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Abstract. In a cycling system where data assimilation (DA)
and model simulation are executed consecutively, the model
forecasts initialized from the analysis (or data assimilation)
can be systematically affected by dynamic imbalances gen-
erated during the analysis process. The high-frequency noise
arising from the imbalances in the initial conditions can im-
pose constraints on computational stability and efficiency
during subsequent model simulations and can potentially be-
come the low-frequency waves of physical significance. To
mitigate these initial imbalances, the incremental analysis
update (IAU) has long been utilized in the cycling context.
This study introduces our recent implementation of the IAU
in the Model for Prediction Across Scales — Atmospheric
(MPAS-A) coupled with the Joint Effort for Data assimi-
lation Integration (JEDI) through the cycling system called
MPAS-Workflow. During the integration of the compress-
ible nonhydrostatic equations in MPAS-A, analysis incre-
ments are distributed over a predefined time window (e.g.,
6h) as fractional forcing at each time step. In a real case
study with the assimilation of all conventional and satellite
radiance observations every 6h for 1 month, starting from
mid-April 2018, model forecasts with the IAU show that the
initial noise illustrated by surface pressure tendency becomes
well constrained throughout the forecast lead times, enhanc-
ing the system reliability. The month-long cycling with the
assimilation of real observations demonstrates the success-
ful implementation of the IAU capability in the MPAS—-JEDI
cycling system. Along with the comparison between the fore-
casts with and without the IAU, several aspects regarding
the implementation in MPAS—-JEDI are discussed. Corre-

sponding updates have been incorporated into the MPAS-
A model (originally based on version 7.1), which is now
publicly available in MPAS—JEDI and MPAS-Workflow ver-
sion 2.0.0.

1 Introduction

Data assimilation (DA) is a mathematical or statistical proce-
dure that incorporates observations, unevenly distributed in
time and space, into adjacent grids in the model forecast (or
background) using relative weights based on the error statis-
tics of the forecasts and observations. It is not required to ac-
count for dynamical or physical balances across model grids
or variables, nor does it ensure the conservation of mass, mo-
mentum, or energy. Consequently, the initial balance of the
atmospheric flow can be disrupted by data assimilation when
the initial state is replaced by the analysis state. Such imbal-
ances can introduce artificial high-frequency noise, which is
amplified and propagated throughout the model simulation.
In the cycling system that alternates between analysis and
forecast, noise can continuously accumulate through cycles,
which can degrade numerical stability and efficiency (with
the time step smaller than 6Ax for a nominal grid spacing
of Ax). If the noise is not properly controlled and its non-
linear interactions with lower-frequency modes of physical
interest are triggered, subsequent forecasts can be contami-
nated. If the forecast error growth is accelerated at each cy-
cle, it not only limits the predictability of the atmospheric
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flow (Hohenegger and Schir, 2007) but can eventually cause
the model simulation to crash.

To mitigate abrupt changes (or shocks) originating from
inconsistencies or imbalances in the initial state, the incre-
mental analysis update (IAU) method was introduced by
Bloom et al. (1996) and has been widely used in lead-
ing operational or research centers (Polavarapu et al., 2004;
Buehner et al., 2015; Lorenc et al., 2015; Lei and Whitaker,
2016; Ha et al., 2017). In this method, instead of initializing
a numerical prediction model with the analysis state, analysis
increments (e.g., analysis minus background) are distributed
over a certain time window as fractional forcing applied to
each time step during the model integration. Compared to
other conventional continuous data assimilation approaches
such as nudging, the IAU has an attractive time-filtering fea-
ture, which can suppress spurious noise caused by data as-
similation, providing a more consistent and balanced initial
state before the next assimilation cycle.

The Model for Prediction Across Scales — Atmosphere
(MPAS-A or MPAS, hereafter) utilizes centroidal Voronoi
tessellations for its horizontal meshes and terrain-following
height as a vertical coordinate and employs a fully com-
pressible nonhydrostatic model with the capability of high-
resolution forecasting over a local area for both global and
regional applications (Skamarock et al., 2012, 2018). Ha
et al. (2017) first implemented the IAU in MPAS version 4
for a global cycling system with the ensemble Kalman filter
(EnKF) in the Data Assimilation Research Testbed (DART,;
Anderson et al., 2009) and demonstrated that it effectively
suppressed spurious high-frequency noise, leading to better
forecast skills. Since then, the model has been significantly
upgraded for various new features, including acoustic filter-
ing (Klemp et al., 2018), which effectively damps out noise
in the acoustic waves using horizontally explicit, vertically
implicit (HEVI) and split-explicit time integration schemes.
The unstructured MPAS mesh can be configured with hor-
izontally variable-resolution meshes that vary smoothly be-
tween low- and high-resolution regions, but the model inte-
gration time step is limited by the finest grid spacing of the
mesh and uniformly applied across the domain to maintain
the stability in the fine-mesh region.

