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Abstract. Machine learning (ML) algorithms can be used in
Earth system models (ESMs) to emulate sub-grid-scale pro-
cesses. Due to the statistical nature of ML algorithms and the
high complexity of ESMs, these hybrid ML ESMs require
careful validation. Simulation stability needs to be monitored
in fully coupled simulations, and the plausibility of results
needs to be evaluated in suitable experiments.

We present the coupling of SuperdropNet, a machine
learning model for emulating warm-rain processes in cloud
microphysics, with ICON (Icosahedral Nonhydrostatic)
model v2.6.5. SuperdropNet is trained on computationally
expensive droplet-based simulations and can serve as an in-
expensive proxy within weather prediction models. Super-
dropNet emulates the collision–coalescence of rain and cloud
droplets in a warm-rain scenario and replaces the collision–
coalescence process in the two-moment cloud microphysics
scheme.

We address the technical challenge of integrating Super-
dropNet, developed in Python and PyTorch, into ICON, writ-
ten in Fortran, by implementing three different coupling
strategies: embedded Python via the C foreign function in-
terface (CFFI), pipes, and coupling of program components
via Yet Another Coupler (YAC).

We validate the emulator in the warm-bubble scenario and
find that SuperdropNet runs stably within the experiment.
By comparing experiment outcomes of the two-moment bulk
scheme with SuperdropNet, we find that the results are phys-
ically consistent and discuss differences that are observed in
several diagnostic variables.

In addition, we provide a quantitative and qualitative com-
putational benchmark for three different coupling strategies
– embedded Python, coupler YAC, and pipes – and find that
embedded Python is a useful software tool for validating hy-
brid ML ESMs.

1 Introduction

Machine learning (ML) is increasingly used in Earth system
models (ESMs) to emulate sub-grid-scale processes that are
typically parameterized or neglected due to their high com-
putational cost (Christensen and Zanna, 2022; Dueben et al.,
2021; Irrgang et al., 2021; Gentine et al., 2018). ML algo-
rithms are statistical algorithms that are trained on data. Neu-
ral networks are a widely used class of ML algorithms. They
contain trainable parameters (i.e., the weights and biases)
that are learned from data by minimizing a cost function. The
trained algorithm can then be used for inference (i.e., appli-
cation on unseen data of the same kind). When sub-grid-scale
processes are replaced by ML algorithms, the improvement
can aim at speeding up the overall simulation by emulating
the existing parameterization. This was first established us-
ing neural networks to emulate long-wave radiative transfer
(Chevallier et al., 2000; Krasnopolsky et al., 2005). Recent
examples include the emulation of the gravity wave drag
(Chantry et al., 2021), the cloud microphysics (Brenowitz
et al., 2022), the ocean in a coupled climate model (Son-
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newald et al., 2021), and the cloud radiative effects (Meyer
et al., 2022).

Other studies aim to improve the overall description of the
Earth system by providing a better parameterization. ML al-
gorithms can be trained on high-resolution ESM output or
even on separately simulated processes to emulate resolved
processes in a low-resolution simulation, for example, for
gravity waves (Dong et al., 2023), cloud cover parameter-
izations (Grundner et al., 2022), general parameterizations
(Brenowitz and Bretherton, 2018), sub-grid-scale momen-
tum transport (Yuval and O’Gorman, 2023), effects of cloud-
resolving simulations (Rasp et al., 2018), ozone distributions
(Nowack et al., 2018), and radiative transfer (Belochitski and
Krasnopolsky, 2021).

Many parameterizations in ESMs, such as the convective
parameterizations, can be removed at higher resolutions if the
process can be completely resolved. On the other hand, some
others would need to be parameterized even for 1 km scale
weather models. Cloud microphysical processes fall in this
category. Processes dealing with the droplet interactions that
lead to precipitation are lumped together and referred to as
cloud microphysical processes. Due to high particle counts
even at small grid sizes and our incomplete understanding of
processes that occur at a molecular level in clouds (Morrison
et al., 2020), we cannot expect cloud microphysical param-
eterizations to become obsolete in the near future for high-
resolution models.

