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Abstract. Tropospheric ozone time series consist of the ef-
fects of various scales of motion, from meso-scales to large
timescales, which are often challenging for global models
to capture. This study uses two global datasets, namely the
reanalysis and the daily forecast of the Copernicus Atmo-
sphere Monitoring Service (CAMS), to assess the capability
of these products in presenting ozone’s features on regional
scales. We obtained 16 relevant meteorological and several
pollutant species, such as O3, CO, NO,, etc., from CAMS.
Furthermore, we employed a comprehensive set of in situ
measurements of ozone at 27 urban stations in Iran for the
year 2020. We decomposed the time series into three spec-
tral components, i.e., short (§), medium (M), and long (L)
terms. To cope with the scaling issue between the measured
data and the CAMS’ products, we developed a downscaling
approach based on a long short-term memory (LSTM) neu-
ral network method which, apart from modeled ozone, also
assimilated meteorological quantities as well as lagged O3
observations. Results show the benefit of applying the LSTM
method instead of using the original CAMS products for pro-
viding O3 over Iran. It is found that lagged O3 observation
has a larger contribution than other predictors in improving
the LSTM. Compared with the S, the M component shows
more associations with observations, e.g., correlation coeffi-
cients larger than 0.7 for the S and about 0.95 for the M in
both models. The performance of the models varies across
cities; for example, the highest error is for areas with high
emissions of O3 precursors. The robustness of the results is
confirmed by performing an additional downscaling method.
This study demonstrates that coarse-scale global model data,
such as CAMS, need to be downscaled for regulatory pur-
poses or policy applications at local scales. Our method can

be useful not only for the evaluation but also for the predic-
tion of other chemical species, such as aerosols.

1 Introduction

Near-surface ozone (O3) is a secondary air pollutant that de-
teriorates human health and plants via damaging respiratory
systems (Bell et al., 2006; Fowler et al., 2009; Mills et al.,
2011; Malley et al., 2015; Pozzer et al., 2023). Exposure
to high concentrations of air pollution, especially O3, leads
to premature death, in particular for people suffering from
asthma. Many efforts have been made to study ozone and
its precursors in Iran, which suffers from severe ambient air
pollution (Lelieveld et al., 2009; Bidokhti et al., 2016; Faridi
et al., 2018; Yousefian et al., 2020). As an example, Hadei
et al. (2017) reported a total of 1363 premature deaths at-
tributed to O3 in Tehran within 3 years (2013-2016). Long-
term exposure to ambient O3 is responsible for 173 deaths
from respiratory disease in Ahvaz in 2012 (Goudarzi et al.,
2015).

Ozone is either transported naturally from the stratosphere
or produced in situ by photochemical oxidation of ozone’s
precursor gases such as nitrogen oxides (NO, ), non-methane
volatile organic compounds (NMVOCs), methane (CHy), or
carbon monoxide (CO) in the presence of sunlight (Crutzen,
1974; Monks et al., 2015; Cooper et al., 2014). The ozone
levels are not only a function of its precursor’s emissions but
also of meteorological conditions that influence the evolu-
tion of emissions, depositions, and photochemical products
(Bloomer et al., 2009; Li et al., 2020). It has been shown
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that not only local emissions and winds but also synoptic
conditions control the ozone levels over Iran (Borhani et
al., 2021; Zohdirad et al., 2022; Jafari Hombari and Pazhoh,
2022). Several synoptic systems, which cause the high levels
of ozone over Tehran, have been recognized and classified in
studies by Khansalari et al. (2020) and Lashkari et al. (2020).

Reanalysis data provide a global picture of past weather
and climate. These data are constructed by combining atmo-
spheric observations such as satellites, radar, and in situ mea-
surements with a detailed simulation of the atmosphere, us-
ing data assimilation techniques. Reanalysis data have been
widely used as an initial condition for the daily forecast of
the atmosphere or boundary conditions in regional models,
for the study of climate change, and as proxies to comple-
ment insufficient in situ measurements. In recent years, the
Copernicus Atmosphere Monitoring Service (CAMS) has
been mainly developed to assimilate observations of chem-
ical compositions to provide analyses of tropospheric ozone
and aerosol concentrations, but it also holds outputs for sev-
eral meteorological variables (Innes et al., 2019). Several
studies have evaluated CAMS reanalysis (hereafter CAM-
SRA) products and compared them with other reanalysis
datasets and a control run (without assimilation of atmo-
spheric composition). As an example, an intercomparison of
tropospheric ozone from seven reanalysis datasets in East
Asia has reported that CAMSRA depicts more reasonable
spatial-temporal variability than other datasets (Park et al.,
2020). They also show the suitability of CAMSRA for the
study of local tropospheric ozone on seasonal to interan-
nual timescales but the inadequacy of that to study long-term
trends. Results of the study by Huijnen et al. (2020) reveal the
ability of CAMSRA to reproduce background O3 in terms of
mean and variability on various timescales such as synoptic,
seasonal, etc. Several studies mention that the performance
of CAMSRA differs depending on the region (Wang et al.,
2020; Wagner et al., 2021). For instance, it has been shown
that there is more agreement between CAMSRA and obser-
vations over Europe than in the tropics (Errera et al., 2021).
CAMS also provides daily forecasts (hereafter CAMSFC),
which have a finer horizontal resolution and a larger number
of vertical model levels than CAMSRA. System upgrades
and verifications of CAMSFC are reported in several stud-
ies (Schulz et al., 2021; Eskes et al., 2021). A recent vali-
dation based on various observations shows that, in terms of
bias, CAMSFC overestimates surface ozone values at most
of the stations (Sudarchikova et al., 2021). However, it shows
significant correlations across most of the stations, e.g., in
China.

Despite many evaluation studies of CAMSRA and
CAMSEFC in different parts of the globe, less attention has
been given so far to Iran, which is a country with a com-
plex topography and diverse meteorological systems that
contribute to the ozone levels in this area. This study aims
to address two questions: (1) how are the performances of
CAMSRA and CAMSEFC in simulating ozone over this re-
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gion? (2) To what extent can downscaled CAMS datasets be
used to study surface ozone at a city scale? To compensate
for the limited spatial resolutions of the models, we down-
scale the CAMS ozone using the long short-term memory
(LSTM) technique. The data are compared with the mea-
sured ozone data at 27 air quality monitoring stations dis-
tributed over different parts of the country. That allows us to
assess the CAMS over diverse zones, e.g., a highly populous
and polluted area vs. a small and desert-like town.

A detailed description of the datasets used in this study is
presented in Sect. 2. The methodology is explained in Sect. 3,
and the results are shown in Sect. 4. The discussion is pre-
sented in Sect. 5, and the paper ends with the conclusion’s
remarks in Sect. 6.

2 Description of data
2.1 CAMS products

This study uses two data products, namely CAMSRA and
CAMSEC, that have been produced by the ECMWF in the
framework of the CAMS. These datasets focusing on sur-
face ozone are introduced in the following subsections. An
overview of the main differences and similarities between
both products is given in Table 1. For more details on other
aspects, the reader is referred to the references.

2.1.1 CAMS reanalysis

CAMS reanalysis (CAMSRA) is the latest (state-of-the-art)
global CAMS reanalysis dataset of atmospheric composi-
tions. They are produced using a four-dimensional varia-
tional (4D-Var) scheme as an assimilation technique. The
chemistry module of the CAMS relies on the IFS (CBO0S5)
tropospheric chemistry mechanism with 52 species and 130
reactions (Huijnen et al., 2010; Flemming et al., 2015; Huij-
nen et al., 2020). Dry deposition velocities are derived from
the SUMO model (Michou et al., 2004). Anthropogenic
emissions are based on the MACCity inventory (Granier
et al., 2011), with modified wintertime CO emissions over
North America and Europe (Stein et al., 2014). Monthly
mean biogenic volatile organic compound (VOC) emissions
are derived offline from MEGAN (Guenther et al., 20006),
using NASA’s Modern-Era Retrospective Analysis for Re-
search and Applications (MERRA) reanalyzed meteorolog-
ical fields (Sindelarova et al., 2014). Daily biomass-burning
emissions originating from the Global Fire Assimilation Sys-
tem, version 1.2 (GFASv1.2; Kaiser et al., 2012) are inferred
from satellite observations of fire activities. The meteorologi-
cal model consists of the given version of the Integrated Fore-
cast System (IFS), i.e., CY42R1, with an interactive ozone
and aerosol radiation scheme. Compared with the previous
atmospheric chemistry CAMS reanalysis data, CAMSRA
has a finer horizontal resolution of 80km with 60 vertical
model levels, with the top level at 0.1 hPa. CAMSRA cov-
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Table 1. An overview of similarities and differences between the CAMSRA and CAMSFC datasets used in this study.

