
Geosci. Model Dev., 17, 4135–4154, 2024
https://doi.org/10.5194/gmd-17-4135-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Parallel SnowModel (v1.0): a parallel implementation of a
distributed snow-evolution modeling system (SnowModel)
Ross Mower1,2, Ethan D. Gutmann1, Glen E. Liston3, Jessica Lundquist2, and Soren Rasmussen1

1The NSF National Center for Atmospheric Research, Boulder, Colorado, USA
2Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA

Correspondence: Ross Mower (rossamower@ucar.edu)

Received: 14 July 2023 – Discussion started: 24 July 2023
Revised: 1 February 2024 – Accepted: 27 March 2024 – Published: 22 May 2024

Abstract. SnowModel, a spatially distributed snow-
evolution modeling system, was parallelized using Coarray
Fortran for high-performance computing architectures to al-
low high-resolution (1 m to hundreds of meters) simulations
over large regional- to continental-scale domains. In the
parallel algorithm, the model domain was split into smaller
rectangular sub-domains that are distributed over multiple
processor cores using one-dimensional decomposition. All
the memory allocations from the original code were reduced
to the size of the local sub-domains, allowing each core
to perform fewer computations and requiring less memory
for each process. Most of the subroutines in SnowModel
were simple to parallelize; however, there were certain
physical processes, including blowing snow redistribution
and components within the solar radiation and wind models,
that required non-trivial parallelization using halo-exchange
patterns. To validate the parallel algorithm and assess
parallel scaling characteristics, high-resolution (100 m grid)
simulations were performed over several western United
States domains and over the contiguous United States
(CONUS) for a year. The CONUS scaling experiment had
approximately 70 % parallel efficiency; runtime decreased
by a factor of 1.9 running on 1800 cores relative to 648
cores (the minimum number of cores that could be used
to run such a large domain because of memory and time
limitations). CONUS 100 m simulations were performed for
21 years (2000–2021) using 46 238 and 28 260 grid cells
in the x and y dimensions, respectively. Each year was
simulated using 1800 cores and took approximately 5 h to
run.

1 Introduction

The cryosphere (snow and ice) is an essential component of
Arctic, mountain, and downstream ecosystems, Earth’s sur-
face energy balance, and freshwater resource storage (Huss
et al., 2017). Globally, half the world’s population depends
on snowmelt (Beniston, 2003). In snow-dominated regions
like the western United States, snowmelt contributes to ap-
proximately 70 % of the total annual water supply (Foster et
al., 2011). In these regions, late-season streamflow is depen-
dent on the deepest snowdrifts and therefore longest-lasting
snow (Pflug and Lundquist, 2020). Since modeling snow-fed
streamflow accurately is largely dependent on our ability to
predict snow quantities and the associated spatial and tem-
poral variability (Clark and Hay, 2004), high-temporal- and
spatial-resolution snow datasets are important for predict-
ing flood hazards and managing freshwater resources (Im-
merzeel et al., 2020).

The spatial and temporal seasonal snow characteristics
also have significant implications outside of water resources.
Changes in fractional snow-covered area affect albedo and
thus atmospheric dynamics (Liston, 2004; Liston and Hall,
1995). Avalanches pose safety hazards to both transportation
and recreational activities in mountainous terrain, the predic-
tion of which requires high-resolution (meters) snow datasets
(Morin et al., 2020; Richter et al., 2021). Additionally, the
timing and duration of snow-covered landscapes strongly in-
fluence how species adapt, migrate, and survive (Boelman et
al., 2019; Liston et al., 2016; Mahoney et al., 2018).

To date, the primary modes for estimating snow properties
and storage have come from observation networks, satellite-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4136 R. Mower et al.: Parallel SnowModel (v1.0)

based sensors, and physically derived snow algorithms in
land surface models (LSMs). However, despite the impor-
tance of regional, continental, and global snow, estimates of
snow properties over these scales remain uncertain, espe-
cially in alpine regions where wind, snow, and topography
interact (Boelman et al., 2019; Dozier et al., 2016; Mudryk
et al., 2015). Observation datasets used for spatial interpola-
tion of snow properties and forcing datasets used in LSMs are
often too sparse in mountainous terrain to accurately resolve
snow spatial heterogeneities (Dozier et al., 2016; Renwick,
2014). Additionally, remotely sensed products have shown
deficiencies in measuring snowfall rate (Skofronick-Jackson
et al., 2013), snow-water equivalent (SWE), and snow depth
(Nolin, 2010), especially in mountainous terrain where con-
ditions of deep snow, wet snow, and/or dense vegetation may
be present (Lettenmaier et al., 2015; Takala et al., 2011; Vuy-
ovich et al., 2014). However, LSMs using high-resolution in-
puts, including forcing datasets from regional climate models
(RCMs), have demonstrated realistic spatial distributions of
snow properties (Wrzesien et al., 2018).

Many physical snow models have been developed either
in stand-alone algorithms or larger LSMs with varying de-
grees of complexity based on their application. The more ad-
vanced algorithms attempt to accurately model snow prop-
erties at high resolution, especially in regions where snow
interacts with topography, vegetation, and/or wind. Wind-
induced snow transport is one such complexity of snow that
represents an important interaction between the cryosphere
and atmosphere. It occurs in regions permanently or tem-
porarily covered by snow, influences snow properties (e.g.,
heterogeneity, sublimation, avalanches, and melt timing),
and has been shown to improve simulated snowpack distri-
bution (Bernhardt et al., 2012; Freudiger et al., 2017; Keenan
et al., 2023; Quéno et al., 2023). Models that have incorpo-
rated wind-induced physics generally require components to
both develop the snow mass balance and incorporate atmo-
spheric inputs of the wind field. Additionally, these models
typically require high-resolution grids (1 to 100 m) as the re-
distribution components of the model become negligible at
larger spatial discretizations (Liston et al., 2007). However,
there is often a trade-off between the accuracy of simulating
wind-induced snow transport and the computational require-
ments for downscaling and developing the wind fields over
the gridded domain (Reynolds et al., 2021; Vionnet et al.,
2014). Therefore, simplifying assumptions of uniform wind
direction has been applied in models like the Distributed
Blowing Snow Model (DBSM) (Essery et al., 1999; Fang
and Pomeroy, 2009). More advanced models have utilized
advection–diffusion equations, like Alpine3D (Lehning et
al., 2006), or spatial distributed formulations like SnowTran-
3D (Liston and Sturm, 1998). Finite-volume methods for
more efficiently discretizing wind fields have been applied
to models such as DBSM (Marsh et al., 2020). The most
complex models consider nonsteady turbulence and utilize
three-dimensional wind fields from atmospheric models to

simulate blowing snow transport and sublimation: for ex-
ample, SURFEX in Meso-NH/Crocus (Vionnet et al., 2014,
2017), wind fields from the atmospheric model ARPS (Xue
et al., 2000) being incorporated into Alpine3D (Mott and
Lehning, 2010; Mott et al., 2010; Lehning et al., 2008), and
SnowDrift3D (Prokop and Schneiderbauer, 2011). Incorpo-
rating wind-induced physics into snow models is computa-
tionally expensive; thus, parallelizing the serial algorithms
would likely be beneficial to many models.

For several decades, a distributed snow-evolution model-
ing system (SnowModel) has been developed, enhanced, and
tested to accurately simulate snow properties across a wide
range of landscapes, climates, and conditions (Liston and El-
der, 2006a; Liston et al., 2020). To date, SnowModel has
been used in over 200 refereed journal publications; a short
listing of these is provided by Liston et al. (2020). Physi-
cally derived snow algorithms, as used in SnowModel, that
model the energy balance, multi-layer snow physics, and lat-
eral snow transport are computationally expensive. In these
models, the required computational power increases with the
number of grid cells covering the simulation domain. Finer
grid resolutions usually imply more grid cells and higher
accuracy resulting from improved representation of process
physics at higher resolutions. The original serial SnowModel
code was written in Fortran 77 and could not be executed in
parallel using multiple processor cores. As a result, Snow-
Model’s spatial and temporal simulation domains (number
of grid cells and time steps) were previously limited by the
speed of one core and the memory available on the single
computer. Note that a “processor” refers to a single cen-
tral processing unit (CPU) and typically consists of multiple
cores; each core can run one or more processes in parallel.

Recent advancements in multiprocessor computer tech-
nologies and architectures have allowed for increased per-
formance in simulating complex natural systems at high res-
olutions. Parallel computing has been used on many LSMs to
reduce computing time and allow for higher-accuracy results
from finer grid simulations (Hamman et al., 2018; Miller
et al., 2014). Our goal was to develop a parallel version
of SnowModel (Parallel SnowModel) using Coarray Fortran
(CAF) syntax without making significant changes to the orig-
inal SnowModel code physics or structure. CAF is a parti-
tioned global address space (PGAS) programming model and
has been used to run atmospheric models on 100 000 cores
(Rouson et al., 2017).

In parallelizing numerical models, a common strategy is to
decompose the domain into smaller sub-domains that get dis-
tributed across multiple processes (Dennis, 2007; Hamman
et al., 2018). For rectangular gridded domains (like Snow-
Model), this preserves the original structure of the spatial
loops and utilizes direct referencing of neighboring grids
(Perezhogin et al., 2021). The parallelization of many LSMs
involves “embarrassingly parallel” problems requiring mini-
mal to no processor communication (Parhami, 1995); in this
case, adjacent grid cells do not communicate with each other

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024



R. Mower et al.: Parallel SnowModel (v1.0) 4137

(an example of this would be where each grid cell represents
a point, or one-dimensional, snowpack model that is not in-
fluenced by nearby grid cells).

While much of the SnowModel’s logic can be considered
embarrassingly parallel, SnowModel also contains “non-
trivial” algorithms within the solar radiation, wind, and snow
redistribution models. Calculations within these algorithms
often require information from neighboring grid cells, either
for spatial derivative calculations or for horizontal fluxes of
mass (e.g., saltating or turbulent suspended snow) across the
domain. Therefore, non-trivial parallelization requires imple-
menting algorithm changes that allow computer processes to
communicate and exchange data. The novelty of the work
presented here includes (1) the presentation of Parallel Snow-
Model, high-resolution (100 m) distributed snow datasets
over CONUS, and an analysis of the performance of the par-
allel algorithm; (2) demonstrating how a simplified paral-
lelization approach using CAF and one-dimensional decom-
position can be implemented in geoscientific algorithms to
scale over large domains; and (3) demonstrating an approach
for non-trivial parallelization algorithms that involve spatial
derivatives and fluxes using halo-exchange techniques.

In Sect. 2, we provide background information on Snow-
Model, parallelization using CAF, data and domains used in
this study, and a motivation for this work. In Sect. 3, we ex-
plain our parallelization approach using CAF and introduce
the simulation experiments used to demonstrate the perfor-
mance of Parallel SnowModel through strong scaling metrics
and CONUS simulations. In Sect. 4, we provide results of the
simulation experiments introduced in Sect. 3. Lastly, we end
with a discussion in Sect. 5 and a conclusion in Sect. 6.