The parameterization of these processes suffers from a
unique accuracy–speed trade-off. The most accurate droplet-
based Lagrangian schemes such as the super-droplet method
(Shima et al., 2009) are computationally expensive. The
commonly used two-moment bulk schemes represent the
complex particle size distributions as only the first two mo-
ments, referring to the total droplet concentration and the
total water content of the hydrometeors. For modeling the
droplet collisions in a warm-rain scenario, ICON uses the
well-studied two-moment bulk scheme developed in Seifert
and Beheng (2001). To bridge this gap and to make the use
of more complex microphysical schemes feasible within op-
erational models, a data-driven approach can be employed.
Here, we present the integration of SuperdropNet (Sharma
and Greenberg, 2024), an ML algorithm for emulating warm-
rain processes in cloud microphysics, into ICON v2.6.5. Su-
perdropNet is trained on zero-dimensional box model super-
droplet simulations from McSnow v1.1.0 (Brdar and Seifert,
2018), a super-droplet-based cloud microphysics model, in
a warm-rain scenario and replaces the warm-rain processes
in the two-moment scheme available in ICON v2.6.5 (Seifert
and Beheng, 2006).

Due to the statistical nature of ML algorithms and the com-
plex nonlinear interactions in ESMs, hybrid systems of nu-
merical ESMs and ML algorithms require careful validation
and verification (Dueben et al., 2022; Brenowitz and Brether-
ton, 2019). Stand-alone ML algorithms are first trained on a
dataset and then validated on a holdout test dataset that is not

seen during training. This test set is within the distribution
of the training data. When an ML algorithm is coupled with
an ESM, it may encounter conditions outside of the range of
the training data, and the required extrapolation could lead
to instabilities (Yuval et al., 2021). Thus, the so-called offline
performance of an ML algorithm is often not a good indica-
tor of its online performance (Brenowitz et al., 2020b; Rasp,
2020). Stability is a major concern when introducing ML em-
ulators into ESMs. It can be improved by adapting the train-
ing procedure (Qu and Shi, 2023; Brenowitz et al., 2020a;
Rasp, 2020; Brenowitz and Bretherton, 2018) or by fulfill-
ing physical constraints in the network architecture (Beucler
et al., 2021; Yuval et al., 2021). Careful validation setups can
help the scientific community to build trust in so-called black
box ML algorithms (McGovern et al., 2019).

To avoid devoting resources to the development of ML al-
gorithms that fail in contact with reality, we encourage in-
corporating online testing at an early stage. ML algorithms
are developed iteratively, and new versions should be tested
quickly in their final place of application in the Earth system
model.

The popular software libraries for ML algorithm develop-
ment, such as PyTorch (Paszke et al., 2019), Keras (Chollet
et al., 2023), or TensorFlow (Abadi et al., 2016), are based
on the Python language. On the other hand, ICON is written
in Fortran. Online testing requires either rewriting the ML
emulator in Fortran or integrating the two programming lan-
guages with one another (Brenowitz and Bretherton, 2019).
Since ML algorithm development is an iterative process, fre-
quent rewrites of the ML algorithm would be required in the
former case. In order to save developer resources, we recom-
mend coupling Python and Fortran at least during the stage
of algorithm development.

In Sect. 2.1, we introduce the warm-bubble scenario,
which serves as a test case for SuperdropNet. The ML algo-
rithm itself is described in Sect. 2.3. Different strategies for
integrating SuperdropNet into ICON are discussed in Sect. 3.
The results and the impact of SuperdropNet on atmospheric
processes and prognostic variables are presented in Sect. 4.2.
A computational and qualitative benchmark of three different
strategies is included in Sect. 4.3.

2 Methods

2.1 Warm-bubble scenario

We validate SuperdropNet in the warm-bubble scenario, a
test case for cloud microphysics available in ICON v2.6.5.
It describes an atmosphere temperature profile with a warm
air bubble at the bottom that rises vertically. The test case
operates on a torus grid. This grid is created by a domain of
22×20 cells where periodic boundary conditions are applied
in x and y directions. The horizontal resolution is 5 km, and
there are 70 vertical levels in the z direction. The simula-
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tion time step is 20 s, with a total simulation time of 120 min.
The experiment is computationally lightweight and runs on a
single compute node. We test SuperdropNet in a warm atmo-
sphere with no ice particle formation, as well as in a mixed-
phase and a cold atmosphere that both allow for ice forma-
tion. All simulation parameters are summarized in Table 1.
We transport the tracers required for two-moment cloud mi-
crophysics (i.e., the first and second moment of the hydrom-
eteor cloud water, cloud ice, rain, snow, graupel, and hail).

