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Abstract. Silicate weathering, which is of great importance
in regulating the global carbon cycle, has been found to be
affected by complicated factors, including climate, tectonics
and vegetation. However, the exact transfer function between
these factors and the silicate weathering rate is still unclear,
leading to large model–data discrepancies in the CO2 con-
sumption associated with silicate weathering. Here we pro-
pose a simple parameterization for the influence of vegeta-
tion cover on erosion rate to improve the model–data compar-
ison based on a state-of-the-art silicate weathering model. We
found out that the current weathering model tends to overes-
timate the silicate weathering fluxes in the tropical region,
which can hardly be explained by either the uncertainties in
climate and geomorphological conditions or the optimization
of model parameters. We show that such an overestimation
of the tropical weathering rate can be rectified significantly
by parameterizing the shielding effect of vegetation cover on
soil erosion using the leaf area index (LAI), the high val-
ues of which are coincident with the distribution of leached
soils. We propose that the heavy vegetation in the tropical re-
gion likely slows down the erosion rate, much more so than
thought before, by reducing extreme streamflow in response
to precipitation. The silicate weathering model thus revised
gives a smaller global weathering flux which is arguably
more consistent with the observed value and the recently re-

constructed global outgassing, both of which are subject to
uncertainties. The model is also easily applicable to the deep-
time Earth to investigate the influence of land plants on the
global biogeochemical cycle.

1 Introduction

On geological timescales, Earth’s climate is primarily con-
trolled by the atmospheric CO2 concentration (pCO2); the
evolution of the Sun – its brightness increases with time –
also plays an important role on the timescale of a hundred
million years (100 Myr) but in a temporally smooth way (Li
et al., 2023). However, how the sources and sinks of CO2 var-
ied in Earth’s history remains elusive (Y. Zhang et al., 2022;
Mills et al., 2021), and large uncertainties exist even in the
estimate of their present-day magnitudes (Hilton and West,
2020). Due to the small size of the ocean–atmosphere car-
bon reservoir (∼ 40000 Pg; Lee et al., 2019; Berner, 2004;
Canadell et al., 2023), a small imbalance between the car-
bon sources and sinks can lead to large variations in pCO2 in
a relatively short time (Berner and Kothavala, 2001; Berner,
1991; Walker et al., 1981; Berner, 2004). Therefore, accu-
rately determining the exact magnitude of carbon sources
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and sinks is crucial for comprehensively understanding the
mechanisms behind Earth’s climate variations.

One of the essential ways of determining the carbon sink is
through numerical modeling, especially for that in the deep
past. Numerical models not only provide the magnitude of
the carbon sink but also allow us to study its sensitivity
to various factors such as continental evolution and climate
change. Our goal here is to improve the model calculation of
the primary sink of CO2, i.e., the silicate weathering, with a
focus on its present-day values for which the spatial distribu-
tion is relatively well constructed.

The rate of silicate weathering is affected by the compo-
sition and physical erosion of surface rocks, pCO2, surface
temperature and terrestrial runoff (Gaillardet et al., 1999;
Raymo and Ruddiman, 1992; Brantley et al., 2008; Maher,
2010; Maher and Chamberlain, 2014; Dessert et al., 2003;
Ibarra et al., 2019; West et al., 2005). Seawater isotopes such
as Sr, Os, Li or Be are often used to estimate the global sil-
icate weathering flux in the past (Caves Rugenstein et al.,
2019; Dellinger et al., 2015; Kalderon-Asael et al., 2021; Li
et al., 2019). However, it is difficult to constrain the sensitiv-
ity of silicate weathering to certain factors (e.g., temperature)
from such measurements, especially in local regions, due to
both the uncertainties in their interpretation (Li et al., 2019;
Dellinger et al., 2015) and their global nature. Simulating the
weathering reactions in the lab can provide useful informa-
tion for the factors that control the weathering rate, but lab
conditions are generally much simpler than those in the nat-
ural field (Gruber et al., 2014; Calabrese et al., 2022; White
and Brantley, 2003). Many other works focused on compil-
ing the dissolved river loading to estimate the silicate weath-
ering fluxes and rates in different regions for the present day
(Bluth and Kump, 1994; Gibbs et al., 1999; Amiotte Suchet
et al., 2003; Suchet and Probst, 2002). Despite the various
uncertainties in these methods, they provide a basis for the
development of numerical models.

Early zero-dimensional models (e.g., the Geologic Carbon
Cycle (GEOCARB) family; Walker et al., 1981; Berner et al.,
1983; Berner, 1991) and subsequent two-dimensional numer-
ical models such as the Gibbs and Kump Weathering Model
(GKWM) in 1994 (Bluth and Kump, 1994), the Global Ero-
sion Model for CO2 fluxes (GEM-CO2) in 1995 (Suchet and
Probst, 2002; Amiotte Suchet et al., 2003) and a model by
Jens Hartmann in 2009 (Hartmann et al., 2009; Hartmann
and Moosdorf, 2012; Hartmann et al., 2014) provided im-
portant understanding of the long-term carbon cycle. Studies
using these models (Amiotte Suchet et al., 2003; Gibbs et
al., 1999; Zhang et al., 2021) have identified the lithology
and runoff as the strongest predictors of chemical weather-
ing rates. However, basin- or catchment-scale compilation of
weathering data (Gaillardet et al., 1999) indicates that the
spatial variability of the weathering rate had to be explained
through a combined effect of runoff, temperature and erosion
rate. West et al. (2005) further showed that there were two-

end-member schemes of the weathering – transport-limited
and kinetically limited regimes.

Built on the work of West et al. (2005), Gabet and Mudd
(2009) constructed a theoretical model (referred to as the
GM09 model hereafter) that encompassed the continuum of
these two weathering regimes for the first time. This model is
probably the most sophisticated one to date in terms of global
silicate weathering calculation and has been used in many
works subsequently for both the present day and the past
(West, 2012; Goddéris et al., 2017; Maffre et al., 2018; Park
et al., 2020). However, the model contains a few unknown
parameters, including cation abundance in the bedrock, the
dissolution rate constant and its dependence on runoff and
reaction time, and the regolith production rate, of which only
rough ranges are given. Most previous works (Maffre et al.,
2018; Park et al., 2020) using this model estimated these
parameters through some fitting approach with the help of
catchment-scale observations (Gaillardet et al., 1999).

The global total silicate weathering flux (Fw) of the
present day given by Park et al. (2020) (referred to as
Park20 hereafter) in terms of carbon is∼ 4.5×1012 mol yr−1,
which was thought to be consistent with the global out-
gassing rate estimated by Gerlach (2011). However, a few
lines of evidence indicate that this flux may be overestimated.
(1) The Fw estimated from the present-day observations is∼
2.5×1012 mol yr−1 (1.59×1012–2.75×1012 mol yr−1) (Gail-
lardet et al., 1999; Moon et al., 2014). (2) The global out-
gassing rate was re-estimated to be ∼ 2–3.3× 1012 mol yr−1

by Müller et al. (2022). (3) The silicate weathering fluxes
for individual river basins within the tropical region from the
Park20 model were overall overestimated compared to the
observations (Fig. 1b), which led to an overestimate of Fw
(Fig. 1c). This overestimation over the tropical region by the
Park20 model has also been argued to exist based on the ob-
served 187Os/188Os (Caves Rugenstein et al., 2021).

Overestimation of the carbon sink by 100 % will lead to a
dramatic decrease in pCO2 and an extreme icehouse climate
in a few million years when the outgassing is fixed (Berner
and Caldeira, 1997; D’Antonio et al., 2019) and thus should
be dealt with properly. More important reasons may be that
(1) the overestimation is not random among different sites
but is systematic; the weathering fluxes over tropical river
basins are much more likely overestimated than underesti-
mated, whether in the original values (Fig. 1b) or in the log-
arithmic values (Fig. 1e). (2) The climate sensitivity of the
silicate weathering, i.e., the ability of silicate weathering to
stabilize the climate, may be mis-estimated due to this sys-
tematic error.

The lower-than-expected silicate weathering rate over the
tropical region was noticed by Stallard as early as 1981
(Stallard and Edmond, 1981; Stallard, 1985; Stallard and
Edmond, 1983). Godderis et al. (2008) and Hartmann et
al. (2014) also found that considering only the effects of tem-
perature and runoff would lead to a significant overestimation
of weathering in the tropical region. They proposed the effect
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of soil shielding as a solution; i.e., the occurrence of leached
soil in equatorial regions hinders deeper weathering. They
then assumed a global soil shielding effect in regions with
leached soil and improved their model performance. How-
ever, the soil shielding effect has already been considered in
the GM09 model to some extent, where the physical erosion
was parameterized. Therefore, the problem remains in this
model, and our main goal in this paper is to find a simple so-
lution to the problem and test whether it affects the sensitivity
of global silicate weathering to climate change.

Specifically, we will first test whether the historical cli-
mate data constructed by different institutes have any signif-
icant impact on the calculated silicate weathering rate using
the GM09 model in the tropical region. Then, the influence
of the magnitude of the seasonal cycle on physical weath-
ering is tested next. It is then found that reducing physical
erosion rates where leached soil is present works best in re-
moving the systematic bias in the tropical region. In the end,
we find a simple parameterization scheme related to vegeta-
tion that can attain a similar effect to that of leached soil but
that is much more applicable to weathering calculation for
other periods of Earth’s history.

The rest of the paper is organized as follows. In Sect. 2, the
GM09 model is briefly described, and the field observations
used to validate the model and climate data used to calculate
the weathering fluxes are also described. In Sect. 3, the re-
sults of various sensitivity tests and the parameterization for
the vegetation effect are presented. The shortcomings as well
as the consequences of the model revision are then discussed
in Sect. 4, and a summary is provided in Sect. 5.

2 Model and data

2.1 Theoretical model for silicate weathering

2.1.1 The weathering profile and weathering flux

For the convenience of the latter discussion, the model GM09
as presented in detail in Park20 and Maffre et al. (2022) is
recapped here. The model includes an explicit simulation of
a regolith layer, which extends from the soil surface to the
unweathered bedrock (Fig. 2). The layer can be millimeters
to tens of meters thick depending on the environment and is
determined by

dh
dt
=

dh̃
dt
+

dh̄
dt
= Pr−U +U −E = Pr−E, (1)

where h is the regolith thickness, Pr is the soil production
rate and E is the erosion rate. The weathering rate J at depth
z is proportional to the concentration of cations (e.g., Ca2+

and Mg2+) denoted as x and also depends on the tempera-
ture (T ), runoff (q) and exposure time (τ ) that the sample has
experienced. The influences of T and q are generally consid-
ered using the Arrhenius equation and a linear or power-law

relation (White and Blum, 1995; Dessert et al., 2003), re-
spectively. When an exponential dependence of the weather-
ing rate on runoff q is employed as in Park20, the weathering
rate J is written as

J (z)=K · (1− e−kw·q) · e
−
Ea
R
·

(
1
T
−

1
T0

)
· τσ · x(z), (2)

where K is the dissolution constant, kw is the runoff sen-
sitivity of the dissolution rate, Ea is the apparent activation
energy at T0 for dissolution, R is the gas constant, and σ is
an empirical constant.

It should be noted that the global total silicate weathering
flux throughout this work pertains specifically to the weath-
ering flux of Ca and Mg silicates. While Na and K silicates
also participate in weathering, these are not traditionally re-
garded as carbon sinks on geological timescales (Berner et
al., 1983) due to their inability to form carbonate minerals.
However, the residence times of Na+ and K+ in the ocean are
∼ 80 and ∼ 10 Myr (Lécuyer, 2016; Emerson and Hedges,
2008; Olson et al., 2022; Berner and Berner, 2012; Hu et al.,
2020), respectively. This long residence time means that the
weathering of Na and K silicates could have an impact on the
atmospheric CO2 on a 1 million year timescale. Moreover,
Na+ and K+, when released into the soil through weather-
ing reactions, may displace Ca2+ and Mg2+ through cation
exchange with sediments or oceanic crust (France-Lanord
and Derry, 1997), leading to carbonate deposition and car-
bon sinking indirectly. However, currently we are unable to
quantify these aspects due to the intricacies of the Na and K
cycles. Thus, we focus solely on the Ca2+ and Mg2+ silicate
weathering flux in the current study.

