for improving model forecasts.

This new verification method is validated based on the
forecast scoring results for general precipitation and precip-
itation at the level of torrential rain and above, and the veri-
fication results align with expectations. Comparative experi-
ments are also conducted on two typical processes using the

new verification method. For Case 1, the subjective judgment
is relatively good, but the TS is lower. Conversely, for Case
2, the subjective judgment is poorer, yet the TS is higher.
Verification using the PAS reveals that forecasts with better
subjective judgment receive higher scores, and forecasts with
poorer subjective judgment receive lower scores. Therefore,
PAS aligns with public expectations.
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The PAS, TS, and FSS methods were used to com-
pare and verify the July 2021 extreme-precipitation event
in Henan, China, to reflect the evaluation characteristics of
different scoring methods. The results show that the PAS
scoring method can not only reflect the difference in the
small-magnitude precipitation forecast effect of models but
also has obvious advantages in the evaluation of extreme-
precipitation events.

In addition, the National Meteorological Centre of China
conducted a long-term series of large-scale sample testing
on this method in 2023. Based on the ECMWF model’s 24
and 48 h precipitation forecasts from March 2022 to Febru-
ary 2023, the assessment results show that compared to the
TS, the PAS is less affected by the randomness of the sample,
and the relative size relationship of different time forecast
scores is more stable.

From the construction of the GCEM to ideal experiments
and case analysis, it is evident that this evaluation system,
especially the PAS method, is a suitable method for quan-
titative precipitation evaluation. However, the PAS still has
subjective flaws, such as the determination of coefficients in
the PAS expression (0.6 in Eqs. 6 and 7) when the observed
or forecasted precipitation is 0 mm. Once these coefficients
are determined, they apply to all precipitation scoring, thus
becoming an objective component in practice.
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