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Abstract. The optimization of aircraft trajectories involves
balancing operating costs and climate impact, which are
often conflicting objectives. To achieve compromised opti-
mal solutions, higher-level information such as preferences
of decision-makers must be taken into account. This pa-
per introduces the SolFinder 1.0 module, a decision-making
tool designed to identify eco-efficient aircraft trajectories,
which allow for the reduction of the flight’s climate impact
with limited cost penalties compared to cost-optimal solu-
tions. SolFinder 1.0 offers flexible decision-making options
that allow users to select trade-offs between different objec-
tive functions, including fuel use, flight time, NOx emis-
sions, contrail distance, and climate impact. The module
is included in the AirTraf 3.0 submodel, which optimizes
trajectories under atmospheric conditions simulated by the
ECHAM/MESSy Atmospheric Chemistry model. This pa-
per focuses on the ability of the module to identify eco-
efficient trajectories while solving a bi-objective optimiza-
tion problem that minimizes climate impact and operating
costs. SolFinder 1.0 enables users to explore trajectory prop-
erties at varying locations of the Pareto fronts without prior
knowledge of the problem results and to identify solutions
that limit the cost of reducing the climate impact of a single
flight.

1 Introduction

Aviation is estimated to contribute 3 %–5 % of total anthro-
pogenic global warming (Lee et al., 2021). Aircraft emis-
sions affect the radiative budget of the Earth through sev-
eral effects, which are usually distinguished between carbon
dioxide (CO2) and non-CO2 effects (Lee et al., 2010). Non-
CO2 effects account for about 2/3 of the aviation net effec-
tive radiative forcing (Lee et al., 2021) and include, among
others, the radiative forcing from contrail cirrus (Schumann,
2005; Kärcher, 2018) and the perturbations in the atmo-
spheric concentrations of ozone (O3) and methane (CH4)
caused by nitrogen oxide (NOx) emissions (Stevenson et al.,
2004; Köhler et al., 2008). The temperature perturbation re-
sulting from CO2 emissions is only dependent on the amount
of emitted CO2, due to the long atmospheric lifetime of CO2.
To reduce CO2 emissions, several solutions are currently un-
der development, exploring, e.g. the use of new propulsion
technologies or alternative aviation fuels (Staples et al., 2018;
Yin and Rao, 2020). Contrarily, non-CO2 effects occur over
short timescales, which typically range from hours (e.g. con-
trails) to months or years (e.g. NOx-induced changes on O3
and CH4). As a consequence, the temperature perturbation
caused by an aircraft unit emission is highly dependent on
the time and location of the emission (Köhler et al., 2013;
Frömming et al., 2021). Many studies investigated the pos-
sibility of using this time and space dependency to reduce
the climate effect of a flight, for example, by optimizing
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its trajectory to minimize the induced temperature increase
(Stevenson and Derwent, 2009; Sridhar et al., 2011; Grewe
et al., 2017; Matthes et al., 2021). Towards the implemen-
tation of this type of operational strategy, some recent stud-
ies highlighted the main challenges and opportunities related
to the avoidance of climate-sensitive regions by aircraft tra-
jectory optimization (Simorgh et al., 2022; Molloy et al.,
2022). Most importantly, the current level of scientific un-
derstanding of the non-CO2 effects of aviation is lower than
the one of CO2 effects, as demonstrated by the uncertainty
ranges of the radiative forcing estimates reported by Lee et al.
(2021). Moreover, the identification of climate-sensitive re-
gions (e.g. ice-supersaturated regions, supporting persistent
contrails) relies on the availability of accurate weather fore-
cast. Depending on the stability of the forecast, trajectories
can be optimized via tactical adjustments during the flight
or, preferably, in advance (e.g. 1 d before departure) to limit
the associated penalties in operating costs, e.g. minimizing
fuel use and workload of flight crew and air traffic controllers
(Molloy et al., 2022).

Currently, air traffic optimization focuses on minimizing
economic penalties, e.g. identifying aircraft trajectories that
lead to minimal operating cost. Minimizing the operating
cost and the climate impact of a single flight are expected
to be conflicting objectives of aircraft trajectory optimization
(Yamashita et al., 2021). This implies that, in most cases, it
is not possible to identify a solution that simultaneously min-
imizes both objectives. Therefore, optimizing an aircraft tra-
jectory with respect to its economic cost and climate impact,
a set of Pareto-optimal solutions can be identified. To select a
single trajectory among this set of optimal solutions, a wide
range of decision-making strategies can be employed (Kou
et al., 2012; Pasman et al., 2022). In this paper, we present a
new decision-making tool, the SolFinder 1.0 module, which
was developed with the aim of identifying aircraft trajecto-
ries leading to a significant reduction of the flight climate
impact, while limiting the increase in economic costs: we
define these options as eco-efficient aircraft trajectories. This
tool satisfies the following requirements:

– it is applicable to any set of Pareto-optimal solutions
resulting from the optimization of a single aircraft tra-
jectory;

– it is suitable for identifying compromise solutions be-
tween any number of objective functions;

– in particular, when applied for the bi-objective opti-
mization of operating cost and climate impact, it is ca-
pable of identifying eco-efficient solutions.

To satisfy these requirements, the following options have
been selected and are available in the first version of
SolFinder: (1) a strategy relying on the VIKOR method (ab-
breviation from its Serbian name: Vlse Kriterijumska Opti-
mizacija Kompromisno Resenje, presented by Opricovic and

Tzeng, 2004) to identify eco-efficient solutions; (2) a strategy
selecting the Pareto-optimal solution closest to a target per-
centage change in one of the objectives, such as the economic
costs; and (3) a decision-making method which combines
the previous two options, applying the VIKOR method while
limiting the change in one of the objectives. The SolFinder
module has been coupled to the ECHAM/MESSy Atmo-
spheric Chemistry (EMAC; Jöckel et al., 2010) submodel
AirTraf (Yamashita et al., 2020), as part of the AirTraf exten-
sion for the efficient resolution of multi-objective optimiza-
tion problems. This modelling chain enables users to select
Pareto-optimal solutions matching specific preferences of
decision-makers, e.g. eco-efficient aircraft trajectories, and
to explore their dependency on the atmospheric natural vari-
ability.

In Sect. 2, we describe the modelling chain, and we present
the decision-making strategies included in SolFinder 1.0
(Sect. 2.3). In Sect. 3, we illustrate an example application
of the selected decision-making strategies, using the Pareto-
optimal solutions that are identified by AirTraf when a Euro-
pean air traffic sample of 100 night-time flights is optimized
with respect to economic cost and climate impact. In Sect. 4,
we compare our results to those obtained in previous studies,
and we discuss uncertainties affecting our results. Our key
messages are summarized in Sect. 5.

2 Methods

We conduct our simulations using the ECHAM/MESSy At-
mospheric Chemistry (EMAC) model (Jöckel et al., 2010).
This is a numerical climate model system that includes
submodels describing tropospheric and middle atmosphere
processes and their interaction with oceans, land, and hu-
man influences (Jöckel et al., 2010). This system relies
on the second version of the Modular Earth Submodel
System (MESSy2) to connect multi-institutional computer
codes, while the core atmospheric model is the fifth-
generation European Centre Hamburg general circulation
model (ECHAM5, Roeckner et al., 2006). Figure 1 illustrates
the relation between the EMAC model and the three submod-
els that have a major relevance in our experiments: CON-
TRAIL (Frömming et al., 2014), ACCF (Yin et al., 2023),
and AirTraf (Yamashita et al., 2020).