2 Background

2.1 SnowModel

SnowModel is a spatially distributed snow-evolution model-
ing system designed to model snow states (e.g., snow depth,
SWE, snowmelt, snow density) and fluxes over different
landscapes and climates (Liston and Elder, 2006a). The most
complete and up-to-date description of SnowModel can be
found in the appendices of Liston et al. (2020). While many
snow modeling systems exist, SnowModel will benefit from
parallelization because of its ability to simulate snow pro-
cesses on a high-resolution grid through downscaling mete-
orological inputs and modeling snow redistribution. Snow-
Model is designed to simulate domains on a structured grid
with spatial resolutions ranging from 1 to 200 m (although it
can simulate coarser resolutions as well) and temporal reso-
lutions ranging from 10 m to 1 d. The primary modeled pro-
cesses include accumulation from frozen precipitation; blow-
ing snow redistribution and sublimation; interception, un-
loading, and sublimation within forest canopies; snow den-
sity and grain size evolution; and snowpack ripening and

melt. These processes are distributed into four core interact-
ing submodules: MicroMet defines the meteorological forc-
ing conditions (Liston and Elder, 2006b), EnBal describes
surface and energy exchanges (Liston, 1995; Liston et al.,
1999), SnowPack-ML is a multi-layer snowpack sub-model
that simulates the evolution of snow properties and the mois-
ture and energy transfers between layers (Liston and Hall,
1995; Liston and Mernild, 2012), and SnowTran-3D calcu-
lates snow redistribution by wind (Liston et al., 2007). Addi-
tional simulation features include SnowDunes (Liston et al.,
2018) and SnowAssim (Liston and Hiemstra, 2008), which
model sea ice applications and data assimilation techniques,
respectively. Figure 1 shows a schematic of the core Snow-
Model toolkit. Additionally, the initialization submodules
that read in the model parameters, distribute inputs across
the modeled grid, and allocate arrays include PreProcess
and ReadParam. Outputting arrays is contained within the
“Outputs” submodule. SnowModel incorporates first-order
physics required to simulate snow evolution within each of
the global snow classes (e.g., ice, tundra, boreal forest, mon-
tane forest, prairie, maritime, and ephemeral; Sturm and Lis-
ton, 2021; Liston and Sturm, 2021).

2.2 Coarray Fortran

CAF, formerly known as F- (Iso/Iec, 2010; Numrich and
Reid, 1998; Numrich et al., 1998), is the parallel language
feature of Fortran that was used to parallelize SnowModel.
CAF is like Message Passing Interface (MPI) libraries in
that it uses the single-program multiple-data (SPMD) model
where multiple independent cores simultaneously execute
a program. SPMD allows for distributed memory alloca-
tion and remote memory transfer. However, unlike MPI,
CAF uses the PGAS parallel programming model to han-
dle the distribution of computational tasks amongst processes
(Coarfa et al., 2005). In the PGAS model, each process con-
tains local memory that can be accessed directly by all other
processes. While CAF and MPI syntax often refers to pro-
cesses as images or ranks, for consistency, we will con-
tinue to use the term “process”. Ultimately, CAF offers a
high-level syntax that exploits locality and scales effectively
(Coarfa et al., 2005). For simulation comparisons, we used
OpenCoarrays, a library implementation of CAF (Fanfarillo
et al., 2014) utilized by the gfortran compiler; Intel and Cray
compilers both have independent CAF implementations.

2.3 Model domains, data, and computing resources

The required inputs for SnowModel include (1) tempo-
rally varying meteorological variables of precipitation, wind
speed and direction, air temperature, and relative humid-
ity taken from meteorological stations or atmospheric mod-
els and (2) spatially distributed topography and land cover
type (Liston and Elder, 2006a). The following inputs were
used for the experiments introduced in Sect. 3: the USGS

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4138 R. Mower et al.: Parallel SnowModel (v1.0)

Figure 1. The original figure from Pedersen et al. (2015) was modified for the present paper, providing an example of possible inputs, core
submodules, and outputs of SnowModel.

National Elevation Dataset (NED) for topography (Gesch
et al., 2018), the North American Land Change Monitor-
ing System (NALCMS) land cover 2015 map for vegeta-
tion (Homer et al., 2015; Jin et al., 2019; Latifovic et al.,
2016), and forcing variables from either the North American
Land Data Assimilation System (NLDAS-2) (Mitchell, 2004;
Xia, 2012a, b) on a 1/8° (approximately 12 km) grid or the
high-resolution Weather Research and Forecasting (WRF)
model from the National Center for Atmospheric Research
(NCAR) on approximately a 4 km grid (Rasmussen et al.,
2023). The high-performance computing architectures used
include NCAR’s Cheyenne supercomputer, which is a 5.43-
petaflop SGI ICE XA cluster featuring 145 152 Intel Xeon
processes in 4032 dual-socket nodes and 313 TB of total
memory (Computational and Information Systems Labora-
tory, 2019), and the National Aeronautics and Space Admin-
istration’s (NASA) Center for Climate Simulation (NCCS)
Discover supercomputer with a 1560-teraflop SuperMicro
Cluster featuring 20 800 Intel Xeon Skylake processes in 520
dual-socket nodes and 99.84 TB of total memory. Simulation
experiments were conducted over six domains (Tuolumne,
CO headwaters, Idaho, PNW, western US, and CONUS)
throughout the United States at 100 m grid resolution. The
spatial location, domain dimensions (e.g., number of grids
in the x and y dimensions), and memory requirements, de-
rived from the peak_memusage package (https://github.com/
NCAR/peak_memusage, last access: 10 July 2023), for the
simulation experiments are highlighted in Fig. 2.

2.4 Parallelization motivation

The answers to current snow science, remote sensing, and
water management questions require high-resolution data
that cover large spatial and temporal domains. While mod-
eling systems like SnowModel can be used to help provide

these datasets, running them on single-processor worksta-
tions imposes limits on the spatiotemporal extents of the pro-
duced information. Serial simulations are limited by both
execution time and memory requirements, where the mem-
ory limitation is largely dependent on the size of the simu-
lation domain. Up to the equivalent of 175 two-dimensional
and 10 three-dimensional arrays are held in memory during
a SnowModel simulation, depending on the model configu-
ration. In analyzing the performance of the Parallel Snow-
Model (Sect. 4), serial simulations were attempted over six
domains throughout the United States at 100 m grid reso-
lution (Fig. 2) for the 2018 water year (1 September 2017
to 1 September 2018). Only the Tuolumne domain could be
simulated in serial based on the memory (109 GB for a large
memory node) and time (12 h wall-clock limit) constraints on
Cheyenne. The CO headwaters and Idaho domains could not
be simulated in serial due to time constraints, while the three
largest domains (Pacific Northwest – PNW, western US, and
CONUS) could not be executed in serial due to exceedances
of both the 12 h wall-clock limit and memory availability.
Furthermore, we estimate that using a currently available,
state-of-the-art, single-processor workstation would require
approximately 120 d of computer time to perform a 1-year
model simulation over the CONUS domain. SnowModel is
regularly used to perform multi-decade simulations for trend
analyses, climate change studies, and retrospective analy-
ses (Liston and Hiemstra, 2011; Liston et al., 2020, 2023).
If this 1-year, 100 m CONUS domain was simulated for a
40-year period (e.g., 1980 through the present), it would
take approximately 4800 d, or over 13 years, of computer
time. Clearly such simulations are not practical using single-
processor computer hardware and software algorithms.

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024

https://github.com/NCAR/peak_memusage
https://github.com/NCAR/peak_memusage


R. Mower et al.: Parallel SnowModel (v1.0) 4139

Figure 2. (a) Spatial location of simulated domains on WRF’s Lambert conformal projection (Rasmussen et al., 2023) and (b) corresponding
grid dimensions (Nx – number of grids in x dimension; Ny – number of grids in y dimension) and memory obtained from the peak_memusage
package required for single-layer SnowModel simulation experiments. For reference, the dashed lines represent the normal and large memory
thresholds (55 and 109 GB) for Cheyenne’s SGI ICE XA cluster.

3 Methods

In parallelizing SnowModel and distributing computations
and memory over multiple processes, we demonstrate its
ability to efficiently run regional- to continental-sized sim-
ulations. Some of the model configurations were not paral-
lelized for reasons including ongoing development in the se-
rial code base and limitations to the parallelization approach.
These configurations are further discussed in Appendix A.
This section introduces the syntax and framework used to
parallelize SnowModel and the simulation experiments used
to assess the performance of the parallel algorithm.

3.1 Parallel implementation

Changes to the SnowModel logic were made through the par-
allelization process and included the partitioning algorithm,
non-trivial communication via halo exchange, and file input
and output (I/O) schemes.

3.1.1 Partitioning algorithm

The partitioning strategy identifies how the workload gets
distributed amongst processes in a parallel algorithm. The
multidimensional arrays of SnowModel are stored in row-
major order, meaning the x dimension is contiguous in mem-
ory. Additionally, dominant wind directions and therefore
predominant snow redistribution occur in the east–west di-
rection as opposed to south–north directions. Therefore, both
the data structures and physical processes involved in Snow-
Model justify a one-dimensional decomposition strategy in
the y dimension, where the computational global domain
Nx ×Ny is separated into Nx × lny blocks. If Ny is evenly
divisible by the total number of processes (N ), lny =Ny/N .
If integer division is not possible, the remaining rows are dis-
tributed evenly amongst the processes starting at the bottom

of the computational domain. Figure 3 demonstrates how a
serial domain containing 10 grid cells in the x and y dimen-
sions would be decomposed with four processes using our
partitioning strategy.

3.1.2 Non-trivial parallelization

Each process has sufficient information to correctly execute
most of the physical computations within SnowModel. How-
ever, there are certain subroutines where grid computations
require information from neighboring grid cells (e.g., data
dependencies) and therefore information outside of the local
domain of a process. For SnowModel, these subroutines typ-
ically involve the transfer of blowing snow or calculations
requiring spatial derivatives. Furthermore, with our one-
dimensional decomposition approach, each grid cell within
a process local domain has sufficient information from its
neighboring grid cells in the x dimension but potentially
lacks information from neighboring grid cells in the y di-
mension. As a regular grid method, SnowModel lends itself
to process communication via halo exchange where coar-
rays are used in remote calls. Halo exchange using CAF in-
volves copying boundary data into coarrays on neighboring
processes and using information from the coarrays to com-
plete computations (Fig. 4). Although the entire local array
could be declared a coarray and accessed by remote pro-
cesses more directly, some CAF implementations (e.g., Cray)
impose additional constraints upon coarray memory alloca-
tions that can be problematic for such large allocations.

Topography – wind and solar radiation models

The wind and solar radiation models in MicroMet require
information about surrounding surface topography (Liston
and Elder, 2006b). The wind model requires surface curva-
ture, and the solar radiation model requires surface slope and

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4140 R. Mower et al.: Parallel SnowModel (v1.0)

Figure 3. Example 10× 10 global domain and partitioning for (a) serial simulation and (b) parallel simulation using four processes.