Through the collaborative work with the Joint Effort for
Data assimilation Integration (JEDI) team, an interface be-
tween MPAS and JEDI has been recently developed for a
new community data assimilation system based on the vari-
ational approach (Liu et al., 2022). MPAS-JEDI (or JEDI-
MPAS) shares with other geophysical models the object-
oriented framework for generic components for data assim-
ilation such as the Interface for Observation Data Access
(IODA; Honeyager et al., 2020), the Unified Forward Op-
erator (UFO; Honeyager et al., 2020), the background er-
ror covariance models through the System Agnostic Back-
ground Error Representation (SABER; http://data.jcsda.org/
doxygen/Release/saber/1.2.0/index.html, last access: 20 De-
cember 2023), and several minimization algorithms.
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Since all of the analysis variables in MPAS-JEDI are ei-
ther derived or diagnostic variables in the MPAS model, their
analysis increments need to be converted back to the model’s
prognostic variables after the minimization so that the anal-
ysis updates can be reflected in the model forecast. The vari-
able transformations of mass fields are carried out based
on the reconstructed pressure coordinate derived from sur-
face pressure, assuming hydrostatic balance and an ideal gas
state. The recent version of MPAS—JEDI is updated to trans-
form analysis increments to the increments of the model’s
prognostic variables (instead of their full fields), as stated in
Guerrette et al. (2023b). This approach can reduce the errors
arising from various assumptions or approximations made
during variable transformations but cannot avoid introduc-
ing imbalances between the prognostic fields and across the
meshes due to the local nature of the observed quantity and
the spatial localization applied to ensemble background error
covariances, which can lead to potentially destructive effects
on the quality of solutions from the compressible nonhydro-
static model solutions.

This article reports on our new implementation of
the TAU feature in MPAS-JEDI using the cycling sys-
tem called MPAS-Workflow (https://github.com/NCAR/
MPAS-Workflow; last access: 2 August 2023). For mathe-
matical completeness, the IAU module in the MPAS model
code (first released in v5.0) has been updated with several
corrections. The main goal of the AU is to stabilize the cy-
cling system and maintain numerical efficiency by reduc-
ing imbalances in the initial state. But it will increase the
forecast lead times because the IAU forcing is incorporated
into the model prognostic equations at every time step within
a time window centered on the analysis time, followed by
free forecasts. For 6 h cycling with a 6 h IAU time window,
the total model integration time becomes 9 h, meaning the
computation is increased by at least 30 %. As a technical
paper, default namelist parameters for the IAU are listed,
as defined in MPAS/namelist.atmosphere. This study does
not discuss comprehensive characteristics of the complicated
MPAS-JEDI or MPAS-Workflow systems but focuses on the
implementation of the IAU, ensuring its reliability and per-
formance through the forecast verification in surface pres-
sure. Details of the implementation are described in Sect. 2,
followed by the cycling system using MPAS-Workflow in
Sect. 3. A real case study is presented in Sect. 4 and then
concluded in Sect. 5.

2 The IAU implementation in MPAS-JEDI

The MPAS-A model uses a height-based coordinate follow-
ing Klemp (2011), where terrain influences are progressively
smoothed out toward the model top. The geometric height
of coordinate surfaces (z) is defined by the combination of
the nominal height (ignoring terrain) of coordinate surfaces
(¢) and terrain height () on a two-dimensional (x, z) model
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domain:

2=+ AD)hs(x,0), ey

where A({) =1—1¢/z;, indicating a weight for the terrain
influence on the coordinate surfaces, and z; is the height of
the model top. With 0 < A < 1 — ¢ /z;, an increasing amount
of smoothing is applied at higher levels of ¢ (e.g., decreas-
ing A(Z)) such that the vertical coordinate transitions from
terrain-following at the surface (e.g., z = hs(x,¢) for ¢ =
0) toward constant-height surfaces aloft. While rectangular
grids are usually represented as (x, y), the horizontal unstruc-
tured mesh is defined solely by individual grid cells (in a ran-
dom order). For simplicity, we denote the horizontal grid cell
dimension as x, in addition to the model level (z), to specify
the two-dimensional model dimension (x, z).

In the MPAS model, the nonhydrostatic compressible
equation is formulated for conserved quantities (mass, mo-
mentum, and moisture) represented in the flux form using
the split-explicit time integration techniques introduced in
Klemp et al. (2007). As described in Skamarock et al. (2012),
defining a dry-air density adjusted by a terrain transformation
(bd = pa/&z, where pq is dry-air density and V¢ = (¢x, £2)),
the flux variables X become

X:(G)m’ Veva Q]):ﬁd(9m7uesw9QJ)s (2)

where 6, = 6(1 + (Ry/Rg4)qy) is a potential temperature (6)
modified by water vapor mixing ratio (gy). Ry and Rq are gas
constants for water vapor and dry air, respectively. g; repre-
sents the mixing ratio of each hydrometeor — water vapor
(gv), cloud liquid water (g.), cloud ice (g;), rain (g;), snow
(gs), graupel (gg), and hail (gn). The horizontal momentum
is predicted in terms of the wind speed normal to cell edges
(ue), while w stands for the vertical velocity. Coupled with
pd, all the flux-form variables in the prognostic equations
now include terrain effects through transformation of the ver-
tical coordinate. Note that all the variables associated with
the vertical coordinate surfaces (z, ¢, and V¢) are constant
fields.