The EMAC model provides the atmospheric conditions
at a specific time and location (e.g. wind, temperature, po-
tential vorticity, relative humidity) to determine the fuel
consumption, emission indexes, and climate effects of air-
craft emissions. The CONTRAIL submodel computes the
potential contrail coverage, i.e. the fraction of the model
grid box where persistent contrails can exist (Burkhardt et al.,
2008). The ACCF submodel employs the algorithmic cli-
mate change functions (aCCFs) in order to deliver the es-
timated spatially and temporally resolved climate effect of
aviation emissions to AirTraf; lastly, the AirTraf submodel
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Figure 1. Overview of the relations between EMAC and the three submodels CONTRAIL, ACCF, and AirTraf. The present study focuses
on the description of the decision-making module SolFinder 1.0, which is highlighted in red in the diagram.

identifies the optimal aircraft trajectories with respect to the
routing strategy selected by the user. The optimization pro-
cess is performed in two steps: (1) a genetic algorithm –
Adaptive Range Multi-Objective Genetic Algorithms (AR-
MOGA; Sasaki and Obayashi, 2005) – is employed to solve
a single- or multi-objective optimization problem; (2) if a
multi-objective optimization is solved, it is possible that
more than one optimal solution is found, thus a decision-
making module (SolFinder) intervenes to select a single rec-
ommended trajectory, based on the preferences of the user.

2.1 Base model configuration

For the present study, we applied EMAC (ECHAM5 ver-
sion 5.3.02, MESSy version 2.55.0) in the T42L31ECMWF
resolution. This resolution has a spherical truncation of T42
(corresponding to a quadratic Gaussian grid of approxi-
mately 2.8 by 2.8° in latitude and longitude) and includes
31 vertical hybrid pressure levels up to 10 hPa (i.e. to an al-
titude of approximately 30 km). We describe the model out-
put obtained by simulating the atmospheric conditions occur-
ring from 1 January 2018 to 31 January 2018, employing a
temporal resolution of 12 min. To obtain weather conditions
aligned with those observed in January 2018, the simulations

are conducted nudging by Newtonian relaxation the prognos-
tic variable divergence, vorticity, temperature and the (loga-
rithm of the) surface pressure down to the surface towards the
respective ECMWF ERA-Interim reanalysis data (Dee et al.,
2011; Jöckel et al., 2016).

2.2 AirTraf submodel

The air traffic simulator AirTraf is responsible for the opti-
mization of the aircraft trajectories, according to the routing
strategy prescribed by the user. The submodel requires as in-
put information (1) the atmospheric conditions at the time
and location of the flight, provided by the EMAC model,
and (2) the air traffic sample, including the location of the
airports of departure and arrival, the departure time of each
flight, and characteristics of the aircraft and engine type to
be simulated (Yamashita et al., 2016). Once this informa-
tion is collected, the genetic algorithm (ARMOGA; Sasaki
and Obayashi, 2005) intervenes to identify an optimal tra-
jectory. The number of design variables of the optimization
problem is fixed to 11, since the model describes each air-
craft trajectory as a B-spline curve defined by three control
points on the horizontal domain (three pairs of coordinates)
and five on the vertical cross-section (as illustrated in Ya-
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mashita et al., 2016, Fig. 6). The domains of the horizontal
control points are centred on the great circle connecting the
airports of departure and arrival, while the vertical control
points are bounded by the flight levels at 29 000 ft (FL290)
and at 41 000 ft (FL410), corresponding to altitudes of about
8.8–12.5 km. To calculate the flight properties along a can-
didate trajectory, the path is divided into flight segments by
nwp = 101 waypoints. In particular, to calculate the fuel used
at each flight segment, AirTraf uses the aircraft performance
model of Eurocontrol’s Base of Aircraft Data (BADA Re-
vision 3.9; Eurocontrol, 2011) and the Deutsches Zentrum
für Luft- und Raumfahrt (DLR) fuel flow method (Yamashita
et al., 2016).

The version AirTraf 2.0 presented by Yamashita et al.
(2020) allowed the user to solve single-objective optimiza-
tion problems, minimizing one of several available objec-
tive functions, including fuel use, flight time, NOx emis-
sions, contrail distance, operating costs, and climate impact.
The submodel is being expanded to use the same optimiza-
tion method for the efficient resolution of multi-objective op-
timization problems. As a result, it is possible to simulta-
neously optimize two or more objective functions, without
combining such functions into a single objective. This is par-
ticularly convenient when we aim to identify eco-efficient
aircraft trajectories under a large number of weather con-
ditions. In fact, a conversion factor would be necessary to
combine climate impact and operating costs into a single
objective functions. However, this factor (e.g. as defined by
Simorgh et al., 2023, Eq. 7) is affected by a large variabil-
ity over different flights and days; thus, it is difficult to find
a general value of the factor which can be applicable to op-
timize large air traffic samples over long-term simulations.
Due to this AirTraf expansion for the resolution of multi-
objective optimization problems, a decision-making module
became necessary to ensure that a single optimal solution
is identified, and its properties are evaluated and stored by
the model. This task can be performed by the SolFinder 1.0
module presented in this paper. Therefore, SolFinder has
been coupled to AirTraf to select one optimal solution from
the full Pareto set, reducing the computational effort of the
model.

In the development of the decision-making strategies im-
plemented in SolFinder 1.0, the underlying goal has been
to find eco-efficient aircraft trajectories, compromising be-
tween the optimization of climate impact and operating costs.
Hence, we include here the definitions of these objective
functions within AirTraf. The economic costs of the flights
are represented by the simple operating costs (SOC), defined
as in Eq. (1):

SOC= ct

nwp−1∑
i=1

TIMEi + cf

nwp−1∑
i=1

FUELi (1)

where TIMEi and FUELi represent the flight time and
fuel used at the ith flight segment, respectively, while ct =

USD 0.75 per second and cf = USD0.51 per kilogram are the
unit time and unit fuel costs (Burris, 2015; Yamashita et al.,
2020). The climate impact of each aircraft trajectory is mea-
sured in terms of average temperature response (ATR) over
20 years (ATR20), as provided by the ACCF submodel (van
Manen and Grewe, 2019; Yin et al., 2023). The total climate
impact ATR20tot of each aircraft trajectory is determined by
summing the contribution from the main climate effects:

ATR20tot =

nwp−1∑
i=1

[
ATR20CO2,i +ATR20H2O,i

+ATR20NOx-O3,i +ATR20NOx-CH4,i

+ATR20contrails,i

]
(2)

where each addend represents, from left to right, the ATR20
at the ith flight segment from (1) carbon dioxide (CO2),
(2) water vapour (H2O), (3) ozone (O3) from emission of
NOx , (4) methane (CH4) from emission of NOx , and (5) con-
trails. The term ATR20NOx-CH4,i includes the changes in
primary mode ozone induced by the reduced CH4 atmo-
spheric concentration, while it neglects the feedback from
stratospheric water vapour (Yin et al., 2023). The present
study uses ATR20 as climate metric, assuming a business-
as-usual future emission scenario (F-ATR20). Alternative cli-
mate metrics can also be used, e.g. considering a time hori-
zon of 100 years (ATR100). A detailed description of the
climate metric conversion is presented in Dietmüller et al.
(2023).

2.3 SolFinder module

In this section, we describe the decision-making strategies
implemented in SolFinder 1.0. Our aim is to solve a multi-
objective optimization problem by minimizing a set ofN ob-
jective functions fn, with n= 1,2, . . .,N . If two or more ob-
jective functions are conflicting, a set of Pareto-optimal solu-
tions, P , is identified. The values fn,j of the objective func-
tions are assigned to each Pareto-optimal solution pj ∈ P ,
with j = 1,2, . . .,J . Subsequently, a decision-making strat-
egy intervenes to select one solution prec ∈ P which is the
recommended solution according to the decision-maker cri-
teria. We include the following strategies towards the reso-
lution of our problem: (1) option selecting a solution based
on its weighted distance from an ideal (usually, not feasible)
solution (VIKOR method, Appendix A) for the identification
of eco-efficient trajectories (Sect. 2.3.1); (2) option leading to
a target percentage change in one of the objective functions,
with respect to its minimum value (Sect. 2.3.2); (3) option
combining the previous two strategies, limiting the change
in one of the objective functions while applying the VIKOR
method (Sect. 2.3.3); and (4) selection of one of the extremes
of the Pareto-optimal set (Sect. 2.3.4).