2.2 Two-moment bulk scheme for cloud microphysics

In our test case, a two-moment bulk scheme is employed
to compute the number concentration and total mass for
all hydrometeors involved. In ICON, the two-moment bulk
scheme used for warm-rain cloud microphysics is based
on Seifert and Beheng (2001). To account for collision–
coalescence, the number concentration and total mass for
both cloud and rain are determined by calculating the rates of
collision–coalescence processes, including autoconversion,
accretion, and self-collection. Here, autoconversion refers to
the process by which cloud droplets coalesce to form rain
droplets, while accretion accounts for collisions between rain
and cloud droplets. Self-collection rates for cloud and rain
droplets account for collisions that do not convert cloud
droplets into rain. These process rates rely solely on the
droplets themselves and are subsequently utilized to update
the bulk moments for the following time step using a set of
ordinary differential equations.

2.3 SuperdropNet cloud microphysics model

SuperdropNet is a machine learning emulator for super-
droplet simulations in a warm-rain scenario. It is a neural
network consisting of fully connected layers and is trained to
predict updates of the bulk moments for cloud and rain over
different droplet size distributions. SuperdropNet is detailed
in Sharma and Greenberg (2024); therefore, we will provide
only a brief summary of the training procedure here.

The super-droplet simulations used for training are gener-
ated with McSnow (Brdar and Seifert, 2018). In Brdar and
Seifert (2018), McSnow is used for simulating ice particles,
while in Seifert and Rasp (2020), it simulated a warm-rain
scenario. Similarly to Seifert and Rasp (2020), the training
data for SuperdropNet are generated in a warm-rain scenario
that describes only the conversion of cloud droplets into rain
in a dimensionless control volume. As super-droplet simula-
tions are stochastic in nature, we use multiple realizations of
simulations to train SuperdropNet. Hence, given a set of ini-
tial conditions, SuperdropNet is completely deterministic in
nature, and the bulk moments estimated by it are the equiv-
alent of averaged super-droplet simulations (Sharma and
Greenberg, 2024). The microphysical processes accounted
for are accretion, autoconversion, and self-collection of rain
and cloud droplets. In ICON, the droplet collisions corre-

Figure 1. We replace the warm-rain processes (gray) with a call to
SuperdropNet (orange). At this point, each thread has access to an
ik slice, a specific representation in the cloud microphysics param-
eterization that corresponds to one atmospheric level for one block
of grid cells.

sponding to warm-rain processes are treated in a separate
module where the process rates for accretion, autoconver-
sion, and self-collection of rain and cloud droplets are cal-
culated. The parameterization scheme is localized; i.e., the
process rates calculated for a grid cell depend only on the
rain and cloud moments which correspond to that grid cell.
Other microphysical processes and the vertical transport are
accounted for in separate modules, which implies that the
parameterization in ICON is structured in such a way that
all individual grid points can be considered zero-dimensional
boxes. Thus, the parameterization setup for droplet collisions
in ICON mimics the training data for SuperdropNet. This jus-
tifies the choice of using a test scenario in ICON for the on-
line coupling and testing of SuperdropNet.

Note that only the warm-rain processes are replaced with
SuperdropNet. In a cold atmosphere, SuperdropNet can still
be coupled with ICON, but since warm-rain processes are
not relevant there, including SuperdropNet is expected not to
change the experiment results.

2.4 ICON program flow

To illustrate at which point of program execution ML ESM
coupling becomes necessary, we show the flowchart for a
single ICON time step in Fig. 1, focusing only on the steps
relevant to our application. Starting from the general ICON
time loop, where the full grid information is available, we en-
ter the cloud microphysics parameterization. At this point, a
given thread has access to one block of grid cells with block
length nproma, and all threads work in parallel. The two-
moment scheme has its own grid representation, called ik
slices, where the block of grid cells is again divided by at-
mospheric levels. In our experiment, we simply replace the
warm-rain processes with a call to SuperdropNet, which pro-
vides updated moments for cloud and water droplets.