The nonhydrostatic equations are integrated by updat-
ing total tendencies computed from each component of the
modeling process. In the default configuration without the
IAU, the model is simply integrated from the initial con-
dition updated with analysis variables at the initial time.
However, if the TAU is activated in the forecast (e.g., con-
fig_ IAU_option = “on” in namelist.atmosphere), instead of
changing the initial state, we compute the analysis incre-
ments by subtracting the background forecast from the anal-
ysis and divide them by the total number of time steps within
the TAU window for a three-dimensional IAU (3DIAU). In
this context, the background forecast (or first guess) is the
forecast valid at the initial (or analysis) time from the previ-
ous cycle. While the analysis file is produced by MPAS-JEDI
(and is employed as a new initial condition for the model run
without the IAU), a separate analysis increment file at the
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analysis time (“AmB.nc”) is created for the IAU forcing in
MPAS-Workflow and provided to the model through another
data stream called “iau”. During the time integration, the to-

tal tendencies are adjusted by the IAU forcing (33—)[( ) at
amb
every time step as below.
aX 90X n X n aX 3)
ot total ot dyn ot phys ot amb,

where the first and the second term on the right-hand side
represent the total tendencies from the dynamics and physics
schemes, respectively.

In MPAS-JEDI, analysis variables are defined as temper-
ature (T'), specific humidity (s), surface pressure (P;), and
zonal and meridional wind components (# and v, respec-
tively) at cell centers by default. Except for surface pressure,
all of them are two-dimensional (2-D) variables in cells and
levels (x, z). Note that in the unstructured mesh, 1-D indi-
cates a horizontal plane, while 2-D includes the vertical di-
mension (similar to a traditional 3-D Cartesian coordinate).
As defined in Eq. (2), the MPAS model predicts 2-D pq, O,
ue, w, and hydrometeors in mixing ratios. In other words,
none of the analysis variables are prognostic in the model,
meaning that once their increments (§v = v? — vP, where “a”
and “b” stand for the analysis and background for the vari-
able v, respectively) are computed through minimization,
they should be transformed to the prognostic variables for
model integration. To reduce potential errors resulting from
approximations such as hydrostatic balance and the equation
of state, variable transformations are only applied to the in-
crements (§v) rather than the full analysis fields (v?), keeping
prior states (v°) as nonhydrostatic forecasts from the previ-
ous cycle. The edge wind speed (i¢) is updated by the incre-
ments in the horizontal wind components at cell centers (e.g.,
du and dv). Mass variable transformations begin with the in-
crements in the approximated water vapor mixing ratio (8gy),
converted from the increments in specific humidity (§s) and
its prior state (s). To linearize the equation ¢y, = s/(1 — ) for
small increments dgy and ds, the first derivative of g, with
respect to s is written as

,,o.d s . 1 4
QV(S)_$<1—s)_(1—s)2' ®

Using the first-order Taylor series expansion, we can lin-
earize gy for the increments 8¢, and s as

s 1
QV+5qv%CIV(S)+CI\/,(S)3S%I—_S+W5s. ®)

Then the increments in the pressure field are derived based
on the changes in virtual temperature (7y, = T (1+0.608 gy)).
Assuming hydrostatic balance, the two-dimensional pressure
field (P (x,z)) is integrated upward from the surface based
on the analyzed surface pressure (P? = PSb + 8 Ps). Dry-air
density (pq) is updated based on the approximated equation
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of state (og = P/[RaTy(1 + gv)]), and potential temperature
is derived from the relationship 6 = T(%)Rd/ Cr, where Py =
1000 hPa is a reference pressure and C), is the specific heat
at constant pressure. Details are summarized in Appendix B.

While the nonhydrostatic MPAS-A model solves a prog-
nostic equation for ®p, = pq - O, and diagnoses the full pres-
sure (p = po(Ra¢;Om/po)?, where y = C,,/Cy), the analy-
sis updates in MPAS—JEDI primarily rely on surface pressure
(in both the analysis and background) and several approxi-
mations such as hydrostatic balance and the simplified moist
conversion (e.g., ignoring all hydrometeors except for gy).

As the dry density multiplied by the vertical coordinate
Jacobian (pq) is also updated during the analysis, once the
prognostic variables are updated through the variable trans-
formations, they should be recoupled with the updated pq, as
on the right-hand side of Eq. (2), to compute the tendencies
for the IAU forcing (% amp)- When the model is configured
without the IAU, the recoupling step is carried out as part of
the MPAS initialization process, but in the case of the IAU,
this is taken care of within the IAU module in the MPAS
model. The tendency for 6y, in the flux form, for instance,
can be expressed in the following partial equation:

X -
—(pd - Om) =

o = 5 (pd 9(1+ qv)) (6)

Based on the differential rule, Eq. (6) can be rewritten as

d [ . Ry R, 004
_ o1+ = -
(o (1)) = (1 7o) 5
+pd(l+—qv)
N Ry
,098—<1+—qv) 7
R, 0p4 . 06
=(1+= pird v
( +qu“)< or +p“a;)
- Rvaqv
60— 8
+ pd R a1 (8)
Ry 9(040)
=1+
( +quv> 91
. Ry agy
60— 9
+ pd R 91 9

The rightmost term in Eq. (9) contains pd Br , which can be
derived from the tendency equation for the water vapor mix-
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ing ratio, as below.

86]v 00d
- 10
(pdqv) - - taov—— o7 (10)
0 0 8
i gv _ 9(pagy) _  3pd (11
ot ot Var
By incorporating Eq. (11) into Eq. (9), Eq. (6) can be rewrit-
ten as
8 Ry
—(pd Om) = pa-0|1+—qy
Ryq

Ry '\ 3(pat)
= l R — _—
< + Rq QV) Y

Ry [ 3(pagv) 00d
06— ——qgv— ). 12
+ R4 < ot o (12)

In the original IAU unplementatlon in MPAS-A (version 7.1
and prior), the last term (— o Re VICART, d) was omitted but is now
added back in the latest release of MPAS—JEDI. The missing
term was a mathematical error which needed to be fixed for
accuracy. Our experiment on the coarse mesh with a nominal
resolution of 120 km (as described in the following section)
is not suitable for quantifying the error magnitude caused by
this term. But there might be cases where the absence of this
term can introduce sizable forecast errors in both thermody-
namic and dynamic tendencies, especially in high-resolution
simulations of strong pressure gradients.