A large variety of multi-criteria decision-making methods
is currently available to select one solution among a set of
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optimal options (Wang and Rangaiah, 2017; Sałabun et al.,
2020). In a preliminary phase of our research, we consid-
ered different options among the most popular techniques,
including GRA (grey relational analysis; Wang and Ran-
gaiah, 2017), TOPSIS (Technique for Order Preference by
Similarity to Ideal Solution; Chen and Hwang, 1992), and
VIKOR (abbreviation from its Serbian name: Vlse Kriteri-
jumska Optimizacija Kompromisno Resenje, Appendix A).
These options have been implemented in a Python library,1

in order to apply them on test cases and compare their effec-
tiveness in identifying eco-efficient aircraft trajectories. We
identified the VIKOR method (Opricovic, 1998; Opricovic
and Tzeng, 2004) as a suitable candidate to translate our def-
inition of eco-efficient solutions into a decision-making al-
gorithm. This is due to its peculiarity of recommending more
than one solution if certain criteria are not met by a single
solution (Appendix A). This allows for flexible identifica-
tion of a region of the Pareto front (e.g. the section of the
Pareto front leading to a small change in the economic costs),
within which the user is able to choose their preferred solu-
tion (e.g. the solution with the largest climate impact reduc-
tion). Moreover, no a priori knowledge on the optimization
problem expected results is needed. To apply the VIKOR
method, only the following information is provided as input,
translating the user preferences into mathematical terms:

– the relative importance of N objective functions, rep-
resented by the weights wn ≥ 0, such that

∑
nwn = 1,

with n= 1,2, . . .,N .

– the relative importance of group utility (preference to-
wards achieving the greatest benefit) and individual re-
gret (preference towards avoiding large penalties), rep-
resented by the parameter γ , with 0< γ < 1. If γ >
0.5, the majority rule principle is applied; contrarily,
γ < 0.5 implies the application of the veto principle;
lastly, γ ≈ 0.5 represents a voting by consensus strategy
(Opricovic and Tzeng, 2004).

2.3.1 Strategy using the VIKOR method to identify
eco-efficient trajectories

The SolFinder 1.0 module identifies eco-efficient trajecto-
ries using a decision-making option based on the VIKOR
method. This method, introduced by Opricovic (1998) and
Opricovic and Tzeng (2004), makes use of the overall dis-
tance (group utility) and the maximum distance (individual
regret) of a Pareto-optimal solution from the minimal val-
ues of the optimization objectives to rank the Pareto-optimal
solutions. For more details on the version of the VIKOR
method implemented in SolFinder, we refer to Appendix A.
Figure 2 illustrates how this decision-making strategy is ap-
plied using as an example the bi-objective optimization of
a flight with respect to its SOC and ATR20. Firstly, the

1See Supplement and Castino (2023).

decision-making module collects all the Pareto-optimal so-
lutions (represented by the grey crosses in Fig. 2a). Subse-
quently, the VIKOR method is applied according to the pre-
scribed values of the parameter γ and the relative weights
wn (Fig. 2b). This leads to a recommended subset of opti-
mal solutions (represented by the blue circles in Fig. 2c). If
the VIKOR method identifies more than one recommended
solution (i.e. the solutions pv (v = 1,2, . . .,M) are equally
recommended), the model selects the one with the minimum
value of the objective function assigned to the lowest weight
wn. In Fig. 2d, the objective with the lowest relative weight
is ATR20 (wATR20 = 0.3,wSOC = 0.7); thus, the model se-
lects the point among the recommended solutions (indicated
by the blue circles in Fig. 2d) with the lowest ATR20 (red
triangle in Fig. 2d). This last step is thus formulated to trans-
late in mathematical terms our definition of eco-efficient air-
craft trajectories, i.e. a compromise solution between cost-
optimal and climate-optimal solutions, such that the largest
possible climate impact reduction is achieved, while keep-
ing the operating costs nearly unchanged with respect to the
cost-optimal solution. Using the VIKOR method, a subset of
Pareto-optimal solutions is identified, according to the rel-
ative importance of the two optimization objectives. There-
fore, if the highest weight is assigned to the objective func-
tion representing operating costs, the VIKOR method equally
recommends a subset of Pareto-optimal solutions close to –
or, possibly, including – the cost-optimal extreme point of the
Pareto front. Among this subset of equally recommended so-
lutions, we choose the point leading to the largest climate im-
pact reduction, i.e. the minimum value of the objective func-
tion assigned to the lowest weight. Therefore, the objective
with the highest weight plays a dominant role in the selec-
tion of the subset of equally recommended solutions (VIKOR
method), while the objective with the lowest weight becomes
dominant in the selection of a single solution among this sub-
set.

The resulting strategy can be configured to follow the steps
listed here:

1. A bi-objective optimization problem is solved to simul-
taneously minimize the total climate impact (ATR20tot
as defined in Eq. 2) and operating costs (SOC, Eq. 1).
This step results in the identification of J Pareto-
optimal solutions (Fig. 2a).

2. The VIKOR method is applied, following the steps de-
scribed in Appendix A (Fig. 2b).

3. A set of equally recommended solutions are selected
in the sections in the Pareto front closest to the cost-
optimal solution by assigning a relatively high weight
to the operating costs, i.e. wSOC > 0.5 (with γ = 0.5).
Depending on the shape of the Pareto front, this set of
solutions extends towards the best ideal solution, ibest,
allowing for higher climate impact reductions with re-
spect to the cost-optimal solution while avoiding cost

https://doi.org/10.5194/gmd-17-4031-2024 Geosci. Model Dev., 17, 4031–4052, 2024



4036 F. Castino et al.: Decision-making strategies implemented in SolFinder 1.0

Figure 2. Illustration of the steps performed by the eco-efficient decision-making strategy relying on VIKOR. The aircraft trajectories are
optimized to minimize SOC and ATR20, resulting in a set of Pareto-optimal solutions (grey crosses). We set wSOC = 0.7, wATR20 = 0.3,
and γ = 0.5. Panel (a) shows the Pareto-optimal solutions (grey crosses) collected before applying the decision-making strategy. Panel (b) il-
lustrates the application of the VIKOR method (Appendix A); thus, the axes are scaled as in Fig. A1. This step results in the identification of
the subset of recommended solutions, represented by the blue circles in panel (c). Panel (d) shows the selected solution (red triangle) among
the subset of recommended solutions (blue circles).

penalties that are not compensated by a climate impact
reduction (Fig. 2c).

4. Among this set of equally recommended solutions, the
solution leading to the largest climate impact reduction
with respect to the cost-optimal solution is selected,
since wATR <wSOC. We define this point as the eco-
efficient solution among the set of Pareto-optimal op-
tions (Fig. 2d).

Sensitivity of the VIKOR parameterization

To understand the effectiveness of the VIKOR method with
various configurations of γ and w, we take as example a set
of Pareto-optimal solutions, resulting from the bi-objective
optimization of an aircraft trajectory with respect to the SOC
and ATR20 of the flight. Within this set, a subset of solutions
is recommended by the VIKOR method with different values
of γ andw = [wSOC,wATR20]. The results of this analysis are
shown in Fig. 3. This figure illustrates the impact of varying
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Figure 3. Variability of the selected solution (red triangle) using the eco-efficient decision-making method. The grey crosses represent
the Pareto-optimal solutions, while the blue circles indicate the subset of solutions recommended by the VIKOR method. The axes show
percentage changes in the objective functions, relative to the solution minimizing SOC. In this example, the Pareto front consists of 308
solutions.