Name (references)

CAMSRA (Innes et al., 2019)

CAMSEFC (Basart et al., 2019; Haiden
et al., 2019; Sudarchikova et al., 2021)

Temporal coverage 2003-2021

2015 to present

Assimilation system

IES cycle 42r1 4D-Var

IFS cycle 46rl (implemented on

9 July 2019)
IFS cycle 47r1 (implemented on
6 October 2020)

Horizontal resolution 0.75° x 0.75° (T255) 0.4° x 0.4° (T511)

Vertical resolution L60 up to 0.1 hPa L137 up to 0.01 hPa

Temporal resolution (output frequency) 3 hourly 1 hourly (surface level),
3 hourly (multi-level)

Anthropogenic emissions MACCity CAMS_GLOB_ANT v2.1 (cy46rl)
CAMS_GLOB_ANT v4.2 (cy47r1)

Biomass-burning emissions GFASv1.2 GFASvV1.2 (cy4é6rl)
GFASv1.4 (cy47rl)

Biogenic emissions MEGAN CAMS_GLOB_BIO v1.1

Chemistry modules Modified CB05 Modified CB0S5 with a few upgrades
such as dry deposition velocity, cou-
pling with aerosol scheme, etc.

Input meteorological observations Asin ERAS Asin ERAS

ers data for the period of January 2003 to December 2021.
The data are archived in 3-hourly time intervals. Hereafter,
the ozone from this dataset is called O3RA.

2.1.2 CAMS forecast

In addition to the aforementioned datasets, CAMS forecast
(CAMSEC) issues (and produces) a daily global forecast
of atmospheric compositions twice a day, which is initial-
ized from analysis at 00:00 and 12:00 UTC. The forecast
consists of more than 50 chemical and 7 different aerosols,
providing also several meteorological parameters. Compared
with CAMSRA, in CAMSFC the initial conditions of each
forecast are obtained from analysis of atmospheric composi-
tion in near-real time, i.e., combining the previous forecasts
with satellite observations using the 4D-VAR data assimi-
lation technique. CAMSFC uses an atmospheric model to
determine the evolution of the concentration of all species
over time for the next 5d. Apart from the required ini-
tial state, it also uses inventory-based or observation-based
emission estimates as boundary conditions at the surface.
Biogenic emissions originate from CAMS-GLOB-BIO v1.1,
which is calculated from the MEGAN v2.1 model using
ERA-Interim meteorology (Sindelarova et al., 2022). The
monthly average of anthropogenic emissions is derived from
the CAMS_GLOB_ANT v2.1 inventory based on a combi-
nation of EDGAR v4.3.2x and CEDS emissions (Granier et
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al., 2019). Biomass-burning emissions are based on GFAS.
Dry depositions of trace gases are calculated online. Sul-
fur species, nitrate, and ammonium are coupled between
chemistry and aerosol schemes. In contrast to CAMSRA,
CAMSEC is available at a finer horizontal resolution of
40km. CAMSFC is upgraded regularly, e.g., once a year,
during which the model’s resolution can change or new
species can be added. From 9 July 2019 onwards, CAMSFC
uses the assimilation system’s IFS CY46R1, in which the
vertical model levels have been upgraded from 60 to 137.
Details of other upgrades to this system can be found in
Haiden et al. (2019) and Basart et al. (2019). IFS CY47R1
was used on 6 October 2020, with some upgrades in observa-
tions, emissions, and model changes (Eskes et al., 2021; Su-
darchikova et al., 2021). The temporal coverage of CAMSFC
is from 2015 to the present, with temporal resolutions of 1
hourly (only for surface fields) and 3 hourly. This study uses
3-hourly forecast fields from 00:00 UTC up to 24 h. Here-
after, the ozone from this dataset is called OEC.

2.2 In situ measurement datasets

Surface-based measurements of ozone were extracted from
the Tehran air quality control portal, which is publicly avail-
able, for 21 stations. A couple of the stations contain no
data records, and the data sparsity at the stations differs from
year to year. Hourly time series of surface ozone for other
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cities are not accessible to the public and were obtained from
the Iranian Environmental Protection Organization for 54 air
quality monitoring stations. We added the Geophysics sta-
tion, which is located at the Geophysics Institute, University
of Tehran, in Tehran. This station measures surface ozone
along with several other variables such as air temperature,
nitrogen oxide, wind, total ozone column, etc. Most of the
air quality monitoring stations in Iran are installed in the
cities, as they are aimed for the public health report. There
is no information about stations’ type or availability of the
data at background sites. To have a common quality, the va-
lidity of the data was checked by performing a few statis-
tical tests, such as (1) range test: verifies if the values are
within the acceptable range limits (Zahumensky, 2004; Tay-
lor and Loescher, 2013); (2) constant value test: checks the
required variability among successive values (Zahumensky,
2004); and (3) discontinuity test: identifies suspicious data
points before and ahead of the discontinuities (Zurbenko et
al., 1996; Gerharz et al., 2011). We use the stations con-
taining data for the year 2020, where more than 50 % of
the data are available for each month. Table Al lists the
names and geographical locations of the stations, of which
the first 22 are ordered based on the stations’ latitudes. In
Table A1, there is a number along with the stations’ names,
and hereafter the stations are referred to using these num-
bers. To include more stations in the analysis, we consider
five more stations in Table Al, i.e., from 23 to 27, for which
only 1 or 2 months of 2020 contain less than 50 % of data
(see Fig. Al). The distribution of the stations is shown in
Fig. 1, which covers three large cities (Tehran, Shiraz, and
Tabriz) and six small cities (Birjand, Gilan, Hamedan, Zan-
jan, Markazi, and Yazd). Hereafter, the observation datasets
and observed ozone time series are called OBS and O?BS,
respectively.

Both reanalysis and forecast datasets were co-located with
OBS through temporal and spatial interpolations. OBS data
are available in hourly resolution, in contrast to the CAMS
datasets that are available in 3-hourly intervals. To match
the frequency of the CAMS outputs with OBS, 3-hourly ob-
served values are considered in such a way that at least two
hourly values are available; otherwise, it renders the value as
missing.

3 Methodology

This section is divided into three sections. Section 3.1 de-
tails the theory of decompositions and the method used in
this study. Section 3.2 describes the procedure for neural
network modeling and the pre-processing of its input. Sec-
tion 3.3 defines the metrics (indicators) that are used to assess
the CAMS performance and error sources.
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Figure 1. Geographical location and distribution of the measured
air quality stations used in this study. The purple-boxed areas corre-
spond to the locations of the cities. Here the stations are represented
with a number, whereas details on the name and geographical coor-
dinates of the stations are given in Table A1l. The arrows refer to the
stations, which are overlaid on the city maps of Tabriz, Tehran, and
Shiraz (Fars).

