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Abstract. Conservative mapping of data from one horizon-
tal grid to another should preserve certain integral or mean
properties of the original data. This may be essential in some
model applications, including ensuring realistic exchange of
energy and mass between coupled model components. It can
also be essential for certain types of analysis, such as eval-
uating how far a system is from an equilibrium state. For
some common grids, existing remapping algorithms may fail
to perfectly represent the shapes and sizes of grid cells, which
leads to errors in the remapped fields. A procedure is pre-
sented here that enables users to rely on the mapping weights
generated by remapping algorithms but corrects for their de-
ficiencies. With this procedure, for a given pair of source and
destination grids, a single set of remapping weights can be
applied to remap any variable, including those with grid cells
that are partially or fully masked.

1 Introduction

When analyzing climate data from different sources, it is of-
ten necessary, as an initial step, to map the data to a com-
mon grid, a procedure commonly referred to as remapping
or “regridding” the data. For some purposes it is essential
when remapping the data that the global mean (or, alterna-
tively, the global integral) of the field be preserved. Conser-
vative remapping algorithms are meant to guarantee this. In
practice, remapping occurs in two steps: (1) given a source
and destination grid, mapping “weights” are computed, and
then (2) a sparse matrix multiplication of the source data
by the weights yields the values of the field on the des-
tination grid. The focus here is on the second step: given
the weights needed for remapping conservatively, guidance
is provided on how they should be applied. Appendix A

lists some remapping packages that can be used to generate
weights (i.e., to execute step 1). It should be noted that nearly
all of these packages slightly misrepresent the true shape of
grid cells found in some subset of commonly encountered
grids. This can cause errors which must be corrected if con-
servative remapping is demanded. Moreover, most packages
provide inadequate guidance on how to handle fields that are
partially masked or, for three-dimensional fields, how to ac-
count for variations in the thickness of individual layers. The
main purpose here is to clearly explain how to compensate
for any inaccuracies in a remapping algorithm’s representa-
tion of grid cell shapes and to account for missing or partially
masked data when that is necessary.

The objective in remapping conservatively is to preserve
certain physically important characteristics of the climate
system. For a climate in global thermodynamic equilibrium,
for example, the mean net flux of energy at the top of the at-
mosphere is zero. In properly formulated models run with all
externally imposed conditions unchanging over time, the net
flux at the top of the atmosphere will indeed approach and
fluctuate about zero as the system approaches equilibrium.
When the fluxes from a simulation of this kind are mapped
to a different grid, we would like to preserve this important
characteristic of the simulation. This can only be done if the
remapping algorithm is conservative.

As a second example, consider trace species concentration
in the atmosphere (e.g., of water vapor, ozone, CO2) or in the
ocean (e.g., of salinity, nitrogen, carbon). When mapping a
concentration field to a different grid, it can for some analy-
ses be essential that the total mass of the species of interest
be preserved. Similarly, the remapping of sources and sinks
of species must preserve the global totals.

Published by Copernicus Publications on behalf of the European Geosciences Union.



416 K. E. Taylor: Conservative remapping

The fundamental relationship that must be satisfied to pre-
serve the integral of a field over the global area is

r2
s

∑
i

FsifsiAsi = r
2
d

∑
j

FdjfdjAdj , (1)

where F is the quantity that is mapped from a source grid to
a destination grid, A is the grid cell area (expressed as a solid
angle and globally spanning 4π steradians), f is the grid cell
fraction where F is defined (i.e., the “unmasked fraction” of
a cell), and the subscripts, s and d, distinguish between the
source and destination grids, respectively. The i and j in-
dices apply to source and destination cells, respectively, and
the sums are over the entire domain. In certain modeling ap-
plications, the radius of the Earth, r , for the source and des-
tination grids may differ slightly, and this is accounted for
by including the squares of rs and rd in Eq. (1). If there is
a mismatch in radii, the values of Fd must be scaled so that
the integral is preserved. For source cells that are completely
masked or where data are undefined or “missing”, fs = 0.
For the most common case when the value in a source cell is
representative of the entire cell extent and when there are no
missing data, fs = 1 for all grid cells. Note that when remap-
ping conservatively, if fs = 1 for all source cells, then we
require that fd = 1 for all destination cells.

A different relationship must be satisfied to preserve a
field’s global mean (denoted by an overbar):

Fs =

∑
iFsifsiAsi∑
ifsiAsi

=

∑
jFdjfdjAdj∑
jfdjAdj

= Fd . (2)

In the next section, the formulas are introduced that apply
to remapping data when fs = fd = 1 everywhere (i.e., when
there is no partial or complete masking of any cells). This
is followed in Sect. 3 by a description of the more general
procedure when a field might be partially masked. In Sect. 4
recipes are provided that should be followed in remapping
different types of two-dimensional and three-dimensional
fields. That is followed by a brief discussion of how to pre-
serve certain properties when interpolating data in the verti-
cal. The summary includes some discussion of when conser-
vative remapping may be inappropriate (or at least inadvis-
able).

2 Remapping without masking

Consider first the simple case in which fs = fd = 1 for all
grid cells. Weights, wij , that preserve the global mean will
be used to calculate Fdj through a matrix multiplication:

Fdj =
∑
i

wijFsi . (3)

These weights would need to be scaled by r2
s /r

2
d to preserve

the global integral rather than the global mean. Initially, we

shall suppose that it is the global mean that should be pre-
served. At the end of Sect. 3, it is shown that the destination
field that preserves the global mean can be simply scaled to
preserve the integral.

Conceptually, the remapping weights are determined by
overlaying the destination grid onto the source grid and cal-
culating what fraction of each source cell overlaps each des-
tination cell. These fractional contributions, here denoted ω,
are then multiplied by the ratio of the source cell area to the
destination cell area to yield

wij = ωijAsi/Adj . (4)

Each distinct portion of a source cell must contribute to one
and only one destination cell, and all portions must contribute
to some destination cell. This implies that within any source
cell i, the fractional contributions ωij must sum to unity:∑
j

ωij = 1 for all i. (5)

For the case fs = fd = 1, the above identity can be used to
prove that Eq. (3) preserves the global mean. The proof is ob-
tained by substituting Eq. (4) into Eq. (3), then substituting
the result into Eq. (2), reversing the order that the summa-
tions are performed, and making use of Eq. (5). Importantly,
a consistent set of areas must be used in evaluating Eqs. (1),
(2), and (4).

Noting that the fractional areas of the source cells con-
tributing to a destination cell must add up to the area of the
destination cell, we obtain a second useful identity:∑
i

ωijAsi = Adj for all j. (6)

As discussed below, this identity holds only when the frac-
tional contributions, ω, and cell areas, A, are consistently de-
fined (i.e., based on the same cell shapes).

Most conservative remapping algorithms are variants of
an approach suggested by Dukowicz and Kodis (1987). The
most difficult step in remapping conservatively is to devise an
algorithm to calculate the fractional contributions, ωij . Even
when efficiently done, the calculation of ωij dominates the
remapping execution time. In computing ωij , existing gen-
eral remapping algorithms (see Appendix A) require the lo-
cations of grid cell vertices to be specified (for both source
and destination grids), and the remapping algorithm must
make assumptions as to how the cell vertices are connected.
In some remapping algorithms, the cell edges are assumed
to run along great circles; in others the cell edges are as-
sumed to coincide with straight lines on an equirectangu-
lar projection of the spherical coordinates (as for a regular
Cartesian longitude by latitude grid, where the latitude cell
bounds follow latitude circles, not great circles). Most com-
monly used packages relied on for remapping conservatively
are unable to generate without approximation the weights
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when cell edges should be constructed under different as-
sumptions (e.g., with cell sides coinciding with great circles
on one grid, but not on the other). Perhaps the only exception
is the YAC (Yet Another Coupler) interpolation software (see
Appendix A).

When cell shapes are misrepresented, the ωij values cal-
culated by the remapping algorithm are, in general, only ap-
proximations of the true fractional contributions. This means
a remapped field can be somewhat distorted, and the errors
in the field on the destination grid will generally exceed the
formally derived error estimates, especially for coarse grids.

After computing the fractional contributions, ωij , remap-
ping codes can generate the remapping weights using Eq. (4).
This ensures that∑
i

FsiAsi =
∑
j

FdjAdj , (7)

where the areas are calculated based on the algorithm’s as-
sumed cell shapes. These areas may differ somewhat from
the true cell areas. If they do, then in general∑
i

FsiAsi 6=
∑
i

FsiA
∗

si , (8)

where the asterisk distinguishes a true cell area (A∗) from an
approximate cell area (A) generated by the remapping algo-
rithm. The sum on the right-hand side of the equation repre-
sents the true integral on the original source grid, but it is the
sum on the left-hand side that is preserved by Eq. (7).