the weights w by comparing different rows. It is possible to
see how by increasing the value of wSOC from 0.2 (Fig. 3a,
b, c) to 0.8 (Fig. 3j, k, l), the set of solutions recommended
by VIKOR moves closer to the cost-optimal extreme of the
Pareto front (0% change in SOC and ATR20). It is less in-
tuitive to understand the impact of changing the parameter
γ , which represents the relative importance of group utility.
As explained in Sect. 2.3 and according to the formulas in-
cluded in Appendix A, with γ = 0.5 the same relative im-
portance is assigned to avoiding large penalties in one of the
objectives and to achieving the greatest overall benefit. In the
results presented in Sect. 3.2, we always set the default value
γ = 0.5. A value of γ < 0.5 leads to the application of the

veto principle; that is, if one of the objectives is heavily pe-
nalized by selecting a certain Pareto-optimal solution, then
it will have a low likelihood to be recommended. Therefore,
setting γ = 0.25 (as in Fig. 3a, d, g, j) leads to the exclu-
sion of elements located in the external sections of the Pareto
front, because of their distance to the opposite extreme of
the Pareto front. On the other hand, when the veto principle
is not applied (γ ≥ 0.5), the set of recommended solutions
(blue circles) can include the solution minimizing the ob-
jective with the highest relative weight. For example, when
wSOC = 0.8 and γ ≥ 0.5, the solution with minimum SOC is
included in the set of Pareto-optimal solutions (Fig. 3k, l).
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This observation is the base for the definition of eco-
efficient solution given at the end of Sect. 2.3.1, i.e. the solu-
tion selected with a high relative weight of SOC (wSOC larger
than 0.5) and γ = 0.5. Following this definition, the selected
solution shown in Fig. 3k (represented by a red triangle) is an
eco-efficient solution. In fact, this solution leads to the max-
imum ATR20tot reduction among the subset of the solutions
recommended by VIKOR (blue circles) while being equally
recommended as the cost-optimal solution by the VIKOR
method. In other words, the selected solution in Fig. 3k fol-
lows the definition of the eco-efficient solutions given in the
Introduction, i.e. it allows for a significant reduction in the
flight climate impact while avoiding significant increases in
operating costs. However, we note that determining the val-
ues of γ andw remains an arbitrary choice, which reflects the
specific preferences of the decision-maker. Further elements
to consider when setting these parameters are discussed later
in Sect. 3.

2.3.2 Target percentage change in one of the objective
functions

In some scenarios, the decision-maker wishes to limit the
penalty of one of the objective functions, e.g. to avoid un-
sustainable increases in the operating costs. Therefore, in the
second decision-making strategy, we propose to select the so-
lution prec leading to a percentage change in one of the objec-
tive functions, fp. On the other hand, to obtain the expected
outcome, this option requires certain information on the op-
timization results to be known before solving the problem,
such as the typical shape of the Pareto fronts and reference
values at their extreme points. The threshold for the allow-
able change is specified as a target value xt. This is translated
in the following process:

fp,ref =min
j
fp,j , j = 1,2, . . .,J, (3)

xj = 100 ·
fp,j − fp,ref

fp,ref
, (4)

1xj = |xj − xt|. (5)

Therefore, the selected Pareto-optimal solution prec ∈ P is
the solution corresponding to the relative change xrec, such
that 1xrec =minj1xj .

Figure 4 illustrates which solution is selected within a
Pareto-optimal set resulting from the resolution of a tri-
objective optimization problem, simultaneously minimizing
flight time, fuel use, and ATR20tot. In this example, xt =

+0.5% is set as the target percentage change in flight time.

2.3.3 Hybrid option: the VIKOR method with target
percentage change in one of the objectives

To combine the advantages of the two decision-making
strategies presented, a hybrid option is considered, limiting
the variability in one of the objective functions while apply-

Figure 4. Example of selecting the solution among the Pareto-
surface matching a target increase in 0.5 % in flight time (indicated
by red triangles). The blue circles indicate the Pareto-optimal solu-
tions, which result from a tri-objective optimization problem mini-
mizing flight time, fuel use, and ATR20tot.

ing the VIKOR method. When this strategy is selected, the
decision-maker provides (1) the configuration of the VIKOR
method, setting the parameters γ and w, and (2) a target per-
centage increase xt in the objective fp. Subsequently, the fol-
lowing decision-making process is followed:

1. Apply the VIKOR method and select the recommended
solution minimizing the objective function having the
lowest weight wn, as described in Appendix A.

2. Calculate xp, representing the relative change in fp of
the recommended solution with respect to the minimum
value of fp.

Geosci. Model Dev., 17, 4031–4052, 2024 https://doi.org/10.5194/gmd-17-4031-2024



F. Castino et al.: Decision-making strategies implemented in SolFinder 1.0 4039

Figure 5. Location of the 100 flights included in the air traffic sam-
ple. Each curve represents the great circle connecting an origin/des-
tination pair. Note that most origin/destination pairs are connected
by two flights, i.e. one for each direction; thus, the number of curves
is lower than 100. The list of ICAO airport codes is included in Ta-
ble B1.

3. If xp > xt, replace the recommended solution identi-
fied in step 1 with the Pareto-optimal solution leading
to a target percentage change xt in the objective func-
tion fp (in other words, apply the strategy described in
Sect. 2.3.2).

This strategy addresses the fact that, with the VIKOR
method, no limit in the percentage increase of the objec-
tive is set; thus, a fraction of the solutions can be affected
by changes much larger than the average, as is shown in a
later section of this paper (Sect. 3.2, Fig. 7). With this hybrid
option, the VIKOR method can be employed to identify eco-
efficient trajectories, while introducing a constraint on the
operating costs, to prevent increases in the operating costs of
some flights that the decision-maker does not accept.

2.3.4 Selecting one extreme of the Pareto-optimal set

Lastly, an additional option is considered to select a solu-
tion minimizing one of the objective functions fn, which
we indicate as fmin. This simple decision-making process
selects the optimal solution corresponding to the result of
a single-objective optimization minimizing fmin. Neverthe-
less, it can be useful to implement this method to identify
which values are used as reference during the resolution of
the multi-objective optimization problem and to verify the
performance of the model.

3 Application of decision-making method to analyse
trajectories’ variability along the Pareto front

We now present an example study, in which different settings
of the decision-making strategies are compared. This appli-
cation exemplifies how the decision-making strategies can be
employed and what to consider to determine the settings that
best translate the decision-maker preference. In this exam-
ple, we focus on the suitable settings to identify eco-efficient
aircraft trajectories. Nevertheless, SolFinder can also be used
to comply with alternative decision-making preferences, by
changing the settings of AirTraf and SolFinder.

3.1 Simulations set-up

As previously stated, we intend to identify eco-efficient air-
craft trajectories, i.e. trajectories reducing the climate im-
pact with limited changes in the operating costs. There-
fore, we solve a bi-objective optimization problem, aiming
to simultaneously minimize SOC and ATR20, as defined
in Sect. 2.2. We conduct 1-month simulations, from 1 Jan-
uary 2018 to 31 January 2018. On each simulation day, 100
night-time flights departing at 00:00 UTC are optimized. Fig-
ure 5 shows the locations of the airports of origin and des-
tination, which were selected considering the available seat
kilometres (ASK) for the European Civil Aviation Confer-
ence (ECAC) area in 2018 (Meuser et al., 2022). The same
criterion was used to select the A320-214 (CFM56-5B4) as
the aircraft/engine type to be simulated. The climate impact
of each aircraft trajectory is estimated using the aCCF 1.0A
(Matthes et al., 2023). Table 1 summarizes the model config-
uration.

To compare the effects of using different decision-making
strategies, we perform two sets of experiments, whose char-
acteristics are summarized in Table 2 and explained below:

1. In the first set of experiments, the VIKOR method is
employed as we described in Sect. 2.3.1, fixing γ = 0.5
and varying the relative weight wSOC between 0.2 and
0.9 (Table 2). Therefore, we obtain a total of six se-
lected trade-off solutions. The density of wSOC values
increases for higher values ofwSOC, as these values lead
to the selections of solutions in the section of the Pareto
front of major interest when searching for eco-efficient
trajectories, i.e. the section closer to the cost-optimal so-
lution. Additionally, we select the two solutions located
at the Pareto-front extremes, i.e. the cost-optimal and
climate-optimal solutions, with the routine mentioned
in Sect. 2.3.4. No preliminary knowledge about the ex-
pected problem results is needed to conduct these sim-
ulations. As a result of this first set of experiments, for
each optimized flight we obtain information on eight so-
lutions that determine the shape and extension of the
Pareto fronts relative to individual flights, and the rela-
tion between penalties and benefit aggregated over the
whole air traffic sample.
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Table 1. Main settings of ECHAM5, ACCF, and AirTraf.