3.1 Spectral decomposition of the time series

The presence of various scales of motion, which are caused
by several physical and chemical processes, in the time se-
ries of O3 can complicate the analysis and interpretation of
data. As an example, short-term and fast fluctuations in the
O3 time series are majorly attributed to chemical processes
such as NO titration, whereas long-term and seasonal varia-
tions are mainly related to solar radiation, long-range trans-
port, and stratosphere—troposphere exchange (Monks, 2000).
Scale analysis is a method by which the time series can be
separated into different temporal terms. Here, the time se-
ries of O3 is decomposed into three different spectral com-
ponents, namely short (period less than 2d), medium (pe-
riod of 2-21 d), and long (period longer than 21 d) terms, by
applying the Kolmogorov—Zurbenko (KZ) technique (Rao et
al., 1997). The KZ technique is essentially a low-pass filter
that consists of repeated moving averages. Its use has been
demonstrated in earlier studies (Hogrefe et al., 2000; Kang
et al., 2013; Seo et al., 2014). A detailed discussion of the
KZ filter along with a comparison with other separation tech-
niques can be found in Eskridge et al. (1997) and Loneck and
Zurbenko (2020). The KZ technique requires two input pa-
rameters, KZ (m and k), where m is the window size for fil-
tering and k is the number of iterations. Since the values that
have been commonly used for m and k in the literature may
not be applicable for 3-hourly data, we selected them based
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on the criteria suggested in Yang and Zurbenko (2010):
m x vk <p. ey
The KZ technique filters out all periods that are less than p,

i.e., the number of filtered time intervals. Therefore, three
components of interest in this study are estimated as follows:

S=0—-KZ@5,5) )
M =KZ(5,5) — KZ(35,5) 3)
L =KZ(35,5), 4

where O refers to the original time series and S, M, and L in-
dicate the short, medium, and long terms, respectively. Here,
the units of O and the spectral terms are in nmolmol~!.
As expected from Eq. (1), KZ(5, 5) filters all periods less
than 11.2 time steps. This corresponds to 33.54h, or 1.4d,
as the data are recorded at intervals of 3 h. The same holds
for KZ(35, 5), which filters all periods less than 9.8 d. Hence,
the S refers to the short-scale fluctuations, which are done in
less than 1.4 d. Similarly, M refers to synoptic-scale events
with timescales ranging from 1.4 to 9.8 d. The variations with
timescales of more than 9.8 d are represented in the L term.

3.2 Statistical downscaling

To bridge the spatial scaling issue between coarse resolu-
tion CAMS datasets and local-scale measured data, statisti-
cal downscaling (SD) methods have been developed (Wilby
and Wigley, 1997). SD refers to the use of statistical-based
techniques to determine a relationship between global-scale
models’ outputs and observed small-scale (local) variables
(Wilby et al., 2004; Wilby and Dawson, 2013). There are
numerous SD methods, such as linear regression (Sachin-
dra et al., 2013; Beecham et al., 2014), stochastic weather
generators (Wilks, 1999; Kilsby et al., 2007; Semenov and
Stratonovitch, 2010), and artificial neural networks (Tripathi
et al., 2006; Ahmed et al., 2015; Sachindra et al., 2018; Seb-
bar et al., 2023), to name a few. In this study, a deep learn-
ing method known as the LSTM network was used to ana-
lyze the complex relationship between O3 and its precursors.
LSTM is a modified version of a recurrent neural network de-
signed to handle long-term (and short-term) dependencies in
sequential data (Hochreiter and Schmidhuber, 1997). LSTM
contains memory cells that can hold (and store) information
for a long time, thus making them suitable for time series
analysis. The standard LSTM consists of three gates: input,
forget, and output gates for controlling the movement of in-
formation. We use Keras, a high-level neural network Python
library (“Keras: the Python Deep Learning library”; Chol-
let et al., 2015; https://keras.io, last access: 15 May 2014)
to build and train the LSTM model. This model requires a
specific configuration and tuning to work effectively with the
datasets. A range of control values for several hyperparame-
ters (Table A2) were tested by multiple trial-and-error tests.
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The most effective hyperparameters (Table AS5) were selected
using the random search optimization method.

To prepare the LSTM inputs, several meteorological vari-
ables (Table A3) were obtained from the CAMSRA and
CAMSEFC datasets. To prevent overfitting of the model, a
cross-validation LASSO regression was performed to iden-
tify the potential predictors at each station. The lagged O3
(from OBS) was also considered as one of the model inputs,
since the concentration of O3 is not only affected by mete-
orological factors but also by the influence of the O3 levels
in the past. A partial autocorrection function was utilized to
estimate the correlation between observed O3 at time 7' and
earlier time steps. For most of the stations, the autocorrela-
tion coefficients decrease after a time lag of 24 h within a
confidence interval of 95 %. So, the OgBS at times T-1,...,
and T-8, were also considered predictors at each station. Se-
lected predictors and observed O3 were decomposed using
Egs. (2)—(4).

In order to provide the final output, i.e., downscaled
O3, the LSTM architecture was trained on the decomposed
datasets. The data records were divided into 65 % for the
training subset and 35 % for the validation subset. The best
model was chosen based on the R? (coefficient of determina-
tion) score and mean square error (MSE). The selected model
was applied to all data records to provide a downscaled out-
put. All these procedures were applied to each station sepa-
rately and are illustrated in Fig. 2.

3.3 Model evaluation

We use the mean square error (MSE) as a metric to evaluate
the models’ performance. The MSE is defined as the squared
mean of the difference between modeled (x,,) and observed
(xo) variables.

This metric can be modified to include all relevant model
evaluation indicators, i.e., bias, variance, and correlation, as
(Murphy, 1988; Solazzo and Galmarini, 2016)

MSE = (Fm — %0)? + (om —ra0)> + a2(1 —r?), Q)

where oy, and o, refer to the standard deviation of the mod-
eled and observed data, respectively, and r is the coefficient
of correlation between the observed and assimilated datasets.
In Eq. (5), the first term (hereafter E1) shows the deviation
between average modeled (X,) and measured (x,) datasets
and refers to the model accuracy. The second term (here-
after E2) contains the variance error, i.e., the discrepancy
in amplitude or phase between the variability in the mod-
eled and observed values, that determines the precision of
the model. Also, the third part (hereafter E3) refers to unsys-
tematic errors related to the associativity between observed
and assimilated datasets. In other words, the E2 indicates an
explained error, which reveals the variance error arising from
the variability in the modeled variables that are not observed
in measurements. That could arise from overfitting associ-
ated with complex chemical processes in the model or im-
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Figure 2. A schematic of the downscaling processes: (a) input data retrieval, (b) decomposition and prescreening, (¢) LSTM modeling, and

(d) downscaled datasets.

balance among coupled components. The E3 represents an
unexplained error, reflecting the lack of observed variabil-
ity in the modeled data. That refers to the variabilities which
are not captured by the models, even though those variabili-
ties exist in the observations. The E3 can arise from random
and non-representative errors caused by sub-scales and non-
resolvable processes in the observations, or from a deficiency
in the model in capturing meso-scale phenomena. Due to the
spectral decomposition of the data, the S and M components
have zero mean fluctuations. Hence, the E1 term in Eq. (5) is
zero, and only the E2 and E3 terms are analyzed below.

To compare the distribution of error in modeled O3 before
and after downscaling, the skill score (SS) is calculated as
(Wilks, 2006)

MSE

SS=1- .
MSE; .t

Q)

Here, MSE,.f and MSE refer to the MSE of O (or O5©) and
downscaled O3 (OgD), respectively. The value of SS varies
between 0 and 1. The value is zero once there is no preference
in OgD with respect to Ol_;A (or Ogc), i.e., the O3 variability is
not explained by selected predictors. The value of SS is one
when the MSE of O§D is zero, which means the whole O3
variability in the LSTM model is explained by the predictors,
i.e., the LSTM model is perfect.
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4 Results
4.1 Spectral components