The tendency for edge wind (u.) can be described in the
same manner, with the same correction applied.

. Oue 904
e 1w
PAa Ty

%(/)Nd “Ue) = (13)
Here u. is coupled with dry-air density (p4) at the edges,
rather than the cell centers. In the horizontally unstructured
MPAS mesh, the center of each grid cell (mostly in a hexag-
onal shape) serves as the center of mass (centroidal), and cell
edges bisect the lines connecting the two cell centers sharing
the edges. Thus, the corresponding dry-air density at the edge
is defined as the mean of pq4 at the two cell centers that share
the edge. (For the detailed description on the mesh character-
istics, users should refer to Fig. 1 in Skamarock et al., 2012.)
Note that all the model’s prognostic variables except the edge
wind (u.) are defined at the cell centers, coupled with pg at
the cell centers. While w is defined at the cell center of the
horizontal mesh, it is C grid staggered in the vertical.

In the TAU module, analysis increments (Ax) in the so-
called “uncoupled” variables are read from the iau stream

Ax = x* — x®, where x = (pq, 60, qv), (14)

so that the TAU tendencies (%—’f amb) are computed for the
coupled variables (X) as in Egs. (12) and (13). They are then
multiplied by a predefined weighting function (wy) to be ap-
plied every time step (At; config_dt) over the IAU time win-
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Figure 1. A diagram for cycling with the IAU. At is the [AU time
window (config_IAU_window_length_s), and At is an integration
time step (config_dt) defined in namelist.atmosphere.

dow (Art; config_IAU_window_length_s).

A(,Oo‘l x)

- ——Z .

1

dt =
amb k

n

where AX = X* — X° n = At/At, and w; = 1/n for each
time step k. In the default configuration for 3DIAU, the [AU
forcing computed from analysis increments is evenly dis-
tributed across time steps for the 6 h IAU window, followed
by a 3h free forecast to the next analysis time, making a
9h background forecast at each analysis cycle (Fig. 1). Al-
though a simple 3DIAU is currently implemented with con-
stant forcing, it could be extended for a four-dimensional
IAU (4DIAU) with varying weights over the IAU time win-
dow.

3 Cycling data assimilation with MPAS-Workflow

Our open-source MPAS-Workflow was introduced in Guer-
rette et al. (2023b) and has only been tested on Cheyenne, one
of the National Center for Atmospheric Research (NCAR)
high-performance computers (HPCs), but we describe some
technical details here since it is at the heart of the cycling sys-
tem for MPAS-JEDI and it has gone through major updates
for the IAU feature. MPAS-Workflow uses the Cylc general
purpose workflow engine (v7.8.3) (Oliver et al., 2019, https:
/lcylc.github.io/; last access: 29 August 2023), and it is de-
signed for end-to-end processes of the MPAS-JEDI cycling
system. It controls all the parameters for running the MPAS
model and data assimilation, with high flexibility for a num-
ber of different configurations. It defines various lists of vari-
ables such as those for the analysis, background, and obser-
vation types to assimilate. Furthermore, it is equipped with
a Python-based post-processing package (https://github.com/
JCSDA/mpas-jedi/tree/2.0.0/graphics; last access: 2 Au-
gust 2023), including diagnostics and plotting utilities.
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Once the TAU is activated in MPAS-Workflow, the model
initial and run times are automatically adjusted to —3 and
9 h, respectively, for a 6 h IAU time window, as depicted in
Fig. 1. Also, the analysis increment file (AmB.nc) is created
at the analysis time (e.g., = 0), while the background fore-
cast valid at —3 h (instead of O h) is employed from the pre-
vious cycle. Due to the availability of the first-guess file, the
IAU option is activated only from the second cycle, and the
model output interval is changed from 6 to 3 h for 6 h cycling.

MPAS-JEDI employs its own customized version of the
MPAS-A model, using a two-stream [/O (input/output) ap-
proach by default to run DA cycling more efficiently. The
two-stream (or split) I/O approach was originally developed
for DA cycling in a restart mode to avoid writing time-
invariant fields in every restart file while ensuring the model
forecasts are reproducible. In the restart mode, the MPAS-
A model produces a restart file with about 230 variables,
among which only ~ 70 variables vary with time, while the
rest of them are time-invariant. Note that these static fields
are not the same as those in the static file for the MPAS ini-
tialization because the MPAS static file only contains hori-
zontal fields, with no vertical dimension or coordinate. This
is because the MPAS initialization consists of two consecu-
tive steps — the first step for constructing the 1-D horizon-
tal mesh in the static file and the second for producing 2-D
fields based on the terrain-following height vertical coordi-
nate in the initial-condition file. By splitting the restart file
for the variables between time-variant and time-invariant, we
can cycle with a much smaller file containing time-variant
fields only, which is approximately 1/6 of the original size of
the restart file. We refer to the new I/O stream as “da_state”
in the MPAS-A model, as the file serves as both input and
output for DA cycling and can be updated by the analy-
sis process. In fact, this I/O stream can be used in a restart
mode regardless of DA or DA cycling. One caveat of the
split I/O approach is that the reproducibility might depend on
the model configuration (and potentially the version), mean-
ing that the variable list of da_state is not always applica-
ble to or guaranteed for all different namelist options for
MPAS-A. We had initially developed this new I/O stream
in the MPAS-A model based on version 6.1 and ensured
its bit-for-bit reproducibility. However, the MPAS—JEDI cy-
cling system is run in a cold-start mode, initializing all the
physics tendencies at the analysis time, so it only uses the
da_state stream as a shorter version of the model input and
output files, not to replace a restart file. At the time of writ-
ing, this new I/O stream is available only in MPAS-JEDI,
but it will be merged into the official version of the MPAS-
A model (https://github.com/MPAS-Dev/MPAS-Model, last
access: 21 May 2024) in the future.