In order to preserve the true global mean, some packages
accept, as an option, user-supplied true cell areas, which are
then used in calculating the remapping weights,

w∗ij = ωijA
∗

si/A
∗

dj , (9)

but it should be noted that if Asi 6= A
∗

si or Adj 6= A
∗

dj , then in
contrast with Eq. (6),∑
i

ωijA
∗

si 6= A
∗

dj . (10)

The true fractional areas of the source cells contributing to a
destination cell may not add up to the true area of the des-
tination cell because the true areas may be inconsistent with
the shapes of cells assumed in generating the fractional con-
tributions, ωij .

Despite this apparent problem, some users may choose to
calculate the destination values according to

F ∗dj =
∑
i

w∗ijFsi . (11)

It follows that∑
i

FsiA
∗

si =
∑
j

F ∗djA
∗

dj . (12)

The sum on the left side of the equation represents the true
global integral. Thus, when true areas are used in construct-
ing the weights, the remapped field can preserve the true
global mean.

Both alternatives for computing remapping weights,
Eq. (4) or Eq. (9), rely on the same fractional contribu-
tions, ωij , which are based on cell shapes constructed by the
remapping algorithm that in some cases are only approximate
(e.g., when cells are assumed to be circumscribed by great
circles, but in fact have edges following lines of longitude
and latitude). With the first option, the “approximate-area
option”, cell areas are computed consistent with cell perime-
ters constructed by the remapping algorithm, and the weights
(wij ) are defined by Eq. (4). In this case, Eq. (6) holds. With
the second option, the “true-area option”, the true grid cell
areas must be supplied to the remapping algorithm, and the
weights (w∗ij ) are defined by Eq. (9). In this case the areas
may be inconsistent with the assumed cell perimeters used to
generate the fractional contributions (ωij ), so there may be a
mismatch between the source areas and the destination areas,
as noted in Eq. (10).

For the purpose of evaluating the relative merits of the two
options, we now consider an example of a simple source grid
and an idealized temperature field. It should be said up front
that an example has been devised to clearly reveal the con-
sequences of misrepresenting cell shapes and areas. This has
dictated that we consider, in the first instance, grid resolu-
tions that are uncommonly coarse. Many climate studies deal
with grid cells smaller than a few degrees longitude and lat-
itude, and not tens of degrees, as in the initial example be-
low. It turns out that the size of the remapping errors is gen-
erally proportional to the longitudinal cell widths squared
so that compared to our coarse-resolution example, errors
would commonly be quite a bit smaller. This should be kept
in mind in what follows.

For our illustrative example, suppose both the source and
destination grids are spherical coordinate grids with the same
latitude spacing (15◦) but with the destination grid having
half the longitudinal resolution of the source grid (60◦ vs. 30◦

spacing). Suppose the grids are aligned such that each desti-
nation cell completely contains exactly two source cells. The
cell areas are given in Table 1. For the source cells nearest the
pole, the true cell area (with latitude cell bounds following
latitude circles) is 0.0178 r2, whereas the approximate cell
area (assuming all cell sides follow great circles) is 0.0171 r2.
Thus, there is a 4 % error in approximating the cell area. In
general these errors increase toward the poles and as grid cell
longitudinal width increases. For the destination grid, with
twice the angular cell widths, the error quadruples to 17 %,
whereas halving the cell width shrinks the error to 1 %. It can
be shown that for small longitudinal cell widths, the frac-
tional error in the approximate cell areas is proportional to
the square of the cell widths.

In this example, correctly remapping a source field to the
destination grid is trivial since each destination value is deter-
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Table 1. True cell areas (A∗) and approximate cell areas (A) for
source and destination spherical coordinate grids with longitudinal
cell widths of 30 and 60◦, respectively. The approximate areas are
calculated assuming all bounds coincide with great circles. All areas
are expressed as solid angles obtained by dividing the actual cell
area by the square of Earth’s radius. For ease of comparison with
destination cell areas, source cell areas have been doubled.

Source cells Destination cells

Latitude band 2A∗si 2Asi A∗dj Adj

0–15◦ 0.271 0.277 0.271 0.297
15–30◦ 0.253 0.256 0.253 0.265
30–45◦ 0.217 0.216 0.217 0.213
45–60◦ 0.166 0.163 0.166 0.152
60–75◦ 0.105 0.101 0.105 0.090
75–90◦ 0.036 0.034 0.036 0.030

Figure 1. For the example described in the text, destination grid cell
values resulting from different remapping options. The source data
were defined on a longitude by latitude grid of 30◦ by 15◦ resolu-
tion and then mapped to a destination grid with half the longitudinal
resolution but the same latitude spacing (i.e., 60◦ by 15◦). The solid
black line (source grid “truth”) also represents the destination values
that would result from correctly remapping the data to the destina-
tion grid by applying an algorithm that correctly reconstructed the
grid cell shapes.

mined solely by the contributions from the two source cells
that alone occupy it. Consider a temperature that varies lin-
early with latitude and is independent of longitude. Then, the
destination field is identical to the source field but with half
the longitudinal resolution. The temperature dependence on
latitude for the case considered is given by the black line la-
beled “source grid (truth)” in Fig. 1. Of course when cor-
rectly remapped, the destination values should in this case be
the same as the source values and would also lie on the black
line.

If, however, we remap this temperature field based on an
algorithm that assumes when computing approximate cell ar-
eas that the cell boundaries are defined by great circle seg-
ments, the destination values will lie on the dashed brown
curve in Fig. 1. On the other hand, if the algorithm relies on

the true cell areas when computing weights (the true-area op-
tion), the discrepancy is much larger, with the resulting des-
tination values given by the dashed blue curve in Fig. 1. Nei-
ther option correctly remaps the field, but the approximate-
area option appears to be far superior to the true-area option.

Under each option, a global integral can be preserved, ac-
cording to Eqs. (12) and (7), but only when true areas are
used and the destination field is obtained using Eq. (11)
can we be certain to preserve the global integral as calcu-
lated on the original grid. Since the primary purpose in ap-
plying a conservative remapping scheme is to preserve the
true global mean (i.e., the mean calculated with true areas),
the approximate-area option would seem to be unaccept-
able. In Fig. 1, although the destination values shown for the
approximate-area option appear to nearly coincide with the
source values (“truth”), they are in fact systematically un-
derestimated and lead to a global mean temperature 0.45 K
cooler than the true mean.

On the other hand, it would seem equally unsatisfactory
to adopt the true-area option (dashed blue curve of Fig. 1),
which produces remapped values at some latitudes differing
by more than 30 K from the true values. The true-area option
does indeed preserve the true global mean, but the pattern of
the destination field can hardly be considered a good repre-
sentation of the source field. Thus, for different reasons, both
options might be considered unacceptable.

It is interesting and somewhat disconcerting to note that
with the true-area option, the results of remapping can de-
pend on the units used to express the temperature. The
dashed blue curve in Fig. 1 shows results when temperature is
expressed in Kelvin (K). The figure also shows that convert-
ing the temperature to degrees Celsius (◦C), remapping that
field, and then converting it back to Kelvin results in consid-
erably smaller errors (crosses in Fig. 1). It can be shown that
in general, the errors in destination values, when computed
using the true-area option, are approximately proportional to
the magnitude of the values themselves. Since, on average,
we can reduce the mean of the absolute values of a field by
removing the global mean before remapping, we can use this
strategy to reduce the errors. Our example of converting the
temperature units from K to ◦C was an approximate appli-
cation of this strategy which reduced the error because the
mean temperature in this example is much closer to 0 ◦C than
it is to 0 K. If we were to adopt the more general approach
of removing the global mean before remapping, we would
arrive at the following formula:

F ∗dj = Fs+
∑
i

w∗ij (Fsi −Fs) , (13)

where here and in what follows an overbar indicates a global
mean that must be computed using the true areas, not the
approximate areas that remapping algorithms might gener-
ate. This variant of the true-area option will subsequently be
referred to as the “true-area (centered)” approach to distin-
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guish it from the “true-area (uncentered)” approach, which
relies on Eq. (11).

An objection to using Eq. (13) is that a change in Fs any-
where in the domain will change the mean and thereby im-
pact the destination values everywhere in the domain. One
would expect that local remapping should be independent of
remote field changes, so Eq. (13) would also seem to be less
than ideal. It should be noted that if weights generated with
the approximate-area option were used in Eq. (13), the re-
sulting destination field would be identical to that obtained
with Eq. (3). This is because for these weights, Eq. (6) holds.

Yet another shortcoming of the true-area option is that its
application to a spatially uniform source field can result in
a destination field with nonzero spatial variance, which is
obviously unrealistic. Consider, for example, a source field
that has the value 1 everywhere. For the grid defined earlier
(see Table 1), application of Eq. (11) results in a destination
field with the same mean (equal to 1), but with area-weighted
variance equal to 0.064, and a maximum absolute deviation
from the true value of 0.13. These unrealistic variations may
in some applications be unacceptable. Algorithms that main-
tain the uniformity of an originally constant field are said to
be “consistent” (e.g., Ullrich and Taylor, 2015), so the true-
area option might be described as “not consistent”.