The concentration of cations themselves changes with
time according to

∂x

∂t
=−U ·

∂x

∂z
−K · (1− e−kw·q) · e

−
Ea
R
·( 1
T
−

1
T0
)
· τσ · x. (3)

In most cases, we do not need to track the evolution of
surface topography, and it is as accurate, when calculating
weathering flux, as just setting the reference plane to be at
the regolith–bedrock interface. In that case, h̃≡ 0 and h̄≡ h,
and the uplifting speed in Eq. (3) can be replaced with Pr.
The weathering profiles are often assumed to have reached a
steady state; i.e., the soil production rate equals the erosion
rate (Phillips, 2010). This assumption is appropriate if the
lifetime of a weathering profile is much shorter than a few
million years. The lifetime of a weathering profile may be
estimated by using its typical thickness and the surface ero-
sion rate. The global total erosion is ∼ 20 Gt yr−1 (Milliman
and Farnsworth, 2011), which gives a global mean erosion
rate of ∼ 133 t km−2 yr−1. If we use a relatively low value,
say 60 t km−2 yr−1 (equivalent to 2× 10−5 m yr−1), a typi-
cal weathering profile 10 m thick will require half a million
years to completely renew. Thus, a weathering profile is near
steady state if the environment changes slowly over a few
million years. Such an assumption is not ideal but is neces-
sary to make in order to study the long-term (hundreds of
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Figure 1. The difference between the model calculated and observed silicate weathering fluxes for 81 large rivers (more details can be found
in Sect. 2.2.5) over the world. The upper and lower panels show model-obs and log10(model)-log10(obs), respectively. The left, middle and
right panels show rivers at the mid to high latitudes (if more than half of its river basin is located at or beyond 30° latitude), low latitudes
(within 30° latitude) and over the whole globe, respectively. The model results were calculated using the GM09 model but with model
parameters in Park20. The global total weathering flux is 4.5× 1012 mol yr−1. The surface slope and all climate forcings are from Park20,
in which the runoff used is the one denoted as “from Yves” in Park20 (more details in Sect. 2.2.1). A similar systematic upward bias in the
tropical region appeared when the parameters as given in Maffre et al. (2022) were used (Fig. S1 in the Supplement).

millions of years) evolution of silicate weathering at a rea-
sonable cost.

Under such an assumption, neither the soil production rate
Pr nor the cation concentration x changes with time (i.e.,
∂x
∂t
= 0) as long as the tectonic setting and climate have not

changed, and the exposure time τ is simply z/Pr. Equa-
tion (3) then becomes

−Pr ·
∂x

∂z
−K ·(1−e−kw·q)·e

−
Ea
R
·

(
1
T
−

1
T0

)
·

(
z

Pr

)σ
·x = 0. (4)

The total weathering flux at the grid point is just the integra-
tion of J (z) through the regolith:

W =

h∫
0

J (z)dz=

h∫
0

K · (1− e−kw·q)

· e
−
Ea
R
·

(
1
T
−

1
T0

)
·

(
z

Pr

)σ
· xdz. (5)

There are still two undetermined variables in the formula
above, i.e., h and Pr. The regolith thickness h can be cal-
culated by assuming the balance between the soil production
rate Pr and the surface erosion rate E. Next, we will describe
how Pr and E are parameterized.

2.1.2 Soil production rate

Studies showed that the soil production rate could be con-
trolled by temperature or water content (Heimsath et al.,
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Figure 2. Schematic diagram of the theoretical model of bedrock
weathering and the simultaneous production of soil or regolith
based on GM09. In stage 1, the unweathered bedrock moves ver-
tically at a speed U due to tectonic movement, with weathering and
erosion just to occur at the surface. In stage 2, soil is produced (Pr)
at the surface of the bedrock and eroded (E) at the soil top, with sil-
icate weathering occurring mostly within the soil. h represents the
soil thickness, and h̄ and h̃ are the heights of the soil and the bedrock
surface, respectively, relative to the reference plane (note that h̄ is
nonzero in stage 2 but is not marked for the sake of esthetics). The
part enclosed by dashed lines is eroded away. All variables evolve
with time at this stage. In stage 3, a steady state is reached under
continuous weathering such that the soil thickness and the weather-
ing flux do not change with time anymore. The weathered material
within the soil is carried away by water runoff into the oceans, with
the weathering flux denoted as W .

1997, 2009; Dixon et al., 2009; Whipple et al., 2012; Car-
retier et al., 2014). Overall, the soil production rate has been
found to decline exponentially with increasing depth of the
regolith (h) due to the decrease in water percolation or bio-
genic disturbance (Dietrich et al., 1995; Heimsath et al.,
1997, 1999; Riebe et al., 2004; Heimsath et al., 2009; Heim-
sath and Korup, 2012; Burke et al., 2007; Small et al., 1999).
However, it has also been suggested that there is an optimum
regolith thickness. Soil production also slows down when the
regolith is too thin in certain environments (Anderson, 2002;
Strudley et al., 2006). The soil production rate has thus been
described by the so-called “humped” law:

Pr = krp · q · e
−
Ea
R

(
1
T
−

1
T0

)
· (e
−

h
d0 − k1 · e

−
h
d1 ), (6)

where the second exponential term in the parentheses is there
to ensure that the soil production rate decreases when h is
too small. Here we neglect this effect by setting k1 to 0, the
same as in Park20. In Eq. (6), krp is the regolith production
constant to be determined by fitting the observations and d0
is the attenuation depth and is set to 2.73 m, the same as those
in Park20.

2.1.3 Erosion rate

The current estimation of the erosion rate is mainly from the
suspended river loads (Milliman and Farnsworth, 2011) or
in situ cosmogenic nuclides in river sediments (Wittmann et
al., 2011, 2015, 2020; Blanckenburg et al., 2012; Dannhaus
et al., 2017; Larsen et al., 2014). Supported by observa-
tions, modeling studies of erosion rates at a global scale have
flourished, and several parameterization schemes are now
available. For example, the model BQART, derived from a
global database of 488 rivers, can estimate the erosion flux
for the entire river basin with knowledge of water discharge,
drainage area, basin relief, average temperature and anthro-
pogenic influence (Syvitski and Milliman, 2007).

The river incision at the catchment scale is simulated using
the classical empirical law – the stream power incision law
(Davy and Crave, 2000; Howard, 1994) that has been widely
used (Adams et al., 2020; Gasparini et al., 2007; Harel et al.,
2016; Lague, 2014; Quye-Sawyer et al., 2020; Royden and
Taylor Perron, 2013):

E = ke ·B · q
m
· sn, (7)

where ke is the erodibility constant which is calibrated by
setting the global total physical denudation flux to 20 Gt yr−1

and set to 0.0030713 m1−m/yr1−m in Park20. s is the surface
slope. Exponents m and n are set to the values 0.5 and 1, re-
spectively. A new parameter B is introduced herein to match
the observed individual erosional fluxes in some of the tests
performed herein, as will be explained in detail in Sect. 2.2.5.
The BQART model is similar to Eq. (7), except that a tem-
perature dependence is added (Syvitski and Milliman, 2007).
This model was tested here, but results will not be shown be-
cause no improvement was achieved compared to the stream
law model above.

Note that both the BQART and stream law models are not
prepared for the grid-scale erosion rate but for the catchment
scale. More explicit ways of representing the denudation are
available (e.g., Carretier et al., 2018), which involve many
detailed processes and hydrographic features. Such a method
is not practical here since our purpose is to construct a model
applicable to paleoclimate conditions for which limited in-
formation can be obtained.

2.1.4 The final solution for the weathering flux

The regolith thickness h in Eq. (5) can be calculated by
equating the erosion rate E and soil production rate Pr un-
der the steady-state assumption:

h= P−1
r (E). (8)

Since h, Pr and E are independent of z, the integration in
Eq. (5) can be solved to get

W = E ·

x|z=0− x|z=0 · e
−K·(1−e−kw ·q)·e

−
Ea
R
·

(
1
T
−

1
T0

)
σ+1 ·

(
h
E

)σ+1

 , (9)
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where x|z=0 is the concentration of relevant cations in the
fresh rock and is dependent on the lithology. The second term
in the large parentheses of Eq. (9) is actually the concen-
tration of elements at the surface of the regolith layer (i.e.,
z= h) and will be represented by xs in what follows.

Five parameters (Table S1 in the Supplement) in this equa-
tion are unknown. Field measurements or laboratory exper-
iments have provided reference ranges for some parameters
(Rudnick and Gao, 2003; Heimsath et al., 1997; White and
Brantley, 2003). Based on these reference ranges, previous
studies estimated optimal values of these parameters by fit-
ting the calculated weathering fluxes with the observed ones
in various river catchments (Maffre et al., 2018, 2022; Park
et al., 2020). We will use this theoretical model as a founda-
tion and try to improve the model–data comparison by adding
possible missing processes. The parameters in Eq. (9) are re-
estimated when necessary.

2.2 Data

2.2.1 Climate data for the present day

The climate fields required in the model presented above are
surface temperature and river runoff. To investigate the in-
fluence of these data on the comparison between the cal-
culated and observed weathering fluxes, climate data from
various sources are considered. The first one is the monthly
2 m temperature and runoff for 1950 to 2021 obtained from
ERA5 (Muñoz Sabater, 2019). ERA5 is a re-analysis dataset
obtained using a global climate model constrained by vari-
ous observations from weather stations, ships and satellites.
The dataset is gridded with a spatial resolution of 0.1°× 0.1°.
Since Park20 has done elaborate work on testing parameters,
we also used the temperature and runoff in their test. Their
temperature was derived from CRU TS v.4.03 (Harris et al.,
2014; denoted as T_CRU), while two runoff datasets were
used: one was from UNH/GRDC Composite Runoff Fields
V1.0 (Fekete et al., 2002; denoted as R_Park), and the other
was from Yves as described in the runoff file provided by
the data repository supplied along with Park20 (denoted as
R_Yves). However, because the R_Park data are different
from the runoff that we downloaded from UNH/GRDC Com-
posite Runoff Fields V1.0 (http://www.grdc.sr.unh.edu, last
access: 7 May 2022), this latter dataset was also tested and
denoted as R_UNH herein. Other than these two datasets,
an observation-based global gridded runoff dataset GRUN
from 1902 to 2014 (Ghiggi et al., 2019) with a resolution of
0.5°× 0.5° was also used.

To account for the influence of global warming and hu-
man activities, we conducted tests using temperature and
runoff averaged over three different periods. For tempera-
ture, the three time periods are 1950–1979, 1950–1997 and
1950–2021, denoted as T_ERA1, T_ERA2 and T_ERA3, re-
spectively. For runoff, the three time periods are the same as
those for the temperature for the ERA dataset but are 1902–

1950, 1902–1996 and 1902–2014 for the GRUN dataset and
denoted as R_GRUN1, R_GRUN2 and R_GRUN3, respec-
tively. The distributions of temperature and runoff in differ-
ent datasets and different time periods are shown in Figs. S2
and S3.

2.2.2 Climate data for the Last Glacial Maximum
(LGM) and the future

To estimate the sensitivity of global silicate weathering (i.e.,
Fw) to the climate, data for both cold and warm climates
are needed. For cold climates, the LGM was chosen and
the data from M. Zhang et al. (2022) were used, denoted
as T_LGM and R_LGM. For the warm climate, the abrupt
quadruple-CO2 experiment carried out using CESM2 (Dan-
abasoglu, 2019) was used, and data were downloaded from
the CMIP6 data website (https://pcmdi.llnl.gov/CMIP6/, last
access: 1 July 2023), denoted as T_4CO2 and R_4CO2, re-
spectively.

2.2.3 Surface topography

A key variable for calculating the erosion rate is the surface
slope s. Global topography data from Scotese and Wright
(2018) were used to calculate s according to the formula
(Maffre et al., 2018)

s =

√(
∂h

∂x

)2

+

(
∂h

∂y

)2

. (10)

The slope data from Park20 were also tested, whose topog-
raphy field was from the Shuttle Radar Topography Mission
(Farr et al., 2007). We denote the surface slopes calculated
from Scotese and Wright (2018) and from Park20 as s1 and
s2, respectively (Fig. S4).