Figure 4. Schematic showing halo exchange using coarrays. The steps include (a) initial gridded representation of local arrays for three
processes, (b) P2 copying boundary data into coarrays for remote access, and (c) neighboring processes (P1 and P3) stitching coarray to
local domains.

aspect. These vary at each time step as snow accumulates
and melts because the defined surface includes the snow sur-
face on top of the landscape. The surface curvature, for ex-
ample, is computed at each model grid cell using the spa-
tial gradient of the topographic elevation of eight neighbor-
ing grid cells. Using the parallelization approach discussed
above, processes lack sufficient information to make curva-
ture calculations for the bordering grid cells along the top
and/or bottom row(s) within their local domains. Note that
the number of row(s) (inc) is determined by a predefined pa-
rameter that represents the wavelength of topographic fea-
tures within a domain. Future work should permit this pa-
rameter to vary spatially to account for changes in the length
scale across the domain. For example, all grid cells along the
top row of P1 will be missing information from nearby grid

cells to the north and require topographic elevation (topo)
information from the bottom row(s) of the local domain of
P2 to make the calculation (Fig. 5a). Halo exchange is per-
formed to distribute row(s) of data to each process that is
missing that information in their local domains (Fig. 5b).
Processes whose local domains are positioned in the bottom
or top of the global domain will only perform one halo ex-
change with their interior neighbor, while interior processes
will perform two halo exchanges. By combining and appro-
priately indexing information from the process local array
and received coarrays of topographic elevation, an accurate
curvature calculation can be performed using this parallel ap-
proach (Fig. 5c).

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024



R. Mower et al.: Parallel SnowModel (v1.0) 4141

Figure 5. Schematic for halo exchange used in the curvature calculation by P1, where inc = 2. (a) Prior to halo exchange, P1 contains
insufficient information to perform the curvature calculation, and (b) grid cells (halo) within the local domain of P2 are (c) transferred to P1
via coarrays. At this point, P1 has sufficient information to make the curvature calculation.

Snow redistribution

Wind influences the mass balance of the snowpack by sus-
pending and transporting snow particles in the air (turbulent
suspension) and by causing snow grains to bounce on top of
the snow surface (saltation). In SnowModel, the saltation and
suspension algorithms are separated into northerly, southerly,
easterly, and westerly fluxes based on the u and v compo-
nents of wind direction for each grid cell. Figure 6 shows a
simplified schematic for the saltation flux from a southerly
wind. In the serial algorithm (Fig. 6a), SnowModel initial-
izes the saltation flux based on the wind speed at that time
step (initial flux). To calculate the final saltation flux (updated
flux), SnowModel steps through regions of continuous wind
direction (delineated by the indices jstart and jend), updates
the change in saltation fluxes from upwind grid cells and the
change in saltation flux from the given wind direction, and
makes adjustments to these fluxes based on the soft snow
availability above the vegetation height (Liston and Elder,
2006a). Similar logic is used for the parallel implementation
of the saltation and suspension fluxes with an additional iter-
ation (salt iter) that updates the boundary condition for each
process via halo exchange. This allows the fluxes to be com-
municated from the local domain of one process to another.
To minimize the number of iterations, salt iter was provided a
maximum bound that is equivalent to snow being transported
15 km via saltation or suspension. This number was chosen
based on prior field measurements (Tabler, 1975) and simu-
lation experiments. It is possible that in other environments
an even larger length may be required. To be guaranteed to
match the serial results in all cases, the number of iterations
would have to be equal to the number of processes; however,
this would result in no parallel speedup and has no practical
benefit. A schematic of the parallel calculation of the change

in saltation due to southerly winds is illustrated in Fig. 6b.
The bc_halo_exchange represents a halo exchange of grid
cells from upwind processes, allowing the saltation flux to
be transported from one process local domain to the next.

3.1.3 File I/O

File I/O management can be a significant bottleneck in
parallel applications. Parallel implementations that are less
memory-restricted commonly use local to global mapping
strategies, or a centralized approach for file I/O (Fig. 7a).
This approach requires that one or more processes stores
global arrays for input variables and that one process (Pro-
cess 1; Fig. 7a) stores global arrays for all output variables.
As the domain size increases, the mapping of local variables
to global variables for outputting creates a substantial bot-
tleneck. To improve performance, distributed file I/O can be
implemented, where input and output files are directly and
concurrently accessed by each process (Fig. 7b).

SnowModel contains static spatial inputs that do not vary
over time (e.g., topography and land cover) and dynamic spa-
tial inputs (e.g., air temperature and precipitation) that vary
spatially and temporally. The static inputs are of a higher res-
olution compared to the dynamic inputs (i.e., topography is
on the model grid, while atmospheric forcing is almost al-
ways more widely spaced). To balance performance and con-
sistency with the serial logic of the code, we used a mixed
parallel file I/O approach. A goal of this work was to main-
tain nearly identical serial and parallel versions of the code in
one code base that can be easily maintained and utilized by
previous, current, and future SnowModel users with differ-
ent computational resources and skills. Therefore, we wanted
to maintain both the centralized and distributed file I/O ap-
proaches. However, for optimal parallel performance over

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4142 R. Mower et al.: Parallel SnowModel (v1.0)

Figure 6. (a) Schematic of the serial and (b) parallel redistribution algorithm showing the change in saltation flux due to southerly winds
over a gridded domain for Nx = 1. The parallel schematic demonstrates how three processes (P1, P2, P3) use an additional iteration (salt
iter) to perform a halo exchange (bc_halo_exchange) and update the boundary condition of the saltation flux.

larger simulation domains, file input (reading) is performed
in a distributed way for the static inputs and in a centralized
way for dynamic inputs, while file output (writing) is per-
formed in a distributed way, as described further below. This
permits the new version of the code to be a drop-in replace-
ment for the original serial code without requiring users to
install new software libraries or manage hundreds of output
files, while enabling users who wish to take advantage of the
parallel nature of the code to do so with minimal additional
work and no changes to the underlying code.

Parallel inputs

As noted above, SnowModel has two primary types of in-
put files, temporally static files such as vegetation and to-
pography and transient inputs such as meteorological forcing
data. While acceptable static input file types include flat bi-
nary, NetCDF, and ASCII files for the serial version of the
code, optimizing the efficiency of Parallel SnowModel re-
quires static inputs from binary files that can be accessed
concurrently and directly subset by indexing the starting byte
and length of bytes commensurate with a process local do-
main. Therefore, each process can read its own portion of
the static input data. For very large domains, the available
memory becomes a limitation when using the centralized ap-
proach. For example, the CONUS simulation could not be
simulated using a centralized file I/O approach because each
process would be holding global arrays of topography and
vegetation in memory, each of which would require approxi-
mately 5.2 GB of memory per process.

Reading of meteorological forcing variables (wind speed,
wind direction, relative humidity, temperature, and precip-

itation) can be performed in parallel with either binary or
NetCDF files. Depending on the forcing dataset, the grid
spacing of the meteorological variables typically ranges from
1 to 30 km and therefore often requires a smaller mem-
ory footprint than static inputs for high-resolution simula-
tions. For example, the resolution of NLDAS-2 meteorolog-
ical forcing has a grid of approximately 11 km, while the
high-resolution WRF model used has a 4 km grid. At each
time step, processes read in the forcing data from every sta-
tion within the domain into a one-dimensional array, index
the nearest locations for each SnowModel grid, and interpo-
late the data to create forcing variables over the local do-
main. All processes perform the same operation and store
common information; however, since the resolutions of the
forcing datasets are significantly coarser than the model grid
for high-resolution simulations, the dynamic forcing input ar-
ray size remains comparable to other local arrays and does
not impose significant memory limitations for simulations
performed to date. While more efficient parallel file input
schemes could improve performance, we decided to keep this
logic in part to maintain consistency with the serial version
of the code and minimize code changes.

Parallel outputs

To eliminate the use of local to global mapping commonly
used to output variables (Fig. 7a), each process writes its
own output file (Fig. 7b). A postprocessing script is then
used to concatenate files from each process into one file
that represents the output for the global domain. Modern
high-performance computing architectures have highly par-
allelized storage systems, making file output using a dis-

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024



R. Mower et al.: Parallel SnowModel (v1.0) 4143

Figure 7. (a) Schematic of global to local mapping for file I/O using a centralized approach with four processes and a (b) distributed file I/O
where each process reads and writes data corresponding to its local domain.

tributed approach significantly faster than the centralized ap-
proach. Therefore, file output in this manner reduces time
and memory requirements. Future work could leverage other
established parallel I/O libraries at the cost of additional in-
stallation requirements.

3.2 Simulation experiments

Parallel SnowModel experiments were conducted to eval-
uate the effectiveness of the parallelization approach used
in this study (Sect. 3.1) and to produce a high-resolution
snow dataset over CONUS. All experiments were exe-
cuted with a 100 m grid increment, a 3 h time step, and a
single-layer snowpack configuration and included the pri-
mary SnowModel modules (MicroMet, EnBal, SnowPack,
and SnowTran-3D). These experiments are further described
below, with results provided in Sect. 4.

Validation experiments comparing output from the origi-
nal serial version of the code to the parallel version were con-
ducted continuously throughout the parallel algorithm de-
velopment to assess the reproducibility of the results. Ad-
ditionally, a more thorough validation effort was performed
at the end of the study that compared output from the se-
rial algorithm to that of the parallel algorithm, while vary-
ing the domain size, the number of processes, and therefore
the domain decomposition. Results from all of these valida-
tion experiments produced root mean squared error (RMSE)
values of 10−6, which is at the limit of machine precision

when compared to serial simulation results. See Appendix
B for more details on the validation experiments. The se-
rial version of SnowModel has been evaluated in many stud-
ies across different snow classes (Sturm and Liston, 2021;
Liston and Sturm, 2021), time periods, and snow properties.
Evaluations ranged from snow cover (Pedersen et al., 2016;
Randin et al., 2015) and snow depth (Szczypta et al., 2013;
Wagner et al., 2023) to SWE (Freudiger et al., 2017; Ham-
mond et al., 2023; Mortezapour et al., 2020; Voordendag et
al., 2021) and SWE melt (Hoppinen et al., 2024; Lund et
al., 2022) using field observations, snow-telemetry stations,
and remote sensing products. A full comparison of the Paral-
lel SnowModel simulations presented here with observations
across CONUS is beyond the scope of the present work. In-
correctly simulated SWE could affect the scaling results and
CONUS visualizations presented in Sect. 4; for example, if
zero SWE were incorrectly simulated in many locations, pro-
cessing time would be less than if SWE had been simulated
and tracked. However, based on the scale of these analyses
and the fact that SnowModel has been previously evaluated
in a wide range of locations, we believe the impacts of this
limitation on the computational results presented here are
minimal.