Since the call to the ML component is not at the grid level
but operates on ik slices far down in the nested structure of
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Table 1. Experiment parameters for the warm-bubble, mixed-phase bubble, and cold-bubble test cases. Note that tdyn and t2mom reflect the
time step used for training SuperdropNet.

Parameter Description Warm bubble Mixed-phase bubble Cold bubble

LD Torus domain length 5000 m
tdyn Dynamical time step 20 s
t2mom Two-moment scheme time step 20 s
zlev Atmospheric levels 70
psrfc Surface pressure 1013.25 hPa
T0 Cold point of the atmosphere 303.15 K 273.15 K 268.15 K
γ0 Vertical temperature lapse rate 0.006 K m−1 0.009 K m−1

z0 Altitude up to which γ0 applies 3000 m 4000 m
γ1 Lapse rate above z0 0.00001 K m−1 0.0001 K m−1

Tperturb Temperature perturbation 10 K 5 K
φbg Background relative humidity 0.7
φmx Maximum relative humidity 0.9 0.95
ξ Half-width of temperature perturbation in x 12 500 m
ζ Half-width of temperature perturbation in z 200 m 250 m
x0 Center of temperature perturbation in x 0 m

the ICON program flow, we need to call SuperdropNet sev-
eral times per time step – once for each block of grid cells
and once for each atmospheric level. Note that saturation ad-
justments and evaporation are handled outside of the parts of
the ICON code replaced by SuperdropNet.

3 Integrating SuperdropNet in ICON

There are several ways to integrate Python machine learning
components into Fortran code (Partee et al., 2022). Based on
a pre-selection of suitable methods, we have implemented
three strategies, so-called Fortran–Python bridges. For con-
venience, we add a name list to ICON that allows the se-
lection of the coupling strategy. We perform the experiment
with all three methods on the German Climate Computing
Center (DKRZ) Levante system. Levante is a BullSequana
XH2000 supercomputer with 3042 compute nodes using the
third generation of AMD EPYC CPUs (Milan) with 128
cores per node, NVIDIA A100 GPUs, and a 130-petabyte
DDN filesystem. The nodes are connected to a Mellanox In-
finiBand HDR100 fabric.

3.1 Embedding Python as a dynamic library

Using the techniques in Brenowitz (2023), we develop a dy-
namic library based on Python code. The library is generated
using the C foreign function interface (CFFI) (Rigo and Fi-
jalkowski, 2018) and is linked to ICON at compile time. At
runtime, Python code is executed from the library. Employ-
ment of CFFI results in Python and Fortran sharing their ad-
dress space and hence passing memory pointers is sufficient
for accessing the same data. Jobs are run in a homogeneous
setting, with Python code executed on the same CPU com-
pute node as ICON.

3.2 Using the coupling software YAC

Yet Another Coupler (YAC) (Hanke et al., 2023, 2016) is
commonly used to couple different ICON components, e.g.,
atmosphere, ocean, and I/O. YAC provides Python bindings
so that external Python programs can be coupled with little
effort with ICON.

YAC requires a definition of fields that are to be exchanged
and an exchange schedule that cannot be below the time step
of ICON. For the warm-bubble scenario, we set the block
length to the number of grid cells (880) and define two ex-
change fields per atmospheric level, one for the ICON-to-
Python exchange and one for the reverse exchange. This
yields a total of 140 fields that are exchanged at each time
step. A smaller block length would require the developer to
define more exchange fields such that bulk moments in each
grid cell can be exchanged at every time step.