2.2.4 Lithology

The spatial distribution of lithologies was obtained from the
Global Lithologic Map (GliM) (Hartmann and Moosdorf,
2012). The original dataset includes 16 types of rock, and we
grouped them into six categories, the same as done in Park20
(see their Fig. S1 and our Fig. S5). The concentrations of Ca
and Mg cations in each type of rock can be estimated through
the EarthChem library (http://portal.earthchem.org/, last ac-
cess: 17 October 2022), in addition to rocks such as sedi-
mentary and metamorphic rocks, whose characteristics are
greatly dependent on protoliths. They may cause large un-
certainty in the calculated silicate weathering flux, so Park20
treated the concentrations of these two types of rocks as fit-
ting parameters in the model. This is also how it is done here.

2.2.5 Catchment measurements of weathering and
erosional fluxes

For model validation, concentrations of cations such as Ca2+

and Mg2+ in the dissolved loading of river discharge from
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global catchments were collected from the literature. The
weathering fluxes integrated over the corresponding river
basins can be inferred from these catchment data. Cations
in rivers have various origins, such as atmospheric input, car-
bonate weathering or silicate weathering (Moon et al., 2014).
Since almost only Ca2+ and Mg2+ from silicate weathering
can be considered a sink of atmospheric CO2 on a geological
timescale, the elements from different sources have to be dis-
tinguished. Two standard methods have been widely used to
differentiate silicate and non-silicate chemical sources. The
forward method often uses the pre-assigned compositions for
each element, which essentially relies on the knowledge of
bedrock and environmental characteristics of the study area
(Meybeck, 1987; Edmond et al., 1995; Galy and France-
Lanord, 1999). In general, this approach is more easily ap-
plicable to small watersheds or watersheds with monolithic
lithology than to large and complex watersheds. The inverse
method starts from a priori ranges of elemental concentra-
tion ratios and determines the best a posteriori ratios based
on the mass balance equation. This approach is useful when
complete information on chemical compositions within the
watershed is not available, such as in some large catchments
(Gaillardet et al., 1999; Moon et al., 2014).

Since the silicate weathering model is mostly used for the
geological past, where detailed information on surface to-
pography, climate and lithology is not available, the spatial
resolution of the model cannot be too high: usually around
0.5°× 0.5° or coarser. To ensure a comparable performance
of the model for the past to the present day, the spatial res-
olution used herein is 0.5°× 0.5°. At such a coarse resolu-
tion, accurate identification of river routes is not possible,
and data compiled for relatively large river basins are more
reliable for model validation. Two such datasets are available
(Gaillardet et al., 1999; Moon et al., 2014), and that com-
piled by Gaillardet for the 51 large river basins is the focus
of our analysis (see Table S2 for the values and Fig. S6a for
the definitions of the basins). Park20 removed the Brahma-
putra watershed because it overlaps with the Ganges wa-
tershed. They also removed the Don watershed in their pa-
rameter exploration. Here we employed the modern river
direction files contained within the Community Earth Sys-
tem Model (CESM) to refine the geographical delineation of
rivers, ensuring that the Brahmaputra watershed was distin-
guished from the Ganges watershed. We also kept the Don
watershed. As will be shown later, including the Brahmapu-
tra and Don watersheds has little effect on the results.

Park20 also incorporated data from HYBAM, which con-
sists of 32 small watersheds in the Amazon region (Mo-
quet et al., 2011, 2016, 2018). The average weathering
flux from the HYBAM Amazon basin data is approxi-
mately 0.07 mol m−2 yr−1, while the average weathering flux
from Gaillardet et al. (1999) for the Amazon region is
0.02 mol m−2 yr−1. Due to this significant mismatch between
the datasets, we used both the Gaillardet et al. (1999) data
(denoted as Gaillardet) and the combination of Gaillardet and

HYBAM data (denoted as Gaillardet+HYBAM) to validate
the model.

The modeled erosion rates can also be validated to some
extent by the observed suspended river loading, the so-called
total suspended sediment (TSS). Different from the dissolved
cations in the water, a significant portion of the suspended
loading may have been deposited before they reached the
catchment. Therefore, the suspended loading measured at the
catchment may not represent the erosion rate over the river
basin well. Nevertheless, we collected the river loading mea-
surements from four sources (Table S3; Milliman and Syvit-
ski, 1991; Milliman and Farnsworth, 2011; Milliman et al.,
1995) and obtained the loading for each of the 51 large rivers
mentioned above. Multiple measurements may be available
at one river catchment; we prefer the older value in order to
minimize the influence of human activities (see the details in
Table S3).

Mean denudation rates are also available from cosmogenic
nuclide analysis in sediment, like in situ cosmogenic 26Al
and 10Be. In general, this represents a longer-term average
erosion rate, typically on the scale of millions of years, unlike
TSS, which represents the erosion over a short time period
(∼ years). As a result, the denudation rates obtained through
cosmogenic nuclide analysis may exclude the anthropogenic
influence. Wittmann et al. (2020) compiled global denuda-
tion rates for more than 50 large rivers over a range of
climatic and tectonic regimes in this way, but only 18 of
the rivers overlap with our data. The final loading thus ob-
tained is shown in Table S3. Figure 3 shows that the model-
calculated erosion rates (Eq. 7 with B = 1) deviate signif-
icantly from both TSS and isotope-derived erosion rates.
Therefore, in some of the tests with the original Park20
model, the model-calculated erosion rates were scaled by
tuning B such that the erosion of each basin was identical
to the observed one. Note that, in these tests, B is a con-
stant within each basin, but the erosion rate at each grid point
varies within the basin. Moreover, if neither TSS nor the cos-
mogenic nuclide data are available for a river basin, B is set
to 1 for this basin.

2.2.6 Vegetation

The primary vegetation data used herein are the areal frac-
tion of different vegetation types and their associated leaf
area index (LAI) provided by NCAR (Fig. S6c–d), which are
derived by integrating observed land information (Lawrence
and Chase, 2007). To test the performance of simulated veg-
etation, we also downloaded the preindustrial vegetation data
simulated by the Lund–Potsdam–Jena General Ecosystem
Simulator (LPJ-GUESS) dynamic vegetation model and the
HadCM3 climate model (Allen et al., 2020). In the 4×CO2
experiment, the vegetation changed with climate and the data
were downloaded from the CMIP6 home page, while the veg-
etation was assumed to be the same as in the present day ex-
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Figure 3. The comparison between model calculated and observed erosional fluxes for individual river basins. The Park20 model is used
with the forcing data R_Yves and s1 (defined in Sect. 2.2). Different colors represent the regions where the basins are located, and the sizes
represent the areas of the basins. In panel (a), the observed erosion rates are from TSS data (the last column in Table S3), and the observed
erosion rates in panel (b) are from cosmogenic nuclide analysis, from which data are available for only 18 rivers (the penultimate column in
Table S3).

cept where the land was covered by ice sheets in the LGM
experiment by M. Zhang et al. (2022).

2.2.7 Leached soil

The global soil distribution data are obtained from the Har-
monized World Soil Database v1.2 (FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012), which is provided by the Food and Agri-
culture Organization of the United Nations. Following Hart-
mann et al. (2014), we selected six specific soil types as
leached soil, i.e., Ferralsols, Acrisols, Nitisols, Lixisols, His-
tosols and Gleysols. Figure S6b represents the proportion of
leached soil within each grid cell, as determined according to
the selected soil types.

2.3 Evaluation of model performance

The model–data discrepancy in silicate weathering flux is of-
ten measured by r2 (e.g., Park et al., 2020):

r2
log = 1−

∑
(log10 (Mi)− log10 (Oi))

2∑
(log10 (Oi)−

¯log10 (O))
2
, (11)

where Mi and Oi are the model calculated and observed
values, respectively, and the summation is over the index
i. Since we are concerned with the global flux Fw and
the weathering–climate sensitivity, Mi and Oi represent the
catchment-weathering flux for river i rather than the weath-
ering flux per unit area of the ith river basin. In the equation
above, a logarithmic operation is taken to the values first be-
fore calculating the difference: a subscript “log” is thus added
to differentiate it from the r2 calculated using the original
values directly.

r2
= 1−

∑
((Mi)− (Oi))

2∑
((Oi)− ¯(O))2

(12)

Using r2
log has the advantage of giving relatively balanced

weights to both the very small and very large values, which is
important because the weathering fluxes over different river
basins differ a lot (Table S2). Park20 obtained their model pa-
rameters in Eq. (9) by maximizing r2

log. However, although
there is a relatively small systematic bias in the logarith-
mic model–data errors (the data points distribute more sym-
metrically against the zero line in Fig. 1f), Fig. 1a–c show
that there is an obvious systematic bias in the direct model–
data errors. For similar magnitudes of the observational sili-
cate weathering fluxes, the bias is much larger over the low-
latitude regions (Fig. 1b) than over the high-latitude (Fig. 1a)
regions. The bias in the direct errors in Fig. 1b will lead to an
overestimation of the global weathering flux Fw (the global
integral of W in Eq. 9) and may also be a misestimate of
the weathering–climate sensitivity. Therefore, we argue that
using the sum of r2

log and r2 (denoted as “R2” hereafter) is
better than using either of them as the criteria of model vali-
dation.

2.4 Experiments

In the first set of experiments, the original model of Park20 is
tested for the influence of climate data and erosion rates from
different sources or the same source but in different time peri-
ods. As described above, the temperature data come from two
sources, ERA5 and CRU, and the data from ERA5 are orga-
nized into three different time periods; the runoff data come
from five sources, ERA5, GRUN and UNH from Park20,
UNH updated herein and Yves, where both the ERA5 and
GRUN data are also organized into three different time peri-
ods. Slope data come from two sources: Scotese and Wright
(2018) and Park20. The erosion rates are calculated in three
different ways which all used Eq. (7), but the parameterB has
different values: B = 1, B tuned according to TSS data and
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B tuned according to both TSS data and the cosmogenic nu-
clide analysis. In the last case, the cosmogenic nuclide anal-
ysis supersedes TSS data if both of them are available for
a basin. There are 4× 9× 2× 3= 216 experiments in total,
which are summarized in Table S4.

In the second set of experiments, we try to improve the
Park20 model by considering the effect of additional pro-
cesses. In each of these experiments, rather than adopting the
values from Park20, all the unknown model parameters (Ta-
ble S1) are optimized again. Based on the results of the first
set of experiments, only T_CRU is used for temperature, and
R_Park, R_Yves and R_GRUN2 are used for runoff. Erosion
correction is not applied (i.e., B = 1), and both slope data s1
and s2 are tested. We will first show that changing the val-
idation criteria (maximizing R2 rather than r2

log) is able to
alleviate the systematic bias so that there is no overall over-
estimation, but the model–data discrepancy becomes even
larger. In order to reduce this discrepancy, we try three dif-
ferent methods. The first method is to consider the influence
of the seasonal cycle of temperature on the soil production
rate, which will change the regolith thickness. The second
and third methods consider the influence of leached soil and
vegetation, respectively, on erosion rates. All three methods
act to reduce the silicate weathering fluxes in the tropical re-
gion relative to those at the mid to high latitudes. All of these
experiments are summarized in Table 1 below.

To consider the effect of vegetation, two different ap-
proaches have been tried, denoted by “m1” and “m2” in Ta-
ble 1. m1 and m2 use the LAI of global vegetation from
NCAR and simulated by the LPJ vegetation model, respec-
tively. The global total erosional flux in m1 and m2 is re-
duced due to the shielding effect of vegetation. In order for
the global total erosional flux to remain consistent with the
observed value (20 Gt yr−1 in Park20), the erosion rate at ev-
ery grid point is scaled uniformly (by changing ke in Eq. 7).
For the sensitivity test, the LAI values of the global vegeta-
tion of the LGM (“m3”) and 4×CO2 (“m4”) are used (see
Sect. 2.2.2).