The variational approach essentially linearizes the model
and constructs a static background (or forecast) error covari-
ance to find an analysis solution closest to observations iter-
atively (e.g., through a minimization process). Although the
static background error covariance only represents the cli-
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matological information (e.g., with no temporal variations),
it is a key component of variational data assimilation algo-
rithms, modeling the relationships between control variables
through physical transformation or balance operators as well
as spatial auto-correlations of each control variable to de-
termine how to propagate the observed information across
model grids and variables (Descombes et al., 2015). In this
study, we use a pure ensemble-variational (EnVar) approach
with zero static error covariance. For the minimization pro-
cess, we employ an incremental approach (e.g., minimizing
the cost function for increments) (Courtier et al., 1994). Fol-
lowing Liu et al. (2022), the ensemble background error co-
variance composed of 20-member 6 h MPAS forecasts ini-
tialized from the National Centers for Environmental Predic-
tion (NCEP) 20-member Global Ensemble Forecast System
(GEFS) ensemble analysis at each cycle. Due to the small
ensemble size, we also apply the distance-based correlation
function by Gaspari and Cohn (1999) using 1200 and 6 km
as full-width radii for horizontal and vertical covariance lo-
calization, respectively.

In the JEDI system, the Unified Forward Operator (UFO)
not only provides observation operators (named “HofX”) to
compute innovations (e.g., differences between observations
and the corresponding forecasts, O — F) for all different ob-
servation types but also handles all the data quality con-
trol (QC) filters, the data range or coverage area, data ma-
nipulation (such as data thinning or averaging onto model
levels), bias correction, and the specification of observation
errors (including observation uncertainties and error corre-
lations, if applicable). Due to various filters (or QCs) that
can be applied to observations, the UFO produces observa-
tion errors before and after the QCs, named “ObsError” and
“EffectiveErrors”, respectively. While ObsError indicates the
initial observation error values from the input observation
file, the actual observation errors applied to data assimila-
tion can be found in EffectiveErrors. When multiple filters
are applied to observations or observation operators (such
as data thinning or variable transformation), users can spec-
ify the order of filters through the YAML configuration files
(YAML is a human-readable data format; https://yaml.org,
last access: 27 December 2023). The default quality control
(called “PreQC”) rejects observations when the data QC flag
is larger than 3, as provided by input observation files (such
as GSI-ncdiag files used in this study). In the assimilation of
surface observations, for example, they are also discarded if
innovations exceed 3 times the standard deviation of the ob-
servation error (o,) or if the station height differs from the
model’s surface elevation by more than 200 m. In this study,
the height difference threshold is reduced to 100 m and the
surface pressure terrain height correction (called “SfcPCor-
rected”) uses the so-called Weather Research and Forecasting
Data Assimilation (WRFDA) method rather than the default
UK Met Office (UKMO) method (Ingleby, 2013). In our ini-
tial test (not shown), the difference between different height
correction methods was insignificant, but it would be worth

Geosci. Model Dev., 17, 4199-4211, 2024

S. Ha et al.: IAU in MPAS-JEDI 2.0.0

revisiting in the future, especially for regions with signifi-
cant orography. While the common functions or modules are
located under UFO in JEDI, most of these options are con-
trolled through YAML configurations in MPAS-Workflow.
An example for surface data assimilation is provided in Ap-
pendix A.

4 Experiments

After the new implementation of the IAU in MPAS v7, global
analysis and forecast cycling was conducted over a global
120 km quasi-uniform mesh every 6 h for 1 month, starting
from 15 April 2018, using MPAS-Workflow for the hybrid
3DEnVar in the MPAS-JEDI system. During the cycling, all
the conventional observations, satellite winds, and clear-sky
microwave radiances from six Advanced Microwave Sound-
ing Unit-A (AMSU-A) sensors aboard NOAA-15, NOAA-
18, NOAA-19, Aqua, Metop-A, and Metop-B were assimi-
lated together, using diagonal observation error covariances
and a pure ensemble background error covariance (computed
from GEFS), like in Guerrette et al. (2023b).

In the model simulation, a “mesoscale_reference” physics
suite is used that includes WSM6 (WRF single-moment 6-
class) microphysics, new Tiedtke cumulus, YSU PBL (Yon-
sei University planetary boundary layer), YSU gravity wave
drag over orography (GWDO), RRTMG SW and LW (Rapid
Radiative Transfer Model for general circulation models
shortwave and longwave), and Noah LSM (land surface
model) variables. Ozone climatology is activated, and radi-
ation effective radii for cloud water (g.), cloud ice (g;), and
snow (gs) are computed in the microphysics scheme (e.g.,
config_microp_re = true).