Data transfer is building on Message Passing Interface
(MPI) routines that are integrated in YAC. This offers the
flexibility to use heterogeneous jobs – i.e., running ICON on
CPU nodes and ML inference on GPU nodes. Due to the
current limitations of the scheduling software employed in
the DKRZ Levante system, it was not possible to schedule
simulations that span the CPU and the GPU partition of the
system. Thus, we were not able to test the performance in
a heterogeneous setting. With ICON shifting to GPUs, we
foresee that in the future homogeneous jobs will be run on
GPU nodes.
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3.3 Pipes

We implemented a coupling between n ICON processes and
1 Python process running on the same node using FIFO (first-
in–first-out) pipes. The first ICON MPI rank on the node will
spawn a separate Python process that runs a worker script.
Each rank also creates two pipes, one for each direction of
communication (input and output to the Python worker). The
worker iterates over all input pipes, performs the warm-rain
calculation on data that are available, and writes results back
to the corresponding ICON process via its output pipe.

While this solution does not incur the potential over-
head of using MPI to communicate locally, it is not a full
shared-memory solution exclusively relying on pointers. The
corresponding extensions to ICON and the Python worker
script are optimized to do as few memory copies as possi-
ble, though naturally some copying cannot be avoided when
interacting with the pipes. As FIFO pipes only work on a lo-
cal node, no cross-node setups are possible, such as running
ICON and Python on different types of nodes (CPU, GPU).
As the Python worker runs as a separate process on a ded-
icated core, the number of cores available to ICON is also
marginally reduced by one.

3.4 Other methods

We note that the selection of methods in Sect. 3.1–3.3 by
no means encompasses all the available tools, and here we
summarize the alternatives to the best of our knowledge.

Four software libraries developed at the European Centre
for Medium-Range Weather Forecasts (ECMWF; Bonanni
et al., 2022), the Cambridge Institute for Computing in Cli-
mate Science (Elafrou et al., 2023), NVIDIA (Alexeev, D.,
2023), and Tongji University (Mu et al., 2023) address ML
inference directly by exposing the TensorFlow and PyTorch
APIs for Fortran, respectively. This adds the benefit of not
requiring a Python runtime environment at the time of exe-
cution. Since we require flexibility to use Python code be-
yond ML inference and data exchange is done here via RAM
comparable to the approach described in Sect. 3.1, we did not
investigate these libraries further.

During development, we noted that integrating SmartSim
(Partee et al., 2022) would require a rewrite of the ICON
startup routine that is beyond the scope of this project. On a
similar note, the coupling routines developed for the open-
source Weather Research and Forecasting (WRF) model,
WRF–ML, cannot easily be adjusted to work with ICON
(Zhong et al., 2023).

The Fortran–Keras bridge (Ott et al., 2020) allows for ML
inference in Fortran based on ML algorithms developed in
the Keras framework. This limits flexibility, since only those
network layers and functionalities supported by the library
can be used. On a similar note, the implementation of the
ML algorithm in neural-fortran (Curcic, 2019) is contingent
on the library, and the Fortran Inference-Engine (Berkeley

Lab, 2023) is restricted to feed-forward neural networks. We
chose to forego these methods since we desire the flexibility
to use any novel PyTorch development without depending on
their integration into an external library.

4 Results

4.1 Experiment description

Using the three coupling techniques described in Sect. 3.1–
3.3, we integrate SuperdropNet in ICON. The experiment re-
sults are the same since the same network is called, but the
impact on computational performance is different. We run
the warm-bubble scenario and the cold-bubble scenario, both
with a representation of warm-rain processes using Super-
dropNet and the existing two-moment bulk scheme in the
two-moment cloud microphysics module.

We compare the effect of replacing warm-rain processes
with SuperdropNet with the experiment outcome in Sect. 4.2.
In Sect. 4.3, we compare the impact on computational per-
formance that is incurred by integrating SuperdropNet for all
three coupling techniques.