3 Results

We will first show whether the overestimated weathering
fluxes over the tropical river basins of the Park20 model were
due to the uncertainty in climate data or error in the calcu-
lated erosion rates. Then, we will re-estimate model parame-
ters by balancing r2

log and r2, i.e., by maximizing R2 defined
in Sect. 2.3. After that, we propose and test a few different
parameterizations to see whether they are effective in further
decreasing the model–data discrepancy measured by R2 (Ta-
ble 1). Without specific indications, all the results described
below are for the present day.

3.1 Influence of the climate forcing and erosion rate in
the original Park20 model

For this series of tests, everything is the same as the Park20
model, except that the temperature, runoff and surface slope
from different sources or different time periods are used. Re-
sults show that climate and slope data do have some impact
on r2

log or r2, especially the latter (Fig. 4a, b). The runoff data
have the largest impact, followed by slope, and the temper-
ature data have the least impact, probably because the un-
certainties in temperature are small (Fig. S2). For runoff,
the data from different centers give quite different r2 val-
ues, while the data from the same center but different peri-
ods have a small effect. Although r2 can vary from −0.5 to
−4.47 in different cases, all of them are below zero (Fig. 4a,
b), meaning a large model–data discrepancy. For all cases,
overestimation in the weathering fluxes over tropical river
basins persists (not shown but largely the same as shown
in Fig. 1b), and the total global weathering flux is similarly
overestimated.

If the observed erosion rates are used, r2 is significantly
improved, especially when the runoff datasets R_UNH and
R_Park are used. The improvement is more significant when
the erosion rates inferred from the cosmogenic nuclide anal-
ysis (Wittmann et al., 2020) are used. The tropical bias is also
reduced but is still quite obvious (Figs. 5 and S7). Note that
the results are improved even without tuning the empirical
parameters in the Park20 model. This test shows us that the
erosion rate may be a critical factor in alleviating the model
bias. However, the erosion rates in either the past or the fu-
ture are unknown and need to be parameterized if the model
is to be applied to these time periods. Improving this param-
eterization is the major focus of our work herein and will be
described in detail in what follows.

3.2 Maximizing R2 – a new control model

Other than the inaccuracy in the erosion rate (Fig. 3), the
systematic bias in the Park20 model (Fig. 1) may also be due
to the model parameters being searched by maximizing r2

log.
Here we check whether the bias can be alleviated by min-
imizing R2. Specifically, five parameters are searched with
their searching ranges given in Table 2. Because the compu-
tational load of the model is relatively small, the searching
is done by a forward calculation for all possible combina-
tions. The total number of combinations is 240 240, and a full
search takes 72 h on a desk computer and 1 h when 72 cores
are used on a cluster. Only results for s2 are shown here,
which aligns more closely with observations than those for
s1 (not shown); results for s1 can be found in Table 1. More-
over, because of the relatively high sensitivity of the model
results to runoff (Fig. 4), the model parameters are searched
for three runoff datasets: R_Yves, R_Park and R_GRUN2.
Only results for the former two are presented below, which
is sufficient for demonstrating the effect of maximizing R2.
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Table 1. Summary of the second set of experiments.

Experiment Runoff Temperature Slope Seasonal temperature Leached soil Vegetation Maximum Fw of maximum R2
variation effect effect effecta R2b (1× 1012 mol yr−1)

R_Park_s2 R_Park T_CRU s2 × × × −0.148 2.229
R_Park_s2_td R_Park T_CRU s2 X × × −0.129 3.008
R_Park_s2_soil R_Park T_CRU s2 × X × 0.442 2.678
R_Park_s2_LAI_global R_Park T_CRU s2 × × m1 0.284 2.872
R_Yves_s2 R_Yves T_CRU s2 × × × 0.483 2.326
R_Yves_s2_td R_Yves T_CRU s2 X × × 0.511 2.776
R_Yves_s2_soil R_Yves T_CRU s2 × X × 0.926 2.293
R_Yves_s2_LAI_global R_Yves T_CRU s2 × × m1 0.842 2.807
R_Yves_s1 R_Yves T_CRU s1 × × × 0.489 3.205
R_Yves_s1_soil R_Yves T_CRU s1 × X × 0.865 2.870
R_Yves_s1_LAI_global R_Yves T_CRU s1 × × m1 0.804 3.218
R_GRUN2_s2 R_GRUN2 T_CRU s2 × × × 0.146 2.157
R_GRUN2_s2_soil R_GRUN2 T_CRU s2 × X × 0.706 2.423
R_GRUN2_s2_LAI_global R_GRUN2 T_CRU s2 × × m1 0.571 2.423
R_Yves_s2_LAI_old_global R_Yves T_CRU s2 × × m2 0.640 2.718
RT_LGM_s2_LAI_global R_LGM T_LGM s2 × × m3
RT_4CO2_s2_LAI_global R_4CO2 T_4CO2 s2 × × m4

a m1–m4: the global LAI is used and the global erosional flux is fixed to 20 Gt yr−1 in all four cases, but the vegetation is from NCAR, the LPJ model, the LGM experiment and the 4×CO2 experiment,
respectively. b The maximum R2 here is obtained with observed silicate weathering fluxes from Gaillardet and HYBAM data together.

When calculating r2
log and r2, two different sets of ob-

served catchment-weathering fluxes have been used: Gail-
ladet and Gailladet+HYBAM (see Sect. 2.2.5). The r2

log, r2

and R2 of all the parameter combinations are shown in Fig. 6,
where each dot represents the result of a specific combi-
nation of model parameters and only the ones with values
greater than 0 are shown. For Gailladet, the maximum r2

log
and r2 are −0.044 and 0.323, respectively, when R_Park is
used (Fig. 6a; orange and light-blue dots, which represent r2

log
and R2, respectively, do not show up because all their values
are smaller than 0). For Gailladet+HYBAM, the maximum
r2

log and r2 become 0.138 and 0.349, respectively (Fig. 6b).
It can be seen that Fw tends to be overestimated if r2

log is to
be maximized (Fw = 5.54×1012 mol yr−1 at the peak of the
orange dot group in Fig. 6b) but underestimated if r2 is to
be maximized (Fw = 1.8× 1012 mol yr−1 at the peak of the
purple-red dot group in Fig. 6b). Although the maximum r2

log
(orange dots) and r2 (purple-red dots) are both greater than
0 in Fig. 6b, no parameter combination can give relatively
high r2

log and r2 simultaneously, so that light-blue dots can
appear. Using R_Yves improves r2

log significantly and thus
R2; the maximum R2 value for Gailladet+HYBAM is 0.483
(Fig. 6d). It is notable that Fw is within the observational un-
certainty range when R2 is maximized. The parameter com-
bination associated with the maximum R2 is hence consid-
ered the new control model, and R_Yves is used in all the
tests to be presented in what follows.

When R2 is maximized, either r2
log or r2 or both are too

small (Fig. 6). This means that errors for individual basins
have increased overall, although the signs of errors are more
balanced (Fig. 7) than before, so that the bias in Fw is small.
However, inspection of the data points in Fig. 7 shows that

the errors in the high-latitude region now have a negative
bias compared to before (compare Figs. 7a and 1a), while
the positive bias in the tropical region is somewhat reduced
but remains (Fig. 7b). This redistribution of biases is clearly
unsatisfying, and it may suggest that there is a missing pro-
cess that distinguishes the tropical and extratropical regions.

3.3 Influence of the temperature-modulated soil
production rate

Large seasonal changes in temperature can induce fractures
in rocks and even form deep cracks in the surface soil layer
(Liu et al., 2020), which may enhance the soil production
rate at the base of the soil layer. Thus, the much weaker sea-
sonal cycle in the tropical regions than at the higher latitudes
(Fig. 6a) may be a factor to consider when calculating the
erosion rate. To consider its influence, we assume that the
soil production Pr is dependent on the amplitude of the sea-
sonal cycle of surface temperature (defined as the difference
between the maximum and minimum monthly temperatures),
and the constant krp in Eq. (6) is now

krp =

(
e(AT−24)/c

− e−(AT−24)/c

e(AT−24)/c+ e−(AT−24)/c + b

)
· a, (13)

where AT is the amplitude of the seasonal cycle:

AT = Tmax− Tmin (K). (14)

The constant 24 (K) in Eq. (13) is roughly the amplitude of
the seasonal cycle at around 30° latitude (Fig. 8b). Across
this critical amplitude, the soil production rate increases or
decreases rapidly (Fig. 8a). Note that we have subjectively
chosen to use a logistic function in Eq. (13) so as to make
the soil production rate in the tropical region much lower
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Figure 4. The r2 (solid symbols) and r2
log (hollow symbols) calculated using different temperature, runoff and slope data. In panel (a), all

the observed catchment-weathering fluxes in Park20 are used, while in panel (b) only the 51 basins of Gaillardet et al. (1999) are used to
calculate r2 and r2

log. The runoff datasets are denoted on the x axis, and their names can be found in Fig. S3. Circles and pentagrams denote
results calculated using slope data s1 and s2, respectively. Blue and red denote results calculated using the temperature data T_CRU and
T_ERA3, respectively. The results using the temperature data T_ERA1 and T_ERA2 are very similar to that using T_ERA3 and thus are not
shown. Panels (c) and (d) are similar to panels (a) and (b), except that here the temperature is fixed to T_CRU, while colors mean different
ways of revising the erosion rate: no change (blue), the erosion rate of each basin scaled according to TSS data (orange) or cosmogenic
nuclide analysis (green).

than that in the extratropical region (Fig. 8b). This should
be sufficient for the present purpose, which is to demonstrate
whether the AT could have any significant impact on silicate
weathering. The values of a, b and c determine the minimum
values of krp and its variation with latitude, and a total of 12
combinations of a, b and c are tested (Table S5, Fig. 8a).

The forward calculation is repeated to search the param-
eter combinations (Table 2) that maximize R2 for all com-
binations of a, b and c. Results show that the best r2

log and
r2 are obtained when a, b and c are equal to 0.0244, 1.05
and 8 (yellow dotted line in Fig. 8a), respectively, when only
considering the observation data from Gaillardet and 0.015,
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Figure 5. The difference (model− observation) in silicate weathering fluxes for 81 large rivers (more details can be found in Sect. 2.2.5).
The model results are from the experiment T_CRU_R_Yves_s1_Be (Table S4), and the observation data are Gaillardet+HYBAM. The left,
middle and right panels show rivers at the mid to high latitudes (if more than half of the river basin is located at or beyond 30° latitude), low
latitudes (within 30° latitude) and over the whole globe, respectively. r2

log and r2 are 0.54 and 0.31, respectively. The global total weathering

flux is 3.95× 1012 mol yr−1.

Table 2. Model parameters and their values to be searched.

K kw σ krp Concentration (mol m−3)b

(unitless) (unitless) (unitless) (unitless) Metamorphic Sediment

5× 10−6 a 1× 10−3 -0.5* 1.2× 10−3 1500 500
1× 10−5 2× 10−3 −0.4 2× 10−3 2000 1000
2× 10−5 5× 10−3

−0.2 3× 10−3 2500 1500
5× 10−5 1× 10−2

−0.1 4× 10−3 a 3000 2000
1× 10−4 2× 10−2 0 5× 10−3 3500 2500
2× 10−4 5× 10−2 0.1 6× 10−3 a 4000 3000
5× 10−4 1× 10−1 0.3 7× 10−3 a

1× 10−3 2× 10−1 8× 10−3 a

2× 10−3 5× 10−1 9× 10−3 a

5× 10−3 1 1× 10−2

1× 10−2 1.5× 10−2

5× 10−2 a

a The data marked in italics are the additional values considered herein on top of those searched by Park20.
The bold black values represent the optimal parameters selected by Park20. b Although the range of the
cation concentration of metamorphic rocks overlaps with the sedimentary rocks, it is constrained so that the
former must be larger than the latter during the search.