The 2-month-long cycling experiments are conducted with
and without the IAU, named AU and CTRL (control), re-
spectively. Figure 2 illustrates a comparison of the absolute
value of the surface pressure tendency (|dd}!:S |) as an area-
weighted global mean, in the background forecasts from the
analysis (shown at 0 on the x axis), valid at 00:00 UTC on
1 May 2018. Even after a 2-week spinup period, it shows
that the initial noise arising from the analysis increments is
very high in the control run (“CTRL” as a dashed line), but
the IAU effectively suppresses such noise throughout the 9 h
forecast. The asymptotic value is ~ 0.013 Pas~! for the 9h
forecast, which is comparable to ~ 0.01 Pa s~! for the 6h
forecast, as presented in Lynch and Huang (1992) in their
digital filter initialization (DFI) study. In Fig. 3, the hori-
zontal distribution reveals that noise from the initial state in
CTRL is widespread across the globe from the first time step,
whereas it almost disappears with TAU. It is noted that, in the
cycling with the IAU, the forecast starts from —3h, leading
to a different initial time for model integration compared to
the control run (which starts at the analysis time, i.e., Oh).
However, regardless of the actual initial time, our focus here
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Figure 2. Time series of the globally averaged absolute value of the
surface pressure tendency (|d Ps/d¢|) in the forecast from the anal-
ysis at 00:00 UTC on 1 May 2018 over the 120 km quasi-uniform
mesh.

is on comparing the deviation of the first time step from the
initial state.

In DA cycling, it is common to monitor the total number of
observations assimilated at each cycle. A time series with a
declining trend might be indicative of the analysis with poor
quality, rejecting more observations with cycles. As shown in
Fig. 4, positive differences (IAU — CTRL; red) indicate that
slightly more observations are assimilated with the IAU. The
difference is small compared to the total number of observa-
tions (as a gray line with the right y axis), but the IAU tends
to assimilate more observations in most cycles, another sign
of our successful implementation.

To examine the performance of cycling DA, Fig. 5 com-
pares observation minus the background (O — B) in (a) root
mean square (rms) errors and (b) mean errors over the globe
for each cycle. Note that O — B or (O —F) is computed for
6 h background forecasts in CTRL but for 9h forecasts in
the IAU run; both are at the same validation time. The rms
errors in IAU (dots on the red line) are slightly yet consis-
tently smaller than those in CTRL (4 symbols on the black
line) throughout the cycling period. In terms of mean er-
rors, however, the month-long average in surface pressure
is consistent at 20 Pa for both experiments. The time se-
ries illustrates that both rms and bias errors initially start
with large error magnitudes, but after about 1 week of cy-
cling, the errors tend to stabilize. While the global-mean
rms error in CTRL, averaged over all the cycles following
the 1-week spinup period, is ~ 1.2 hPa, IAU leads to an im-
provement in the forecast error by approximately 3 % (e.g.,
(CTRL —IAU) / CTRL x100 = —3 %).

In the sounding verification over the globe, the percent-
age difference of rms errors in IAU with respect to the one
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Figure 3. Horizontal distribution of dPs/d¢ simulated in the first
time step from the initial conditions in (a) the control run without
the IAU and (b) the IAU run.
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Figure 4. Time series of the difference in the total number of surface
pressure observations assimilated in CTRL and IAU (red) and the
total number of the observations available at each cycle (gray).

in CTRL for the entire cycling period also shows slight but
systematic improvements in the background forecasts, as de-
picted in Fig. 6. The impact on zonal wind is almost neutral,
but temperature forecasts near the surface (e.g., 1000 hPa)
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Figure 6. Percent difference of rms (O — B) in IAU with respect to
and (b) temperature (K).

are improved by 3.6 %, similar to the improvement in sur-
face pressure. The moisture verification for the 6 h forecast
is provided in the Supplement.

We also run 5d forecasts from the 00:00 UTC analysis
every day and compute forecast errors with respect to the
Global Forecast System (GFS) analysis. Figure 7 displays
rms errors in CTRL for 5d forecasts on the x axis across
latitudes (on the y axis) on the right, while the relative differ-
ences in rms errors in IAU (%) are depicted on the right (b),
with red indicating degradation and blue implying forecast
improvements over the baseline (CTRL). Statistical signifi-
cance is denoted by light circles at the 95 % confidence level.
Compared to the GFS analysis, MPAS forecasts in CTRL ex-
hibit the largest (or the fastest) error growth in the Southern
Hemisphere. Forecasts in the IAU run, on the other hand,
tend to reduce errors in the tropics while increasing errors
near the North Pole region. This aligns with the findings
of Ha et al. (2017), where forecast errors were significantly
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reduced over the tropics in a variable-resolution mesh, in-
cluding both resolution-transition and high-resolution parts.
Because the IAU is implemented on the model’s unstruc-
tured mesh (which is in a random order), it is not associ-
ated with particular geographic locations or mesh configura-
tions. Given its time-filtering feature, the IAU might be more
effective in simulating low-frequency modes dominant over
the tropics. It is also noted that the impact of the AU may
be nonlinearly intertwined with model errors in data-sparse
regions, such as the poles. However, model errors are not ac-
counted for in the hybrid 3DEnVar system used in this study.
Additional area-specific features in the verification are pro-
vided in the Supplement. As the GFS analysis also suffers
from its own errors (Bhargava et al., 2018), the forecast ver-
ification against the analysis is not intended for a thorough
investigation of the model performance. It rather serves to
introduce post-processing capabilities in both model and ob-
servation spaces provided by MPAS-Workflow.
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The overall results from the cycling experiments are
promising, showing the reliability throughout the month-
long period. We can examine the impact of the IAU option
through more extensive diagnostics against other observation
types and variables and through the evaluation of longer fore-
casts in the future. As a proof of concept, only 3DIAU on a
120 km global mesh was tested here, but it was implemented
in a way to make it extensible with different weighting func-
tions or even to 4DIAU in the MPAS model. Also, it is appli-
cable to variable-resolution meshes in case one would want
to examine the impact of the IAU over the area with mesh
refinement.