The time series of O3 and all meteorological variables for
OBS and CAMS datasets decompose into three spectral com-
ponents, short (), medium (M), and long (L), by applying
the method (KZ filter) explained in Sect. 3.1. Figure 3 shows
the original time series of O3OBS, O§A, and OI;C, as well as
their estimated spectral components at the first station. To
clearly see the signals, we only show part of the time series,
here for the summer months (June, July, and August: JJA).
Looking at the original 3-hourly time series (Fig. 3a), both
CAMS datasets overestimate and underestimate ozone dur-
ing different periods, but it is difficult to determine any clear
patterns or identify specific reasons for the model bias. The S
component contains frequent fast oscillations occurring ev-
ery day with regular maxima and minima (see Fig. 3b). In
this figure, the amplitude of the S oscillations of the Ol;A
and OI;C is different from that in OBS, indicating differences
in the diurnal cycle of observed and simulated ozone mixing
ratios. The M term captures variability on the timescale of
synoptic systems. Some episodic events are more visible in
the M component than in the S component. For instance, in
Fig. 3c, the M component of the OBS represents a clear sig-
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Figure 3. Different spectral components: (a) original time series,
(b) short (S), (¢) medium (M), and (d) long (L) term of O?BS
(black), ORA (red), and OC (blue) at station 1. The vertical axis

in all panels shows the ozone mixing ratio (in nmol mol ).

nal of an episodic event in the middle of June. This episode
is not well captured in CAMSRA, whereas it is captured in
CAMSEC. It seems that for most of the periods, the vari-
ations in the M component in both CAMS datasets are in
good agreement with those in OBS, while the amplitudes of
oscillations in CAMS do not correspond well with those in
OBS. The underestimation and overestimation of the ampli-
tude (with respect to observations) in CAMSFC is less than
that in CAMSRA. Compared with the S and M terms, which
oscillate around zero, the mean values of the L components
are not zero (see Fig. 3d). The L represents variations in the
ozone mixing ratios on seasonal, semi-seasonal, and multian-
nual timescales. Comparing the variations in CAMSRA and
CAMSEFC with OBS for L shows more similarity between
CAMSEFC and OBS than between CAMSRA and OBS. Both
models exhibit a high bias with respect to the ozone mixing
ratios. Nevertheless, the decomposition of the L component
is not reliable due to the limited period (1 year) of the avail-
able data, so hereafter we only assess the S and M compo-
nents.

4.2 Variable selections

The time series for 16 relevant meteorological variables were
extracted from CAMS products. To avoid model overfitting,
we identified potential predictors of the variables. To decide
on the importance of the variables, we used the LASSO-CV
estimator. The relationships between predictors and O?BS
were estimated by performing a least absolute shrinkage and
selection operator (LASSO) regression. The variables with
the highest absolute LASSO coefficient (importance weight)
are considered the most important. Figure 4 shows that the
T2m is the most explanatory meteorological variable and
NO, NO,, and O?A are the main chemical variables for
CAMSRA_S at most of the stations. The variables with high
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Figure 4. Cross-validation LASSO regression to identify the poten-
tial predictors for ozone modeling. The higher the absolute LASSO
coefficient, the more important would be the variable.

feature importance (weight >0.1) were considered for use in
the LSTM modeling.

Table 2 lists selected predictors for both components of
CAMSRA at each station. At station 1, 12 variables, namely
T,V,UlOm, V10m, MSLP, SP, T2m, SH, W, CO, NO,, and
OgA, are identified as the potential predictors of the S com-
ponent, while four variables, i.e., U10m, W, SO;, and O?A,
are selected for the M term. Some of the selected predic-
tors are common between the S and M components. A few
meteorological variables, such as T2m, SP, MSLP, W, and
U10m (or V10m), appear for the S component at most of the
stations. These variables reflect the information about tem-
perature, pressure, and vertical velocity. Temperature is one
of the key meteorological factors influencing the S term vari-
ability in O3 through its effect on biogenic emissions, pho-
tochemical kinetics reaction rate, and anthropogenic emis-
sions. Stable anticyclones and sunny conditions promote O3
formation and accumulation. Zonal and meridional winds at
10m are important for the dispersion of ozone precursors
at local scales. For most of the stations, the S term is af-
fected by pollutant species such as OgA, NO, and NO,, of
which NO and NO; are recognized as potential drivers of
O3 levels. Selection of total cloud cover (TCC) and fraction
of cloud cover (FCC) for the M component at most stations
indicates that cloud covers are mostly associated with syn-
optic systems (e.g., occurrence of high pressure systems as-
sociated with clear-sky conditions) and O3 variability on this
scale. The M component at a few stations, e.g., 4, 6, 9, and
13, shows weak associations with the parameters, so no vari-
ables are selected for them. This situation often happens for
the M component and suggests the role of other factors (not
included in the predictors). There are a few stations where
Ol_,fA (Ogc) is not selected as an important variable, which is
related to the small (weak) associations between O?A (OI;C)
and Og)BS. For instance, SH is selected as the main factor ef-
fecting the M term at station 23, i.e., Rasht. This station is
located between the mountains (Alborz) and coast (Caspian
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Sea), with a local rainy environment and a humid subtropical
climate. That is similar to the western Mediterranean regions,
where a lack of strong synoptic advection, combined with the
orographic characteristics and the land—sea breezes, favors
episodes of high ozone levels over this region (Millain et al.,
2000; Velchev et al., 2011; Wentworth et al., 2015). Similar
to CAMSRA, for CAMSFC the number of selected param-
eters for the § is larger than that for the M (see Table A4).
In CAMSEFC, boundary layer height (BLH) and V10m (or
U10m) appear as dominant meteorological drivers affecting
the S component. Stable boundary layer height causes the ac-
cumulation of ozone and its precursors during night or under
light (weak) winds conditions. Moreover, ozone in residual
layers can be transported over long distances with prevail-
ing winds. In the morning, trapped ozone can be entrained
downward into the mixed layer (Stull, 1988; Zhang and Rao,
1999). The M term is mostly associated with OI;C.

4.3 LSTM model and validation

The LSTM model was trained and validated with the
datasets, as explained in Sect. 3.2. We tuned hyperparame-
ters, which allow the learning algorithm to run until the error
from the model, i.e., the loss function, has been sufficiently
minimized. As there are no given values to set these numbers,
the optimum values were obtained by multiple trial-and-error
tests (see Table AS5). The best model was selected based on
the MSE and R? (coefficient of determination) score, which
indicates the amount of explained variance by the LSTM
model. Figure 5 shows the R? of the selected model for all
data series at each station. For most of the datasets, the R? is
larger than 0.5, indicating that more than 50 % of the O3 vari-
ance is explained by the LSTM. The R? for the M component
is larger than that for the S term, despite the smaller number
of predictors for the M. This might reflect that the M com-
ponent is easier to be modeled due to less complexity. In this
figure, the R? of the M is around 0.9 for all stations, whereas
it varies for the S term. The R? value of the S at the stations
over the city of Tehran is within the same range of 0.7-0.8.
Both CAMSRA and CAMSFC show the R? to be less than
0.5 for the S term at a few stations, namely 22 (Yazd), 24
(Zanjan), and 25 (Markazi). A possible reason for that could
be the peculiar characteristics of short-term ozone variability
at these sites or their geographical locations. Model-to-model
differences in R* are more pronounced in the S, which is
likely due to the different emission inventories used in the
models.

Figure 6 shows the box plots of MSE and different terms
of MSE, i.e., E2 and E3, for both components of O_§D. For
the sake of simplicity, descriptions of the results are mostly
based on the mean values. Nevertheless, the values of the in-
dicators at each station are shown as a scatter point next to
the box plots. From Fig. 6a, it turns out that the mean MSE
(shown with red squares) of O3 for the S component is larger
than that for the M component for both models. That could
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Figure 5. The R? of the LSTM model for both S and M compo-
nents of O3. CAMSRA_S and CAMSFC_S refer to the S compo-
nents of CAMSRA and CAMSFC, respectively. Likewise, CAM-
SRA_M and CAMSFC_M refer to the M components of CAMSRA
and CAMSEFC, respectively.

arise from the uncertainties in O3 precursor emissions affect-
ing modeled local photochemistry and likely S variability.
The largest value of the MSE is associated with the OgD of
the stations located in the city of Tehran. That can be asso-
ciated with the uncertainties in CAMS emission inventories,
which may have a larger impact in cities with high anthro-
pogenic emission sources. The stations in the northern part
of the city (e.g., stations 4-9) show a larger MSE than the
stations in the southern part (e.g., stations 10, 11, 14-17,
and 19). That can be associated with the deficiency in the
emission inventories in capturing the local emission changes
within urban areas. The large value of MSE is also found for
the S term at the stations located in Shiraz and Tabriz, which
are known as big and highly populated cities with numerous
local anthropogenic emission sources (thermal power plants,
oil refinery, cars, etc.). Station 2 in Tabriz shows less MSE
than stations 1 and 3, which are located in the industrialized
part of the city. That can be associated with the uncertainties
in the spatial variations in the emission inventories used in
CAMS. Although the CAMS anthropogenic emission inven-
tories account for emissions from different sectors, such as
transportation, residential and energy sectors, as well as bio-
genic fluxes, they have a temporal and spatial allocation with
a monthly spatial grid resolution of 0.1° x 0.1°. Low values
of the MSE for CAMSRA_S and CAMSFC_S are attributed
to stations 22 (Yazd), 20 (Hamedan), and 24 (Zanjan). Simi-
lar to RZ, the lowest MSE belongs to the Yazd station, which
contains fewer local emission sources than other cities such
as Tehran, Tabriz, and Shiraz.