For the true-area option, use of Eq. (11) or Eq. (13) can
sometimes result in a destination field with nonphysical val-
ues. Consider, for example, a possible result of mapping to
a destination grid the ice-free fraction (i.e., the fraction of a
grid cell area that is ice-free). As in the first example above,
suppose the ice-free fraction is independent of longitude and
a linear function of latitude, varying from 0 in the polar-most
latitude band to 1 in the latitude band adjacent to the Equa-
tor. Application of Eq. (11) results in a value of 1.06 for the
latitude band nearest the Equator, and application of Eq. (13)
results in a value of 1.01. Clearly, the remapping algorithm in
both cases yields a nonphysical result, with the ice-free frac-
tion exceeding 1 in the tropics. In contrast, the approximate-
area option generates destination values that never exceed the
maximum or minimum source values. The approximate-area
approach is said to be a monotone method (e.g., Ullrich and
Taylor, 2015), whereas the true-area approach is not.

Given the shortcomings of both the centered and uncen-
tered variants of the true-area option, we reconsider the
approximate-area option, which relies on the remapping al-
gorithm to construct cell shapes and areas assuming that
perimeters coincide with great circle segments. The funda-
mental problem with this approach, as expressed by Eq. (8),
is that the true global mean (as calculated on the source grid
using true areas) is not generally preserved. In the fields ex-
amined by the author, there were only relatively small differ-
ences between the true mean and the mean of the field cal-
culated after applying the approximate-area remapping ap-
proach. It seems reasonable, therefore, to simply adjust all
values in the field by a uniform amount to correct for the
small mismatch in means. For the case considered in Fig. 1,

0.45 K can be added to each of the destination grid cell values
obtained with the approximate-area option. This straightfor-
ward adjustment eliminates the flaw in the approximate-area
option that led us to discard it originally. This “global adjust-
ment” to the destination field means that local destination
field values will be influenced to a small degree by remote
field values. This is undesirable, but as noted earlier, the true-
area (centered) approach is similarly impacted. On the other
hand, a virtue of the approximate-area option is that unlike
the true-area option, a change in units (from, for example,
Kelvin to ◦C) does not affect the accuracy of the result. In
addition, a source field that has no variations (i.e., is the same
everywhere) will map to a destination field that is also con-
stant. Both of these results follow because when applying the
approximate-area option, Eq. (6) holds.

Since neither of the cell-area choices offered by remap-
ping codes is without shortcomings, it is worth further exam-
ining the characteristics of their errors to determine which
approach results in the more realistic representation of the
original field. For the temperature field considered earlier,
Fig. 2 shows the remapping error when approximate cell ar-
eas are used (with and without a global mean correction)
and when the true cell areas are used with global mean re-
moved and then reapplied following Eq. (13), labeled the
“true-area (centered) option” in the figure. For now, discus-
sion will be limited to all but the dotted curve, which will
be discussed in the next section. By design, the correction to
preserve the global mean under the approximate-area option
simply offsets the curve by the same amount everywhere.
With this correction the “approximate-area (corrected uni-
formly) option” (as it will be referred to subsequently) has
the smallest root mean square (rms) error, calculated with
grid cell area weighting. The rms errors are 0.15 K for the
approximate-area (corrected uniformly) option, 0.48 K for
the approximate-area (uncorrected) option, and 0.63 K for
the true-area option (centered). In this example, although the
correct global mean is preserved under both the true-area
(centered) option and the approximate-area (corrected uni-
formly) option, the second option results in an rms error a
factor of 4 smaller than the first option.

In Fig. 3 we consider for a spherical coordinate (Cartesian
longitude by latitude) grid how the remapping errors depend
on grid cell size. The source data were taken from Fig. 1
with values independent of longitude location and 15◦ lati-
tude spacing. Source grids with longitudinal resolution from
0.5◦ to 30◦ were considered, and in each case the destina-
tion grid had half the longitudinal resolution of the source.
As discussed above, the errors arise because of inaccuracies
in the representation of grid cell shapes by the remapping al-
gorithm (which assumes that the cell latitude bounds follow
great circles, not latitude circles). It is not surprising then that
the finer the resolution, the smaller the errors (because for
small grid cells, the great circles deviate very little from lat-
itude circles). Figure 3 shows that under all options the rms
error is proportional to the square of the grid cell’s longitude
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Figure 2. For the example described in the text, error in destination
grid cell values resulting from different calculational options.

Figure 3. For the example described in the text, dependence on the
longitude cell width of the rms error in destination cell values, with
the error calculated over all latitudes and weighted by area. Only the
remapping options that preserve the true global mean are shown.
The rms errors have been normalized by the true spatial standard
deviation of the variable. Expressed in this way, an error equal to
1 means, for example, that the rms error is as large as the spatial
standard deviation of the variable, which in this example is 7.2 K.
The mapping is always from a source grid with longitude cell widths
half that of the destination grid but the same latitude resolution (15◦

latitude bands for all longitudinal resolutions).

width and that for any given resolution, the approximate-area
option error is about 1/4 the size of the true-area (centered)
option error and more than 2 orders of magnitude smaller
than the error in the uncentered true-area option. From an-
other perspective, compared to the true-area (centered) op-
tion, the approximate-area option can handle grids that are
twice as coarse with equal accuracy.

Figure 3 shows that for grid resolutions typically used in
climate research (a few degrees longitude width and finer),
the rms errors would be more than 2 orders of magnitude
smaller than the errors at the coarsest grid resolution consid-
ered (60◦). For the approximate-area (uncorrected) option,
the rms error is reduced from about 0.48 K at the coarsest res-
olution to about 0.002 K at 4◦. Similarly, the global mean cor-

rection needed at these two resolutions is 0.45 and 0.002 K,
respectively. For some studies an error of half a degree would
be of concern, but an error of a few thousandths of a de-
gree might be considered acceptable. In some cases, then, a
remapped field that does not quite preserve the true global
mean might be considered adequate and not require correc-
tion, but this will depend on what kind of use is being made
of the data.

Recall that when there are some physical limits on a vari-
able (e.g., a fraction confined to the interval 0 to 1), remap-
ping algorithms may not respect those limits. Although with
the approximate-area option, the remapping step ensures that
all destination values will be within the maximum and mini-
mum values of the source values, the correction to the mean
required when applying that option can sometimes push val-
ues outside the limits. This issue can be addressed with a
refined correction, which will be described in part of the next
section.

3 Remapping of partially or fully masked cells

We now consider the more general procedure for conserva-
tive remapping when there might be undefined elements in
the source array (e.g., missing or masked elements) or when
grid cell values might be defined for only a fractional portion
of the source cell (for example, only over the land portion of a
cell). For this purpose, we will adopt and generalize the form
of the approximate-area option because, as discussed above,
it was found to be more accurate than the true-area options
and because with this option we can simplify some subse-
quent formulas using Eq. (6). Moreover, where the field is
constant on the source grid, the approximate-area option, un-
like the true-area option, does not introduce unrealistic spa-
tial variations in a region.

The key to handling data that may represent conditions on
only a portion of each grid cell is to specify for each cell
the “unmasked” fraction, and when remapping is performed,
generate the appropriate destination unmasked fractions. Al-
though sometimes the source grid unmasked fractions are bi-
nary (either 0 or 1) and might be inferred from special bit
strings indicating “missing” data, if the data are remapped,
the unmasked fractions will in general no longer be binary,
and thus information will be lost unless the unmasked frac-
tions are carried as an additional field along with the data
field. The key to general remapping then is to carefully ac-
count for the unmasked fractions and to ensure that they are
consistently defined on the destination grid.

Generalizing Eq. (3) to account for fully or partially
masked fields requires modification of the weights defined
by Eq. (4). This is done by replacing the ratio of areas by
the ratio of unmasked portions of the cell areas in Eq. (4).
Alternatively and equivalently, we can keep the original un-
masked definition of weights and explicitly include the un-
masked fractions in Eq. (3), which then becomes
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F̂dj =
∑
i

wij (fsi/f̂dj )Fsi , (14)

where the “hats” atop Fdj and fdj indicate that these are pre-
liminary estimates of destination values which might need
subsequent correction to preserve their true global means.
Note that the source unmasked fractions, fsi , must be set to 0
wherever there are missing data. When this is done, missing
data need not be treated specially because the missing value
will invariably get multiplied by fsi , yielding 0 for the prod-
uct. This ensures that missing values have no impact on the
remapped fields.