3.2.1 Parallel performance

In high-performance computing, scalability attempts to as-
sess the effectiveness of running a parallel algorithm with

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4144 R. Mower et al.: Parallel SnowModel (v1.0)

an increasing number of processes. Thus, scalability can be
used to identify the optimal number of processes for a fixed
domain, understand the limitations of a parallel algorithm as
a function of domain size and number of processes, and esti-
mate the efficiency of the parallel algorithm on new domains
or computing architectures. Speedup, efficiency, and code
profiling were tools used to assess the scalability and per-
formance of Parallel SnowModel on fixed domains. Speedup
(S(N); Eq. 1), a metric of strong scaling, is defined as the ra-
tio of the serial execution time, T (1), over the execution time
using N processes, T (N). Optimally, parallel algorithms will
experience a doubling of speedup as the number of processes
is doubled. Some reasons why parallel algorithms do not fol-
low ideal scaling include the degree of concurrency possible
and overhead costs due to communication. Synchronization
statements have an associated cost of decreasing the speed
and efficiency of an algorithm due to communication over-
head and requirements for one process to sit idle while wait-
ing for another to reach the synchronization point. Further-
more, speedup tends to peak or plateau at a certain limit on
a given computing architecture and domain because either
the overheads grow with an increasing number of processes
or the number of processes exceeds the degree of concur-
rency inherent in the algorithm (Kumar and Gupta, 1991).
For large domains, where serial simulations cannot be per-
formed either due to wall-clock or memory limitations, rel-
ative speedup (Ŝ(N); Eq. 2) is commonly used. Relative
speedup is estimated as a ratio of the execution time, T (P̂ ),
of the minimum number of processes, (P̂ ), that can be simu-
lated on a given domain over T (N). An additional speedup
metric, approximate speedup (S̈(N); Eq. 3), is introduced to
estimate S by assuming perfect scaling from P̂ to a single
process. While this is only an approximation, it is helpful
to compare the S̈ across the different domains on a similar
scale. Additionally, efficiency (E(N); Eq. 4) and approxi-
mate efficiency (Ë(N); Eq. 5) are the ratios of S to N and
S̈ to N , respectively. A simulation that demonstrates ideal
scaling would have 100 % efficiency. Additionally, code pro-
filing evaluates the cumulative execution time of individual
submodules (e.g., Preprocess, Readparam, MicroMet, En-
bal, SnowPack, SnowTran-3D, and Outputs) as a function of
the number of processes. Together, code profiling and strong
scaling can be used to understand locations of bottlenecks in
the algorithm and how changes to the code enhance perfor-
mance.

S (N )=
T (1)

T (N )
(1)

Ŝ (N)=
T (P̂ )

T (N)
(2)

S̈ (N)=
T (P̂ )

T (N)
· P̂ (3)

E(N)=
S

N
· 100% (4)

Ë(N)=
S̈

N
· 100% (5)

3.2.2 Parallel improvement

To better understand how changes to the Parallel SnowModel
code have affected its performance, speedup and code profil-
ing plots were assessed for simulations using three distinct
versions of the code. These versions represent snapshots of
the algorithms development and quantify the contributions
of different types of code modifications to the final perfor-
mance of the model. These versions were identified by dif-
ferent GitHub commits (Mower et al., 2023) and can be sum-
marized as follows. The first or baseline version represents
an early commit of Parallel SnowModel, where file I/O is
performed in a centralized way, as described in Sect. 3.1.3.
Each process stores both a local and global array in memory
for all input variables, makes updates to its local arrays, and
distributes that updated information into global arrays used
by one process to write each output variable. The embar-
rassingly parallel portion of the physics code has been par-
allelized, but the snow redistribution step is not efficiently
parallelized; it has a larger number of synchronizations and
memory transfers. Therefore, this approach has significant
time and memory constraints. The distributed version rep-
resents an instance of the code where distributed file I/O
(Sect. 3.1.3) had first been implemented. In this version, each
process reads and writes input and output variables for its lo-
cal domain only. Global arrays and the communication re-
quired to update these variables are no longer needed; this
alleviates memory constraints and shows the value of paral-
lelizing I/O in scientific applications. Lastly, the final version
represents the most recent version of Parallel SnowModel,
(at the time of this publication) where the snow transport al-
gorithm had been optimized to run efficiently. This was done
by reducing unnecessary memory allocations, reducing the
transfer of data via coarrays, and optimizing memory trans-
fers to reduce synchronization calls. This shows the value of
focused development on a single hotspot of the code base.
The simulations were executed on the CO headwaters do-
main (Fig. 2) using 1, 2, 4, 16, 36, 52, 108, and 144 pro-
cesses, outputted only a single variable, and were forced with
NLDAS-2 data from 23–24 March 2018. While 2 d is a short
period to perform scaling experiments, a significant amount
of wind and frozen precipitation was observed over the CO
headwaters domain during the simulation to activate some
of the snow redistribution schemes in SnowTran-3D. Fur-
thermore, to avoid disproportionately weighting the initial-
ization of the algorithm, we removed the timing values from
the ReadParam and Preprocess submodules from the total ex-
ecution time used in the speedup analysis. Results from these
experiments are provided in Sect. 4.1.

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024



R. Mower et al.: Parallel SnowModel (v1.0) 4145

3.2.3 Strong scaling

Strong scaling experiments of Parallel SnowModel were
evaluated by comparing the approximate speedup and effi-
ciency (S̈ and Ë) over six different size domains across the
United States, all with a 100 m grid spacing (Tuolumne, CO
headwaters, Idaho, PNW, western US, and CONUS) (Fig. 2).
These experiments use the final version of the code accord-
ing to the section “Parallel improvement”. The simulations
were forced with NLDAS-2 data for 2928 time steps from
1 September 2017 to 1 September 2018 and output one vari-
able (SWE). The number of processes used in these simu-
lations varied by domain based on the 12 h wall-clock and
memory constraints on Cheyenne. Results from these exper-
iments are provided in Sect. 4.2.

3.2.4 CONUS Simulations

A primary goal of this work was to run Parallel SnowModel
simulations for 21 years (2000–2021) over the CONUS do-
main (Fig. 2) on a 100 m grid, while resolving the diurnal
cycle in the model physics and creating a daily dataset of
snow properties, including snow depth, SWE, melt rate, and
sublimation. Future work will analyze results from these sim-
ulations. The CONUS domain contained 46 238 and 28 260
grid cells in the x and y dimensions, respectively. Simula-
tions were performed on a 3 h time step and forced with the
WRF dataset. All simulations were executed on Discover us-
ing 1800 processes with a total compute time of approxi-
mately 192 600 core hours, or approximately 5 wall-clock
hours per year.

4 Results

4.1 Parallel improvement

Figure 8 demonstrates how the scalability of Parallel Snow-
Model evolved, as shown through code profiling (top row;
Fig. 8) and speedup (bottom row; Fig. 8) plots at three dif-
ferent stages (centralized, distributed, and final) of the code
development. The code profiling plots display the cumula-
tive execution time of each submodule (T (N)[log(s)]) as a
function of the N . The strong scaling plots show the total ex-
ecution time (T (N)[s]) and the speedup (S(N); Eq. 1) as a
function of N on the primary y axis and secondary y axis, re-
spectively. As mentioned previously, the initialization timing
was removed from these values. The speedup of the central-
ized version of the code quickly plateaus at approximately
10 processes. While the Enbal, SnowPack, and MicroMet
subroutines scale with the number of processes (execution
time decreases proportional to the increase in the number
of processes), the ReadParam, Preprocess, and Outputs sub-
routines, which all perform file I/O or memory allocation,
require a fixed execution time regardless of the number of
processes used, and the execution time of the SnowTran-

3D submodule increases beyond 16 processes. This high-
lights the large bottleneck that often occurs during the file
I/O step in scientific code and the importance of code infras-
tructure outside of the physics routines. In contrast, all the
submodules in the distributed version of the code scale up to
36 processes, at which point the inefficient parallelization of
the SnowTran-3D submodule causes a significant slowdown
due to an increase in execution time as the number of pro-
cesses increases. This results in a speedup that plateaus at
52 processes and decreases beyond 108 processes. In the fi-
nal version of the code, scalability is observed well beyond
36 processes, with a maximum speedup of 100 observed us-
ing 144 processes. The execution time of all the submodules
decreases as the number of processors increases. This work
highlights the value of going beyond the rudimentary par-
allelization of a scientific code base by profiling and iden-
tifying individual elements that would benefit the most from
additional optimization. This is a well-known best practice in
software engineering but is often underappreciated in high-
performance scientific computing. In Parallel SnowModel,
the improvement of these communication bottlenecks is pri-
marily attributed to utilizing a distributed file I/O scheme and
minimizing processor communication by limiting the use of
coarrays and synchronization calls. Ultimately, without these
improvements, the CONUS domain could not be simulated
using Parallel SnowModel.

4.2 Strong scaling

In addition to the parallel improvement analysis, strong scal-
ing was also performed on six domains for the 2018 water
year to better understand how Parallel SnowModel scales
across different domain sizes and decompositions. Figure 9
displays the approximate speedup (S̈(N); Eq. 3) of Parallel
SnowModel for three local and/or state domains (Tuolumne,
CO headwaters, and Idaho) and three regional and/or conti-
nental domains (PNW, western US, and CONUS). Addition-
ally, Table 1 contains information about the minimum and
maximum number of processors (P̂ and P ∗, respectively)
simulated on each domain and their corresponding execu-
tion time (T (N)[m]), relative speedup (Ŝ(N); Eq. 2), approx-
imate speedup (S̈(N); Eq. 3), and approximate efficiency
(Ë(N); Eq. 5). As mentioned previously, simulations were
constrained by both the 12 h wall-clock limit and 109 GB of
memory per node on the Cheyenne supercomputer. In strong
scaling, the number of processes is increased while the prob-
lem size remains constant; therefore, it represents a reduced
workload per process. Local-sized domains, e.g., Tuolumne,
likely do not warrant the need for parallel resources because
they have small serial runtimes (e.g., using 52 processes,
Tuolumne had an Ë of 38 %; Table 1). However, state, re-
gional, and continental domains stand to benefit more signif-
icantly from parallelization. The CONUS runtime decreased
by a factor of 3 running on 3456 processes relative to 648
processes. Based on our approximate speedup assumption,

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4146 R. Mower et al.: Parallel SnowModel (v1.0)

Figure 8. Code profiling (top row) and strong scaling (bottom row) results demonstrating the progression of Parallel SnowModel, which
includes a version of the code with centralized file I/O (centralized; first column), a version of the code with distributed file I/O (distributed;
second column), and a final version of the code at the time of this publication (final; third column). These versions can be found as different
commits within the GitHub repository (Mower et al., 2023). The code profiling plots display the cumulative execution time of each submodule
on a logarithmic scale as a function of the number of processes (N ). The arrow in the code profiling plots of distributed and final indicates
the ReadParam timing is below the y axis at approximately 0.3 and 0.003 s, respectively. The strong scaling plots show the total execution
time (T (N)) against N on the primary y axis and the speedup (S(N)) against N on the secondary y axis.

we would estimate a CONUS S̈ of 1690 times on 3456 pro-
cesses compared to one process, with an Ë of 49 %. The
western US and PNW domains display very similar scalabil-
ity results (Fig. 9), which is attributed to the similar number
of grid cells in the y dimension (Fig. 2 and Table 1) and thus
parallel decomposition for each domain. Furthermore, these
domains may also have a similar proportion of snow-covered
grid cells. While the PNW likely has more terrestrial grid
cells that are covered by snow for a longer period throughout
the water year, it also has a significant number of ocean grid
cells where snow redistribution would not be activated.