Figure 6b shows the explained error (E2) in CAMSRA and
CAMSEC for both components. E2 is a model-related error,
and a possible source for this can be a misrepresentation of
short- and meso-scale phenomena in models. The small val-
ues of E2 reflect the low contributions of E2 to the MSE
and the noticeable improvement in the OgD (via downscal-
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Table 2. The most important explanatory variables of CAMSRA at each station.

Station number

S components

M components

1

T, V,U10m, V10m, MSLP, SP, T2m, SH, W,
CO, NO,, ORA

U10m, W, CO, ORA

2 MSLP, SP, T2m, SH, W, NO,, OR# U10m, SP, SO,, ORA
3 T, MSLP, SP, T2m, CO, SO,, NO,, OR4 T.U,DT2m, W,NO,, ORA
4 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, -
NO,, O}A
5 U, U10m, MSLP, SP, T2m, W, CO, NO,NO,,  T2m
ORA
3
6 U, V,U10m, V10m, MSLP, SP, T2m, SH, CO, -
NO
7 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, U, T2m
NO,
8 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, TCC, T2m
RA
NO,, 03
9 T,U,V,UlOm, VIOm, MSLP, SP, T2m, SH, -
W, CO,NO, NO,
10 T, U, U10m, MSLP, SP, T2m, W,NO,OR*  TCC, FCC, U, V, Ul0m, V10m, MSLP, SP,
T2m, DT2m, SH, SO,, NO, NO,, O%A
11 U, U10m, MSLP, SP, T2m, W, CO, NO, NO,,  TCC,FCC, U, W
RA
03
12 T, U, Ul0m, MSLP, SP, T2m, W, NO, NO,, TCC
ORA
3
13 MSLP, SP, T2m, SH, W, NO, ORA -
14 T, U, Ul0m, MSLP, SP, T2m, SH, W, NO, TCC, FCC, T2m, DT2m, SO,, O%*
RA
03
15 U, U10m, MSLP, SP, T2m, W, NO, ORA TCC, U
16 MSLP, SP, T2m, W, NO, OXA T.U,SP, W,0RA
17 T2m, ORA -
18 T2m, SH, W, NO, ORA TCC, FCC, DT2m, W, ORA
19 T,V10m, T2m, W, NO, OXA TCC, FCC, V10m
20 T.V,V10m, SP, T2m, SH, NO,, O%A TCC, SP, T2m, W, NO,, ORA
21 T,V10m, T2m, W, CO, ORA CC, U, SP, SH, W, SO,, O}
22 T,V10m, MSLP, SP, T2m, W, ORA TCC, FCC, U, V10m, MSLP, SP, SH, OfA
23 T,T2m, DT2m, W, Of4 SH
24 T2m, ORA -
25 - DT2m, CO
26 T, V,V10m, MSLP, SP, T2m, CO, ORA -
27 T, V,U10m, V10m, MSLP, SP, T2m, CO -
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Figure 6. The (a) MSE, (b) E2, and (c) E3 of the downscaled O%A
and O];C with LSTM for both S and M components. CAMSRA_S
and CAMSFC_S refer to the S components of CAMSRA and
CAMSFC, respectively. Likewise, CAMSRA_M and CAMSFC_M
refer to the M components of CAMSRA and CAMSFC, respec-
tively.

ing procedures). The major portions of the MSE are associ-
ated with the unexplained errors (E3) for both components
(see Fig. 6¢). The E3 for the S component is larger than
that for M, as expected from the variance in these compo-
nents. The § variability is associated with the effect of day-
time photochemical production and downward transport of
O3 rich from upper levels, combined with O3 loss by depo-
sitions (in the surface layer). A large value of E3 for the §
component can arise from the CAMS’ deficiency in resolv-
ing the meso-scale phenomena such as local winds, NO titra-
tion, deposition rates, and their influences on O3 variability.
Assessing the element of E3 (see the third term of Eq. 5)
shows that large variances in observations (o,) or small cor-
relations (r) cause the large E3 and consequently the large
MSE. Figure A2a shows the correlation between the models
and observation datasets for both components. This figure
shows that M contains a larger correlation (r>0.9) than S in
both models. A high value of correlation between two terms
can be attributed to the larger covariance of two terms or less
variance in each term. Figure A2b shows the covariance be-
tween models and observations. As can be seen in this figure,
the mean value of covariance for the S components is larger
than for the M components. So, the smaller correlation of the
S in comparison with that of the M is attributed to the larger
variance in S (Fig. A2c). In other words, the better model
performance (i.e., smaller E3 and MSE) for the M is not as-
sociated with the larger covariance of the M component. That
is attributed to less variance in M than in S (see Figs. 3 and
A2c).

In order to examine the effect of the CAMS products and
lagged O3 (from actual observations) on the LSTM model,
we exclude the measured lagged ozone from the predictors
of the LSTM model (hereafter LSTM™-12¢). The R2 of the

Geosci. Model Dev., 17, 4155-4179, 2024

N. Kaffashzadeh and A.-A. Aliakbari Bidokhti: Assessment of surface ozone products

LSTM™-12¢ is shown in Fig. A3. Overall, the R? of the
LSTM"-12¢ is Jess than that of the LSTM. This suggests that
the LSTM™-122 may carry the risk of not including all impor-
tant predictors (e.g., lagged ozone) in the model. This feature
is more noticeable in the M term than the S term, i.e., the R?
of the S component is less affected by removing the lagged
O3. That reflects the CAMS products, which explain more
of the § variance than that of the M term. In other words,
most of the variance in the M term in the LSTM is explained
by the lagged O3 (not by the CAMS products). That could
be a reason for the better performance (less MSE) of the M
than the S. Figure A4a shows the MSE of the LSTM"-1ag,
In this figure, the MSE of the datasets increases by 2 times
with respect to that of the LSTM. The higher values of the
MSE in the LSTM"°-12¢ are attributed to the removal of the
observed lagged O3 from the model. Although the R? of the
LSTM™-128 for the S is larger than that for the M term, the
MSE of the S is higher than that of the M term. This is sim-
ilar to the MSE of the LSTM, which is related to the higher
variance in S than M. Similar to the LSTM, in LSTM"°-1g
the low values of MSE are seen for the S component of O3
at stations 22 (Yazd), 20 (Hamedan), and 24 (Zanjan).

The skill scores (SS) of the downscaled models OgD with
respect to the OgA and OEC for all datasets are shown in
Fig. 7. In Fig. 7a, the mean value of the SS for three datasets,
namely CAMSRA_S, CAMSRA_M, and CAMSFC_M, is
larger than 0.9. This reflects that the downscaling proce-
dure (LSTM) improves the accuracy of the results in the
three mentioned datasets. The lower value of the SS for
CAMSEFC_S can be attributed to the higher skill of the ref-
erence dataset, i.e., O};C, or less accuracy of the LSTM
model. The SS of the LSTM2°-1a8 for CAMSRA_S shows the
same high accuracy as that in the LSTM, whereas for other
datasets the mean SS declines to less than 0.8 (see Fig. 7b).
There is a large difference between the SS of the LSTM and
LSTM™-122 for the M component, which shows the impor-
tance of the lagged O3 for modeling of the M term. Larger
values of SS for CAMSRA than that for CAMSFC reflect a
better performance of OgC over Iran. That is also shown in
Fig. A7a, in which the MSE of CAMSFC_S is less than that
of CAMSRA_S.