2.3 and 1 (red solid line in Fig. 8a), respectively, when in-
cluding HYBAM data (Fig. 8c–d). Both r2

log and r2 are im-
proved in terms of the bias in Fw. Compared to the new con-
trol model in Sect. 3.2, Fw, corresponding to the peaks of
both r2

log and r2, is slightly closer to the observational value
(compare Fig. 8c–d to Fig. 6c–d). However, the values of r2

log
and r2, corresponding to the highest R2, are 0.201 and 0.204
when the HYBAM data are not included, remaining small.
When the HYBAM data are included for model evaluation,
the R2 value is higher but no better than that of the new con-

trol model (compare Fig. 8d to Fig. 6d). Nevertheless, this
model is superior to the new control model in that the biases
in both the tropical and extratropical regions are reduced this
time (not shown).

3.4 Implication of leached soil

Equation (9) tells us that local weathering flux is essentially
the product of the erosion rate and the difference in the con-
centration of Ca and Mg cations between the bottom and
top of the regolith. In the tropical regions, the cation con-

Geosci. Model Dev., 17, 3949–3974, 2024 https://doi.org/10.5194/gmd-17-3949-2024



H. Zuo et al.: A revised model of global silicate weathering 3961

Figure 6. The r2
log (orange) and r2 (purple-red) together with their sums (light blue) for all possible combinations of the parameters in

Table 2. Only the cases with values greater than zero are shown. The results in panels (a), (b), (c) and (d), respectively, are for experiments
R_park_s2 and R_ Yves_s2 defined in Table 1 and differ only in the runoff data used. The Gailladet and Gailladet+HYBAM are used as
observational data in the left and right panels, respectively. The black vertical line and grey zone show the observed global total weathering
flux (i.e., Fw) and its uncertainty range.

centration at the surface calculated by the Park20 model is
near 0 where mountains are absent and is consistent with
the distribution of leached soil (Figs. S6b and S8) defined in
Sect. 2.2.7. The overestimation of tropical weathering fluxes
(Fig. 1b) may thus indicate that the erosion rate in these re-
gions is slower than that calculated by the model (Eq. 7). The
cosmogenic nuclide analysis data do indicate lower erosion
rates for the vast majority of rivers in the equatorial region
than those from both TSS and the model calculation (Fig. 3b
and Table S3). Figure 4 also shows that the results of the
original Park20 model would be improved significantly if the
observed erosion rates are used. Therefore, we think it is rea-
sonable to slow down the erosion rate calculated by Eq. (7)
when the areal fraction of leached soil in a grid box at mid
to low latitudes (< 30°) is greater than 20 %; the existence
of such soil is an indication of slow erosion. The results are

only slightly different if a different criterion is used because
the areal fraction of leached soil is either very high or very
low within the tropical region (Fig. S6b). Through a number
of tests, it is found that the erosion rate by Eq. (7) should
better be slowed down by an order of magnitude in these re-
gions. The improvement of the erosion rate can be seen from
Fig. 9b.

The model results are improved significantly with the
simple change to the erosion rates above. The highest
value of R2 reaches 0.73 and 0.93 when Gaillardet and
Gaillardet+HYBAM, respectively, are used as observations
(Fig. 10). Moreover, both r2

log and r2 have high values (∼ 0.4)
when R2 is at its maximum, higher than those obtained in
Sect. 3.1 (Fig. 4c–d), where the model parameters were not
optimized. Furthermore, the tropical bias is visibly reduced
(compare Figs. 10 and 1b). These suggest that substantially
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Figure 7. The difference (model− observation) in silicate weathering fluxes for 81 large rivers (more details can be found in Sect. 2.2.5).
The model results are from the experiment R_Yves_s2 (Table S4), and the observation data are Gaillardet+HYBAM. The parameters are
those that give the maximum R2 in Fig. 6d. The upper and lower panels show model-obs and log10(model)-log10(obs), respectively. The left
(a, d), middle (b, e) and right (c, f) panels show rivers at the mid to high latitudes (if more than half of its river basin is located at or beyond
30° latitude), low latitudes (within 30° latitude) and over the whole globe, respectively. r2

log and r2 are 0.33 and 0.16, respectively. The global

total weathering flux Fw is 2.33× 1012 mol yr−1.

slowing down the tropical erosion rates calculated by the
Park20 model (Eq. 7) is an advisable choice. However, the
appearance of leached soils is obviously a manifestation, not
a reason, for the lower erosion rates. In addition, the distribu-
tion of leached soil is not available for the past or the future,
just like the observed erosion rates tested in Sect. 3.1. There-
fore, some other processes that are more fundamental and
convenient than leached soil need to be found.

3.5 Influence of vegetation

It is observed that the distribution of leached soil
(Fig. S6b) coincides with the flourishing of tropical vege-
tation (Fig. S6c, d) and may very well be a result of the
latter. Although observations from arid regions indicate that
the presence of vegetation significantly enhances mechani-
cal erosion due to a rise in precipitation rates, mechanical

erosion diminishes as vegetation cover increases in wet re-
gions, owing to the dominant protective effects of vegetation
(Mishra et al., 2019; Maffre et al., 2022). The presence of
vegetation not only reduces the impact of raindrops on soil
particles but also slows down the overland flow of water, de-
creasing the potential for soil detachment. Moreover, plant
roots and organics contribute to soil cohesion and provide
mechanical reinforcement (McMahon and Davies, 2018; Ze-
ichner et al., 2021), thus reducing the overall likelihood of
slope failures and landslides. Based on such thinking and the
approximate coincidence between the distribution of leached
soil and the region where the LAI is greater than 2, we design
a way to modulate surface erosion with vegetation:

E = E · (e−min(2,LAI)). (15)

The basinal erosion rates calculated by the model in this
way match those inferred from cosmogenic nuclide analy-
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Figure 8. Possible effect of the seasonal cycle of surface temperature on the modeled silicate weathering flux. The soil production constant
krp is assumed to depend on the amplitude of the seasonal cycle AT (b) according to the functions in panel (a). Yellow, red and blue colors
in panel (a) correspond to the three columns of Table S5, respectively. Parameter c in Eq. (14) has values of 8, 4 and 2 for the dotted,
dash-dotted and dashed lines, respectively. Panel (c) shows the r2

log (orange), r2 (purple-red) and R2 (light blue) of all possible combinations
of the parameters with the effect of AT considered. Instead of showing all the dots, only the envelopes (one for each color) are shown for
the sake of clearness; the envelopes are obtained by curve fitting (cubic spline interpolation), and the data points used to do the fitting are
still shown in the figure. Panel (d) is the same as panel (c), except that the HYBAM data are included in the observations. The results shown
in panels (c) and (d) are from the experiment R_Yves_s2_td (Table 1). The black vertical line and grey zone show the observed Fw and its
uncertainty range.

sis better than when vegetation is not considered (Fig. 9c,
d), substantiating the adjustment of erosion rate by vegeta-
tion. The erosion rates shown in Fig. 9c, d have been scaled
up uniformly by changing ke in order for the global total
erosion flux to retain a value of 20 Gt yr−1, although tests
show that it only has a slight effect on the calculated sili-
cate weathering fluxes. After considering the effect of vege-
tation, the maximum R2 can reach 0.84 (Fig. 11a, b), with the
corresponding Fw being 2.8×1012 mol yr−1 (the experiment
R_Yves_s2_LAI_global with the m1 method). Both r2

log and
r2 are also reasonably high (> 0.3, Fig. S9a). Based on these
results, here we propose that the suppression of erosion rates
by vegetation was likely underestimated in previous studies
on silicate weathering.

For the past or future, we will have to rely heavily on the
model-simulated vegetation. However, the ability of current

land models to simulate the vegetation and its response to cli-
mate change is still limited. Whether the effect of vegetation
on silicate weathering can be properly considered is contin-
gent upon how well the vegetation can be simulated. In one
of the tests, the LAI simulated by the LPJ model (Fig. S10c,
d; the experiment R_Yves_s2_LAI_old_global with the m2
method) was used. The results deteriorate substantially when
the modeled global LAI was used; the maximum R2 merely
attains a value of 0.64. This means that the defects in veg-
etation data cannot be compensated for by tuning other pa-
rameters in the weathering model. Therefore, getting better
vegetation data by either reconstruction or model simulation
is important for properly simulating silicate weathering of
the past or future.
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Figure 9. Comparison between modeled and observed erosion rates. The observed erosion rates are from the cosmogenic nuclide analysis of
Wittmann et al. (2020). Some data points (different in each panel but definitely less than 4) do not show up because the axis limits are set to
relatively smaller values for the sake of clarity (compare this to Fig. 3b), but r2

log and r2 as well as the linear correlation are calculated using
all 18 data points. Colors represent regions where the basins are located (see also Fig. 3b), and the sizes represent the area of the basins.
Panels (a)–(e) differ in the way erosion is modeled. All the model calculations use R_Yves for runoff and s2 for the surface slope and use
Eq. (7) with a different adjustment. (a) No adjustment. (b) The erosion rate is reduced by an order of magnitude where leached soils exist.
(c) The erosion rate is reduced for a large LAI (from NCAR) according to Eq. (15). (d) Same as (c) except that the LAI is from the LPJ
model. (e) Calculated by setting m in Eq. (7) to 0. In panels (c)–(e), all the values are rescaled uniformly so that the global total erosion is
20 Gt yr−1.

3.6 Final parameters

A weathering model that adopts a parameterization for the ef-
fect of vegetation on erosion reduces the systematic error in
the tropical region and is also easily applicable to other time
periods. The Fw obtained by such a revised model is also
closer to the most recently estimated global degassing flux
(Müller et al., 2022). In this section, the optimal parameter
set (that gives the highest R2) is provided for different combi-
nations of runoff and surface slope (Table 3). The top five pa-
rameter sets with the highest R2 values (ranked based on the
average R2 calculated for two sets of catchment-weathering
flux measurements, R2a and R2b in Table 3) for each case
are provided in Table 3. As can be seen, the parameter set
highlighted in bold in Table 3 is amongst the best-performing

parameter sets no matter which runoff or slope data are used.
The weathering fluxes calculated using this set of parame-
ters are much improved compared to those calculated using
the original Park20 model in terms of both individual river
basins (Fig. S11) and the global total (Fig. 11a, b). Subse-
quent calculations in this study are all based on this set of
parameters unless otherwise stated.

4 Discussion

4.1 Multiple effects of vegetation on silicate weathering

From the results presented in previous sections, we think that
the silicate weathering fluxes calculated by previous mod-
els such as Park20 were systematically overestimated over
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Figure 10. The effect of reduced erosion where leached soil is present in the modeled silicate weathering flux. Panels (a) and (b) show the
r2
log (orange), r2 (purple red) and R2 (light blue) of all possible combinations of the parameters. Similar to Fig. 8, only the envelopes and

points used to fit the envelopes are shown. The results are from the experiment R_Yves_s2_soil (Table 1). The black vertical line and the
grey zone show the observed Fw and its uncertainty range. Panel (c) shows the difference (model− observation) in silicate weathering fluxes
for 81 large rivers, similar to Fig. 7a–c except that here the results corresponding to the highest R2 in panel (b) are shown. r2

log and r2 are

0.56 and 0.37, respectively. The global total weathering flux is 2.29× 1012 mol yr−1.

the tropical region, and the overestimation was due at least
in part to the overestimated erosion rate in this region. We
thus propose that the overestimation in erosion was likely
due to the underestimated effect of tropical vegetation on re-
ducing erosion. The tests above show that this effect can be
taken into account through a simple parameterization using
the LAI, which can be obtained more easily by either recon-
struction or model simulations (Binney et al., 2017; Krapp
et al., 2021; Prentice et al., 2000; Prentice and Webb, 1998;
Shao et al., 2018; Wang et al., 2008; Woillez et al., 2011;
Yao et al., 2009; Andermann et al., 2022) for different time
periods.