Strong scaling analysis is useful for I/O and memory-
bound applications to identify a setup that results in a rea-
sonable runtime and moderate resource costs. Based on these
scaling results, Fig. 10 shows the relationship between the
number of processes (N ) at which each domain is estimated
to reach 50 % Ë (using linear interpolation) with the total
number of grid cells in the y dimension (Ny) and the aver-
age number of grid cells in the y dimension per process (lny ;
inset Fig. 10). At this level of efficiency, the consistency of
both the linear relationship between Ny and N (8.7 : 1 ratio)
and the values of lny (5 to 11) for these year-long simulations
that vary in both domain size and the proportion of snow-
covered area is notable. Similar relationships (Fig. 10) can be
used to approximate the scalability of Parallel SnowModel

on different-sized domains and can be adjusted for the de-
sired level of efficiency. For example, we decided to run the
CONUS simulations (Sect. 4.3) using 1800 processes based
on its 70 % approximate efficiency.

4.3 CONUS simulations

Spatial results of SWE on 12 February 2011 over the
CONUS domain and a sub-domain located in the Indian
Peaks west of Boulder, Colorado, are displayed in Fig. 11.
On this date, simulated SWE was observed throughout the
northern portion of the CONUS domain with the largest val-
ues concentrated in the mountain ranges (Fig. 11a). The In-
dian Peaks sub-domains of distributed SWE (Fig. 11b) with
reference topography (Fig. 11c) underscore the ability of the
large dataset to capture snow processes in a local alpine en-
vironment. It is important to note that while SnowModel
does simulate snow redistribution, it does not currently have
an avalanche model, which may be a limitation of accu-
rately simulating SWE within this sub-domain. Additionally,
Fig. 11b highlights two grid cells located 200 m apart on a
peak. Figure 11d and e display the SWE evolution of these
two grid cells over the entire dataset (water years 2000–2021)
and the 2011 water year, respectively, further demonstrating
the ability of Parallel SnowModel to capture fine-scale snow
properties even when simulating continental domains. The

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024



R. Mower et al.: Parallel SnowModel (v1.0) 4147

Figure 9. Panel (a) displays approximate speedup (S̈(N)) as a function of the number of processes (N ) for local- and state-sized simulations
(Tuolumne, CO headwaters, and Idaho), while panel (b) shows S̈(N) for regional- and continental-sized domains (PNW, western US, and
CONUS).

Table 1. Parallel SnowModel strong scaling results containing grid dimensions (Nx and Ny ), execution time [m], relative speedup, ap-
proximate speedup, and approximate efficiency for simulations executed with the minimum and maximum number of processes (P̂ and
P ∗, respectively) on the Tuolumne, CO headwaters, Idaho, PNW, western US, and CONUS domains. Values of the timing, speedup, and
efficiency variables are rounded to the nearest integer.

Domain Nx Ny P̂ Number of Execution Relative Approximate Approximate
or P ∗ processes [m] speedup speedup efficiency

N T (N) Ŝ (N) S̈(N) Ë(N)

Tuolumne 311 185 P̂ 1 13 – – 100

P ∗ 52 1 20 20 38

CO headwaters 3166 5167 P̂ 8 934 – 8 100

P ∗ 576 24 39 308 53

Idaho 6916 9107 P̂ 27 1068 – 27 100

P ∗ 1296 48 22 605 47

PNW 13 677 16 058 P̂ 84 1173 – 84 100

P ∗ 2304 105 11 941 41

Western US 17 737 17 878 P̂ 120 1187 – 120 100

P ∗ 3456 135 9 1058 31

CONUS 46 238 28 260 P̂ 648 1196 – 648 100

P ∗ 3456 459 3 1690 49

upwind (western) grid cell is scoured by wind, and snow
is transported to the downwind (eastern) grid cells where a
snowdrift forms. The information and insight available in this
high-resolution dataset will have important implications for
many applications from hydrology, wildlife, and ecosystems
to weather and climate and many more.

5 Discussion

Parallelizing numerical models often involves two-
dimensional decomposition in both the x and y dimen-
sions. While many benefits have been demonstrated by
this approach, including improved load balancing (Dennis,
2007; Hamman et al., 2018), it comes with increased
complication of the parallel algorithms, including the parti-

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4148 R. Mower et al.: Parallel SnowModel (v1.0)

Figure 10. Relationship between the number of grid cells in the y

dimension (Ny ) and the number of processes (N ) for each domain
at which 50 % approximate efficiency is estimated using the strong
scaling analysis. The dashed line represents the best-fit line for this
relationship using OLS regression. The inset figure displays a simi-
lar relationship but compares N to the average number of grid cells
in the y dimension per process (lny ) instead of Ny .

tioning algorithm, file I/O, and process communication. The
demonstrated speedup (Fig. 9) suggests Parallel SnowModel
scales effectively over regional to continental domains using
the one-dimensional decomposition approach. The added
benefits obtained from two-dimensional decomposition
strategies might not outweigh the costs of development,
testing, and minimizing changes to the code structure and
logic for applications such as SnowModel. Ultimately, our
simplified parallelization approach can be implemented
by other geoscience schemes as a first step to enhance
simulation size and resolution.

Simulation experiments were conducted using Parallel
SnowModel to validate the parallel logic, interpret its perfor-
mance across different algorithm versions and domain sizes,
and demonstrate its ability to simulate continental domains
at high resolution. Code profiling and speedup analyses over
the CO headwaters domain helped identify bottlenecks in file
I/O and processor communication in SnowTran-3D during
the development of the parallel algorithm (Sect. 4.1). Cor-
rections to the referred bottlenecks allowed Parallel Snow-
Model to scale up to regional- and continental-sized simula-
tions and highlights the value of optimizing scientific code.
For Parallel SnowModel scalability is primarily dependent
on the number of grid cells per process (Nx and lny) but is
also affected by the proportion of snow-covered grid cells
with sufficient winds and soft snow available to be redis-
tributed (“Snow redistribution” section). The scalability anal-
yses showed similar results across domains with significant
differences in size (Nx and Ny), topography, vegetation, and

snow classifications (Sturm et al., 1995; Sturm and Liston,
2021) (Sect. 4.2), highlighting the effectiveness of Parallel
SnowModel for running state-, regional-, and continental-
sized domains. Furthermore, results from this analysis can be
used to estimate the number of processors required to simu-
late domains outside of the ones used in this study with a
desired level of parallel efficiency (Fig. 10).

Additionally, these experiments emphasize the relation-
ships among speed, memory, and computing resources for
Parallel SnowModel. A common laptop (∼ 4 processes) has
sufficient CPUs to run local-sized domains within a rea-
sonable amount of time but likely does not have sufficient
memory for state-sized simulations. Similarly, the minimum
memory (1160 GB; Fig. 1) required to run the CONUS do-
main could be simulated on a large server (∼ 128 processes)
with one process per node. However, extrapolating from our
scaling results on Cheyenne (Fig. 9), we estimate it would
take over 2.5 d to run a CONUS simulation for 1 water year
with this configuration. In contrast, it took approximately
5 h for CONUS to run on the Discover supercomputer using
1800 processes. Therefore, by the time it took the large server
to complete a CONUS simulation for 1 water year, 12 water
years could have been simulated on a supercomputer. Lastly,
results from the CONUS simulation highlight the ability of
Parallel SnowModel to run high-resolution continental simu-
lations, while maintaining fine-scale snow processes that oc-
cur at a local level (Sect. 4.3).

SnowModel can simulate high-resolution outputs of snow
depth, density, SWE, grain size, thermal resistance, snow
strength, snow albedo, landscape albedo, meltwater produc-
tion, snow-water runoff, blowing snow flux, visibility, peak
winter SWE, snow season length, snow onset date, snow-
free date, and more, all produced by a physical model that
maintains consistency among variables. While several snow
data products exist, few capture the suite of snow proper-
ties along with the spatiotemporal extents and resolutions
that can benefit a wide variety of applications. For exam-
ple, current snow information products include the NASA
daily SWE distributions globally for dry (non-melting) snow
on a 25 km grid (Tedesco and Jeyaratnam, 2019), a NASA
snow-cover product on a 500 m grid (Hall et al., 2006) that
is missing information due to clouds approximately 50 %
of the time (Moody et al., 2005), and the Snow Data As-
similation System (SNODAS) daily snow information pro-
vided by the National Oceanic and Atmospheric Adminis-
tration (NOAA) and the National Weather Service (NWS)
National Operational Hydrologic Remote Sensing Center
(NOHRSC) on a 1 km grid (National Operational Hydro-
logic Remote Sensing Center, 2004), which is itself model-
derived and has limited geographic coverage and snow prop-
erties. The Airborne Snow Observatory (ASO) provides the
highest-resolution data with direct measurements of snow
depth on a 3 m grid and derived values of SWE on a 50 m
grid (Painter et al., 2016) but has limited spatiotemporal cov-
erage and a high cost of acquisition. Furthermore, there are

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024



R. Mower et al.: Parallel SnowModel (v1.0) 4149

Figure 11. Simulation results of Parallel SnowModel over CONUS using the WRF projection. (a) Spatial patterns of SWE over the CONUS
domain for 12 February 2011, highlighting (b) the SWE distribution (c) and topography with an applied hillshade of a sub-domain near
Apache Peak in the Indian Peaks west of Boulder, CO. (d) Time series of SWE from 2000–2021 and (e) over the 2011 water year for grid
cells (“erode” and “deposit”) identified in panel (b). The erode and deposit grid cells highlight areas of similar elevation but significant
differences in SWE evolution resulting from blowing snow redistribution processes.

many fields of study that can benefit from 100 m resolution
information on internally consistent snow variables, includ-
ing wildlife and ecosystem, military, hydrology, weather and
climate, cryosphere, recreation, remote sensing, engineering
and civil works, and industrial applications. The new Paral-
lel SnowModel described here permits the application of this
modeling system to very large domains without sacrificing
spatial resolution.

6 Conclusions

In this paper, we present a relatively simple parallelization
approach that allows SnowModel to perform high-resolution
simulations over regional- to continental-sized domains. The
code within the core submodules (EnBal, MicroMet, Snow-
Pack, and SnowTran-3D) and model configurations (single-
layer snowpack, multi-layer snowpack, binary input files,
etc.) was parallelized and modularized in this study. This
allows SnowModel to be compiled with a range of Fortran
compilers, including modern compilers that support parallel
CAF either internally or through libraries, such as OpenCoar-
rays (Fanfarillo et al., 2014). Additionally, it provides the
structure for other parallelization logic (e.g., MPI) to be more
easily added to the code base. The parallel module contains a

simple approach to decomposing the computational domain
in the y dimension into smaller rectangular sub-domains.
These sub-domains are distributed across processes to per-
form asynchronous calculations. The parallelization module
also contains logic for communicating information among
processes using halo-exchange coarrays for the wind and so-
lar radiation models, as well as for snow redistribution. The
scalability of Parallel SnowModel was demonstrated over
different-sized domains, and the new code enables the cre-
ation of high-resolution simulated snow datasets on conti-
nental scales. This parallelization approach can be adopted
in other parallelization efforts where spatial derivatives are
calculated or fluxes are transported across gridded domains.