5 Discussion

Analysis of the spectral components in this study reveals that
the O3 variability in both CAMS products possesses a nearly
similar shape (although in different phases and amplitudes)
to those in OBS. Although both datasets share many of the
same parameters, there are several differences that distin-
guish O?A from Ogc. OgC is produced by a model with finer
horizontal and vertical resolutions. Different anthropogenic
and biogenic emissions have been used in both models (see
Table 1). CAMS-GLOB-ANT (used in CAMSFC) provides
up-to-date emissions of air pollutants and greenhouse gases
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Figure 7. The SS of the downscaled OR” and OYC with (a) LSTM and (b) LSTM"-148,

at the spatial and temporal resolution required by the model
(0.1° x 0.1°). CAMSRA uses MACCity emission inventory
with a resolution of 0.5° x 0.5°. Figure A6 shows a compar-
ison of CAMS-GLOB-ANT and MACCity for a couple of
ozone precursors, i.e., NOy and CO. Compared with CAMS-
GLOB-ANT, MACCity provides higher NO, and CO emis-
sions. CAMS-GLOB-ANT shows more details of the emis-
sions’ variability due to the finer spatial resolution. The area
with the highest emissions in both inventories is located over
Tehran.

The results of the models’ performances show a larger
MSE for the S than for the M in both CAMS. That arises
from the larger variance in the S in comparison with the
M (Hogrefe et al., 2000, 2014; Kaffashzadeh, 2018; Kaf-
fashzadeh and Aliakbari Bidokhti, 2022). The results of the
error apportionment show the negligible contribution of the
E2 to the MSE. The E2 arises from the limited spatial reso-
lutions of the CAMS in capturing short- and meso-scale phe-
nomena that are attenuated (alleviated) by the SD procedures.
The MSE has mostly arisen from the E3, which emphasizes
the lack of observed variability in the CAMS data. The E3 as-
sessment shows less variability for both components of O§D
than in O?BS. That could arise from random errors inherent
in the OBS data due to sub-scale or non-resolvable processes
in an observational network. The variability in the measured
data might be generated from the non-representatives errors
due to random effects caused by turbulence or sub-scale per-
turbations (Gandin, 1988; Steinacker et al., 2011). It is not
straightforward to distinguish and exclude these errors in the
measured data because of their chaotic and unsystematic be-
havior. Adding the lagged O3 to the predictors of the down-
scaled model halves the E3 (and MSE). Less MSE in the M
in comparison with that in the S is attributed to not only less
variance in the M than in the S but also the larger contri-
bution of the lagged O3 in the M than in the S (as shown in
Sect. 4). The S component shows large associations with me-
teorological variables such as T2m, BLH, U10m, and V10m,
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as well as pollutant species such as CO, NO, and NO,. That
is due to short-term O3 fluctuations associated with processes
such as vertical mixing, local NO titration, deposition, wind
speed, solar flux, etc.

The S component shows the large value of MSE for the
stations located in Tehran, Shiraz, and Tabriz, which are
known as the most populated cities (and thus large local
emission sources) in Iran. The largest MSE belongs to O3
at the stations over Tehran (see Fig. A4). That can be partly
attributed to the complex topography and local (meso)-scale
flow (e.g., slope, mountain, and valley flow) over the city.
The pollutant concentrations are highly affected by these fac-
tors, which are hardly captured by the global chemistry mod-
els (Fiore et al., 2003). The MSE of O3 over Tehran in the
warm season is much higher than that in the cold season (see
Fig. AS). That could arise from the uncertainty in O3 pre-
cursors in CAMS, as they are not adjusted by data assimi-
lation systems. CAMS-GLOB-BIO (used in CAMSFC; see
Table 1) provides a monthly average of the global biogenic
emissions, which are calculated using the MEGAN (used in
CAMSRA; see Table 1), driven by ERA-Interim meteoro-
logical fields. In summer, rising temperatures speed up the
rate of many reactions and enhance biogenic VOC emissions
(Sillman and Samson, 1995). The city of Tehran suffers from
high levels of emitted NO, from several sources, such as road
traffic, industrial activities, the energy conversion sector, etc.
(Hosseini and Shahbazi, 2016; Yousefian et al., 2020). The
latest Tehran emission inventory indicates that the annual
emissions of VOC and NO, are approximately 91 000 and
103 000't, respectively (Shahbazi et al., 2022). The contribu-
tions of vehicles to VOC and NO, emissions are estimated to
be 79 % and 35.2 %, respectively, and increase to 79.5 % and
37.2 %, respectively, in summer. In addition to the aforemen-
tioned factors, what distinguishes Tehran from other cities is
the difference between daytime and nighttime populations.
During the day, traffic in Tehran reaches its highest level
due to the arrival of private vehicles as well as passenger
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and cargo transportation vehicles from surrounding areas and
cities. This issue has a significant impact on the city’s traffic
and the vehicle traffic on intercity routes leading to Tehran.
The impact of these (meso-scale) factors cannot be captured
in a global emission inventory with a limited resolution. That
induces large model uncertainties, in particular for the S vari-
ability, which has large associations with pollutant species.
Besides, for some periods the emissions are not available and
so prescribed, which means they are either kept fixed since
the last year of availability or extrapolated (projected) with
a climatological trend. MACCity emission inventory has not
been updated since 2010, and recent years are only based
on projections of past trends. CAMS-GLOB-ANT provides
the monthly average of the global emissions of 36 com-
pounds over the period 2000-2019. The MSE distribution
over Tehran is uneven: the northern part of the city shows
a larger MSE than the southern part. That can be attributed to
the uncertainty in the simulated CO species, as it is selected
as a predictor at the stations located in the northern part. The
CO concentration increases, moving from the south to the
north of Tehran (Sharipour and Aliakbari Bidokhti, 2014).
Stratospheric ozone can affect surface ozone levels indi-
rectly through vertical downward transport of ozone from
the lower stratosphere and/or the upper troposphere on larger
timescales (Zanis et al., 2014; Akritidis et al., 2016) or di-
rectly through intense stratospheric intrusions (rarer) (Akri-
tidis et al., 2010; Chen et al., 2022). Over Tehran, a major
portion of O3 during spring is transferred from the strato-
sphere (Aliakbari Bidokhti and Shariepour, 2007). A study
by Shariepour and Aliakbari Bidokhti (2013) showed that
several mid-latitude low pressure weather systems accompa-
nied by tropopause folding affect northern Iran (Caspian Sea)
and can cause downward transport of stratospheric ozone-
rich air towards the surface. During summer, the occur-
rence of tropopause folding and its intensity over the east-
ern Mediterranean and the Middle East regions are majorly
controlled by the Asian monsoon. Since the zone of upper
level baroclinicity and fold occurrences spreads northwest-
ward over this region, it first reaches Iran in July (Tyrlis et
al., 2014). The large MSE of OgD for the cities of Shiraz
and Tabriz is mostly associated with the geographical lo-
cations of the cities. Tabriz is the largest economic (indus-
trialized) hub and metropolitan area in northwestern Iran,
which is often affected by cyclonic activities (Asakereh and
Khojasteh, 2021) and summer circulations over the eastern
Mediterranean region (Tyrlis et al., 2013). Although CAM-
SRA captures the long-range transport processes and atmo-
spheric background in the troposphere, it shows a lower skill
over the Mediterranean, in particular the eastern part, com-
pared with other regions (Errera et al., 2021). Shiraz, the cap-
ital of Fars Province, is the largest city in southwestern Iran,
with more than 1.2 million inhabitants. This city has high lev-
els of air pollutants due to population growth, urbanization,
and traffic-related emissions. The city is located in a valley
between two mountain ranges with east-west orientations.
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The model representation of the terrain is considered to be
a key factor for achieving a good representation of the wind
flow in complex terrain (Mughal et al., 2017). The low MSE
values in the cities of Yazd, Hamedan, and Zanjan are associ-
ated with the station locations, which are less populated and
affected by the emission sources.