4.2 Comparison of the two-moment bulk scheme and
SuperdropNet

4.2.1 Rain rates

Figure 2a shows the grid-averaged rain rate in the warm-
bubble scenario which is derived from warm-rain processes
using ICON’s two-moment bulk cloud microphysics, with
a comparison to SuperdropNet microphysics. Since Su-
perdropNet was trained on particle-based simulations that
avoid certain statistical approximations of two-moment bulk
schemes, we do not expect the rain rates in both scenarios
to match. Due to the experimental setup, it is not possible
to identify with certainty which model produces the more
accurate rain rates. We do note, however, that Superdrop-
Net yields physically plausible rain rates. The rain rate ob-
tained using SuperdropNet evolves in a predictable way; that
is, there is no rain at the beginning of the simulation, and then
it eventually builds up to a peak and then slowly rescinds. At
the end of the simulation, the rain rate is 0 for both simula-
tions. No negative values are observed, and the coupling with
SuperdropNet does not result in significant divergence from
the simulation. This emphasizes that SuperdropNet is stable
over longer simulation runs and overall behaves like a realis-
tic ML-based emulator for droplet collisions. One of the key
differences in the evolution of the rain rate with the two dif-
ferent parameterizations is that the onset of rain is slightly
delayed in the case of SuperdropNet coupling, which indi-
cates a slower conversion of cloud droplets to rain droplets.

As a sanity check, we perform the cold-bubble experi-
ment using both the two-moment bulk scheme and Super-
dropNet for the warm-rain processes. In this scenario, warm-
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Figure 2. Grid-averaged quantities for the two-moment bulk scheme and SuperdropNet for the (a) warm-bubble scenario, (b) cold-bubble
scenario, and (c) mixed-phase scenario.

rain processes are not relevant for the cloud microphysics,
and we expect that including SuperdropNet does not affect
processes with frozen particles. Figure 2b shows the grid-
averaged snow rate.

Both schemes show identical snow rates, which confirms
that there are no undesired side effects from coupling Super-
dropNet when the conditions in the atmosphere do not allow
for warm-rain processes.

We also perform a mixed-phase experiment with the same
setup. In this scenario, both frozen and non-frozen particles
occur in the atmosphere. Figure 2c shows the grid-averaged
rain rate. The grid-averaged values for all hydrometeors are
included in the Appendix. In this case, coupling to Super-
dropNet significantly drops the total rain rate. Since the total
water mass remains conserved in ICON, the suppression of
rain formation leads to increased ice, cloud, and snow forma-
tion (Fig. A1). In ICON, the warm-rain processes are simu-
lated before other processes such as ice nucleation, ice self-
collection, and snow melting. Hence, SuperdropNet’s effect
on decreasing rain formation is subsequently reflected in the
excess of other hydrometeors.

4.2.2 Heat transport fluxes

Figure 3 shows the grid-averaged evaporative fluxes as it
evolves with time during the coupled warm-bubble simula-
tion in ICON. While in the beginning both the two-moment
bulk scheme and SuperdropNet produce similar fluxes, the
values diverge approximately after 30 min, which corre-
sponds to the onset of rain. This difference between the mag-

nitude of fluxes is also reflected in the evolution of winds
during the simulation. Winds are the primary source of en-
ergy transport, and Fig. 4 shows the evolution of meridional
winds in the simulation. After approximately 40 min, which
roughly corresponds to the end of the first rainfall with both
parameterizations, the wind patterns are markedly different
for the two-moment bulk and the SuperdropNet parameteri-
zations. The winds appear much stronger in case of the two-
moment bulk parameterization across the vertical column.
The reduced magnitude of winds in SuperdropNet coupling
corresponds to reduced heat fluxes in Fig. 3.

Figure 5 shows the vertical profile of specific humidity at
different time steps during the simulation. For the first 40 min
of the experiment, both parameterization schemes produce
similar specific humidity profiles, but this changes during the
later part of the simulation. Close to the surface, it can be ob-
served that the two-moment bulk parameterization produces
a stronger humidity gradient in comparison to SuperdropNet.
This difference in the specific humidity gradient possibly re-
sults in a higher evaporative flux for the two-moment bulk
coupling than the SuperdropNet coupled simulation.

Similarly, in Fig. 6, the evolution of mean rain droplet
mass (Xr) is shown. The differences in Xr close to the sur-
face, as calculated using the two-moment bulk scheme com-
pared to SuperdropNet, become more visible after 40 min.
In general, with the two-moment bulk parameterization Xr,
values are higher than those with the super-droplet param-
eterization close to the surface. Since the evaporative flux
is proportional to the mean rain mass, higher Xr in two-

Geosci. Model Dev., 17, 4017–4029, 2024 https://doi.org/10.5194/gmd-17-4017-2024



C. Arnold et al.: Coupling SuperdropNet with ICON 4023

Figure 3. Grid-averaged evaporative heat fluxes for the two-
moment bulk scheme used in ICON two-moment cloud micro-
physics and for SuperdropNet. The gray area shows the grid-
averaged rain obtained using the two-moment bulk scheme (see
Fig. 2a). High negative values indicate a larger amount of heat trans-
fer.

moment bulk coupling results in higher heat fluxes. Through-
out the vertical column, the SuperdropNet parameterization
usually corresponds to lower Xr, except at the 40 min time
step, where the high Xr value near the 3000 m height also
corresponds to a higher amount of the vertically integrated
rain rate, as seen in Fig. 2a.