ECHAM5

Horizontal resolution T42 (2.81°× 2.81°)

Vertical resolution L31ECMWF
(31 vertical pressure levels
up to 10 hPa ∼ 30 km)

Time step 12 min

Duration 1–31 Jan 2018 (each day, 1 month)

ACCF

Version aCCFs V1.0A

Climate metric F-ATR20

Forcing efficacy Included

AirTraf

Trajectory waypoints 101

Aircraft/engine A320-214 (CFM56-5B4)

Air traffic sample Top 100 routes by ASK
for the ECAC area in 2018

Departure time 00:00 UTC

Optimization strategy Multi-objective optimization of
(1) SOC and (2) ATR20tot

2. In the second set of experiments, we explore the effects
of selecting a solution leading to a target change in SOC
(Sect. 2.3.2). The target values are chosen using the re-
sults form the first set of experiments, which obtained
average SOC increases up to about +3.0 % (see Table 3
and Fig. 6). In light of these results, we vary xt from
0.5 % to 3.0 % (Table 2), selecting four solutions per
flight. Moreover, we set wSOC = 0.7 to exemplify the
effects of using the option of using VIKOR while set-
ting a target SOC change (Sect. 2.3.3) of +1.0 %.

3.2 Results

As explained in Sect. 2.3, one of the main advantages of the
VIKOR method is that no knowledge of the expected results
is needed before solving our problem. For this reason, the
first set of experiments applies the VIKOR method with a
range of values of the parameter wSOC. This enables us to
perform a preliminary examination of the characteristics of
the relation between benefit (in our application, ATR20tot
reduction) and penalty (increase in SOC). Relative to our
problem, this relation is shown in Fig. 6, illustrating the
change in SOC that is required to achieve a certain reduc-
tion in ATR20. The grey curves in Fig. 6a are obtained by
aggregating the 100 Pareto-optimal solutions selected using
the VIKOR method on each simulation day and varying the

relative weight wSOC of the objective function SOC. The
coordinates of the points connected by the black line (rep-
resenting the average relation over the 31 simulated days)
can be found in Table 3. Setting a low value of wSOC (e.g.
wSOC = 0.2), we obtain a reduction in ATR20tot of about
13 %, which is almost as large as the maximum potential re-
duction achieved by selecting a climate-optimal routing strat-
egy. Moving along the curve towards the cost-optimal strat-
egy, the magnitude of the ATR20tot reduction decreases. This
occurs with a simultaneous decrease of the cost per kelvin
reduction in climate impact, measured by the climate-cost
coefficient k [USD per kelvin] (Table 3). This coefficient is
defined as (Matthes et al., 2017)

k =
SOC−SOCcost-opt

ATR20cost-opt−ATR20
, (6)

where ATR20cost-opt and SOCcost-opt are relative to the cost-
optimal solution, while ATR20 and SOC are relative to the
considered decision-making strategy. From this first set of
experiments, we understand that (1) the average 1ATR20tot
ranges from −3.5 to −14.4 %, with an increase in SOC of
0.1 %–3.0 %, respectively; (2) about half of the maximum
feasible climate change reduction can be achieved with only
+0.5 % in SOC.

As previously mentioned, the red and green points high-
lighted in Fig. 6a result from summing all the solutions se-
lected for the 100 flights and averaging over the month of
simulation. However, each optimized trajectory is character-
ized by a different change in ATR20tot and SOC with respect
to its corresponding cost-optimal solution. We note here that
this cost-optimal solution (shown in red in Fig. 6a), which we
take as reference to calculate the relative changes in ATR20tot
and SOC, is specific to each route and each simulation day;
thus, it varies between different flights. The full variability
of the relationship between relative changes in ATR20tot and
SOC is illustrated in Fig. 6b. In this panel, one can see that
specific solutions can show large deviations from the average
values, as some solutions reach an absolute1ATR20tot larger
than 60% at penalties lower than 2.5% in terms of 1SOC.
Moreover, Fig. 6c–f show that the subsets of Pareto-optimal
solutions obtained setting differentwSOC behave as expected:
moving from lower to higher values of wSOC leads to sub-
sets that are confined below lower increases in SOC, while
they still stretch towards high ATR20tot reductions (e.g. see
the points selected with wSOC = 0.8 in Fig. 6f). The dis-
tributions of 1ATR20tot and 1SOC values across the opti-
mized flights are represented in Fig. 7, which compares the
results obtained by varying the parameter wSOC applying the
VIKOR method and the climate-optimal scenario. Figure 7b
shows the percentage of flights characterized by a certain
1SOC. One can see that, employing VIKOR, the mode of
each curve is close to 1SOC ∼ 0 %, while the mean and
maximum 1SOC values increase when the weight wSOC de-
creases. Looking at the 1ATR20tot distributions in Fig. 7a,
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Table 2. Overview of the two sets of experiments performed to exemplify the use of the different decision-making methods.

Set SolFinder strategy No. selected sol. Parameter Description Value(s)

1 VIKOR method 6 γ Group utility weight 0.5
for eco-eff. wSOC Rel. weight of SOC 0.2, 0.4, 0.6, 0.7, 0.8, 0.9

wATR Rel. weight of ATR20tot 1−wSOC
Pareto-front 2 fmin Minimized objective ATR20tot or SOC
extremes

2 Target change in fp 4 fp – SOC
xt Target change [%] 0.5, 1.0, 2.0, 3.0

Hybrid VIKOR target 1 γ Group utility weight (VIKOR) 0.5
option wSOC Rel. weight of SOC (VIKOR) 0.7

wATR Rel. weight of ATR20tot (VIKOR) 1−wSOC
fp Objective with limited changes SOC
xt Limit and target change [%] 1.0

Figure 6. Relation between the relative changes in climate impact,1ATR20tot [%], and in simple operating cost,1SOC [%], with respect to
the cost-optimal solution. (a) Values obtained summing over the 100 routes optimized per day. The black line illustrates the average values
over the 31 d included in the simulations, connecting the points selected varying the VIKOR weight wSOC from 0.2 to 0.9 (green dots). The
extremes of the Pareto fronts (climate- and cost-optimal solutions, red dots) are included. The grey lines represent the Pareto fronts obtained
on each simulation day. (b–f) Scatter graphs of1ATR20tot [%] against1SOC [%], representing all the individual selected solutions (b), and
subsets of solutions obtained varying the weight of simple operating costs, wSOC (c–f).
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Figure 7. Relative frequencies [%] of different values of 1ATR20tot [%] (Fig. 7a), and of 1SOC [%] (Fig. 7b) with respect to the cost-
optimal solution. The histograms compare the distributions of the values obtained with different decision-making strategies, considering the
100 flights optimized on each simulation day (31×100 values per histogram). The solutions are selected by identifying the minimum climate
impact (climate-optimal solutions), or employing the VIKOR method with varying wSOC (first set of experiments).

we can observe larger differences also in the modal values
for varying wSOC.