Appendix A

Some of the configuration combinations were not paral-
lelized during this study for reasons including ongoing de-
velopment in the serial code base and limitations to the par-
allelization approach. These include simulations involving
tabler surfaces (Tabler, 1975), I/O using ASCII files, La-
grangian sea ice tracking, and data assimilation.

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024



4150 R. Mower et al.: Parallel SnowModel (v1.0)

Appendix B

Validation SnowModel experiments were run in serial and
in parallel over the Tuolumne and CO headwaters domains
(Sect. 4.1) using the RMSE statistic. Important output vari-
ables from EnBal, MicroMet, SnowPack, and SnowTran-3D
demonstrated similar, if not identical, values when compared
to serial results for all time steps during the simulations;
RMSE values were within machine precision (∼ 10−6) re-
gardless of the output variable, domain, or number of pro-
cesses used. The validated output variables include albedo
[%], precipitation [m], emitted longwave radiation [W m−2],
incoming longwave radiation reaching the surface [W m−2],
incoming solar radiation reaching the surface [W m−2], rel-
ative humidity [%], runoff from the base of the snow-
pack [m · time step], rain precipitation [m], snow density
[kg m−3], snow-water equivalent melt [m], snow depth [m],
snow precipitation [m], static-surface sublimation [m], snow-
water equivalent [m], air temperature [°C], wind direction
[°], and wind speed [m s−1]. Ultimately, we feel confident
that Parallel SnowModel is producing the same results as the
original serial algorithm.

Code and data availability. The Parallel SnowModel code and the
data used in Sect. 4 are available through a public GitHub repos-
itory (https://github.com/NCAR/Parallel-SnowModel, Mower et
al., 2023; https://doi.org/10.5281/zenodo.11168392, Mower, 2024).
For more information about the serial version of SnowModel, refer
to Liston and Elder (2006a). The data include figures and Snow-
Model output files that contain the necessary information to recre-
ate the simulations. The gridded output variables themselves are not
included due to storage limitations.

Author contributions. EDG and GDL conceived the study. RM,
EDG, GDL, and SR were integral in the code development. RM,
EDG, and JL were involved in the design, execution, and interpre-
tation of the experiments. All authors discussed the results and con-
tributed to the final version of the draft.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge Alessandro Fanfarillo for his
help during the early stages of the Parallel SnowModel code devel-
opment. We are also grateful for the feedback from various team

members involved in the AIST project, including Carrie Vuyovich,
Kristi Arsenault, Melissa Wrzesien, Adele Reinking, and Barton
Forman.

This material is based upon work supported by the NSF National
Center for Atmospheric Research, which is a major facility spon-
sored by the US National Science Foundation under cooperative
agreement no. 1852977. We would also like to acknowledge com-
putational support from the NSF NCAR Computational and Infor-
mation Systems Lab (CISL) and the NASA High-End Computing
(HEC) program through the NASA Center for Climate Simulation
(NCCS) at Goddard Space Flight Center.

Financial support. This research has been supported by the NASA
Earth Science Office (ESTO) Advanced Information Systems Tech-
nology (AIST) program (grant no. 80NSSC20K0207), the Univer-
sity of Washington’s College of Engineering Fellowship, and the
US National Science Foundation (grant no. 1852977).

Review statement. This paper was edited by Lele Shu and reviewed
by three anonymous referees.

References

Beniston, M.: Climatic Change in Mountain Regions: A Re-
view of Possible Impacts, Climatic Change, 59, 5–31,
https://doi.org/10.1023/A:1024458411589, 2003.

Bernhardt, M., Schulz, K., Liston, G. E., and Zängl, G.: The in-
fluence of lateral snow redistribution processes on snow melt
and sublimation in alpine regions, J. Hydrol., 424–425, 196–206,
https://doi.org/10.1016/j.jhydrol.2012.01.001, 2012.

Boelman, N. T., Liston, G. E., Gurarie, E., Meddens, A. J. H., Ma-
honey, P. J., Kirchner, P. B., Bohrer, G., Brinkman, T. J., Cos-
grove, C. L., Eitel, J. U. H., Hebblewhite, M., Kimball, J. S., La-
Point, S., Nolin, A. W., Pedersen, S. H., Prugh, L. R., Reinking,
A. K., and Vierling, L. A.: Integrating snow science and wildlife
ecology in Arctic-boreal North America, Environ. Res. Lett., 14,
010401, https://doi.org/10.1088/1748-9326/aaeec1, 2019.

Clark, M. P. and Hay, L. E.: Use of Medium-
Range Numerical Weather Prediction Model Out-
put to Produce Forecasts of Streamflow, J. Hy-
drometeorol., 5, 15–32, https://doi.org/10.1175/1525-
7541(2004)005<0015:Uomnwp>2.0.Co;2, 2004.

Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-
Ghazawi, T., Mohanti, A., Yao, Y., and Chavarría-Miranda, D.:
An evaluation of global address space languages: co-array fortran
and unified parallel c, Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming,
36–47, https://doi.org/10.1145/1065944.1065950, 2005.

Computational and Information Systems Laboratory: Cheyenne:
HPE/SGI ICE XA System (NCAR Community Computing),
National Center for Atmospheric Research, Boulder, CO,
https://doi.org/10.5065/D6RX99HX, 2019.

Dennis, J. M.: Inverse space-filling curve partitioning of
a global ocean model, 2007 IEEE International Par-
allel and Distributed Processing Symposium, 1–10,
https://doi.org/10.1109/IPDPS.2007.370215, 2007.

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024

https://github.com/NCAR/Parallel-SnowModel
https://doi.org/10.5281/zenodo.11168392
https://doi.org/10.1023/A:1024458411589
https://doi.org/10.1016/j.jhydrol.2012.01.001
https://doi.org/10.1088/1748-9326/aaeec1
https://doi.org/10.1175/1525-7541(2004)005<0015:Uomnwp>2.0.Co;2
https://doi.org/10.1175/1525-7541(2004)005<0015:Uomnwp>2.0.Co;2
https://doi.org/10.1145/1065944.1065950
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.1109/IPDPS.2007.370215


R. Mower et al.: Parallel SnowModel (v1.0) 4151

Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalent in the world’s mountains,
WIREs Water, 3, 461–474, https://doi.org/10.1002/wat2.1140,
2016.

Essery, R., Li, L., and Pomeroy, J.: A distributed model
of blowing snow over complex terrain, Hydrol. Pro-
cess., 13, 2423–2438, https://doi.org/10.1002/(SICI)1099-
1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U,
1999.

Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Na-
gle, D., and Rouson, D.: OpenCoarrays: open-source
transport layers supporting coarray Fortran compilers,
Proceedings of the 8th International Conference on Parti-
tioned Global Address Space Programming Models, 1–11,
https://doi.org/10.1145/2676870.2676876, 2014.

Fang, X. and Pomeroy, J.: Modeling blowing snow redistribu-
tion to prairie wetlands, Hydrol. Process., 23, 2557–2569,
https://doi.org/10.1002/hyp.7348, 2009.

Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem,
S. V., Tedesco, M., Kim, E., Montesano, P. M., Kelly, R.
E. J., Casey, K. A., and Choudhury, B.: A blended global
snow product using visible, passive microwave and scat-
terometer satellite data, Int. J. Remote Sens., 32, 1371–1395,
https://doi.org/10.1080/01431160903548013, 2011.

Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler,
M.: Snow redistribution for the hydrological model-
ing of alpine catchments, WIREs Water, 4, e1232,
https://doi.org/10.1002/wat2.1232, 2017.

Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The
National Elevation Dataset, edited by: United States Geologi-
cal Survey, American Society for Photogrammetry and Remote
Sensing, 83–110, 2018.

Hall, D. K., Salomonson, V. V., and Riggs, G. A.: MOD-
IS/Terra Snow Cover 5-Min L2 Swath 500m, Version
5, Boulder, Colorado USA, NASA National Snow and
Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/ACYTYZB9BEOS, 2006.

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and
Mao, Y.: The Variable Infiltration Capacity model version
5 (VIC-5): infrastructure improvements for new applications
and reproducibility, Geosci. Model Dev., 11, 3481–3496,
https://doi.org/10.5194/gmd-11-3481-2018, 2018.

Hammond, J. C., Sexstone, G. A., Putman, A. L., Barnhart, T.
B., Rey, D. M., Driscoll, J. M., Liston, G. E., Rasmussen, K.
L., McGrath, D., Fassnacht, S. R., and Kampf, S. K.: High
Resolution SnowModel Simulations Reveal Future Elevation-
Dependent Snow Loss and Earlier, Flashier Surface Water In-
put for the Upper Colorado River Basin, Earth’s Future, 11,
e2022EF003092, https://doi.org/10.1029/2022EF003092, 2023.

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G.,
Coulston, J., Herold, N., Wickham, J., and Megown, K.: Com-
pletion of the 2011 National Land Cover Database for the con-
terminous United States–representing a decade of land cover
change information, Photogramm. Eng. Remote Sens., 81, 345–
354, 2015.

Hoppinen, Z., Oveisgharan, S., Marshall, H.-P., Mower, R., El-
der, K., and Vuyovich, C.: Snow water equivalent retrieval over
Idaho – Part 2: Using L-band UAVSAR repeat-pass interferome-

try, The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-
575-2024, 2024.

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S.,
Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood,
G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.:
Toward mountains without permanent snow and ice, Earth’s Fu-
ture, 5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans,
H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A.
C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel,
J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V.,
Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellic-
ciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B.,
Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world’s water towers, Na-
ture, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y,
2020.

ISO/IEC: Fortran Standard 2008, Technical report, Geneva,
Switzerland, https://j3-fortran.org/doc/year/10/10-007.pdf (last
access: 10 July 2023), 2010.

Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu,
Z., Xian, G., and Howard, D.: Overall methodology design for
the United States national land cover database 2016 products, Re-
mote Sens., 11, 2971, https://doi.org/10.3390/rs11242971, 2019.

Keenan, E., Wever, N., Lenaerts, J. T. M., and Medley, B.:
A wind-driven snow redistribution module for Alpine3D
v3.3.0: adaptations designed for downscaling ice sheet sur-
face mass balance, Geosci. Model Dev., 16, 3203–3219,
https://doi.org/10.5194/gmd-16-3203-2023, 2023.

Kumar, V. and Gupta, A.: Analysis of scalability of paral-
lel algorithms and architectures: A survey, Proceedings of
the 5th international conference on Supercomputing, 396–405,
https://doi.org/10.1006/jpdc.1994.1099, 1991.