5 Conclusions

This study introduces the incremental analysis update (IAU)
implemented in the MPAS—-JEDI cycling system operated by
MPAS-Workflow. Through a real case study for 1 month,
starting from mid-April 2018, assimilating all conventional,
aircraft, and satellite radiance observations, we demonstrate
that the IAU is successfully implemented on the model’s un-
structured mesh, effectively suppressing the artificial noise
produced by initial imbalances during the analysis pro-
cess. Although the current implementation is a simple three-
dimensional IAU (3DIAU) with the same fractional forcing
applied to each time step, there are several aspects that might
be worth pointing out in regards to our development effort
in MPAS-JEDI. (i) Computational stability and efficiency
might be critical to any numerical weather prediction (NWP)
models, but special attention was taken regarding the MPAS-
A model which solves the compressible nonhydrostatic equa-
tions employing an unstructured mesh based on centroidal
Voronoi tessellations. In the model integration, a time step
is set based on the smallest grid spacing of a given unstruc-
tured mesh and is then uniformly applied across the entire
mesh (e.g., regardless of the nominal grid spacing of indi-
vidual grid cells). To ensure numerical stability even for the
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unstructured mesh applications, various filtering techniques
are carefully designed and applied to the model numerics
(Klemp et al., 2007, 2018). Aside from the modeling ap-
proach, the IAU is considered another efficient way to control
high-frequency oscillations produced by the analysis proce-
dure so that energy does not accumulate in the acoustic or
unbalanced gravity wave modes through cycles due to the
initialization. (ii) The MPAS-A model treats prognostic vari-
ables in the flux form, meaning that the variables are cou-
pled with dry-air density. Because the density is also updated
as part of the analysis variables, analysis increments in the
IAU forcing term should also be computed in the tendency
form of each analysis variable recoupled with the updated
density. During our implementation, the IAU module is cor-
rected to properly represent changes in the density from the
analysis. (iii) Analysis increments in MPAS-JEDI are basi-
cally computed from the linearized version of the hydrostatic
balance equation that is vertically integrated from the an-
alyzed surface pressure. Horizontally, MPAS—-JEDI updates
all the analysis variables in the model’s native (e.g., unstruc-
tured) mesh, but vertically the MPAS-A height coordinate
is mapped to the hydrostatic pressure coordinate for the in-
crements based on the surface pressure analysis. A global
120 km mesh employed for our cycling experiments demon-
strates our technical implementation of the IAU capability in
MPAS-JEDI. As we move towards convective-scale data as-
similation with unconventional observations such as radars
or lidars, however, it would be worth revisiting the influence
of the IAU on either variable- or higher-resolution mesh, in
conjunction with various DA techniques available in MPAS—
JEDL

Appendix A: Cycling with MPAS-Workflow

MPAS-JEDI is an interface between the MPAS-A model
and the JEDI data assimilation system, including all the
model-specific components such as variable transformation

Geosci. Model Dev., 17, 4199-4211, 2024



4208

and HofX, which computes analysis increments in the MPAS
variables. To cycle MPAS—JEDI over a period of time in
a synthetic way, MPAS-Workflow controls the entire data
stream as well as all the configurations for data assimilation
and model forecasts. As the [AU changes the input/output file
stream and the model configuration, they are all accounted
for in MPAS-Workflow (mostly through various YAML con-
figurations).

MPAS-Workflow offers high flexibility for a number of
applications such as data assimilation with 3DVar, pure
3/4DEnVar, hybrid 3DEnVar with dual resolution, ensem-
ble data assimilation, and more recently the local ensemble
transform Kalman filter (LETKF) algorithm in MPAS—JEDI.
In addition, it can generate observations in the IODA format,
the GFS analyses in MPAS initial-condition format, and free
deterministic forecasts from the GFS analyses using specific
Cylc suites (no cycling). Observations and GFS analyses can
be obtained from the NCAR Research Data Archive (RDA)
or the NCEP FTP server. With all of these capabilities, it has
been tested for near-real-time cycling runs using the 3DVar
algorithm.

At the time of writing, MPAS-Workflow does not
build either MPAS or JEDI, which should be built
separately after downloading the source codes from
https://github.com/JCSDA/mpas-bundle/tree/release/2.0.0
(last access: 2 August 2023); mpas-bundle is built us-
ing cmake, a set of CMake macros provided by the
European Centre for Medium-Range Weather Fore-
casts (ECMWF), along with their libraries. For the
installation guide for those tools, readers can refer to
https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/inside/developer_tools/
cmake.html (last access: 2 August 2023). Once built, the
path should be specified in initialize/framework/Build.py in
MPAS-Workflow.