However, vegetation was generally thought to enhance sil-
icate weathering by emitting organic acid (Caves Rugenstein
et al., 2019; Berner, 2004, 1992), and the appearance of veg-
etation has been linked to the occurrence of a few ice ages in

Earth’s history (Lyla et al., 2011; Lenton et al., 2012). Here
we are not arguing against such a mechanism and idea. In-
stead, we think that the ability of vegetation to enhance sili-
cate weathering is universal and has been implicitly consid-
ered in model parameters such as the dissolution constant K
in Eq. (2). In contrast, the effect of vegetation on soil protec-
tion could have been underestimated in silicate weathering
models and could be geographically dependent. It is worth
mentioning that Maffre et al. (2022) tested the effect of vege-
tation on slowing down soil erosion during the Devonian era,
when vascular plants had just landed. Their work was more
of a sensitivity study in that the observations (e.g., pCO2)
could not provide vigorous constraints, which the basinal
weathering fluxes used here do.
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Figure 11. Panels (a) and (b) show the envelopes of r2
log (orange) and r2 (purple red) and their sums (light blue) of all possible combinations

of the parameters. The effect of vegetation is considered by using the global LAI, and the global total erosion rate is scaled to 20 Gt yr−1.
Only the cases with values greater than zero are shown. The black vertical line and the grey zone show the observed Fw and its uncertainty
range. The results are from the experiment R_Yves_s2_LAI_global defined in Table 1.

4.2 Influence of runoff

Some studies propose that the influence of runoff might have
been overestimated in existing erosion rate frameworks. For
instance, in a renowned model for erosion, BQART, sen-
sitivity to runoff was adjusted downward from 0.5 to 0.31
(Syvitski and Milliman, 2007). Consequently, we did a sim-
ple test by assuming no correlation between erosion rate and
runoff, i.e., setting m in Eq. (7) to 0. As can be seen from
Fig. 9e, the model–data discrepancy is also reduced quite
significantly by this method. For weathering calculation, the
maximum R2 value obtained under this assumption is ap-
proximately 0.718 (Fig. S10), achieving a smaller improve-
ment compared to the vegetation parameterization above but
a notable one compared to other methodologies. The optimal
parameter sets obtained for this test are provided in Table 3.
A not unreasonable conjecture is that removing the depen-
dence of erosion on runoff implicitly takes into account part
of the influence of vegetation, since vegetation and runoff
generally exhibit a positive correlation under contemporary
conditions (see Figs. S3 and S6c). Because the factors affect-
ing vegetation include not just precipitation (highly related
to runoff) but also temperature, sunlight and pCO2, parame-
terizing erosion using vegetation is likely a superior way to
using runoff.

4.3 Leached soil

It is worth emphasizing that the shielding effect on sili-
cate weathering, although coincident with the distribution of
leached soil, should be attributed to heavy vegetation as the
former is likely a result of the retarding effect of the latter

on erosion. This point can be partially inferred from the dis-
tribution of leached soils (Fig. 6b), LAI (Fig. 6c), surface
slopes (Fig. S4a–b) and erosion rates (Fig. S4c–d). Leached
soils should form in regions with relatively low erosion rates
but no low silicate weathering rates. For example, regions
with the lowest erosion rates are the desert regions where
runoff is too small, but no leached soils form in these regions,
probably due to the very low weathering rate. In some low-
latitude regions where leached soils exist, the relatively low
erosion rates (Fig. S4c–d) are consistent with the relatively
small surface slope (i.e., flat terrain; Fig. S4a–b). However, in
many other places (Fig. S6b), the erosion rates are relatively
high (Fig. S4c–d) due to high runoff. These regions corre-
spond more closely to the regions with a high LAI (Fig. 6c).
Therefore, leached soils should be a result of a combination
of vegetation development and relatively flat terrain, but the
flat terrain is clearly not a necessary condition.

Godderis et al. (2008) also considered the effect of thick
regolith cover on weathering by reducing the fluid that can
reach the fresh bedrock, while we consider the effect herein
by reducing the erosion rate. The two approaches agree with
each other in that they both think that the weathering is
transport-limited (i.e., fresh rocks are not exposed for weath-
ering), but our approach is more direct and easier to apply
to the paleo periods. This is because (1) the existence of the
thick regolith cover is likely the result of weakened erosion
(as described above) and (2) knowledge of regolith cover and
thickness is unavailable for the past. Therefore, it seems bet-
ter just to optimize the parameterization for the erosion rate
directly, such as by considering the effect of land plants.
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Table 3. Parameters chosen in the case of the global LAI. Bold fonts represent the selected best-performing parameters among different slope
or runoff data.

Experiment K kw σ krp Metamorphic Sediment R2a R2b

R_Yves_s1

2× 10−5 1 −0.1 0.05 2000 1500 0.57 0.8
5×10−5 1 −0.2 0.05 2000 1500 0.56 0.78
1× 10−5 1 0 0.015 2000 1500 0.55 0.78
1× 10−4 0.5 −0.2 0.05 2000 1500 0.53 0.79
1× 10−5 0.2 0.1 0.05 2000 1500 0.54 0.78

GRUN2_s2

5×10−5 1 −0.2 0.05 2000 1500 0.11 0.57
2× 10−5 1 −0.1 0.05 2000 1500 0.11 0.54
1× 10−5 1 0 0.05 1500 1000 0.13 0.51
5× 10−6 1 0 0.05 2000 1500 0.13 0.5
2× 10−5 1 −0.1 0.05 1500 1000 0.12 0.51

R_Park_s2

1× 10−3 1 −0.5 0.05 2000 1500 0.09 0.28
5× 10−4 1 −0.4 0.05 1500 1000 0.09 0.22
5×10−5 1 −0.2 0.05 2000 1500 0.11 0.19
1× 10−3 1 −0.5 0.05 2500 1500 0.03 0.25
1× 10−3 1 −0.5 0.015 2000 1500 0.06 0.21

R_Yves_s2

5× 10−6 1 0 0.05 2000 1500 0.57 0.81
5×10−5 1 −0.2 0.05 2000 1500 0.52 0.84
2× 10−5 1 −0.1 0.015 2000 1500 0.53 0.81
2× 10−5 1 −0.1 0.05 2000 1500 0.5 0.82
1× 10−5 0.5 0 0.05 2000 1500 0.52 0.81

R_Yves_mnc

5× 10−5 1 −0.2 0.05 1500 1000 0.38 0.69
2× 10−5 1 −0.1 0.05 1500 1000 0.39 0.68
1× 10−4 0.5 −0.2 0.05 1500 1000 0.35 0.7
1× 10−5 0.5 0 0.05 1500 1000 0.39 0.65
5× 10−5 0.1 0 0.05 1500 1000 0.36 0.66

a represents the fitting metrics with the observation of Gaillardet. b represents the observation data including the HYBAM
network. c is the case that changes the erosion rate model by setting its sensitivity to the runoff to 0.

4.4 Sensitivity of global silicate weathering to climate
change

The climate data from the 4×CO2 and LGM experiments
(Sect. 2.2.2) are used to test the sensitivity of global silicate
weathering to climate change. The land surface temperature
increases from 278.4 K in the LGM to 286.6 K in the prein-
dustrial and further to 301.1 K in the 4×CO2 experiment.
Note that these changes are highly dependent on the climate
model used but do not matter for the purpose here, which is to
demonstrate the sensitivity of silicate weathering to climate
changes between the Park20 model and the revised model in
Sect. 3.6.

According to the Park20 model, the global silicate weath-
ering flux Fw increases by 1.44 (46 %) from the LGM to PI
and by 6.77 (149 %) from PI to the 4×CO2 situation (Ta-
ble 4). For the revised model, Fw increases by 0.69 (32 %)
from the LGM (experiment “RT_LGM_s2_LAI_global”
with m3 in Table 1) to PI and by 4.38 (153 %) from PI to the
4×CO2 situation (experiment “RT_4CO2_s2_LAI_global”

with m4 in Table 1). Thus, in terms of absolute values, the
revised model is less sensitive to the climate, but in terms of
relative values, the revised model is very similar to the origi-
nal model. Because the relative change in the silicate weath-
ering flux largely determines the relative change in pCO2
(see Eq. 2 of Goddéris et al., 2023), which determines the
climate change, the weathering–climate sensitivity of the re-
vised model is similar to that of the original model. How-
ever, due to the fact that Fw and its variations (in terms of
absolute values) in the revised model are much smaller than
before, other processes such as the burial of organic carbon
may have been more important in Earth’s carbon cycle than
thought before.

Note that, although the LGM and 4×CO2 climates are
used above to demonstrate the weathering–climate sensi-
tivity, the timescales implied by these two experiments are
only 10 000 and 100 years, respectively. These timescales are
too short to be appropriate for the weathering models here,
which assume that the weathering has reached a steady state;
when the climate changes, vegetation may respond quickly
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(∼ 100 years), but the regolith layer and thus the weathering
take a very long time to reach a new steady state.

4.5 Caveats and future directions

The previously used measure for model–data discrepancy is
r2

log, the maximization of which essentially optimizes the ra-
tio between the model and the data. This measure has its ad-
vantages, but as we have shown above, such a measure can-
not prevent the occurrence of a systematic error in the ab-
solute difference between the model and the data (Fig. 1b).
Optimizing r2, on the other hand, tends to underestimate Fw.
We thus propose optimizing the sum of r2

log and r2 (i.e., R2)
so that Fw is nearest to the observation. It turns out that
simply maximizing R2, while largely removing the system-
atic bias, would give very low values for both r2

log and r2

(Fig. 7), meaning that changing the measure for model–data
discrepancy alone cannot improve the model. To resolve the
problem, certain physical processes have to be rectified, e.g.,
by invoking the influence of vegetation on erosion. A rela-
tively satisfactory fit was finally obtained. However, R2 is
still a subjective choice which may not be ideal. For example,
R2 measures the overall degree of dispersion of the model-
calculated fluxes around the observed fluxes, but it does not
measure the correlation in spatial patterns. This may be one
way to improve the measure for model–data discrepancy in
the future.

The erosion rates derived from cosmogenic nuclides, as
compared to those obtained from TSS, significantly alleviate
the issue of overestimation of tropical weathering fluxes cal-
culated by the model (see Fig. 4c, d). This improvement is
likely due to the fact that the erosion rates derived from the
cosmogenic nuclide analysis represent the erosion for long
timescales, whereas TSS may have been substantially con-
taminated by human activities such as land use and defor-
estation (Hewawasam et al., 2003). Additionally, TSS could
have been eroded primarily from near the river mouth, over-
estimating the erosion, or substantial deposition may have
occurred on the way, underestimating the erosion (Wittmann
et al., 2020). The major problem with the cosmogenic nuclide
data is that they only cover a limited number of river basins.
Both datasets also have the problem that neither of them can
provide the spatial distribution of erosion distribution within
river basins. Given the large area of many of the river basins
(Fig. 3; the size of the circle represents the area of the river
basins), uneven distribution of erosion within the river basin
could have a great influence on the modeled weathering flux.
More detailed observations of erosion rates and the related
mechanisms are clearly needed in the future.

Although it seems that a simple parameterization for re-
ducing the erosion rate by vegetation (Eq. 15) works well in
improving model–data comparison, it must be noted that this
may not be the sole or best resolution. The influence of vege-
tation on erosion may also depend on the local environment,
which we have refrained from delving into further, primar-

ily due to the plethora of uncertainties and insufficient con-
straints. Future observational evidence will be required to of-
fer support for better parameterization. Another process that
may be considered is the horizontal transport and deposition
of materials. The current model is a one-dimensional one in
which the regolith or soil comes from the bottom only, while
in reality the soils can be eroded away easily and transported
to another location, changing the local profile of the cation
concentration.

5 Summary

A silicate weathering model that explicitly considers the re-
golith profile based on the formulation of GM09 and Park20
is studied in detail. This model has more than five under-
determined parameters which need to be constrained by the
observed weathering fluxes for multiple river basins or wa-
tersheds over the globe. In doing so, the model–data discrep-
ancy was normally measured by r2

log (Eq. 11; larger values
mean smaller discrepancies), and the parameter space was
then searched to maximize r2

log. This method focuses more
on minimizing the relative error (or discrepancy) than the ab-
solute error. We demonstrate that the parameters determined
this way tend to systematically overestimate the weathering
fluxes over the tropical region, which leads to a significant
overestimation of the global total flux Fw (Fig. 1). In addi-
tion, we show that such a problem is not due to uncertainties
in the climate and surface slope data. We thus propose us-
ing R2= r2

log+ r
2 as a new measure of model–data discrep-

ancy, the maximization of which reduces both the relative
and absolute errors in a more balanced way. By searching
for the optimal parameters using this new measure, globally
unbiased weathering fluxes are indeed obtained (Figs. 6 and
7c). However, the bias is removed by increasing the bias over
the extratropical region (Fig. 7a) rather than by reducing the
bias over the tropical region (Fig. 7b). Moreover, the model–
data discrepancy is large; either r2

log or r2 is small. Therefore,
some other processes must be considered to reduce the bias
over the tropical region and to reduce the model–data dis-
crepancy.