To assess the sensitivity and robustness of the results to SD
methods, the data are downscaled using another SD method,
namely the multiple linear regression (MLR) model. In this
model, the predictors and predictand were the same as in the
LSTM model. Figure A7b shows the MSE of O5P with the
MLR model. In similarity with the LSTM model (similar to
the results in Sect. 4), the MSE for the S is larger than the
M components downscaled with the MLR model, although
the mean value of the MSE of the downscaled data with the
MLR is slightly larger than that of the LSTM. That could
arise from the larger correlation (and covariance) between
downscaled datasets and OBS in the LSTM model. Similar
to the LSTM, the SS of the MLR is high for all downscaled
datasets; the SS for the CAMSFC_S datasets is less than that
for other datasets (see Fig. A8a). Two experiments were de-
signed to assess the sensitivity of the model to less obvi-
ous predictors. In the first experiment, i.e., MLRno-lag (exprl)
the model was trained only using O®* and OEC. In the sec-
ond experiment, i.e., MLR"-1a (e"prg), the model was trained
using the most influential meteorological variables (see Ta-
ble A6). For the sake of simplicity (and being less expen-
sive), both experiments were performed using the MLR"-1a
model. Table A7 lists the results of these experiments for sta-
tion 22 (Yazd). As can be seen, the MSEs of MLR?0-lag (exprl)
and MLR"™-122 (&xP2) are Jarger than that of MLR™-'2¢, This
shows that part of the O3 variability is explained by meteo-
rology and partly by the chemistry (0132A or Ogc). Separating
these two factors causes a decline in r (see Fig. A9).

6 Conclusions

In this paper, the variability in O3 in two datasets, namely
CAMSRA and CAMSFC, was assessed against observations
at 27 urban stations distributed over Iran. Our observation
datasets contain time series from various cities in Iran, e.g.,
highly polluted cities vs. small cities. This helps identify
where the models capture reality and where they need more
improvement. To cope with the limited spatial resolutions
of CAMS, the data were downscaled using an LSTM neu-
ral network. The potential predictors (inputs) for the LSTM
were identified from chemical and meteorological variables
at each station. We decomposed all time series into three
spectral components, i.e., short (§), medium (M), and long
(L) terms. The S term consists of intraday and diurnal vari-
ations, the M term includes synoptic multiday fluctuations,
and the other motions, i.e., seasonal, semi-seasonal, and
trend, are carried in the L term. We only assessed the S and
M terms due to the availability of 1-year data, i.e., 2020; the
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L component is primarily used to check the biases between
model data and observations but should not be considered re-
liable with respect to trend analysis, etc. Since the S and M
components have zero-mean fluctuations, the bias term (the
distance between the time average of model data and obser-
vations) is zero, and the main focus of this study was to ana-
lyze the variability terms, e.g., variance and covariance. The
results presented in this study reveal several key points:

Various variables were identified as potential predictors of
ozone. The § term shows high associations with temperature,
10m wind components, and NO,, while the M component
shows higher associations with cloud cover and simulated
ozone. In CAMSFC, boundary layer height appears to be the
dominant meteorological driver of the S component. The R>
of the LSTM model for the M component is larger than that
for the S term, despite a smaller number of predictors for M
than for S. This might reflect that the M term is easier to
model.

The SS of the downscaled CAMSFC_S is lower than that
of other datasets. This can be attributed to the higher skill of
the reference dataset, i.e., OI;C. The SS of the LSTM"-lag
for CAMSRA_S shows the same high accuracy as LSTM,
whereas for other datasets, the mean SS declines to 0.5.
That shows the importance of the observed (lagged) O3 as
a predictor in the LSTM. The robustness of the results was
also confirmed using additional downscaling procedures, i.e.,
MLR.

Both datasets, i.e., CAMSRA and CAMSFC, show less
MSE for the M component than for the S term. That is
mainly attributed to the low variance in M and is not re-
lated to the large covariance of this component. The MSE
was mainly associated with unexplained model errors (E3),
which could be caused by the CAMS deficiency in resolving
the meso-scale phenomena such as local winds, NO titration,
deposition rates, and their impacts on O3 variability. In ad-
dition, uncertainties in emission inventories might affect this
error. Including a proxy of stratospheric ozone contribution
to surface ozone (stratospheric ozone tracer) may be benefi-
cial in explaining short-term ozone variability, thus reducing
the error (a recommendation for future work).

In both datasets, the highest MSE appears for OgD at sta-
tions in the cities with high emissions, in particular over
Tehran in the warm season. That majorly arises from the un-
certainty in O3 precursors, e.g., NO,, in CAMS. This can be
considered a starting point for improving the results of sur-
face ozone, in particular at urban sites.

To date, most of the studies of ozone and other pollutants
in Iran rely on reanalysis products, without using decompo-
sitions or downscaling procedures. Our findings show that
the CAMSRA and CAMSEFC datasets have some deficiencies
in simulating ozone, in particular over the cities with high
emissions of ozone precursors. Downscaling improves these
products and makes them suitable for the study of ozone in
major metropolitan areas. The method used in this study is

https://doi.org/10.5194/gmd-17-4155-2024
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not only applicable for the evaluation of the global models
but also for prediction purposes.
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Appendix A

Table A1l. The stations’ names and their geographical locations.

Number Name Latitude Longitude Number Name Latitude  Longitude

1 Abresan (Tabriz) 38.066 46.326 15 Shad abad (Tehran) 35.67 51.297

2 Namaz Square (Tabriz) 38.079 46.289 16  Mahallati (Tehran) 35.661 51.466

3 Azarbayejan Square (Tabriz)  38.112 46.276 17  District 19 (Tehran) 35.635 51.362

4 Aqdasiyeh (Tehran) 35.795 51.484 18  Masoudieh (Tehran) 35.63 51.499

5 Sadr (Tehran) 35.778 51.429 19 Ray (Tehran) 35.604 51.426

6 District 2 (Tehran) 35.777 51.368 20 Hamedan (Hamedan) 34.8 48.5

7 Punak (Tehran) 35.762 51.332 21 Birjand (Khorasan  32.87 59.21
Jonoubi)

8 Geophysics (Tehran) 35.74 51.385 22 Yazd manabe tabiei 31.93 54.37
(Yazd)

9 Setad bohran (Tehran) 35.727 51.431 23 Rasht (Gilan) 37.29 49.61

10 Tarbiat Modares (Tehran) 35.717 51.386 24 Zanjan ark (Zanjan) 36.67 48.48

11 Sharif University (Tehran) 35.702 51.351 25 Mirzaye shirazi  34.09 49.7
(Markazi)

12 District 21 (Tehran) 35.698 51.243 26  Kazeroon Gate (Shiraz) 29.61 52.53

13 Piroozi (Tehran) 35.696 51.494 27 Imam Hossein Square 29.62 52.54
(Shiraz)

14 Fath Square 35.679 51.337
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Figure A1. Data coverage (per month) of the hourly surface-based measured ozone at five air quality monitoring stations.
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Table A2. The hyperparameter settings of the LSTM model.

Hyperparameter Values
Train portion 65 %
Test portion 35%
Epoch 1...30
Batch size [12,24, 48,72, 96, 120]
Optimizer ADAM
Units (hidden layer) 2...10
Dropout rate 0.001
Learning rate 0.001...0.1
Loss function MSE

4169

Table A3. A list of the meteorological variables that were extracted from CAMS data products. @ and © represent available and unavailable

variables, respectively.