The results of the first set of experiments can then be used
to conduct the second set, fixing a target or a limit increase
in SOC as described in Sect. 3.1. The result of this second
set of experiments are shown in Table 4. To illustrate the dif-
ference of employing different decision-making methods, it
is useful to compare Fig. 7 with Fig. 8. The most evident
difference emerges comparing Fig. 7b with Fig. 8b. As in-
tended, when we set a target increase in SOC (e.g. +1.0 %),
most of the selected flights are affected by an increase in SOC
equal or similar to the target; thus, the curves are centred on
this 1SOC value. However, we can also deduce that some
Pareto fronts do not extend to the target 1SOC, since values
of 1SOC which are lower than the target are assigned to a
fraction of the flights. This results in average 1SOC values
that are lower than the targets, as we can see in Table 4. For
example, a total increase of 0.8 % in SOC is obtained, when
the target is set to 1.0 %. Moreover, Fig. 8b shows what dis-
tribution of 1SOC the user can expect employing the hybrid
method described in Sect. 2.3.3. The histogram relative to
the hybrid option (yellow, with hatching) corresponds to the
one obtained with VIKOR (with wSOC = 0.7), with an ad-
ditional peak at the determined target SOC increase (1.0 %),
replacing the larger SOC increases observed in Fig. 7b. The
results illustrated in Figs. 7b and 8b confirm that the strate-
gies available in SolFinder 1.0 are correctly implemented and
lead to the expected selection of Pareto-optimal solutions.
Moreover, the possibility of relying on the VIKOR method
to identify eco-efficient trajectories is confirmed by Fig. 9.
These curves represent the distributions of the climate-cost
coefficient k [USD per kelvin], obtained using VIKOR (blue
curves) or the target SOC change (red curves). It is possible
to observe that lower values of k are obtained using VIKOR,
in particular when a relatively high weight is assigned to
SOC.

Employing different decision-making strategies, we ob-
tain trajectories which are characterized by different prop-
erties. How these properties vary is shown in Fig. 10, which
compares the mean flight altitudes and flown distances ob-
tained when different decision-making strategies are se-
lected. Firstly, we can notice that cost-optimal flights are
characterized by the highest mean flight altitudes and the
shortest trajectories among the solutions considered, due to
the presence of fuel consumption in the optimization ob-
jective. On the opposite situation, the lowest altitude and
the longest distances are obtained for climate-optimized
flights. This confirms previous studies, which commented
that (1) aircraft emissions have lower climate impact at lower
altitudes, e.g. due to shorter residence time of emitted species
(Castino et al., 2021; Matthes et al., 2021; Frömming et al.,
2012), and (2) lateral deviations may be necessary to avoid
climate-sensitive regions (Matthes et al., 2020). Moreover,
the variability of the flight properties across the set of sim-
ulated flights is larger for climate-optimized flights than
for cost-optimal ones. For example, comparing the different
variability in flight altitudes, we see the impact of the low-
est aerodynamic drag, which allows for minimal fuel use, is
systematically found at higher altitudes. Contrarily, the alti-
tude leading to the minimal ATR20 is highly variable, due to
the high temporal and spatial variability of the atmospheric
conditions determining the net flight ATR20. Trade-off solu-
tions between these two extreme scenarios show intermedi-
ate properties, with median values and interval bars which
gradually evolve, moving from one extreme of the curve
in Fig. 6 to the other. We can also see that employing the
VIKOR method rather than fixing a target increase in costs
can lead to different tendencies in the average characteris-
tics of the selected trajectories. For example, comparing the
VIKOR method with w = 0.4 (causing 1SOC ∼+1.2 %,
see Table 3) and setting a target +1.0 % change in SOC, we
can see that the latter strategy leads to a less frequent selec-
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Figure 8. Relative frequencies [%] of different values of1ATR20tot [%] (a) and of 1SOC [%] (b) with respect to the cost-optimal solution.
The histograms compare the distributions of the values obtained with different decision-making strategies, considering the 100 flights opti-
mized on each simulation day (31× 100 values per histogram). The solutions are selected by targeting different SOC changes or applying
the hybrid method with wSOC = 0.7 and xt = 1.0 % (second set of experiments).

Figure 9. Relative frequencies [%] of different values of the climate-cost coefficient k [USD per kelvin], comparing the SolFinder solution-
picking strategies using VIKOR (blue curves) or the target SOC change (red curves). The curves approximate the histogram outlines (con-
necting the bars centres) to highlight the shapes of the distributions and facilitate their comparison. Each curve includes the values obtained
with different decision-making strategies, considering the 100 flights optimized on each simulation day (31× 100 values per histogram).

tion of lower flight altitudes, while flying longer trajectories,
than the former case. Therefore, the user is recommended
to identify their preferred decision-making strategy by also
considering these secondary aspects and not exclusively the
resulting distributions in objective function values.

Lastly, we analyse the contribution to the total change in
ATR20 of each effect of aviation emissions that we con-
sidered in our optimization process: CO2, H2O, contrails,
NOx via perturbation of ozone, and NOx via methane deple-
tion. The relative importance of these effects under different
decision-making strategies is illustrated in Fig. 11. Firstly,
we can notice that the ATR20 from CO2 emissions increases
moving from cost-optimal to climate-optimal and compro-
mise solutions. This increase is expected, as the climate im-
pact of CO2 is independent of the background atmospheric
conditions at time and location of emission; thus it is simply
proportional to the amount of fuel used, which is minimized

by cost-optimal flights. On the other hand, the increase in
the ATR20 from CO2 is largely compensated by the reduc-
tion in the ATR20 from contrails and, secondarily, from the
impact of NOx on ozone. Moreover, Fig. 11 shows that re-
duction in climate impact of contrails becomes increasingly
dominant over the reduction of the other effects, when the
relative weight wSOC of SOC increases. This aspect should
be considered when selecting the preferred settings of the
decision-making strategy. For example, if the decision-maker
is interested in reducing both the climate impact of contrails
and NOx-ozone via trajectory optimization, this goal can be
achieved, allowing larger changes in SOC than those needed
to only reduce the ATR20 from contrails effects. The domi-
nant contributions of contrails and, secondarily, of the NOx
climate impact to the ATR20 reduction is confirmed by the
results obtained by optimizing aircraft trajectories with dif-
ferent tools (Lührs et al., 2021; Simorgh et al., 2022). How-
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Figure 10. Variability of mean flight altitudes [km] (a) and ground distance [km] (b) when employing different decision-making strategies.
The flight altitudes are calculated averaging over each trajectory, and over the 100 flights optimized on each day. The ground distances
represent the total length of each trajectory, averaged over the 100 flights optimized on each simulation day. The boxes extend between 1st
and 3rd quartiles over time, and include segments marking the median values. The whiskers indicate the distribution of the remaining values
(excluding eventual outliers).

ever, large uncertainties affect the estimates of non-CO2 ef-
fects of aviation (see Sects. 1 and 4), which can heavily af-
fect the relative importance of the different effects of aviation
emissions. Therefore, it is relevant to update the modelling
chain presented here when enhancements in the scientific un-
derstanding and in our ability to model non-CO2 effects are
available, e.g., via updated aCCF versions.

4 Discussion

In this paper, we illustrated the decision-making strategies
implemented in the SolFinder 1.0 module and how they can
be used to identify eco-efficient trajectories. The climate op-
timization of aircraft trajectories has been increasingly re-
searched in the last decade, as efforts to reduce the climate
impact of aviation lead to the investigation of operational
mitigation strategies. For example, Grewe et al. (2017) opti-

mized a set of transatlantic flights during eight representative
weather patterns in winter and summer, simulating the air
traffic with the system for traffic assignment and analysis at
a macroscopic level (SAAM) and using the climate change
functions (CCFs). That study found that a 10 % reduction
in climate impact can be achieved with a 1.0 % increase in
operating costs. In our study, we considered a different re-
gion of the airspace (European flights), and we included a
larger number of weather patterns (every day in the month
of January 2018) but limited to the winter season and to
night-time; nevertheless, we found the results in Grewe et al.
(2017) to be aligned with those we presented in Sect. 3, since
a 1SOC∼+1.2% corresponds to a 1ATR20∼−10.3%
(Table 3). The maximum feasible climate impact reduction
is higher (about 20 %) in Grewe et al. (2017), but this is
achieved with an approximately double increase in costs. The
discrepancy in the section of the Pareto front closer to the
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Figure 11. Contribution of different climate effects of aviation to the absolute 1ATR20 [K] when employing different decision-making
strategies. The horizontal dotted line distinguishes between solutions selected using VIKOR or climate-optimal solutions (upper section),
solutions selected targeting a SOC relative change (middle section), and solutions selected by applying the hybrid method (lowest bar). The
vertical dashed line separates positive (warming) from negative (cooling) values of 1ATR20.