To run a cycling experiment with the IAU, all users need to
do is edit a single YAML file. Each section controls the spe-
cific configuration to build up the YAML file of the MPAS—
JEDI application (i.e., pure 3DEnVar) and other components
of the workflow to construct the Cylc suite that will orches-
trate the cycling experiment. For the IAU, a new logical pa-
rameter has to be added in a new line as “IAU: True”. Here
is the configuration employed this study.

<MPAS-Workflow/scenarios/3denvar_OIE120km_
WarmStart_IAU.yaml>

workflow:

first cycle point: 20180414T18

final cycle point: 20180510T00

experiment:

suffix: “_IAU”

observations:

resource: PANDACATrchive

members:

n: 1

model:
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outerMesh: 120 km

innerMesh: 120 km

ensembleMesh: 120 km

firstbackground:

resource: “PANDAC.GFS”

externalanalyses:

resource: “GFS.PANDAC”

variational:

DAType: 3denvar

ensemble:

forecasts:

resource: “PANDAC.GEFS”

forecast:

IAU: True

The YAML file used to run MPAS-JEDI with
3DEnVar is built by adding the observers snip-
pets to the application sections (see MPAS-
Workflow/config/jedi/applications/3denvar.yaml). Here
we also provide two more sample YAML configurations
used in this study for assimilating surface observations.

(1) MPAS-Workflow/config/jedi/ObsPlugs/da/filters/sfc.yaml
(The following is for the data QC flag.)

obs filters:

— filter: PreQC
maxvalue: 3 # Maximum data QC flag

— filter: Difference Check

reference: MetaData/stationElevation value: Geo-
VaLs/surface_altitude

threshold: 100.0 # default: 200.

— filter: Background Check
threshold: 3.0

(2) MPAS-Workflow/config/jedi/ObsPlugs/da/base/sfc.yaml
(The following are options for an observation operator
for surface observations.)

— obs space:
name: SfcPCorrected
_obsdatain: &ObsDataln
engine:
type: H5File
obsfile: InDBDir/sfc_obs_thisValidDate.h5
_obsdataout: &ObsDataOut
engine:
type: H5File
obsfile: OutDBDirMemberDir/obsPre-
fix_sfcObsOutSuffix.hS
obsdatain: *ObsDataln
ObsDataOut
simulated variables: [stationPressure]
obs error: *ObsErrorDiagonal
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obs operator:

name: SfcPCorrected

da_psfc_scheme: WRFDA # default: UKMO
linear obs operator:

name: Identity

observation alias file: obsop_name_map.yaml

Appendix B: Linearized equations for incremental
variable transformations

As described in Sect. 2, MPAS-JEDI first computes the
analysis through the iterative minimization procedure and
then converts the increments in the analysis variables to
the model’s prognostic fields. Based on Eq. (5), the incre-
ments in the water vapor mixing ratio are computed as 8q5 =
ssk /(1= $%)2 at each model level k. Then, the increments in
virtual temperature (8 Tvk) and pressure (8 P*) are derived us-
ing the first derivative as follows:

8T* = 5T (140.608¢%) +0.608 - 8q% - T, (B1)
B (Zk—Zk_l)
Pk = sPhlxp(— S =
Xl x
k _ k=1 k_ k=1
+Pk_1exp{_g(z zk ), 8(z 22 )STVk’ (B2)
R4Ty R4T¥

where Ry is the gas constant for dry air. With P® = P, and
0=z (e.g., terrain height) at the lowest level (k = 1), the
equations are applied to each model level upward from the
surface.

The increments in dry-air density (§,0q4) and potential tem-
perature (660) are also derived at each level through the lin-
earized formulas below. (As all the variables are computed at
the same level of k, we omit the superscript k.)

904 dpd dpd
Spq &~ — P+ — 5Ty + —-
pd +0p0d ,0d~l-aP +8Tv V+3qv
P 1
~ + -8P
Ra Ty (1+gy) RaTy (1+¢qy)
P P
_ < STy — >
RaTv* (14+¢qy) RaTy (1+gy)
00 00

0+60~0+— 6T +— 6P
+ +8T +8P

Rq Rg
Py\ T P\ T
~T(22) 7 £ (22) 77 sT
P P
Rg
RaT (Py\Cr
_ I 0T sp
C,P\ P
Here, the first term on the right-hand side (RHS) is replaced

with the background, and the full fields (e.g., variables with-
out § in front of them) represent the prior states as well.

dqy

-8qy
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Code and data availability. The exact version of MPAS-JEDI,
including its Python-based post-processing package, is archived on
Zenodo (https://doi.org/10.5281/zenodo.10433668; MPAS-JEDI-
Team, 2023) and can be also accessed via the project website
(https://github.com/JCSDA/mpas-bundle/tree/release/2.0.0,  last
access: 2 August 2023). The current version of MPAS-Workflow
that provides all the scripts and configurations to run cycling
experiments detailed in this study is archived on Zenodo
(https://doi.org/10.5281/zenodo.10433323; Guerrette et al., 2023a)
and is also available at https://github.com/NCAR/MPAS-Workflow
(last access: 2 August 2023). General information about
the JEDI system can be found on the project website
(https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/overview/index.html, University
Corporation for Atmospheric Research, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-4199-2024-supplement.
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