For some applications, destination fractions may have
been imposed as part of the definition of the destination grid.
For the purposes of remapping a field, however, it is essential
that the destination fractions in Eq. (14) be defined such that

f̂dj =
∑
i

wijfsi . (15)

The remapping formula (14) can then be written as

F̂dj =

∑
iwijfsiFsi∑
iwijfsi

. (16)

Thus, the destination value is simply a weighted mean of the
contributing grid cell values. This ensures that the destina-
tion value will not lie outside the maximum and minimum
values of the contributing cells. This further implies that if
all source cells contributing to some destination cell have
the same value, the destination cell will also be assigned that
value. Note that if in Eq. (16) the sum in the denominator is
zero, then the destination value should be designated as miss-
ing. Existing remapping packages presumably have provided
options for calculating the destination values using Eq. (16),
but some may require fsi to be a binary mask (unmasked or
fully masked) rather than allowing for partial masking.

As shown earlier, use of approximate areas in computing
the weights in Eq. (16) does not in general preserve the true
global mean of F . As in the simpler case, a global adjust-
ment to the F̂dj values must be applied, but here we allow
the correction to vary spatially,

Fdj = F̂dj −
γj

γ
(F̂d−Fs) , (17)

where γj/γ is a spatially varying correction coefficient, and
the global mean of γ in the denominator above ensures Fd =

Fs. With masking, the global mean quantities (indicated by
overbars) must be computed with area weights proportional
to only the unmasked area of grid cells. For example,

F̂d =

∑
j F̂djfdjA

∗

dj∑
jfdjA

∗

dj
. (18)

Note that in this formula, the unmasked fraction, fd , is not
necessarily identical to the unmasked fraction, f̂d, which ap-
pears in Eq. (14). Sometimes, for example, the remapped

data must conform to a destination grid with an imposed
masked region. In that case, the already defined fractions,
fd, can be used in Eq. (18). This, however, could result in
some destination field values calculated with Eq. (16) being
masked. With those values no longer contributing to the des-
tination field, the correction to the mean given by Eq. (17)
must compensate, and this will alter the destination values,
Fdj , globally, not just locally. It is therefore advisable to as-
sign destination masked fractions consistent with Eq. (15)
and avoid imposing externally defined destination masked
fractions.

In the simplest case, the correction coefficient in Eq. (17)
is set to 1 for all j , which adjusts each cell value by the same
amount everywhere (i.e., by 1F = F̂d−Fs). This can, how-
ever, lead to nonphysical results. Suppose, for example, that
a positive definite quantity (such as the liquid water content
of air) were mapped to a target grid using Eq. (16) and that
the resulting global mean were greater than Fs. In this case,
any cell with F̂dj = 0 would, after a simple adjustment with
γj = 1, become negative, which must be ruled out on physi-
cal grounds.

More generally, a uniform adjustment of the destination
field may result in values that lie outside the range of source
values. Returning to our earlier example, we see in Fig. 2
that a uniform correction to the temperature field of 0.45 K
results in a positive 0.1 K error in the Equator-most cell, and
the remapped temperature there is warmer (by 0.1 K) than
the warmest temperature found in the original field (290 K).
Thus, the remapped field, which before correction was mono-
tonic, is no longer so.

To remedy this undesirable consequence of a uniform
correction, γj should vary such that the original maximum
and minimum temperatures are not exceeded. A number of
methods have been developed to ensure the monotonicity of
remapped fields (e.g., Zerroukat et al., 2005; Schneider et al.,
2018; Bradley et al., 2019; Lauritzen and Nair, 2008). Here,
as alternatives to some of the more sophisticated correction
methods, we offer two options that would be easy to include
in remapping procedures.

We first consider the case of a positive definite field, such
as the concentration of a trace species. In this case we sug-
gest that rather than applying a uniform increase or decrease
in values, the same fractional correction be applied across
the entire field. This is achieved by setting the coefficient in
Eq. (17) to the local field value itself, γj = F̂dj . With this,
Eq. (17) reduces to

Fdj = F̂dj
Fs

F̂d

. (19)

This scaling ensures that when the concentration varies over
orders of magnitude, most of the correction needed to pre-
serve the global mean will be accomplished where concen-
trations are relatively high. When considering smoke concen-
tration, for example, a correction to the total mass of smoke
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Figure 4. For the example described in the text, dependence of the

temperature correction, (γµ/γµ)(T̂d− Ts), on temperature and the
exponent µ. The same shaped curves apply to any variable, with
axes rescaled appropriately.

would be made primarily in the smoke plume, not in the
smoke-free regions. It should be noted, however, that while
Eq. (19) ensures that concentrations never become negative,
the maximum concentration in the remapped field might ex-
ceed the maximum value in the original field.

There are some cases where certain limits must be strictly
enforced. As an example, the fraction of each grid cell cov-
ered with sea ice must never be negative or exceed 1. To pre-
serve the global mean while respecting these limits, we can
apply Eq. (17) with γj defined as

γj = (F̂dj −Fmin)
µ(Fmax− F̂dj )

µ , (20)

where Fmin and Fmax represent the imposed upper and lower
limits of the field. For a fraction like sea ice, these would
be set to 0 and 1, respectively. The same form for γ ap-
plies when we require monotone remapping, but the limits
in this case would be set to the source field’s minimum and
maximum values. With this approach, values near the maxi-
mum and minimum values are adjusted by a smaller amount
than values nearer the middle of the range of values. Fig-
ure 4, which applies to the temperature field considered ear-
lier, shows how the distribution of the error correction is de-
termined by µ. A small value of µ will distribute the correc-
tion fairly evenly throughout the range except near the limits.
A large value of µ saddles the middle range with most of the
adjustment. No matter what the value of µ, there is no cor-
rection to values already at the maximum or minimum.

Ideally, we might choose to distribute a needed correc-
tion according to where the grid cell shape misrepresenta-
tions are largest (and where the local conservation errors are
likely largest). There is, however, no easy way to do this. In-
stead consider simply distributing the correction according
to Eq. (17) with γ defined in Eq. (20) and with µ chosen
such that a relatively even correction is applied everywhere
without pushing the values of any cell beyond the imposed
maximum and minimum limits. Consistent with this intent, a

Table 2. For the temperature field and various grid resolutions con-
sidered here, the µ values that most evenly distribute corrections
needed to preserve the true global mean without shifting destina-
tion values outside the source field range. See Appendix B for the
procedure used to determine µ. The longitudinal resolution of the
source field is invariably twice that of the destination field.

Destination µ

cell width

1◦ 0.0390
2◦ 0.0446
4◦ 0.0522
15◦ 0.0629
30◦ 0.0773
60◦ 0.1607

procedure is described in Appendix B whereby the value ofµ
can be found that maximally “flattens” the γ curve while en-
suring that all field values remain within the imposed limits.
This will be referred to subsequently as the “approximate-
area (corrected and monotone)” option.

In the example considered above, the temperature in the
cell adjacent to the Equator would, as already noted, exceed
the maximum temperature found in the original field by 0.1 K
if a uniform correction were applied. To prevent this, the cor-
rection needed to preserve the true global mean is distributed
according to Eq. (20), as just discussed. The value of µ ap-
pearing in the correction coefficient is 0.161, as determined
by the procedure described in Appendix B. The dotted curve
in Fig. 2 shows the result of applying this nonuniform cor-
rection. In addition to eliminating the artificial maximum re-
sulting from a uniform correction, the nonuniform correction
slightly reduces the rms error in the remapped temperature
field. Figure 3 shows that at all resolutions, a nonuniform cor-
rection (with µ values obtained as described in Appendix B
and listed in Table 2) produces a temperature field with the
smallest errors of all options considered.

In the case of coarse resolution (with longitude widths
≥ 30◦), the uncorrected global mean of the remapped field
is 0.45 K cooler than the true global mean. For finer-
resolution grids, the magnitude of the correction is consider-
ably smaller: when, for example, the same temperature field
is mapped from a source grid with cell widths of 4◦ longi-
tude to a grid with widths of 8◦, the global mean is less than
0.01 K cooler than the true mean. When it is not essential
to preserve the true mean, one might choose to accept such
a small error in global mean in order to skip the correction
procedure described above.

A final adjustment to Fdj may be needed if the objective is
to preserve the global integral of a field, rather than the global
mean. (To conserve energy in a coupled climate model, for
example, it is the surface heat flux between the atmospheric
component and the ocean component that might need to be
mapped from one grid to another, and it is the total flux which
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must be preserved.) Comparison of Eqs. (1) and (2) indicates
that to preserve the integral, the values of Fdj obtained using
Eq. (17), which preserves the mean, should be scaled by the
ratio of the global unmasked source area to the unmasked
destination area:

c =
r2

s
∑
ifsiA

∗

si

r2
d
∑
jfdjA

∗

dj
. (21)

If the destination unmasked grid cell fractions have been
defined such that the global mean unmasked fraction is
preserved, the sums in the numerator and denominator of
Eq. (21) are the same, and the formula simplifies to c =

(rs/rd)
2. When this is true and if rd = rs, the same destination

field, without scaling, preserves both the mean and the inte-
gral. Note, however, that if the destination unmasked frac-
tions have been calculated with Eq. (15) and they have not
been corrected to preserve the global mean unmasked frac-
tion, then c must be calculated with Eq. (21).