climate-optimal solution may be due to the different tem-
poral and spatial domains. The mitigation potential of op-
timized aircraft trajectories is expected to be affected by sea-
sonal and daily variability (e.g. Reutter et al., 2020; Castino
et al., 2021); thus, the methodology presented in this paper
can be extended to cover multiple years to investigate this
aspect. Under specific weather conditions, cost–benefit re-
lations were found to show higher eco-efficiency than were
found aggregating the model output over all the routes and all
the simulated days. For example, Lührs et al. (2021) analysed
a day characterized by a weather situation with strong con-
trail formation and found that a 0.75 % increase in fuel used
halved the climate impact. This study suggests the possibil-
ity of identifying weather situations that allow for a higher
eco-efficiency than others. The modelling chain presented in
this paper enables us to optimize aircraft trajectories under
a large number of different atmospheric conditions, within a
feasible computational time. Therefore, on-going research is
using the newly developed version of AirTraf, coupled with
the SolFinder module, to analyse under which weather con-
ditions eco-efficient aircraft trajectories are most likely to be
identified. To this end, additional decision-making strategies
are being investigated to exploit the ability of VIKOR to
identify lower values of the climate-cost coefficient k than
a strategy applying a target increase in SOC to all flights
(Fig. 9). Two candidate additional strategies are illustrated
in Fig. 12. With these options, only a fraction of the flights

identified by VIKOR are climate-optimized, due to an ad-
ditional condition. This is obtained by setting a threshold
value of the coefficient k, in order to only optimize the top-
ranked half of the flights (Fig. 12a) or until a certain bud-
get is spent (e.g. +0.5 % of SOC in Fig. 12b). A disadvan-
tage of these decision-making strategies is that their setting
configuration relies on information on the whole system of
optimized flights, which is not available when we consider
the Pareto front resulting from a single-flight optimization.
Therefore, preliminary simulations have to be run to derive
some parameter values, e.g. the specific threshold value of
the climate-cost coefficient k [USD per kelvin]. Because of
the large variability of k, these decision-making strategies are
more reliant on the results obtained from previous simula-
tions than the strategies included in SolFinder 1.0.

The present work estimates the climate effect of aviation
resulting from the emission of CO2, H2O, NOx , and from
the formation of contrail cirrus. Estimating the radiative forc-
ing caused by non-CO2 effects is a complex process, leading
to results that are affected by large uncertainties due to, e.g.
incomplete scientific understanding and modelling capabil-
ities (Lee et al., 2021). As described in Sect. 3.1, we use
the aCCFs version 1.0A to estimate the climate impact of
aviation (Matthes et al., 2023), which are calibrated towards
the results of a climate response model (AirClim; Dahlmann
et al., 2016) to align the relative importance of individual aC-
CFs. This is an update of the consistent set of aCCF 1.0 (Yin
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Figure 12. Relation between the percentage changes in climate impact,1ATR20 [%], and in simple operating cost,1SOC [%], with respect
to the cost-optimal solution. The values are obtained aggregating the properties of all the optimized flights (31 d, 100 routes optimized per
day). The black curve connects the points obtained with the SolFinder strategy relying on VIKOR, while the blue line and points refer to
the SolFinder strategy targeting a fixed SOC change. The red lines refer to additional strategies considered for future versions of SolFinder:
optimization of the 50 % of the flights best ranked by k (a), and optimization of the flights best ranked by k until an increase in SOC of 0.5 %
is achieved.

et al., 2023), calculating the climate impact of CO2, H2O,
NOx-ozone, NOx-methane, and contrails in terms of ATR20,
assuming pulse emissions (P-ATR20). This prototype set of
functions is the focus of on-going research to address their
sources of uncertainties. Moreover, we employed factors to
(1) convert the aCCFs values to a different climate metric,
F-ATR20, which assumes a business-as-usual future emis-
sion scenario, and (2) include the efficacy of each climate
impact effect (Dietmüller et al., 2023). These assumptions in-
troduce additional sources of uncertainties (Dietmüller et al.,
2023). Moreover, the majority of ice-supersaturated regions
(supporting persistent contrail formation) have characteris-
tic dimensions that are smaller than the horizontal resolution
of our model. To take this factor into account, we employ
a parameterization developed by Burkhardt et al. (2008) to
estimate the fraction of model grid box which is support-
ing persistent contrails. The potential of reducing the flights
climate impact by contrail avoidance could be reduced by
factors not included in this study. For example, here we
use weather conditions simulated by an atmospheric model
(EMAC) rather than weather forecast. In real life applica-
tions, this mitigation strategy relies on the accuracy and sta-
bility of weather forecast, as discussed in Sect. 1. Lastly, we
note that we use a simplified representation of the operat-
ing cost to limit the computational time required for their
evaluation within each optimization step. To this end, we as-
sume a linear relationship between cost of time and flight
time (see Eq. 1 and Yamashita et al., 2020). Therefore, we
neglect additional costs caused by delays. Further research
will explore the impact of optimizing not only the location
of the flight trajectory (see Sect. 2.2), but also the airspeed,
improving fuel efficiency compared to this study, which as-
sumed a constant Mach number for all solutions. Other stud-
ies found that speed changes can be important for reducing
fuel flow, NOx emissions, and, ultimately, NOx climate ef-
fects (Simorgh et al., 2023). This improvement of AirTraf

is expected to impact the SolFinder results by reducing the
penalties in terms of operating costs and CO2 emissions for
a certain gain in terms of reduction of ATR20. On the other
hand, including the airspace structure and capacity, which are
neglected in this study, can reduce the estimated climate im-
pact mitigation potential of this operational strategy.

5 Conclusions

In this study, we described the decision-making strategies
implemented in the SolFinder 1.0 module. The SolFinder 1.0
module has been coupled to the AirTraf 3.0 submodel, as
part of its development to efficiently solve multi-objective
optimization problems. We showed here how the selected
decision-making strategies can be used to identify solutions
matching specific preferences (e.g. eco-efficient aircraft tra-
jectories). Moreover, using this modelling chain, it is possi-
ble to explore the results variability under a large number of
consecutive days, due to the coupling between SolFinder and
an atmospheric chemistry model (EMAC), via the EMAC
submodel AirTraf. To demonstrate the usage of the tool,
this paper showed results for the period of 1 winter month
(1–31 January 2018). We solved a bi-objective optimization
problem by minimizing the climate impact of the aircraft tra-
jectory (F-ATR20tot) and its simple operating costs (SOC),
and we compared the solutions selected by different con-
figurations of SolFinder 1.0. Comparing the strategies using
VIKOR and a target change in SOC, we found that lower val-
ues of the climate-cost coefficient k [USD per kelvin] (i.e. a
higher eco-efficiency) are obtained with the former option.
The decision-making strategies included in SolFinder 1.0 are
applied on sets of Pareto-optimal solutions relative to a sin-
gle aircraft trajectory. In the next SolFinder versions, we plan
to take into account the mitigation potential variability across
all flights. As a result, only the best performing fraction of the
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flights is optimized with respect to their climate impact, and
the cost of the operational mitigation strategy is lowered. On-
going research is using the modelling chain presented in this
paper to identify those weather situations that are allowing
for the largest reductions in the temperature response from
aviation emissions via the optimization of aircraft trajecto-
ries.