Latifovic, R., Homer, C., Ressl, R., Pouliot, D., Hossain, S.
N., Colditz, R. R., Olthof, I., Giri, C. P., and Victoria, A.:
20 North American Land-Change Monitoring System, Re-
mote sensing of land use and land cover, CRC Press, 303,
https://doi.org/10.1201/b11964-24, 2016.

Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T., Stähli, M.,
and Zappa, M.: ALPINE3D: A detailed model of mountain
surface processes and its application to snow hydrology, Hy-
drol. Process., 20, 2111–2128, https://doi.org/10.1002/hyp.6204,
2006.

Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.:
Inhomogeneous precipitation distribution and snow trans-
port in steep terrain, Water Resour. Res., 44, W07404,
https://doi.org/10.1029/2007WR006545, 2008.

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M.,
and Wood, E. F.: Inroads of remote sensing into hydrologic sci-
ence during the WRR era, Water Resour. Res., 51, 7309–7342,
https://doi.org/10.1002/2015WR017616, 2015.

Liston, G. E.: Local advection of momentum, heat, and moisture
during the melt of patchy snow covers, J. Appl. Meteorol. Clim.,
34, 1705–1715, 1995.

Liston, G. E.: Representing Subgrid Snow Cover Het-
erogeneities in Regional and Global Models, J. Cli-
mate, 17, 1381–1397, https://doi.org/10.1175/1520-
0442(2004)017<1381:Rsschi>2.0.Co;2, 2004.

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024

https://doi.org/10.1002/wat2.1140
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2423::AID-HYP853>3.0.CO;2-U
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1002/hyp.7348
https://doi.org/10.1080/01431160903548013
https://doi.org/10.1002/wat2.1232
https://doi.org/10.5067/ACYTYZB9BEOS
https://doi.org/10.5194/gmd-11-3481-2018
https://doi.org/10.1029/2022EF003092
https://doi.org/10.5194/tc-18-575-2024
https://doi.org/10.5194/tc-18-575-2024
https://doi.org/10.1002/2016EF000514
https://doi.org/10.1038/s41586-019-1822-y
https://j3-fortran.org/doc/year/10/10-007.pdf
https://doi.org/10.3390/rs11242971
https://doi.org/10.5194/gmd-16-3203-2023
https://doi.org/10.1006/jpdc.1994.1099
https://doi.org/10.1201/b11964-24
https://doi.org/10.1002/hyp.6204
https://doi.org/10.1029/2007WR006545
https://doi.org/10.1002/2015WR017616
https://doi.org/10.1175/1520-0442(2004)017<1381:Rsschi>2.0.Co;2
https://doi.org/10.1175/1520-0442(2004)017<1381:Rsschi>2.0.Co;2


4152 R. Mower et al.: Parallel SnowModel (v1.0)

Liston, G. E. and Elder, K.: A distributed snow-evolution modeling
system (SnowModel), J. Hydrometeorol., 7, 1259–1276, 2006a.

Liston, G. E. and Elder, K.: A Meteorological Distribution Sys-
tem for High-Resolution Terrestrial Modeling (MicroMet), J.
Hydrometeorol., 7, 217–234, https://doi.org/10.1175/jhm486.1,
2006b.

Liston, G. E. and Hall, D. K.: An energy-balance model of lake-ice
evolution, J. Glaciol., 41, 373–382, 1995.

Liston, G. E. and Hiemstra, C. A.: A simple data assimilation sys-
tem for complex snow distributions (SnowAssim), J. Hydrome-
teorol., 9, 989–1004, 2008.

Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-
Arctic snow trends (1979–2009), J. Climate, 24, 5691–5712,
2011.

Liston, G. E. and Mernild, S. H.: Greenland freshwater runoff.
Part I: A runoff routing model for glaciated and nonglaciated
landscapes (HydroFlow), J. Climate, 25, 5997–6014, 2012.

Liston, G. E. and Sturm, M.: A snow-transport model for complex
terrain, J. Glaciol., 44, 498–516, 1998.

Liston, G. E. and Sturm, M.: Global Seasonal-Snow Clas-
sification, Version 1, NASA National Snow and Ice
Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/99FTCYYYLAQ0, 2021.

Liston, G. E., Winther, J.-G., Bruland, O., Elvehøy, H., and Sand,
K.: Below-surface ice melt on the coastal Antarctic ice sheet, J.
Glaciol., 45, 273–285, 1999.

Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Bere-
zovskaya, S., and Tabler, R. D.: Simulating complex snow distri-
butions in windy environments using SnowTran-3D, J. Glaciol.,
53, 241–256, 2007.

Liston, G. E., Perham, C. J., Shideler, R. T., and Cheuvront, A. N.:
Modeling snowdrift habitat for polar bear dens, Ecol. Model.,
320, 114–134, https://doi.org/10.1016/j.ecolmodel.2015.09.010,
2016.

Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J., Merk-
ouriadi, I., and Haapala, J.: A distributed snow-evolution model
for sea-ice applications (SnowModel), J. Geophys. Res.-Oceans,
123, 3786–3810, 2018.

Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S.,
Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian
snow-evolution system for sea-ice applications (SnowModel-
LG): Part I – Model description, J. Geophys. Res-Oceans, 125,
e2019JC015913, https://doi.org/10.1029/2019JC015913, 2020.

Liston, G. E., Reinking, A. K., and Boleman, N. T.: Daily Snow-
Model Outputs Covering the ABoVE Core Domain, 3-km Reso-
lution, 1980–2020, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/2105, 2023.

Lund, J., Forster, R. R., Deeb, E. J., Liston, G. E., Skiles, S. M., and
Marshall, H.-P.: Interpreting Sentinel-1 SAR Backscatter Sig-
nals of Snowpack Surface Melt/Freeze, Warming, and Ripening,
through Field Measurements and Physically-Based SnowModel,
Remote Sens., 14, 4002, https://doi.org/10.3390/rs14164002,
2022.

Mahoney, P. J., Liston, G. E., LaPoint, S., Gurarie, E., Mangipane,
B., Wells, A. G., Brinkman, T. J., Eitel, J. U., Hebblewhite, M.,
and Nolin, A. W.: Navigating snowscapes: scale-dependent re-
sponses of mountain sheep to snowpack properties, Ecol. Appl.,
28, 1715–1729, 2018.

Marsh, C. B., Pomeroy, J. W., Spiteri, R. J., and Wheater, H. S.:
A Finite Volume Blowing Snow Model for Use With Variable
Resolution Meshes, Water Resour. Res., 56, e2019WR025307,
https://doi.org/10.1029/2019WR025307, 2020.

Miller, P., Robson, M., El-Masri, B., Barman, R., Zheng, G.,
Jain, A., and Kalé, L.: Scaling the isam land surface model
through parallelization of inter-component data transfer, 2014
43rd International Conference on Parallel Processing, 422–431,
https://doi.org/10.1109/ICPP.2014.51, 2014.

Mitchell, K. E.: The multi-institution North American Land
Data Assimilation System (NLDAS): Utilizing multiple GCIP
products and partners in a continental distributed hydro-
logical modeling system, J. Geophys. Res., 109, D07S90,
https://doi.org/10.1029/2003JD003823, 2004.

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., and Gao,
F.: Spatially complete global spectral surface albedos: Value-
added datasets derived from Terra MODIS land products, IEEE
T. Geosci. Remote Sens., 43, 144–158, 2005.

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz,
C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Ližar, M., Mit-
terer, C., Monti, F., Müller, K., Olefs, M., Snook, J. S.,
van Herwijnen, A., and Vionnet, V.: Application of physical
snowpack models in support of operational avalanche hazard
forecasting: A status report on current implementations and
prospects for the future, Cold Reg. Sci. Technol., 170, 102910,
https://doi.org/10.1016/j.coldregions.2019.102910, 2020.

Mortezapour, M., Menounos, B., Jackson, P. L., Erler, A. R., and
Pelto, B. M.: The role of meteorological forcing and snow
model complexity in winter glacier mass balance estimation,
Columbia River basin, Canada, Hydrol. Process., 34, 5085–5103,
https://doi.org/10.1002/hyp.13929, 2020.

Mott, R. and Lehning, M.: Meteorological Modeling of
Very High-Resolution Wind Fields and Snow Deposi-
tion for Mountains, J. Hydrometeorol., 11, 934–949,
https://doi.org/10.1175/2010JHM1216.1, 2010.

Mott, R., Schirmer, M., Bavay, M., Grünewald, T., and
Lehning, M.: Understanding snow-transport processes shap-
ing the mountain snow-cover, The Cryosphere, 4, 545–559,
https://doi.org/10.5194/tc-4-545-2010, 2010.

Mower, R.: NCAR/Parallel-SnowModel: Parallel-
SnowModel (v1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.11168392, 2024.

Mower, R., Gutmann, E. D., and Liston, G. E.: Parallel-
SnowModel, Github [data set and code], https://github.com/
NCAR/Parallel-SnowModel (last access: 31 January 2024),
2023.

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown,
R.: Characterization of Northern Hemisphere Snow Water
Equivalent Datasets, 1981–2010, J. Climate, 28, 8037–8051,
https://doi.org/10.1175/jcli-d-15-0229.1, 2015.

National Operational Hydrologic Remote Sensing Center: Snow
Data Assimilation System (SNODAS) Data Products at NSIDC,
Version 1, Boulder, Colorado USA, NSIDC: National Snow and
Ice Data Center, https://doi.org/10.7265/N5TB14TC, 2004.

Nolin, A. W.: Recent advances in remote sens-
ing of seasonal snow, J. Glaciol., 56, 1141–1150,
https://doi.org/10.3189/002214311796406077, 2010.

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024

https://doi.org/10.1175/jhm486.1
https://doi.org/10.5067/99FTCYYYLAQ0
https://doi.org/10.1016/j.ecolmodel.2015.09.010
https://doi.org/10.1029/2019JC015913
https://doi.org/10.3334/ORNLDAAC/2105
https://doi.org/10.3390/rs14164002
https://doi.org/10.1029/2019WR025307
https://doi.org/10.1109/ICPP.2014.51
https://doi.org/10.1029/2003JD003823
https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/10.1002/hyp.13929
https://doi.org/10.1175/2010JHM1216.1
https://doi.org/10.5194/tc-4-545-2010
https://doi.org/10.5281/zenodo.11168392
https://github.com/NCAR/Parallel-SnowModel
https://github.com/NCAR/Parallel-SnowModel
https://doi.org/10.1175/jcli-d-15-0229.1
https://doi.org/10.7265/N5TB14TC
https://doi.org/10.3189/002214311796406077


R. Mower et al.: Parallel SnowModel (v1.0) 4153

Numrich, R. W. and Reid, J.: Co-Array Fortran for par-
allel programming, ACM Sigplan Fortran Forum, 1–31,
https://doi.org/10.1145/289918.289920, 1998.

Numrich, R. W., Steidel, J. L., Johnson, B. H., Dinechin, B. D.
d., Elsesser, G., Fischer, G., and MacDonald, T.: Definition
of the F– Extension to Fortran 90, International Workshop on
Languages and Compilers for Parallel Computing, 292–306,
https://doi.org/10.1007/BFb0032700, 1998.