4 Recipes for regridding

Some conservative remapping packages (see Appendix A)
may not be designed or may not clearly document how
to handle the most general cases considered here (e.g.,
fields with missing values or grid cells that are partially
masked). Those codes may nevertheless be relied on to pro-
vide weights defined by Eq. (4). For a given source and des-
tination pair of grids, these weights can be calculated once
and then used to remap any field from the source grid to
the destination grid, even fields that are partially masked. A
step-by-step procedure for mapping variables conservatively
is provided here.

1. Obtain from a remapping package the weights (wij ) that
apply when there is no masking or fractional weighting.
Accept that these weights might be based on the algo-
rithm’s sometimes inaccurate reconstruction of grid cell
shapes.

2. Check that for all destination cells the weights satisfy
Eq. (6), which with Eq. (4) can be rewritten as∑
i

wij = 1 for all j. (22)

(It is prudent to include this step but not necessary if the
weights returned by the remapping package are known
to satisfy this requirement.) If Eq. (22) is satisfied, the
remapping algorithm will be “consistent” in the sense
that a spatially constant source field will remain spa-
tially uniform on the destination grid.

3. Assign or calculate the source grid’s unmasked frac-
tions, fsj .

– If a source value is meant to represent conditions
over the entire cell extent, set fsi = 1 for the cell.

– If unmasked fractions have been assigned to source
cells prior to remapping, the pre-assigned values
should be assigned to fs.

– Wherever source cell data are missing, reset the un-
masked fraction to 0 (fsi = 0).

4. Assign or calculate the destination grid’s unmasked
fractions, fdj .

– If unmasked fractions have been assigned to des-
tination cells prior to initiating the remapping pro-
cedure, fd may be set to the pre-assigned values.
As noted in the previous section, however, when
destination masked values are not consistent with
Eq. (15), the destination field, Fd, will be impacted
everywhere, so when possible, avoid applying ex-
ternal destination masked fractions different from
f̂d.

– If unmasked fractions have not been pre-assigned,
generate the fractions with Eq. (15). When neces-
sary and desirable, correct the values of f̂ to pre-
serve the global mean fraction by applying formu-
las analogous to Eqs. (17) and (20).

fdj = f̂dj −
γj

γ
(f̂d− fs) (23)

and

γj = f̂
µ
dj (1− f̂dj )

µ . (24)

This step ensures that the same destination field will
preserve both the global integral and mean under
the conditions discussed following Eq. (21). The
value of µ should be determined following the pro-
cedure described in Appendix B. The global means
of f̂d and fs in the first equation above must be
calculated weighted by the full true areas (A∗dj and
A∗si).

5. Use Eq. (16) to calculate the preliminary destination
values, F̂dj . For any cell where the denominator in
Eq. (16) is 0, designate the destination value as “miss-
ing”.

6. When necessary and desirable, correct the destination
values, F̂dj , to preserve the true global mean and obtain
the final destination field, Fd. In the next two sub-steps,
when calculating Eq. (17), global means of Fsi and F̂dj
should be weighted by fsiA

∗

si and fdjA
∗

dj , respectively.
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– Initially, attempt to impose a uniform correction to
all values by applying Eq. (17) with γj = 1 for all
j . If none of the resulting Fdj values have been
shifted outside the extremes of the source field, con-
sider the correction acceptable; otherwise, recover
the original F̂d field and proceed.

– If the uniform adjustment is unacceptable, apply
Eq. (17) with γ defined by Eq. (20) and µ de-
termined following the procedure outlined in Ap-
pendix B.

Note that no correction of F̂dj is needed if two con-
ditions are met: (1) the remapping algorithm correctly
represents both the source and the destination grid cell
shapes (in which case the fractional contributions, ω,
and cell areas will both have been correctly determined),
and (2) the unmasked fractions on the destination grid
are defined by Eq. (15) and have not been corrected to
preserve the global mean fraction.

In what follows, the above recipe will be referred to as the
“standard procedure”. The weights, wij , only depend on the
source grid and destination grid, so a single set of weights
can be generated that can be applied in remapping any field.
It should be noted that the approximate areas calculated by
the remapping algorithm are of no interest once the mapping
weights have been generated. In the subsequent mapping of
a variable from the source grid to the destination grid, only
the true areas of cells may be needed.

Care must be taken when the standard procedure for
remapping is applied to a variable representing conditions
within layers of the atmosphere or ocean to ensure that mass-
weighted means are preserved (as opposed to the usual area-
weighted means). Additional complications might be en-
countered when a variable represents the ratio of two quanti-
ties (e.g., specific humidity is the ratio of the mass of water
vapor to the mass of air), where, rather than preserving the
global mean ratio, it is better to preserve the two quantities
themselves. The following guidelines may be helpful in treat-
ing these possibly troublesome variables.

a. To remap a quantity representing a grid cell area frac-
tion (e.g., cloud fraction, sea ice fraction, land frac-
tion), the destination fractions should be calculated in
the same way as unmasked fractions were calculated in
step 4 above.

b. To conserve a vertical flux of energy through a surface,
the flux must be expressed as a flux per unit area (“flux
density” with units of, for example, W m−2, not W).
Then the standard procedure is followed to remap the
flux density to the destination grid where it is scaled by
c, as defined by Eq. (21).

c. To remap the albedo (reflected radiation divided by in-
cident radiation), which is undefined when the inci-
dent radiation is zero, it is best to conservatively remap

the incident and reflected radiation flux densities (com-
monly termed “radiative fluxes”) and then form their
quotient rather than directly remapping the albedo. Des-
tination values should be considered “missing” (unde-
fined) where the remapped incident radiation is 0.

d. There are applications where the total volume of a space
(which might be partially masked) should be preserved.
For grids constructed with height (or depth) used as a
vertical coordinate, this can be achieved by calculat-
ing appropriate cell thicknesses on the destination grid.
The standard procedure above is followed, applied to
cell thickness. The resulting values must be scaled by
c, as defined by Eq. (21). The unmasked portion of a
destination cell volume is the product of the remapped
cell depth, the destination cell fraction that is unmasked
(fdj ), and the true destination cell area (A∗dj ).

e. For most 3-D quantities, remapping should preserve
the mass-weighted mean rather than the area-weighted
mean. Prior to remapping such variables, the mass field
must be remapped conservatively. In order to preserve
the total mass within a layer, the mass per unit area
(M) of destination cells can be obtained following the
standard remapping procedure. We consider two cases:
models for which the bounds on layers can be expressed
as a pressure and models for which the bounds on layers
can be expressed as a distance.

When the layer pressure thicknesses can be determined,
the mass per unit area in the layer is M =1p/g (where
1p is the pressure thickness of the layer, which may
vary with longitude and latitude, and g is the accelera-
tion due to gravity). Preserving the mass within a layer
is equivalent to preserving the pressure thickness of the
layer. This is achieved following the standard remap-
ping procedure with Fsi =1psi and scaling the result
by c, as defined by Eq. (21).

When the layer thicknesses can be determined, the layer
mass per unit area is equal to the product of cell den-
sity (ρ) and layer thickness (1z), so that standard pro-
cedure is applied to ρ1zsi . Again, the result is scaled
by c, as defined by Eq. (21). Through this procedure
we preserve global mass, but we should also like to de-
fine density and layer thickness on the destination grid
such that their product is Mdj . For models with a uni-
form source grid layer thickness,1z, it makes sense for
the source grid thickness to carry over to the destination
grid. Then the density is given by ρdj =Mdj/1z. If,
instead, density is uniform in a source grid layer, then
1zdj =Mdj/ρ. If, however, both density and thickness
vary on the source grid, then one can choose whether to
preserve the global mean layer thickness or the global
mean density. One of these fields can be remapped, pre-
serving its mean, and then the other calculated by divid-
ing Mdj by the first field.
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f. Once the mass per unit area is obtained for each desti-
nation grid cell, as just described in (e) above, the for-
mula for preserving mass-weighted integrals or means
can be derived. For example, to remap temperature (T )
in a layer such that the total internal energy is conserved
within a layer, remap the temperature, weighted by each
grid cell’s mass per unit area, and then divide by the cell
mass per unit area on the destination grid (Mdj ). For a
pressure coordinate model with a layer thickness (1psi)
that depends on location, the mass-weighted tempera-
ture U = T1p, which is proportional to internal energy
per unit area, is mapped to the destination grid follow-
ing the standard procedure. The result, Udj , is then di-
vided by the pressure thickness on the destination grid
(defined, as described in (e), such that the global mass
is preserved), yielding the temperature field consistent
with conservation of internal energy: Tdj = Udj/1pdj .
For a height or depth coordinate model, 1p is replaced
by ρ1z in the above formulas, with care taken to pre-
serve the global mass in the layer. Note that for layers of
uniform mass thickness (either constant 1p or constant
ρ1z), there is no need to consider mass, and instead,
the simpler procedure described in (b) can be applied
directly without regard to layer thickness.

g. The amount of a substance in a layer of the atmosphere
or ocean is often expressed as a ratio. To remap quanti-
ties of this kind, separately remap the quantities repre-
sented by the numerator and denominator and then form
their ratio, as in the following examples.