Meteorological variable (symbol)  Unit Definition CAMSRA CAMSFC
T °K Temperature <) @
T2m °K 2 m temperature @ (&)
DT2m °K 2 m dewpoint temperature ® ®
SH kgkg~!  Specific humidity ® ®
U ms~! U component of wind ® (&)
\%4 ms™! V component of wind @ @
U10m ms~! 10m U wind component <) )
V10m ms~! 10m V wind component (&) (&)
w Pas™! Vertical velocity @ &)
BLH m Boundary layer height S) )
SP Pa Surface pressure (&) D
MSLP Pa Mean sea level pressure b o
TCC % Total cloud cover <) @
FCC % Fraction of cloud cover ) D
uv Jm~2 Downward UV radiation at the surface ~ © &)
SD s Sunshine duration o ®

https://doi.org/10.5194/gmd-17-4155-2024
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Table A4. Same as Table 2 but for CAMSFC datasets.

Station number

S components

M components

1 DT2m, BLH, Ul0m, W, T, SH, NO,, U, O%C
NOy., CO
2 BLH, W, T, U U. SP, O5¢
3 BLH, T2m, UlOm, W, T, U, O5¢ T,U,05¢
4 BLH, V10m, V, Of¢ -
5 V10m, O5¢ of¢
6 BLH, U10m, V10m, T, U, V, SP,OYC  SD
7 BLH, T2m, V10m, W, T, V,S0,,05¢  OfC¢
BLH, V10m, W, T, V, OfC SD, U, Of€
9 BLH, T2m, V10m, W, T, V, NO, SO,
Co, Ok¢
10 V10m, O5¢ BLH, T, O5€
11 BLH, V10m, W, v, OfC SD, Ok¢
12 BLH, V10m, O5¢ O5¢
13 BLH, V10m, T, V, O5¢ of¢
14 BLH, V10m, V, SP, NO,, SO,, CO, DT2m, V10m, O5¢
FC )
03
15 T2m, V10m, O5¢ SD, BLH, O£C
16 BLH, U10m, V10m, T, V, O5C DT2m, BLH, T2m, Ul0m, V10m, W,
T.U,V,SH, SP,NO, SO,, CO, O5¢
17 T2m, O5C BLH, V10m, O5¢
18 BLH, V10m, W, T, V, NO, OfC SD, T2m, U10m, V10mWu, V., NO,.
NO, NOy, SO,, CO, O£€
19 BLH, V10m, O5¢ TCC, O5¢
20 DT2m, BLH, T2m, UlOm, T, U, SH, TCC, BLH, W, Q. SP, OfC
FC
03
21 BLH, V., SO, BLH, T, SP, SO,, CO, O5€
22 DT2m, SD, BLH, T2m, U10m, V10m, BLH, Ul0m, SH, SP, SO,
W.T,U,V,SH, SP,NO,, CO, Of¢
23 U10m, O5¢ SH
24 T2m, O5C -
25 BLH DT2m, BLH, O5¢
26 BLH -
27 SP -

Geosci. Model Dev., 17, 4155-4179, 2024
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Table AS. The optimum units, dropout, learning rate, and batch size for implementing the LSTM model. T: true; F: false.

Models’ names CAMSRA CAMSEC
Station number S M ‘ S M
1 10, T, 0.04,24 10, T, 0.04, 24 2, T, 0.09, 48 4, F, 0.04, 48
2 4,F 0.04,48 4,F 0.04,48 | 10, T, 0.04,24 10,T,0.04, 24
3 10, T, 0.04, 24 4,F 0.04, 48 2, T, 0.09, 48 4,F, 0.04, 48
4 4,F 0.04, 48 4,F 0.04,48 | 10, T, 0.04, 24 4, F, 0.04, 48
5 10, T, 0.04, 24 4,F 0.04,48 | 10, T, 0.04, 24 4,F 0.04, 48
6 10, T, 0.04,24 10,T, 0.04,24 | 10, T, 0.04,24 10, T, 0.04, 24
7 10, T, 0.04, 24 4,F 0.04,48 | 10, T, 0.04, 24 4, F, 0.04, 48
8 10, T, 0.04,24 10, T, 0.04, 24 2, T, 009,48 10,T, 0.04,24
9 4,F 0.04,48 10, T,0.04, 24 4,F 0.04,48 10, T,0.04,24
10 10, T, 0.04, 24 4,F 0.04, 48 4, F, 0.04, 48 4, F, 0.04, 48
11 10, T, 0.04,24 10, T, 0.04, 24 4,F 0.04,48 10, T, 0.04,24
12 4,F 0.04,48 10, T,0.04, 24 2,T,0.09,48 10, T, 0.04,24
13 4,F 0.04, 48 4,F 0.04,48 | 10, T, 0.04, 24 4,F, 0.04, 48
14 2, T, 0.09, 48 2,T,0.09,48 | 10, T, 0.04,24 4,F 0.04, 48
15 4,F 0.04,48 10, T,0.04, 24 4,F 0.04,48 10, T,0.04, 24
16 10, T,0.04,24 10, T, 0.04,24 | 10, T, 0.04,24 10, T, 0.04, 24
17 10, T, 0.04,24 10, T, 0.04,24 | 10, T, 0.04,24 10, T, 0.04, 24
18 4,F 0.04, 48 4,F 0.04, 48 4,F 0.04,48 10, T,0.04,24
19 10, T, 0.04, 24 2,T,0.09,48 | 10,T,0.04,24 2, T, 0.09, 48
20 2,T,0.09,48 10, T, 0.04, 24 4,F 0.04, 48 4,F 0.04, 48
21 2, T, 0.09, 48 4,F 0.04,48 | 10, T, 0.04,24 10, T, 0.04,24
22 10, T,0.04,24 10, T, 0.04,24 | 10, T, 0.04, 24 4,F, 0.04, 48
23 4,F 0.04,48 10, T, 0.04,24 | 10, T, 0.04,24 10, T, 0.04, 24
24 4,F 0.04,48 10, T,0.04,24 4,F 0.04,48 10, T,0.04,24
25 10, T, 0.04,24 10, T, 0.04,24 | 10, T, 0.04,24 10, T, 0.04, 24
26 10, T, 0.04,24 10, T, 0.04, 24 4,F 0.04,48 10, T, 0.04,24
27 4,F 0.04,48 10, T,0.04,24 2,T,0.09,48 10, T,0.04,24
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Figure A2. The (a) correlation (r), (b) covariance (cov), and (c¢) variance (var) of the O§D with LSTM.
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Figure A4. The MSE of the O§D at the stations, excluding the stations over Tehran city, for (a) the cold (months 1-3 and 10-12) and (b) the
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Figure AS. The MSE of the OgD at the stations over Tehran city for (a) the cold (months 1-3 and 10-12) and (b) the warm (months 4-9)
seasons.

Table A6. The most important explanatory variables of the models at most of the stations.

Meteorological variables ~ Chemical species

CAMSRA_S T2m NO, NO,, ORA
CAMSFC_S  BLH, V10m orc
CAMSRA_M TCC, U 013‘A
CAMSFC_M - o%c
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Figure A6. The annual average of surface emissions of (a, b) NO, and (¢, d) CO in the CAMS-GLOB-ANT and MACCity emission
inventories.
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Figure A7. The MSE of the O3 by the (a) LSTM™-122_ (b) MLR, and (¢) MLR™-1¢ models.
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Table A7. The results of the experiments (1) MLR10-1ag (exprD). the model was trained only using O‘;A and OI;C; and (2) MLRM0-1ag (expr2).
the model was trained using the meteorological variables with high priority (listed in Table A6) at station 22 (Yazd). The r refers to the
correlation coefficient between OgD and measured O3.

MLRRO_lag ‘ MIRRo_lag (exprl) ‘ MILRRO_lag (expr2)

MSE r | MSE r | MSE r
CAMSRA_S 1494 041 | 16.06 033 | 16.09 0.32
CAMSFC_S 1469 043 | 16.30 031 | 16.01 0.33
CAMSRAM 185 061 | 28l 022 | 292 0.10
CAMSFC_M 177 0.3 | 290 0.12 - -
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Figure A9. The correlation (r) between measured O3 and OgD by the (a) MLR"-12g () MLRM-12g (€xprD) 4pq (¢) MLRNO-lag (expr2)
models.
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