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J.,
Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., and
Marks, D.: The Airborne Snow Observatory: Fusion of scanning
lidar, imaging spectrometer, and physically-based modeling for
mapping snow water equivalent and snow albedo, Remote Sens.
Environ., 184, 139–152, 2016.

Parhami, B.: SIMD machines: do they have a significant future?,
ACM SIGARCH Computer Architecture News, 23, 19–22, 1995.

Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Westergaard-
Nielsen, A., and Schmidt, N. M.: Quantifying Episodic
Snowmelt Events in Arctic Ecosystems, Ecosystems, 18, 839–
856, https://doi.org/10.1007/s10021-015-9867-8, 2015.

Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Schmidt, N.
M., and Abermann, J.: Linking vegetation greenness and sea-
sonal snow characteristics using field observations, SnowModel,
and daily MODIS imagery in high-Arctic Greenland, AGU
Fall Meeting Abstracts, GC42A-07, https://ui.adsabs.harvard.
edu/abs/2016AGUFMGC42A..07P/abstract (last access: 16 Oc-
tober 2023), 2016.

Perezhogin, P., Chernov, I., and Iakovlev, N.: Advanced parallel
implementation of the coupled ocean–ice model FEMAO (ver-
sion 2.0) with load balancing, Geosci. Model Dev., 14, 843–857,
https://doi.org/10.5194/gmd-14-843-2021, 2021.

Pflug, J. M. and Lundquist, J. D.: Inferring Distributed Snow Depth
by Leveraging Snow Pattern Repeatability: Investigation Us-
ing 47 Lidar Observations in the Tuolumne Watershed, Sierra
Nevada, California, Water Resour. Res., 56, e2020WR027243,
https://doi.org/10.1029/2020WR027243, 2020.

Prokop, A. and Schneiderbauer, S.: The atmospheric snow-
transport model: SnowDrift3D, J. Glaciol., 57, 526–542,
https://doi.org/10.3189/002214311796905677, 2011.

Quéno, L., Mott, R., Morin, P., Cluzet, B., Mazzotti, G., and
Jonas, T.: Snow redistribution in an intermediate-complexity
snow hydrology modelling framework, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2023-2071, 2023.

Randin, C. F., Dedieu, J.-P., Zappa, M., Long, L., and Dullinger,
S.: Validation of and comparison between a semidistributed
rainfall–runoff hydrological model (PREVAH) and a spatially
distributed snow-evolution model (SnowModel) for snow cover
prediction in mountain ecosystems, Ecohydrology, 8, 1181–
1193, https://doi.org/10.1002/eco.1570, 2015.

Rasmussen, R. M., Liu, C., Ikeda, K., Chen, F., Kim, J.-H.,
Schneider, T., Gochis, D., Dugger, A., and Viger, R.: Four-
kilometer long-term regional hydroclimate reanalysis over the
conterminous United States (CONUS), 1979–2020, Research
Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory [data set],
https://doi.org/10.5065/ZYY0-Y036, 2023.

Renwick, J.: MOUNTerrain: GEWEX mountainous terrain precipi-
tation project, GEWEX News, 24, 5–6, 2014.

Reynolds, D. S., Pflug, J. M., and Lundquist, J. D.: Eval-
uating wind fields for use in basin-scale distributed
snow models, Water Resour. Res., 57, e2020WR028536,
https://doi.org/10.1029/2020WR028536, 2021.

Richter, B., Schweizer, J., Rotach, M. W., and van Herwij-
nen, A.: Modeling spatially distributed snow instability at a
regional scale using Alpine3D, J. Glaciol., 67, 1147–1162,
https://doi.org/10.1017/jog.2021.61, 2021.

Rouson, D., Gutmann, E. D., Fanfarillo, A., and Friesen, B.:
Performance portability of an intermediate-complexity at-
mospheric research model in coarray Fortran, Proceedings
of the Second Annual PGAS Applications Workshop, 1–4,
https://doi.org/10.1145/3144779.3169104, 2017.

Skofronick-Jackson, G. M., Johnson, B. T., and Munchak, S. J.: De-
tection Thresholds of Falling Snow From Satellite-Borne Active
and Passive Sensors, IEEE T. Geosci. Remote S., 51, 4177–4189,
https://doi.org/10.1109/TGRS.2012.2227763, 2013.

Sturm, M. and Liston, G. E.: Revisiting the global seasonal snow
classification: An updated dataset for earth system applications,
J. Hydrometeorol., 22, 2917–2938, 2021.

Sturm, M., Holmgren, J., and Liston, G. E.: A Seasonal Snow
Cover Classification System for Local to Global Applica-
tions, J. Climate, 8, 1261–1283, https://doi.org/10.1175/1520-
0442(1995)008<1261:Assccs>2.0.Co;2, 1995.

Szczypta, C., Gascoin, S., Houet, T., and Fanise, P.: Impact of cli-
mate versus land-use changes on snow cover in Bassiès, Pyre-
nees, International Snow Science Workshop Grenoble â Cha-
monix Mont-Blanc, 1278–1281, https://api.semanticscholar.org/
CorpusID:55357771 (last access: 15 January 2024), 2013.

Tabler, R. D.: Estimating the transport and evaporation of blowing
snow, Great Plains Agric. Council, Nebraska Univ., Publ., 73,
85–104, 1975.

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyi-
nen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating
northern hemisphere snow water equivalent for climate research
through assimilation of space-borne radiometer data and ground-
based measurements, Remote Sens. Environ., 115, 3517–3529,
https://doi.org/10.1016/j.rse.2011.08.014, 2011.

Tedesco, M. and Jeyaratnam, J.: AMSR-E/AMSR2 Unified
L3 Global Daily 25 km EASE-Grid Snow Water Equiva-
lent, Version 1, Boulder, Colorado USA, NASA National
Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/8AE2ILXB5SM6, 2019.

Vionnet, V., Martin, E., Masson, V., Guyomarc’h, G., Naaim-
Bouvet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation
of wind-induced snow transport and sublimation in alpine ter-
rain using a fully coupled snowpack/atmosphere model, The
Cryosphere, 8, 395–415, https://doi.org/10.5194/tc-8-395-2014,
2014.

Vionnet, V., Martin, E., Masson, V., Lac, C., Naaim Bouvet, F., and
Guyomarc’h, G.: High-resolution large eddy simulation of snow
accumulation in Alpine terrain, J. Geophys. Res.-Atmos., 122,
11005–11021, 2017.

Voordendag, A., Réveillet, M., MacDonell, S., and Lhermitte, S.:
Snow model comparison to simulate snow depth evolution and
sublimation at point scale in the semi-arid Andes of Chile, The
Cryosphere, 15, 4241–4259, https://doi.org/10.5194/tc-15-4241-
2021, 2021.

https://doi.org/10.5194/gmd-17-4135-2024 Geosci. Model Dev., 17, 4135–4154, 2024

https://doi.org/10.1145/289918.289920
https://doi.org/10.1007/BFb0032700
https://doi.org/10.1007/s10021-015-9867-8
https://ui.adsabs.harvard.edu/abs/2016AGUFMGC42A..07P/abstract
https://ui.adsabs.harvard.edu/abs/2016AGUFMGC42A..07P/abstract
https://doi.org/10.5194/gmd-14-843-2021
https://doi.org/10.1029/2020WR027243
https://doi.org/10.3189/002214311796905677
https://doi.org/10.5194/egusphere-2023-2071
https://doi.org/10.1002/eco.1570
https://doi.org/10.5065/ZYY0-Y036
https://doi.org/10.1029/2020WR028536
https://doi.org/10.1017/jog.2021.61
https://doi.org/10.1145/3144779.3169104
https://doi.org/10.1109/TGRS.2012.2227763
https://doi.org/10.1175/1520-0442(1995)008<1261:Assccs>2.0.Co;2
https://doi.org/10.1175/1520-0442(1995)008<1261:Assccs>2.0.Co;2
https://api.semanticscholar.org/CorpusID:55357771
https://api.semanticscholar.org/CorpusID:55357771
https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.5067/8AE2ILXB5SM6
https://doi.org/10.5194/tc-8-395-2014
https://doi.org/10.5194/tc-15-4241-2021
https://doi.org/10.5194/tc-15-4241-2021


4154 R. Mower et al.: Parallel SnowModel (v1.0)

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of pas-
sive microwave and modeled estimates of total watershed SWE
in the continental United States, Water Resour. Res., 50, 9088–
9102, https://doi.org/10.1002/2013WR014734, 2014.

Wagner, C., Hunsaker, A., and Jacobs, J.: UAV and SnowModel
Estimates of Wind Driven Snow in Eastern USA Avalanche
Terrain, EGU General Assembly 2023, Vienna, Austria, 23–
28 Apr 2023, EGU23-4608, https://doi.org/10.5194/egusphere-
egu23-4608, 2023.

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B.,
Zhang, Y., Guo, J., and Shum, C. K.: A New Estimate of North
American Mountain Snow Accumulation From Regional Cli-
mate Model Simulations, Geophys. Res. Lett., 45, 1423–1432,
https://doi.org/10.1002/2017GL076664, 2018.

Xia, Y.: Continental-scale water and energy flux analysis and
validation for North American Land Data Assimilation Sys-
tem project phase 2 (NLDAS-2): 1. Intercomparison and ap-
plication of model products, J. Geophys. Res., 117, D03109,
https://doi.org/10.1029/2011JD016048, 2012a.

Xia, Y.: Continental-scale water and energy flux analysis
and validation for North American Land Data Assimila-
tion System project phase 2 (NLDAS-2): 2. Validation of
model-simulated streamflow, J. Geophys. Res., 117, D03110,
https://doi.org/10.1029/2011JD016051, 2012b.

Xue, M., Droegemeier, K. K., and Wong, V.: The Advanced Re-
gional Prediction System (ARPS) – A multi-scale nonhydrostatic
atmospheric simulation and prediction model. Part I: Model dy-
namics and verification, Meteorol. Atmos. Phys., 75, 161–193,
https://doi.org/10.1007/s007030070003, 2000.

Geosci. Model Dev., 17, 4135–4154, 2024 https://doi.org/10.5194/gmd-17-4135-2024

https://doi.org/10.1002/2013WR014734
https://doi.org/10.5194/egusphere-egu23-4608
https://doi.org/10.5194/egusphere-egu23-4608
https://doi.org/10.1002/2017GL076664
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1029/2011JD016051
https://doi.org/10.1007/s007030070003

	Abstract
	Introduction
	Background
	SnowModel
	Coarray Fortran
	Model domains, data, and computing resources
	Parallelization motivation

	Methods
	Parallel implementation
	Partitioning algorithm
	Non-trivial parallelization
	File I/O

	Simulation experiments
	Parallel performance
	Parallel improvement
	Strong scaling
	CONUS Simulations


	Results
	Parallel improvement
	Strong scaling
	CONUS simulations

	Discussion
	Conclusions
	Appendix A
	Appendix B
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