– For specific humidity, q (mass of water vapor di-
vided by mass of air containing the water), sep-
arately preserve the mass of water vapor and the
mass of the air. First conservatively remap the water
vapor mass per unit area (qsiMsi). Then remap the
mass of air per unit area (Msi), as described in (e)
above. Finally, form the ratio of the two remapped
fields to obtain the specific humidity on the desti-
nation grid. A similar procedure can be applied in
remapping any mass fraction.

– For water vapor mixing ratio (mass of water vapor
divided by mass of dry air), separately preserve the
mass of the water vapor and the mass of dry air. A
similar procedure can be applied in remapping any
mass mixing ratio.

– For number concentration (number of particles di-
vided by volume), separately preserve the number
of particles and the volume. Then form their ratio.

– For mass concentration (mass of substance divided
by total volume of mixture), separately preserve the
mass of the substance and the volume. Then form
their ratio.

– For mole concentration (number of moles per unit
volume of, for example, a chemical species in

the atmosphere or ocean), separately preserve the
moles of the substance and the volume. Then form
their ratio.

– For volume mixing ratio (number of moles of a
constituent divided by number of moles of all con-
stituents combined; sometimes referred to as mole
fraction), separately preserve the number of moles
of the constituent of interest and the number of
moles of all constituents combined. Then form their
ratio.

h. In remapping relative humidity (mixing ratio divided by
saturation mixing ratio), one might want to preserve the
relationship between the remapped mixing ratio and the
remapped temperature used to define saturation mixing
ratio. That is, one might want the relative humidity on
the destination grid to be defined by the ratio of a con-
servatively remapped mixing ratio divided by a satura-
tion mixing ratio based on a conservatively remapped
temperature.

5 Interpolating conservatively in the vertical

When remapping a 3-D field both vertically and horizontally,
the vertical dimension must be handled carefully to preserve
a global mass-weighted integral. When coupling component
models (e.g., an atmospheric dynamical core with an atmo-
spheric chemistry module) specialized handling might be re-
quired, but for the purposes of remapping model results, it
might be satisfactory to treat the horizontal and vertical di-
mensions sequentially. We consider here the specific case of
first interpolating from a model’s native vertical grid to sur-
faces of constant mass per unit area and then remapping hor-
izontally.

Compared with the generation of weights needed to remap
conservatively in the horizontal, it is much easier to define
the weights that will preserve integrals in the vertical. This
is because the overlap of source and destination grid cells in
the vertical is one-dimensional, and only the cell thicknesses
must be considered (not their shapes). For data stored on na-
tive model levels, bounds defining the vertical extent of each
grid cell are an essential component of the grid definition and
should be known. Furthermore, the pressures associated with
those interfaces should be derivable. Then the mass per unit
area contained within the upper and lower bound of a layer
can be calculated by dividing the pressure difference across
the layer by g. The weights can then be obtained by overlay-
ing the pressure bounds from the native grid onto the destina-
tion grid bounds and determining the fraction of each source
cell that lies within the vertical extent of each destination
cell. These fractions are used to remap the data in the vertical
through matrix multiplication. A difference from horizontal
remapping is that the weights are not uniform across the other
dimensions of the data; they can vary from one location to
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another and may evolve over time (e.g., in the atmospheric
surface layer where surface pressure may vary in time). It
is therefore not possible to calculate the weights once and
for all as is done in horizontal remapping. Fortunately, cal-
culating the weights for interpolating in the vertical is com-
putationally much less demanding than in the horizontal, so
remapping 3-D fields remains practical.

Once the vertical integration has been completed, conser-
vative remapping of each layer can proceed following the
standard procedure summarized in the previous section.

6 Summary and concluding remarks

Most conservative remapping packages (see Appendix A)
generate mapping weights based on grid cells that for cer-
tain grids might differ slightly in shape from the true cell
shapes. Typically, a remapping algorithm will construct cell
polygons with edges that follow great circles and then use
these to determine cell areas and mapping weights. On the
other hand, many models and analysis grids are constructed
on spherical grids with grid cell bounds that follow lines of
constant longitude and lines of constant latitude (not great
circles). If data are mapped from or to a grid of this kind,
the remapping algorithms can fail to preserve the true global
mean or integral of a field. The algorithms instead preserve
a global mean based on their approximate representations of
cell shapes and areas, which generally differs from the true
mean. Other packages may assume cell shapes are defined
by bounds coinciding with straight lines on a equirectangu-
lar projection, and then the cell shapes for the increasingly
popular cubed-sphere grid (among many others), which fol-
low great circles, are not accurately represented.

Errors in conservation may especially matter when gaug-
ing whether a model, having reached equilibrium, is conserv-
ing energy. If the global mean net top-of-the-atmosphere en-
ergy flux is in fact zero, as evaluated based on the original
grid and correct cell areas, remapping those data and calcu-
lating the mean on a new grid could lead to a different con-
clusion. Similarly, when the mass of a trace species is not
preserved, it is impossible to accurately track its changes and
possibly determine what the causes of those changes are.

Another limitation of many remapping packages is that al-
though they may be able to treat gridded data where a binary
mask applies (e.g., screening regions of missing data or lim-
iting analysis to the ocean or land regions alone), not all are
designed to conveniently handle data values that are repre-
sentative of only a portion of a grid cell (i.e., are partially un-
masked). Moreover, often the easiest option offered for han-
dling such cases is to perform the computationally intensive
recalculation of weights each time a new mask is imposed.

Here instructions have been provided explaining how to
use the weights generated by remapping packages and how
to avoid or correct for their deficiencies. For a given pair
of source and destination grids, the remapping weights need

only be calculated once; the weights are independent of any
full or partial masking of the source data. Each destination
field can then be calculated via very sparse matrix multiplica-
tions. The recipes appearing in Sect. 4 provide step-by-step
instructions on how to handle various cases. These recipes
apply even when the remapping algorithm has correctly rep-
resented the shapes and areas of grid cells; when that is true,
the steps involving correction of the mean can be skipped.

Conservative remapping of the kind considered here must
always operate on variables that are independent of the cell’s
area. For example, rather than remap the area of snow cover
in grid cells, the areas must first be converted to fractions,
which can be conservatively remapped and then converted
back to areas. Most variables reported from models are in-
tensive, so such conversions are rarely necessary.

Conservative mapping is obviously required if it is impor-
tant to preserve the global integrals (or means) of a field.
When this is not essential, other methods of interpolating
data to a destination grid may lead to a more physically con-
sistent and realistic-looking result. Consider, for example,
the geopotential height and wind fields carried on a relatively
coarse source grid. If these fields were mapped conserva-
tively to a much finer resolution grid, box-fill contour plots of
the resultant fields would look like slightly blurred versions
of the box-fill plots of the original fields (often referred to
as the mesh-imprinting phenomenon). The sub-cells wholly
contained within a given source cell would all share the same
value; there would be no variation except for the relatively
few cells at the borders of the original source cells. Thus,
within the confines of each original source cell, the geopoten-
tial height and winds would be constant, and at the borders
of original source cells, there would be large gradients. With
nonzero wind values but no geopotential gradients within the
confines of the original cell, the geostrophic balance gener-
ally prevailing outside the tropics would be upset. In general,
when mapping from a coarse to a fine grid, a second-order
conservative scheme (e.g., Kritsikis et al., 2017) or simple
bilinear interpolation should lead to more realistic gradients
and more realistic-looking results than first-order conserva-
tive remapping.

By way of simple examples, we have shown that certain
approaches to applying weights generated with commonly
used remapping packages can lead to substantial errors even
if the true global mean is preserved. The “standard proce-
dure” recommended here avoids some of the problems, but
for some grids it can include a typically small, but perhaps
non-negligible, correction to preserve the global mean. For
some applications the correction might not be considered
large enough to warrant applying it. In this regard it should
be remembered that the largest remapping errors illustrated
by the simple examples considered above were associated
with very coarse grids. Errors are much smaller and perhaps
could be considered insignificant for grids of a more usual
finer resolution, since the errors scale with the square of the
grid cell longitude width.
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We have shown that with available remapping packages,
careful application of the remapping weights, unmasked frac-
tions, and (when needed) the application of a correction can
result in reasonably accurate results with the true global in-
tegrals or means of interest preserved. If cell shapes were
invariably reconstructed correctly by the remapping algo-
rithms, no correction would be needed to preserve the global
mean and the standard remapping procedure could be sim-
plified. This would seem to provide strong motivation for
augmenting remapping packages with the option to correctly
construct the commonly encountered longitude by latitude
grids with cell edges conforming to the true grid cell shapes.