Note that the warm-bubble scenario in ICON is highly
sensitive to the tiniest fluctuations in the assumptions made
for cloud microphysics parameterization. Since many other
complex phenomena are simplified and the focus is only on
the formation and dissipation of a single cloud, small devi-
ations in the approximation of the cloud and rain moments
lead to changes in other diagnostic variables that can accu-
mulate over time.

4.3 Computational performance upon including
SuperdropNet

4.3.1 Benchmark

We ran the experiments on the Levante computing system
at the German Climate Computing Center on compute nodes
equipped with two AMD 7763 CPUs with a total of 128 cores
and 256 GB of main memory. The nodes are connected with
a Mellanox InfiniBand HDR100 fabric.

SuperdropNet provides a significant speedup by emulating
processes that would otherwise be computationally infeasible
to include in ICON, but when adding a Python component
to the existing highly optimized Fortran code, we expect an
impact on computational performance. Table 2 summarizes
the total time spent in the calculation of the two-moment
scheme in the ICON warm-bubble scenario, using the two-
moment bulk scheme and SuperdropNet coupled with ICON
using three different coupling strategies. The fastest time-to-
solution is provided by including SuperdropNet via embed-

Table 2. Time spent in the two-moment scheme in the ICON warm-
bubble scenario, using the two-moment bulk scheme (Fortran), and
SuperdropNet (PyTorch) coupled with ICON. Note that by coupling
SuperdropNet with ICON, we introduce a scheme that would be
computationally intractable for cloud microphysics in standard nu-
merical simulations. A direct comparison of runtimes is therefore
not possible.

Experiment t2mom (s) Nodes

Two-moment bulk scheme (Fortran) 1.25 1

CFFI 24.1 1
SuperdropNet (PyTorch) Pipes 62.6 1

YAC 49.5 2

ded Python – i.e., the C foreign function interface (CFFI)
(Sect. 3.1). Coupling SuperdropNet via YAC (Sect. 3.2) in-
creases the relative runtime by a factor of 2 compared to
embedded Python. Note that when coupling with YAC, the
ICON and the Python main program run on two different
computational nodes, which doubles the amount of compu-
tational resources required for the experiment. In the current
configuration, YAC can only be used when the block length
is equal to the grid size, which limits us to small experiments
like the bubble scenarios. Coupling SuperdropNet and ICON
using pipes is almost 3 times slower than embedded Python.
On a qualitative note, implementing the coupling via pipes
requires changes to core components of ICON beyond the
cloud microphysics parameterization and may be an addi-
tional challenge for ML developers.

We note that coupling a super-droplet model directly with
our test case in ICON is extremely challenging. ICON repre-
sents the warm-rain processes as bulk moments, while Mc-
Snow represents them as droplet distributions. For an ideal
benchmark simulation, we would need to completely over-
haul the current representation of cloud microphysics pro-
cesses in ICON and represent them as super-droplets for a
two-way coupling. At the time of conducting this research,
ICON did not allow for the representation of cloud micro-
physical processes as super-droplets, mainly because doing
so would be computationally expensive. This is an active area
of research, but as of now, it remains a work in progress,
which makes SuperdropNet a cheaper data-driven alternative
to the super-droplet simulations.

4.3.2 Detailed evaluation of coupling with embedded
Python

We now turn to the fastest coupling scheme, embedded
Python, and investigate the contribution of the individual
steps to the total runtime. By including SuperdropNet, we
incur the computational cost of data exchange and of ma-
chine learning inference. Table 3 summarizes the contribu-
tion of the individual parts, measured with a block length of
nproma= 44 grid cells using the ICON timer module. ICON
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Figure 4. Averaged meridional winds for the two-moment bulk scheme used in ICON two-moment cloud microphysics (a) and for Super-
dropNet (b).