Appendix A: VIKOR method

In this appendix, we quote the steps characterizing the
VIKOR method, as they were introduced and described in
Opricovic (1998) and Opricovic and Tzeng (2004). Fig-
ure A1 illustrates the main working principles of the VIKOR
method. The x axis represents the normalized distance from
the minimum value of f1, scaled by its relative weight w1.
As an example, this weight is set tow1 = 0.2; thus, the x axis
ranges from 0 to 0.2. Similarly, the y axis represents the nor-
malized distance from the minimum value of f2, weighted
usingw2 = 0.8. The axes intersect at the reference point ibest,
defined as the best ideal (i.e. usually not feasible) solution.
Opposite to ibest, it is possible to identify iworst, which as-
sumes the worst values of fn (fn,worst) found among the set
of Pareto-optimal solutions. For example, when aiming at
minimizing fn, iworst corresponds to the maximum fn among
the Pareto set. The grey points in Fig. A1 indicate the loca-
tion of the Pareto-optimal solutions, relative to ibest. In fact,
the VIKOR method ranks the Pareto-optimal solutions us-
ing ibest as a reference point. Hence, the first step consists
of identifying such a reference point by determining the best
values of each of the objectives, fn,best. Since we aim to mini-
mize the objective functions, we use the following definitions
of fn,best and fn,worst:

fn,best =min
j
fn,j , fn,worst =max

j
fn,j ,

n= 1,2, . . .,N, j = 1,2, . . .,J. (A1)

In Fig. A1 we highlight the Pareto-optimal solution pj . In
the second step of the VIKOR method, two quantities are
calculated for each point in the Pareto set: S(pj ), which mea-
sures the group utility of the solution pj , and R(pj ), which
represents its individual regret. In other words, S(pj ) mea-
sures the overall distance of pj from ibest, taking into account
all the optimization objectives. On the other hand, R(pj )
measures the largest distance of pj from ibest considering
each objective individually. These quantities are defined by
Eqs. (4) and (5), respectively:

S(pj )=

N∑
n=1

wn
fn,best− fn,j

fn,best− fn,worst
, (A2)

R(pj )=max
n

[
wn

fn,best− fn,j

fn,best− fn,worst

]
, (A3)

where wn is the relative weight of each objective fn.

Figure A1. Illustration of the VIKOR method applied to a bi-
objective optimization problem, minimizing f1 and f2. In this ex-
ample, we set w1 = 0.2 and w2 = 0.8; thus, the x (y) axis ranges
from 0.0 (0.0) to 0.2 (0.8). The grey dots represent Pareto-optimal
solutions. The red cross indicates the Pareto-optimal solution pj .
The green dashed line represents S(pj ), while the orange dotted
segment represents R(pj ). The reference points ibest and iworst are
indicated by the black triangle and black square, respectively.

The geometric representation of S(pj ) and R(pj ) is il-
lustrated in Fig. A1. It is possible to deduce from Eqs. (4)
and (5) and from Fig. A1 that lower values of S(pj ) and
R(pj ) are preferable. These measures of the distance of pj
from ibest are combined in the value Q(pj ), which is used as
main ranking parameter by the VIKOR method. The value of
Q(pj ) is calculated using Eq. (6):

Q(pj )= γ
Sj −minjSj

maxjSj −minjSj

+ (1− γ )
Rj −minjRj

maxjRj −minjRj
. (A4)

The next step consists of creating three ranking lists of the
Pareto-optimal solutions, sorting them by S, R, and Q. We
define pi as the Pareto-optimal solution at the ith posi-
tion in the list sorted by Q. Consequently, the first compro-
mise solution to be recommended is p1, which minimizes
Q: Q(p1)=minjQ(pj ). The following conditions are then
evaluated:

1. acceptable advantage. Q(p2)−Q(p1)≥
1

J−1

If this condition is not verified, a set of Pareto-optimal
solutions pv (v = 1,2, . . .,M) is recommended, where
M is the maximum value for which Q(pM)−Q(p1)≤

1
J−1 is true.

2. acceptable stability. p1 is the best ranked solution not
only by Q, but also by S and R.

If this condition is not satisfied, both p1 and p2 are rec-
ommended.

Geosci. Model Dev., 17, 4031–4052, 2024 https://doi.org/10.5194/gmd-17-4031-2024
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Therefore, the application of the VIKOR method results in
the identification of either one optimal solution, p1, or a sub-
set of optimal solutions, pv (v = 1,2, . . .,M), which are rec-
ommended to the decision-maker.

Appendix B: Air traffic sample

Table B1. List of origin/destination airport pairs included in the air traffic sample, as illustrated in the map in Fig. 5.

City pairs Departure Arrival City pairs Departure Arrival City pairs Departure Arrival

ICAO airport code ICAO airport code ICAO airport code

0 LTFM EGLL 34 LPPT EHAM 68 LFPO LEMD
1 EGLL LTFM 35 EHAM LPPT 69 EDDM EGLL
2 LEMD GCLP 36 ENGM ENTC 70 EGLL EDDM
3 GCLP LEMD 37 LTFM EDDF 71 LEMD LEBL
4 GCXO LEMD 38 EDDF LTFM 72 UBBB LTFM
5 LEMD GCXO 39 EGKK LEMG 73 LTCG LTFJ
6 LFPG LTFM 40 ENTC ENGM 74 LTFJ LTCG
7 LTFM LFPG 41 LEMG EGKK 75 LFPG LGAV
8 EGLL LEMD 42 EGLL EFHK 76 LGAV LFPG
9 LFPO LPPT 43 EFHK EGLL 77 LEMD EDDM
10 LPPT LFPO 44 LTAI EDDL 78 EDDM LEMD
11 LEMD EGLL 45 EDDL LTAI 79 ESSA LEMG
12 LEPA EDDL 46 GCTS EGKK 80 LEMG ESSA
13 EDDL LEPA 47 EGKK GCTS 81 LEMD EBBR
14 EHAM LTFM 48 LEMG EKCH 82 EBBR LEMD
15 LTFM EHAM 49 EKCH LEMG 83 LROP EGGW
16 LGAV EGLL 50 EDDL LTFM 84 EGGW LROP
17 EGLL LGAV 51 LTFM EDDL 85 LPPT EBBR
18 LEBL EGKK 52 LFPO LFBO 86 LTFM UBBB
19 EGKK LEBL 53 LEMD EHAM 87 EBBR LPPT
20 LEMD LIRF 54 LFBO LFPO 88 LEMG EFHK
21 LIRF LEMD 55 EHAM LEMD 89 EFHK LEMG
22 ESSA EGLL 56 LFMN LFPO 90 GCXO LEBL
23 EGLL ESSA 57 LFPO LFMN 91 LEBL GCXO
24 EHAM LEBL 58 EGLL LPPT 92 LTAI EDDK
25 LEBL EHAM 59 LPPT EGLL 93 EDDK LEPA
26 EDDF LEMD 60 LEBL LEMD 94 LEPA EDDK
27 EGCC GCTS 61 LFPG LIRF 95 EDDH LEPA
28 LEMD EDDF 62 LIRF LFPG 96 EDDT EDDF
29 GCTS EGCC 63 EHAM LIRF 97 LEPA EDDH
30 LPPT EDDF 64 LIRF EHAM 98 EDDF EDDT
31 EDDF LPPT 65 LEPA EDDT 99 LPPR LFPO
32 LIRF EGLL 66 EDDT LEPA
33 EGLL LIRF 67 LEMD LFPO

https://doi.org/10.5194/gmd-17-4031-2024 Geosci. Model Dev., 17, 4031–4052, 2024



4050 F. Castino et al.: Decision-making strategies implemented in SolFinder 1.0

Code and data availability. The Modular Earth Submodel System
(MESSy) is continuously developed and applied by a consortium
of institutions. The usage of MESSy and access to the source
code is licenced to all affiliates of institutions which are members
of the MESSy Consortium. Institutions can become a member
of the MESSy Consortium by signing the MESSy Memoran-
dum of Understanding. More information can be found on the
MESSy Consortium website (http://www.messy-interface.org,
last access: 2 May 2024). The code presented here has been
based on MESSy version 2.55.0 and will be available after the
official release of AirTraf 3.0, a submodel of MESSy. An open
access version of SolFinder (see Supplement) is available from the
4TU.ResearchData repository (https://doi.org/10.4121/3744b922-
ffa6-4f92-ad57-dc93f94e969b, Castino, 2023) under the GNU
Lesser General Public License v3.0, as are the scripts to produce
the plots presented in this paper. The simulation output analysed
in this paper is archived in the 4TU.ResearchData repository
(https://doi.org/10.4121/57b96974-6ec7-4e86-9d95-2b7bf3c18d8f,
Castino et al., 2023).
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