Appendix A: Remapping packages

The focus here has been how to accurately preserve the
global mean of a field when it is remapped to a different
grid. There are, of course, other criteria for judging the rela-
tive merits of a remapping scheme unrelated to conservation.
Valcke et al. (2022) and Mahadevan et al. (2022) define a va-
riety of metrics for comparing the properties of remapping
algorithms, and then they rely on these algorithms to evalu-
ate a number of different remapping packages. In those stud-
ies, there is no metric defined that characterizes the accuracy
with which a package reconstructs the areas and shapes of
grid cells. Below is a list of packages for generating remap-
ping weights with some information about the assumptions
made about cell shapes. Based on this information, it might
be possible to select a package that for a particular applica-
tion would provide accurate weights that could be used in the
remapping procedure fully described above.

– C-Coupler2: this package was developed for use in cou-
pling components of climate models (Liu et al., 2019)
and includes a conservative remapping capability.

– Climate Data Operators (CDO): this package, designed
to manipulate and analyze climate and weather predic-
tion data, includes a conservative remapping option that
is based on the YAC package (see below). Documenta-
tion is available at
https://code.mpimet.mpg.de/projects/cdo/wiki (last ac-
cess: 5 January 2024).

– Earth System Modeling Framework (ESMF) Regrid
Weight Generator (ERWG): this library contains a num-
ber of remapping methods useful in the analysis of cli-
mate data, including a conservative option. Cell vertices
are connected following great circles. Documentation
is available at https://earthsystemmodeling.org/regrid/
(last access: 5 January 2024).

– Mesh-Oriented datABase (MOAB): this library (Ma-
hadevan et al., 2020) provides support for coupling
model components. It can remap fields conservatively
using the weights generated by TempestRemap.

– NetCDF Operators (NCO): this toolkit manipulates
and analyzes data of interest to the geophysical
community and includes three options for creat-
ing remapping weights: TempestRemap, ESMF
(ERWG), and NCO’s own conservative weight
generator, which assumes cell shapes are defined
by great circles. Documentation and guidance are
available at https://sourceforge.net/projects/nco/,
https://nco.sourceforge.net/nco.pdf, and
https://acme-climate.atlassian.net/wiki/spaces/DOC/
pages/754286611/Regridding+E3SM+Data+with+
ncremap (last access: 5 January 2024).

– OASIS: this software was developed for coupling com-
ponents of climate models (Craig et al., 2017; Valcke
and Piacentini, 2019; Jonville and Valcke, 2019). In
its latest version it relies on remapping weights gen-
erated offline (with, for example, ESMF or SCRIP).
Documentation is available at https://oasis.cerfacs.fr/en/
documentation (last access: 5 January 2024).

– Spherical Coordinate Remapping and Interpolation
Package (SCRIP): this is the first library to implement
the Jones (1999) approach to remap conservatively (see
https://github.com/SCRIP-Project, last access: 5 Jan-
uary 2024). It assumes the cell sides are in general
straight lines on an equirectangular projection so that
for the special case of a cell side connecting two points
at the same latitude, the side coincides with a latitude
circle, not a great circle. Note that SCRIP offers an op-
tion to construct cells located very near the poles using
Lambert projections.

– TempestRemap: this is a conservative, consistent, and
monotone remapping package for arbitrary grid geom-
etry with support for finite volumes and finite elements
(see Ullrich and Taylor, 2015; Ullrich et al., 2016). The
package assumes that cell sides coincide with great cir-
cles.

– XML-IO-Server (XIOS): this open-source library han-
dles I/O management in climate codes, and it includes a
remapping capability. In constructing grid cells, it con-
nects the cell vertices following great circles. In some
cases a cell side that begins and ends at the same latitude
and spans a large longitude range can be subdivided into
multiple short segments (with each segment following
a great circle). This results in a side that more nearly
follows a latitude circle, and for some grids this can im-
prove global conservation. Documentation is available
at http://forge.ipsl.jussieu.fr/ioserver (last access: 5 Jan-
uary 2024).

– Yet Another Coupler (YAC): a conservative remapping
algorithm is included in this climate model component
coupler (Hanke et al., 2016; see also https://dkrz-sw.
gitlab-pages.dkrz.de/yac, last access: 5 January 2024).
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Depending on the grid, cells are constructed with sides
coinciding with great circles or following lines of con-
stant latitude or longitude. This package may therefore
be unique in being able to accurately construct grid cell
shapes and areas for most grids used in climate models.

Appendix B: A procedure for determining µ

The value of µ, which appears in Eq. (20), is chosen such
that the corrections needed to preserve the global mean are
distributed as evenly as possible across all cells without vi-
olating the maximum and minimum limits imposed on the
field. For monotone remapping, the maximum and minimum
values are taken as the maximum and minimum values of the
original field. When monotonicity is not required but when a
field has inherent limits (e.g., the sea ice fraction limits of 0
and 1), those limits define the maximum and minimum val-
ues.

Sometimes it is possible to uniformly apply the global
mean correction, 1F , to all cells. If the limits of the original
field should be respected, we can apply a uniform correction
to all remapped cell values only if in all cells

|1F |< Fmax− F̂dj if 1F > 0

|1F |< F̂dj −Fmin if 1F < 0. (B1)

When these conditions hold for all j , µ in Eq. (20) is speci-
fied to be 0, and in Eq. (17), γj = 1 for all j .

When the conditions of Eq. (B1) are not met, then a uni-
form correction cannot be applied and instead µ in Eq. (20)
is chosen such that the correction is distributed across the
field as evenly as possible without violating the constraint on
maximum and minimum values. As a first step, we define
a normalized and centered variable representing the destina-
tion field:

ψj =
2F̂dj −Fmax−Fmin

Fmax−Fmin
. (B2)

In this transformed representation, the values of ψ lie in the
range −1≤ ψj ≤ 1 and the global mean correction is given
by

1ψ =
21F

Fmax−Fmin
. (B3)

A nondimensional version of γ can then be written as

γ̇j = (1−ψ2
j )
µ. (B4)

To prevent a corrected field value from exceeding the im-
posed limits, we require for all j

γ̇j

γ̇
|1ψ | ≤ 1−ψj if 1F > 0

γ̇j

γ̇
|1ψ | ≤ 1+ψj if 1F < 0. (B5)

Next, excluding all remapped cell values of Fmax or Fmin,
we find among the remaining cells the extreme value,ψe that,
given the sign of 1F , is of relevance:

if 1F > 0, ψe =max[ψj ] for all ψj 6= 1

if 1F < 0, ψe =min[ψj ] for all ψj 6= −1. (B6)

It can be shown that Eq. (B5) is satisfied for all j if

γ̇e

γ̇
|1ψ | + |ψe| ≤ 1, (B7)

where γ̇e is evaluated with ψj = ψe.
The differences in the corrections made to the collection of

cells are minimized when equality holds in Eq. (B7), which
results in the cell value closest to the extreme being adjusted
to equal the extreme value. All other values will be adjusted
by a larger amount, but it can be shown that having initially
been further from the extreme, no other value will reach or
exceed the extreme. It is sufficient, then, to find the value of
µ in Eq. (B4) that ensures equality holds in Eq. (B7). The
problem is nonlinear and µ must be calculated using an it-
erative method. An approximate value will be obtained first,
followed by iterative application of a formula, which is de-
rived by perturbing the previous approximation of µ.

Substituting the expression for γ̇ into Eq. (B7), we find

γ̇e

γ̇
=
(1−ψ2

e )
µ

(1−ψ2)µ
=

1− |ψe|

|1ψ |
. (B8)

To obtain a first approximation, note that the global mean
quantity in the denominator of the left side of Eq. (B8) will
not exceed 1 because −1≤ ψj ≤ 1. If we solve the equation
for µ with the denominator set to 1, we will obtain an under-
estimate of the true value of µ, but this will serve as a first
estimate:

µ0 =
ln
(

1−|ψe|

|1ψ |

)
ln
(
1−ψ2

e
) . (B9)

The formula used to improve iteratively on this estimate is
derived by setting µn+1 = µn(1+ εn), where εn is obtained
by substituting µn into Eq. (B8), followed by a first-order
expansion for small εn, which leads to

εn =
αn− 1

αn ln γ̇en−
γ̇n

γ̇n
ln γ̇n

, (B10)

where

αn =
γ̇en|1ψ |

γ̇n(1− |ψe|)
, (B11)

and γ̇n is defined by Eq. (B4) with µ= µn. Convergence
is reached when, consistent with Eq. (B10), α = 1, which
yields ε = 0.
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The above method of calculating µwas applied to the sim-
ple temperature example test case in Sect. 3. The values are
given in Table 2. For all resolutions considered there, µ can
be determined to three significant figures after two iterations
and to five significant figures after three iterations. It can be
shown that under this approach with the first approximation
calculated using Eq. (B9), εn will invariably be positive. This
means that although each estimate will improve on the pre-
vious estimate and approach convergence, µ will always be
an underestimate of the value we seek. This would result in a
correction to the value nearest the extreme,ψe, that is slightly
too large, which means that the corrected value will exceed
the limit imposed on the field. In order to prevent this, one
can slightly inflate the value of |1ψ | in Eq. (B11), thereby
forcing the iterative method to converge on a value of µ that
is slightly larger than absolutely necessary. If the inflation
factor chosen to multiply |1ψ | is not too large (say, 1.02),
then the value of µ will be nearly optimal in distributing the
correction as evenly as possible across the domain while en-
suring that the limits on the field are respected. In the test
example considered in Sect. 3, the difference in corrections
with the slightly overestimated µ, compared with the opti-
mal µ, was less than a hundredth of a degree Celsius in the
lowest-resolution remapping and smaller at the finer resolu-
tions.