Figure 5. Vertical profile of the specific humidity at different times for the two-moment bulk scheme and for SuperdropNet.

averages the execution time across a total of 496800 calls to
SuperdropNet. Most of those times can be attributed to model
inference, while the actual data transfer is less significant.
This could be attributed to the fact that ML inference has to
be done on a CPU. On a node equipped with an NVIDIA
A100 GPU, we measure an inference time of 267 µs. This
corresponds to 33 % of the inference time reported on a CPU
(see Table 3).

Note, however, that a heterogeneous setup, where mo-
ments are transferred to and from the GPU nodes via the Mel-
lanox InfiniBand network, would likely lead to a larger over-
all wall time. Given the successful efforts to port ICON to
GPU, a future experiment could be run exclusively on GPUs.
By only applying SuperdropNet when at least one input mo-
ment is non-zero, we are already reducing the number of calls
to the ML inference to improve performance.

5 Conclusions

We have coupled SuperdropNet, a machine learning algo-
rithm emulating warm-rain processes in a two-moment cloud
microphysics scheme, with ICON. In the warm-bubble ex-
periment, the ML emulator is stable, and the results are phys-
ically sound.

The strategies to connect ICON and Python provide flexi-
bility to the development of the ML component and account
for the fact that ML development is done iteratively. Both
embedded Python and YAC can be integrated, with little pro-
gramming overhead, into ICON. For a later ML emulator,
which replaces a full parameterization at the grid level, YAC
can be used regardless of the block length. Coupling via pipes
is comparatively slow and does not scale well. Since it re-
quires an extensive rewrite of the core components of ICON,
we do not recommend it for implementation. Out of the three
coupling strategies we tested, embedded Python provided
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Figure 6. Vertical profile of the rain droplet mass, calculated as the ratio of the specific rain content and the number concentration of rain
droplets at different times for the two-moment bulk scheme and for SuperdropNet.

Table 3. Processes when coupling SuperdropNet to ICON via embedded Python and their associated duration. Machine learning inference
is executed on a CPU node of the Levante computing system at the German Climate Computing Center (DKRZ).

Process Time (µs) Fraction

Time reported by ICON 5.0× 102 100 %
Time reported by Python 4.8× 102 96 %
↪→ of which time reported for inference 4.4× 102 87 %
↪→ of which time reported for data transfer 4.2× 101 8.5 %

the fastest performance. It can be used independently of the
ICON grid to execute any Python code at any level of the
ICON time loop.

We note that by coupling SuperdropNet to ICON, we
introduce a scheme that would otherwise be computation-
ally intractable for cloud microphysics in standard numeri-
cal simulations. A direct comparison of runtimes is therefore
not possible. Note, however, that integrating a Python com-
ponent will slow down the overall time to solution due to
the incurred cost in network inference and data transfer. For
applications that are more demanding than our warm-bubble
scenario test case and if the ML component is thoroughly
tested, a reimplementation in Fortran would likely increase
performance at the expense of losing the flexibility in devel-
opment.

A natural extension of this work is more complex model-
ing scenarios. This would involve training machine-learning-
based emulators for other cloud microphysical processes
and/or the introduction of hydrometeors other than clouds
and rain. Apart from droplet collisions, processes such as
the sedimentation of droplets and deep convection can be
challenging to represent with two-moment bulk parameter-
ization schemes. Hence, in the future, we want to explore the
possibility of creating ML-based proxies for these processes,

while continuing to use hybrid ML ESMs for continuous on-
line testing.
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Appendix A: Evaluation of SuperdropNet

A1 Mixed-phase bubble

We include the grid-averaged cloud ice, cloud water, graupel,
snow, and ice for the mixed-phase experiment described in
Sect. 4.2.1. The results are shown in Fig. A1.

Figure A1. Grid-averaged quantities for the two-moment bulk scheme and SuperdropNet under (a) warm-bubble scenario, (b) cold-bubble
scenario, and (c) mixed-phase scenario.
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