Code and data availability. The calculations performed in support
of this research were based on straightforward application of the
procedures fully described in the paper, relying on artificial data in-
cluded in the paper. The results were obtained with the assistance
of Excel for Mac (version 16.78). The Excel spreadsheet does not
conveniently expose the code that produces its numbers, so the best
way to reproduce the results reported in this paper is to indepen-
dently apply the simple formulas to the input data depicted with a
solid black line in Fig. 1. The spreadsheet is not general enough to
treat cases different from the one reported on in this paper, render-
ing it of little value beyond the current study.

Competing interests. The author has declared that there are no
competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. I thank Paul Durack and Paul Ullrich for their
helpful comments on the original draft of this article. I am grate-
ful for the thoughtful comments and suggestions offered by the re-
viewers and for offline exchanges with Moritz Hanke and Charles
Zender, who explained certain characteristics of their software li-

braries and generously shared their considerable knowledge regard-
ing remapping algorithms.

Financial support. This research was carried out by the Program
for Climate Model Diagnosis and Intercomparison (PCMDI) with
support from the Regional and Global Modeling Analysis (RGMA)
program area under DOE’s Biological and Environmental Research
Program. The work was performed under the auspices of the US
DOE by Lawrence Livermore National Laboratory under contract
DEAC52-07NA27344.

Review statement. This paper was edited by Lele Shu and reviewed
by Vijay Mahadevan and two anonymous referees.

References

Bradley, A. M., Bosler, P. A., Guba, O., Taylor, M. A., and
Barnett, G. A.: Communication-Efficient Property Preservation
in Tracer Transport, SIAM J. Sci. Comput., 41, C161–C193,
https://doi.org/10.1137/18M1165414, 2019.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Dukowicz, J. K. and Kodis, J. W.: Accurate Conserva-
tive Remapping (Rezoning) for Arbitrary Lagrangian-Eulerian
Computations, SIAM J. Sci. Stat. Comp., 8, 305–321,
https://doi.org/10.1137/0908037, 1987.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

Jones, P. W.: First-and second-order conservative remap-
ping schemes for grids in spherical coordinates, Mon.
Weather Rev., 127, 2204–2210, https://doi.org/10.1175/1520-
0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.

Jonville, G. and Valcke, S.: Analysis of SCRIP Conserva-
tive Remapping in OASIS3-MCT – Part B, Tech. Rep.
TR/CMGC/19-155, CERFACS, France, https://oasis.cerfacs.
fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_
Jonville-SCRIP_CONSERV_TRNORM_partB_2019.pdf
(last access: 5 January 2024), 2019.

Kritsikis, E., Aechtner, M., Meurdesoif, Y., and Dubos, T.: Conser-
vative interpolation between general spherical meshes, Geosci.
Model Dev., 10, 425–431, https://doi.org/10.5194/gmd-10-425-
2017, 2017.

Lauritzen, P. H. and Nair, R. D.: Monotone and Con-
servative Cascade Remapping between Spherical Grids
(CaRS): Regular Latitude–Longitude and Cubed-
Sphere Grids, Mon. Weather Rev., 136, 1416–1432,
https://doi.org/10.1175/2007MWR2181.1, 2008.

Liu, L., Zhang, C., Li, R., Wang, B., and Yang, G.: C-Coupler2:
a flexible and user-friendly community coupler for model
coupling and nesting, Geosci. Model Dev., 11, 3557–3586,
https://doi.org/10.5194/gmd-11-3557-2018, 2018.

https://doi.org/10.5194/gmd-17-415-2024 Geosci. Model Dev., 17, 415–430, 2024

https://doi.org/10.1137/18M1165414
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1137/0908037
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_Jonville-SCRIP_CONSERV_TRNORM_partB_2019.pdf
https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_Jonville-SCRIP_CONSERV_TRNORM_partB_2019.pdf
https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_Jonville-SCRIP_CONSERV_TRNORM_partB_2019.pdf
https://doi.org/10.5194/gmd-10-425-2017
https://doi.org/10.5194/gmd-10-425-2017
https://doi.org/10.1175/2007MWR2181.1
https://doi.org/10.5194/gmd-11-3557-2018


430 K. E. Taylor: Conservative remapping

Mahadevan, V. S., Grindeanu, I., Jacob, R., and Sarich, J.: Improv-
ing climate model coupling through a complete mesh representa-
tion: a case study with E3SM (v1) and MOAB (v5.x), Geosci.
Model Dev., 13, 2355–2377, https://doi.org/10.5194/gmd-13-
2355-2020, 2020.

Mahadevan, V. S., Guerra, J. E., Jiao, X., Kuberry, P., Li, Y., Ull-
rich, P., Marsico, D., Jacob, R., Bochev, P., and Jones, P.: Metrics
for Intercomparison of Remapping Algorithms (MIRA) protocol
applied to Earth system models, Geosci. Model Dev., 15, 6601–
6635, https://doi.org/10.5194/gmd-15-6601-2022, 2022.

Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., and
Tchelepi, H.: Monotone nonlinear finite-volume method
for challenging grids, Comput. Geosci., 22, 565–586,
https://doi.org/10.1007/s10596-017-9710-8, 2018.

Ullrich, P. A. and Taylor, M. A.: Arbitrary-order conservative and
consistent remapping and a theory of linear maps: Part I, Mon.
Weather Rev., 143, 2419–2440, https://doi.org/10.1175/MWR-
D-14-00343.1, 2015.

Ullrich, P. A., Devendran, D., and Johansen, H.: Arbitrary-
order conservative and consistent remapping and a theory of
linear maps: Part II, Mon. Weather Rev., 144, 1529–1549,
https://doi.org/10.1175/MWR-D-15-0301.1, 2016.

Valcke, S. and Piacentini, A.: Analysis of SCRIP Conser-
vative Remapping in OASIS3-MCT – Part A, Tech.
Rep. TR/CMGC/19-129, CERFACS, France, https://oasis.
cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_
Valcke-SCRIP_CONSERV_TRNORM_partA_2019.pdf (last
access: 5 January 2024), 2019.

Valcke, S., Piacentini, A., and Jonville, G.: Benchmarking Regrid-
ding Libraries Used in Earth System Modelling, Math. Comput.
Appl., 27, 1–26, https://doi.org/10.3390/mca27020031, 2022.

Zerroukat, M., Wood, N., and Staniforth, A.: A monotonic and
positive–definite filter for a Semi-Lagrangian Inherently Con-
serving and Efficient (SLICE) scheme, Q. J. Roy. Meteor. Soc.,
131, 2923–2936, https://doi.org/10.1256/qj.04.97, 2005.

Geosci. Model Dev., 17, 415–430, 2024 https://doi.org/10.5194/gmd-17-415-2024

https://doi.org/10.5194/gmd-13-2355-2020
https://doi.org/10.5194/gmd-13-2355-2020
https://doi.org/10.5194/gmd-15-6601-2022
https://doi.org/10.1007/s10596-017-9710-8
https://doi.org/10.1175/MWR-D-14-00343.1
https://doi.org/10.1175/MWR-D-14-00343.1
https://doi.org/10.1175/MWR-D-15-0301.1
https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_Valcke-SCRIP_CONSERV_TRNORM_partA_2019.pdf
https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_Valcke-SCRIP_CONSERV_TRNORM_partA_2019.pdf
https://oasis.cerfacs.fr/wp-content/uploads/sites/114/2021/08/GLOBC_TR_Valcke-SCRIP_CONSERV_TRNORM_partA_2019.pdf
https://doi.org/10.3390/mca27020031
https://doi.org/10.1256/qj.04.97

	Abstract
	Introduction
	Remapping without masking
	Remapping of partially or fully masked cells
	Recipes for regridding
	Interpolating conservatively in the vertical
	Summary and concluding remarks
	Appendix A: Remapping packages
	Appendix B: A procedure for determining 
	Code and data availability
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