The influence of the seasonal cycle of temperature on soil
production is tested first based on the consideration that a
stronger seasonal cycle can fracture and shatter rocks more
easily. Little improvement can be achieved by such consid-
eration (Fig. 8c, d). Next, the erosion rate is reduced in trop-
ical regions where there are leached soils. It is found that
the model–data discrepancy of silicate weathering fluxes is
greatly reduced in this test (Fig. 10). Due to the fact that
leached soil is the result, not the cause, of weakened erosion
and the fact that the distribution of leached soil is almost co-
incident with that of forest, we propose that heavy vegetation
is able to slow down erosion significantly. A simple parame-
terization is then put forward to consider the effect of vege-
tation on erosion by using the global LAI (Eq. 15). The LAI
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Table 4. Sensitivity of global silicate weathering to climate.

Variable Climate case

LGM PI Abrupt4×CO2 PI-LGM 4×CO2-PI

Land surface temperature (K) 278.4 286.6 301.1 8.2 14.5

Global Ca2+
+Mg2+ (×1012 mol yr−1) Park20 model 3.10 4.54 11.31 1.44 (46 %) 6.77 (149 %)

Revised model 2.17 2.86 7.24 0.69 (32 %) 4.38 (153 %)

is used because it is relatively easy to obtain for other peri-
ods of Earth’s history from Earth system model simulations.
The Park20 model is revised to add this parameterization,
and the model parameters are re-optimized using criterion
R2 (Table 3). This revised model fits the observed weather-
ing fluxes better than the original Park20 model (Fig. 11),
and the modeled Fw is more consistent with both the obser-
vation and the most recently constructed global outgassing.
Note that we are not against the idea of the evolution of land
plants in Earth-enhanced silicate weathering: it is just that
heavy vegetation could hinder silicate weathering by slow-
ing down erosion over rainy regions. High precipitation and
runoff in these regions would otherwise induce high erosion
rates.

The revised model simulates a much smaller Fw than the
original Park20 model. Correspondingly, the changes in Fw
also become smaller under the same climate changes (Ta-
ble 4), although the relative changes in Fw remain similar
to the original model. If the revised model is reliable, it im-
plies that the variations of other sinks of carbon such as or-
ganic carbon could have played a more important role than
previously thought in the models. It will be interesting to see
how the reconstruction of the Phanerozoic carbon cycle using
models (e.g., Berner and Kothavala, 2001) will be impacted
when the shielding effect of vegetation on silicate weathering
as proposed herein is considered.

Code and data availability. The main code and data can be found
at https://doi.org/10.5281/zenodo.8423769 (Zuo, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-3949-2024-supplement.

Author contributions. HZ developed the model and ran all the sim-
ulations. HZ played the pivotal role in improving the model, to
which YL contributed. YL designed the project and wrote the first
draft together with HZ. All the authors contributed to the analyses
and editing of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We are grateful to Wenjing Liu for providing
us with guidance on the source of the observational data and for
revising the article.

Financial support. This work is supported by the National Natu-
ral Science Foundation of China (grant no. 42488201) and the Na-
tional Key Research and Development Program of China (grant
no. 2022YFF0800200). Zhifang Xu is supported by the National
Key Research and Development 415 Program of China (grant
no. 2020YFA0607700).

Review statement. This paper was edited by Lele Shu and reviewed
by Pierre Maffre and two anonymous referees.

References

Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath,
A. M., and Hodges, K. V.: Climate controls on erosion
in tectonically active landscapes, Sci. Adv., 6, eaaz3166,
https://doi.org/10.1126/sciadv.aaz3166, 2020.

Allen, J., Forrest, M., Hickler, T., Singarayer, J., Valdes, P., and
Huntley, B.: Global vegetation patterns of the past 140,000 years,
J. Biogeogr., 47, 2073–2090, https://doi.org/10.1111/jbi.13930,
2020.

Amiotte Suchet, P., Probst, J.-L., and Ludwig, W.: Worldwide dis-
tribution of continental rock lithology: Implications for the atmo-
spheric/soil CO2 uptake by continental weathering and alkalinity
river transport to the oceans, Global Biogeochem. Cy., 17, 1038,
https://doi.org/10.1029/2002GB001891, 2003.

Andermann, T., Strömberg, C. A. E., Antonelli, A., and Silvestro,
D.: The origin and evolution of open habitats in North America
inferred by Bayesian deep learning models, Nat. Commun., 13,
4833, https://doi.org/10.1038/s41467-022-32300-5, 2022.

Anderson, R.: Modeling the tor-dotted crests, bedrock edges,
and parabolic profiles of high alpine surfaces of the

https://doi.org/10.5194/gmd-17-3949-2024 Geosci. Model Dev., 17, 3949–3974, 2024

https://doi.org/10.5281/zenodo.8423769
https://doi.org/10.5194/gmd-17-3949-2024-supplement
https://doi.org/10.1126/sciadv.aaz3166
https://doi.org/10.1111/jbi.13930
https://doi.org/10.1029/2002GB001891
https://doi.org/10.1038/s41467-022-32300-5


3970 H. Zuo et al.: A revised model of global silicate weathering

Wind River Range, Wyoming, Geomorphology, 46, 35–58,
https://doi.org/10.1016/S0169-555X(02)00053-3, 2002.

Berner, E. K. and Berner, R. A.: Global Environment: Water, Air,
and Geochemical Cycles – Second Edition, 2, Princeton Univer-
sity Press, https://doi.org/10.2307/j.ctv30pnvjd, 2012.

Berner, R.: The Phanerozoic Carbon Cy-
cle: CO2 and O2, Oxford Academic,
https://doi.org/10.1093/oso/9780195173338.001.0001, 2004.

Berner, R., Lasaga, A., and Garrells, R.: The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon diox-
ide over the past 100 million years, Am. J. Sci, 283, 641–683,
https://doi.org/10.2475/ajs.283.7.641, 1983.

Berner, R. A.: A model for atmospheric CO2 over Phanerozoic time,
Am. J. Sci., 291, 339, https://doi.org/10.2475/ajs.291.4.339,
1991.

Berner, R. A.: Weathering, plants, and the long-term car-
bon cycle, Geochim. Cosmochim. Ac., 56, 3225–3231,
https://doi.org/10.1016/0016-7037(92)90300-8, 1992.

Berner, R. A. and Caldeira, K.: The need for mass bal-
ance and feedback in the geochemical carbon cycle,
Geology, 25, 955–956, https://doi.org/10.1130/0091-
7613(1997)025<0955:TNFMBA>2.3.CO;2, 1997.

Berner, R. A. and Kothavala, Z.: GEOCARB III: A revised model of
atmospheric CO2 over phanerozoic time, Am. J. Sci., 301, 182–
204, https://doi.org/10.2475/ajs.301.2.182, 2001.

Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A.,
Anderson, P., Kaplan, J. O., Andreev, A., Bezrukova, E.,
Blyakharchuk, T., Jankovska, V., Khazina, I., Krivonogov,
S., Kremenetski, K., Nield, J., Novenko, E., Ryabogina, N.,
Solovieva, N., Willis, K., and Zernitskaya, V.: Vegetation
of Eurasia from the last glacial maximum to present: Key
biogeographic patterns, Quaternary Sci. Rev., 157, 80–97,
https://doi.org/10.1016/j.quascirev.2016.11.022, 2017.

Blanckenburg, F., Bouchez, J., and Wittmann, H.: Earth
surface erosion and weathering from the 10Be (mete-
oric)/9Be ratio, Earth Planet. Sc. Lett., 351–352, 295–305,
https://doi.org/10.1016/j.epsl.2012.07.022, 2012.

Bluth, G. and Kump, L.: Lithologic and climatologic controls of
river chemistry, Geochim. Cosmochim. Ac., 58, 2341–2359,
https://doi.org/10.1016/0016-7037(94)90015-9, 1994.

Brantley, S. L., Bandstra, J., Moore, J., and White, A. F.: Modelling
chemical depletion profiles in regolith, Geoderma, 145, 494–504,
https://doi.org/10.1016/j.geoderma.2008.02.010, 2008.

Burke, B., Heimsath, A., and White, A.: Coupling chemical weath-
ering with soil production across soil-landscapes, Earth Surf.
Proc. Land., 32, 853–873, https://doi.org/10.1002/esp.1443,
2007.

Calabrese, S., Wild, B., Bertagni, M. B., Bourg, I. C., White,
C., Aburto, F., Cipolla, G., Noto, L. V., and Porporato,
A.: Nano- to global-scale uncertainties in terrestrial en-
hanced weathering, Environ. Sci. Technol., 56, 15261–15272,
https://doi.org/10.1021/acs.est.2c03163, 2022.

Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha,
L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S.,
Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampun-
gani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and Other
Biogeochemical Cycles and Feedbacks, in: Climate Change 2021
– The Physical Science Basis: Working Group I Contribution
to the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change, edited by: Intergovernmental Panel on Cli-
mate, C., Cambridge University Press, Cambridge, 673–816,
https://doi.org/10.1017/9781009157896.007, 2023.

Carretier, S., Goddéris, Y., Delannoy, T., and Rouby, D.:
Mean bedrock-to-saprolite conversion and erosion rates dur-
ing mountain growth and decline, Geomorphology, 209, 39–52,
https://doi.org/10.1016/j.geomorph.2013.11.025, 2014.

Carretier, S., Goddéris, Y., Martinez, J., Reich, M., and Mar-
tinod, P.: Colluvial deposits as a possible weathering reser-
voir in uplifting mountains, Earth Surf. Dynam., 6, 217–237,
https://doi.org/10.5194/esurf-6-217-2018, 2018.

Caves Rugenstein, J., Ibarra, D., Zhang, S., Planavsky,
N., and Blanckenburg, F.: Isotope mass-balance con-
straints preclude that mafic weathering drove Neogene
cooling, P. Natl. Acad. Sci. USA, 118, e2026345118,
https://doi.org/10.1073/pnas.2026345118, 2021.

Caves Rugenstein, J. K., Ibarra, D. E., and von Blancken-
burg, F.: Neogene cooling driven by land surface reactivity
rather than increased weathering fluxes, Nature, 571, 99–102,
https://doi.org/10.1038/s41586-019-1332-y, 2019.

Danabasoglu, G.: NCAR CESM2 model output
prepared for CMIP6 CMIP, WCRP [data set],
https://doi.org/10.22033/ESGF/CMIP6.2185, 2019.

Dannhaus, N., Wittmann, H., Krám, P., Christl, M., and Blanck-
enburg, F.: Catchment-wide weathering and erosion rates of
mafic, ultramafic, and granitic rock from cosmogenic meteoric
10 Be/ 9 Be ratios, Geochim. Cosmochim. Ac., 222, 618–641,
https://doi.org/10.1016/j.gca.2017.11.005, 2017.

D’Antonio, M., Ibarra, D., and Boyce, C.: Land plant evolution
decreased, rather than increased, weathering rates, Geology, 48,
29–33, https://doi.org/10.1130/G46776.1, 2019.

Davy, P. and Crave, A.: Upscaling local-scale transport processes
in large-scale relief dynamics, Phys. Chem. Earth., 25, 533–541,
https://doi.org/10.1016/S1464-1895(00)00082-X, 2000.

Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P.,
Dosseto, A., Gorge, C., Alanoca, L., and Maurice, L.: Riverine
Li isotope fractionation in the Amazon River basin controlled by
the weathering regimes, Geochim. Cosmochim. Ac., 164, 71–93,
https://doi.org/10.1016/j.gca.2015.04.042, 2015.

Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and Allègre,
C. J.: Basalt weathering laws and the impact of basalt weath-
ering on the global carbon cycle, Chem. Geol., 202, 257–273,
https://doi.org/10.1016/j.chemgeo.2002.10.001, 2003.

Dietrich, W., Reiss, R., Hsu, M.-L., and Montgomery, D.: A
process-based model for colluvial soil depth and shallow lands-
liding using digital elevation data, Hydrol. Process., 9, 383–400,
https://doi.org/10.1002/hyp.3360090311, 1995.

Dixon, J., Heimsath, A., and Amundson, R.: Critical role of cli-
mate and saprolite weathering in landscape evolution, Earth Surf.
Proc. Land., 34, 1507–1521, https://doi.org/10.1002/esp.1836,
2009.

Edmond, J. M., Palmer, M. R., Measures, C. I., Grant, B., and Stal-
lard, R. F.: The fluvial geochemistry and denudation rate of the
Guayana Shield in Venezuela, Colombia, and Brazil, Geochim.
Cosmochim. Ac., 59, 3301–3325, https://doi.org/10.1016/0016-
7037(95)00128-M, 1995.

Emerson, S. and Hedges, J.: Chemical Oceanography and the Ma-
rine Carbon Cycle, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511793202, 2008.

Geosci. Model Dev., 17, 3949–3974, 2024 https://doi.org/10.5194/gmd-17-3949-2024

https://doi.org/10.1016/S0169-555X(02)00053-3
https://doi.org/10.2307/j.ctv30pnvjd
https://doi.org/10.1093/oso/9780195173338.001.0001
https://doi.org/10.2475/ajs.283.7.641
https://doi.org/10.2475/ajs.291.4.339
https://doi.org/10.1016/0016-7037(92)90300-8
https://doi.org/10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
https://doi.org/10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
https://doi.org/10.2475/ajs.301.2.182
https://doi.org/10.1016/j.quascirev.2016.11.022
https://doi.org/10.1016/j.epsl.2012.07.022
https://doi.org/10.1016/0016-7037(94)90015-9
https://doi.org/10.1016/j.geoderma.2008.02.010
https://doi.org/10.1002/esp.1443
https://doi.org/10.1021/acs.est.2c03163
https://doi.org/10.1017/9781009157896.007
https://doi.org/10.1016/j.geomorph.2013.11.025
https://doi.org/10.5194/esurf-6-217-2018
https://doi.org/10.1073/pnas.2026345118
https://doi.org/10.1038/s41586-019-1332-y
https://doi.org/10.22033/ESGF/CMIP6.2185
https://doi.org/10.1016/j.gca.2017.11.005
https://doi.org/10.1130/G46776.1
https://doi.org/10.1016/S1464-1895(00)00082-X
https://doi.org/10.1016/j.gca.2015.04.042
https://doi.org/10.1016/j.chemgeo.2002.10.001
https://doi.org/10.1002/hyp.3360090311
https://doi.org/10.1002/esp.1836
https://doi.org/10.1016/0016-7037(95)00128-M
https://doi.org/10.1016/0016-7037(95)00128-M
https://doi.org/10.1017/CBO9780511793202


H. Zuo et al.: A revised model of global silicate weathering 3971

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R.,
Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth,
L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner,
M., Oskin, M., Burbank, D., and Alsdorf, D.: The shut-
tle radar topography mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.

Fekete, B., Vörösmarty, C. J., and Grabs, W.: Highresolution
fields of global runoff combining river discharge and simu-
lated water balances, Global Biogeochem. Cy., 16, 15-1–15-10,
https://doi.org/10.1029/1999GB001254, 2002.

FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil
Database (version 1.2), FAO, Rome, Italy and IIASA, Lax-
enburg, Austria [data set], https://webarchive.iiasa.ac.at/
Research/LUC/External-World-soil-database/HTML/ (last
access: 1 December 2021), 2012.

France-Lanord, C. and Derry, L. A.: Organic carbon burial forcing
of the carbon cycle from Himalayan erosion, Nature, 390, 65–67,
https://doi.org/10.1038/36324, 1997.

Gabet, E. J. and Mudd, S. M.: A theoretical model coupling chem-
ical weathering rates with denudation rates, Geology, 37, 151–
154, https://doi.org/10.1130/G25270A.1, 2009.

Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global
silicate weathering and CO2 consumption rates deduced from
the chemistry of large rivers, Chem. Geol., 159, 3–30,
https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.

Galy, A. and France-Lanord, C.: Weathering processes in the
Ganges–Brahmaputra basin and the riverine alkalinity bud-
get, Chem. Geol., 159, 31–60, https://doi.org/10.1016/S0009-
2541(99)00033-9, 1999.

Gasparini, N., Whipple, K., and Bras, R.: Predictions of steady
state and transient landscape morphology using sediment-flux-
dependent river incision models, J. Geophys. Res., 112, F03S09,
https://doi.org/10.1029/2006JF000567, 2007.

Gerlach, T.: Volcanic versus anthropogenic car-
bon dioxide, Eos Trans. Agu, 92, 201–202,
https://doi.org/10.1029/2011EO240001, 2011.

Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson,
L.: GRUN: an observation-based global gridded runoff dataset
from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674,
https://doi.org/10.5194/essd-11-1655-2019, 2019.

Gibbs, M., Bluth, G., Fawcett, P., and Kump, L.: Global chemical
erosion over the last 250 MY: Variations due to changes in pa-
leogeography, paleoclimate, and paleogeology, Am. J. Sci, 299,
611–651, https://doi.org/10.2475/ajs.299.7-9.611, 1999.

Godderis, Y., Donnadieu, Y., Tombozafy, M., and Dessert, C.:
Shield effect on continental weathering: Implication for climatic
evolution of the Earth at the geological timescale, Geoderma,
145, 439–448, https://doi.org/10.1016/j.geoderma.2008.01.020,
2008.

Goddéris, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G., Ma-
couin, M., and Regard, V.: Onset and ending of the late Palaeo-
zoic ice age triggered by tectonically paced rock weathering, Nat.
Geosci., 10, 382–386, https://doi.org/10.1038/ngeo2931, 2017.

Goddéris, Y., Donnadieu, Y., and Mills, B. J. W.: What mod-
els tell us about the evolution of carbon sources and sinks
over the Phanerozoic, Annu. Rev. Earth Pl. Sc., 51, 471–492,
https://doi.org/10.1146/annurev-earth-032320-092701, 2023.

Gruber, C., Zhu, C., Georg, R. B., Zakon, Y., and Ganor,
J.: Resolving the gap between laboratory and field rates of

feldspar weathering, Geochim. Cosmochim. Ac., 147, 90–106,
https://doi.org/10.1016/j.gca.2014.10.013, 2014.

Harel, M. A., Mudd, S. M., and Attal, M.: Global analy-
sis of the stream power law parameters based on world-
wide 10Be denudation rates, Geomorphology, 268, 184–196,
https://doi.org/10.1016/j.geomorph.2016.05.035, 2016.

Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated
high-resolution grids of monthly climatic observations –
The CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.

Hartmann, J. and Moosdorf, N.: The new global lithological
map database GLiM: A representation of rock properties at
the Earth surface, Geochem. Geophy. Geosy., 13, Q12004,
https://doi.org/10.1029/2012gc004370, 2012.

Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köh-
ler, P.: Global CO2-consumption by chemical weather-
ing: What is the contribution of highly active weath-
ering regions?, Global Planet. Change, 69, 185–194,
https://doi.org/10.1016/j.gloplacha.2009.07.007, 2009.

Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West,
A. J.: Global chemical weathering and associated P-release – The
role of lithology, temperature and soil properties, Chem. Geol.,
363, 145–163, https://doi.org/10.1016/j.chemgeo.2013.10.025,
2014.

Heimsath, A. and Korup, O.: Quantifying rates and processes
of landscape evolution, Earth Surf. Proc. Land., 37, 249–251,
https://doi.org/10.1002/esp.2251, 2012.

Heimsath, A., Dietrich, W., Nishiizumi, K., and Finkel, R.: Cosmo-
genic nuclides, topography, and the spatial variation of soil depth,
Geomorphology, 27, 151–172, https://doi.org/10.1016/S0169-
555X(98)00095-6, 1999.

Heimsath, A., Fink, D., and Hancock, G.: The “humped” soil pro-
duction function: Eroding Arnhem Land, Australia, Earth Surf.
Proc. Land., 34, 1674–1684, https://doi.org/10.1002/esp.1859,
2009.

Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.:
The soil production function and landscape equilibrium, Nature,
388, 358–361, https://doi.org/10.1038/41056, 1997.

Hewawasam, T., von Blanckenburg, F., Schaller, M., and Ku-
bik, P.: Increase of human over natural erosion rates in
tropical highlands constrained by cosmogenic nuclides,
Geology, 31, 597–600, https://doi.org/10.1130/0091-
7613(2003)031<0597:IOHONE>2.0.CO;2, 2003.

Hilton, R. G. and West, A. J.: Mountains, erosion and
the carbon cycle, Nat. Rev. Earth Env., 1, 284–299,
https://doi.org/10.1038/s43017-020-0058-6, 2020.

Howard, A.: A detachment-limited model of drainage-
basin Evolution, Water Resour. Res., 30, 2261–2285,
https://doi.org/10.1029/94WR00757, 1994.

Hu, Y., Teng, F.-Z., Plank, T., and Chauvel, C.: Potassium iso-
topic heterogeneity in subducting oceanic plates, Sci. Adv., 6,
eabb2472, https://doi.org/10.1126/sciadv.abb2472, 2020.

Ibarra, D. E., Rugenstein, J. K. C., Bachan, A., Baresch, A.,
Lau, K. V., Thomas, D. L., Lee, J.-E., Boyce, C. K., and
Chamberlain, C. P.: Modeling the consequences of land plant
evolution on silicate weathering, Am. J. Sci, 319, 1–43,
https://doi.org/10.2475/01.2019.01, 2019.

Kalderon-Asael, B., Katchinoff, J., Planavsky, N., Hood, A.,
Dellinger, M., Bellefroid, E., Jones, D., Hofmann, A., Ossa,

https://doi.org/10.5194/gmd-17-3949-2024 Geosci. Model Dev., 17, 3949–3974, 2024

https://doi.org/10.1029/2005RG000183
https://doi.org/10.1029/1999GB001254
https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
https://doi.org/10.1038/36324
https://doi.org/10.1130/G25270A.1
https://doi.org/10.1016/S0009-2541(99)00031-5
https://doi.org/10.1016/S0009-2541(99)00033-9
https://doi.org/10.1016/S0009-2541(99)00033-9
https://doi.org/10.1029/2006JF000567
https://doi.org/10.1029/2011EO240001
https://doi.org/10.5194/essd-11-1655-2019
https://doi.org/10.2475/ajs.299.7-9.611
https://doi.org/10.1016/j.geoderma.2008.01.020
https://doi.org/10.1038/ngeo2931
https://doi.org/10.1146/annurev-earth-032320-092701
https://doi.org/10.1016/j.gca.2014.10.013
https://doi.org/10.1016/j.geomorph.2016.05.035
https://doi.org/10.1002/joc.3711
https://doi.org/10.1029/2012gc004370
https://doi.org/10.1016/j.gloplacha.2009.07.007
https://doi.org/10.1016/j.chemgeo.2013.10.025
https://doi.org/10.1002/esp.2251
https://doi.org/10.1016/S0169-555X(98)00095-6
https://doi.org/10.1016/S0169-555X(98)00095-6
https://doi.org/10.1002/esp.1859
https://doi.org/10.1038/41056
https://doi.org/10.1130/0091-7613(2003)031<0597:IOHONE>2.0.CO;2
https://doi.org/10.1130/0091-7613(2003)031<0597:IOHONE>2.0.CO;2
https://doi.org/10.1038/s43017-020-0058-6
https://doi.org/10.1029/94WR00757
https://doi.org/10.1126/sciadv.abb2472
https://doi.org/10.2475/01.2019.01


3972 H. Zuo et al.: A revised model of global silicate weathering

F., Macdonald, F., Wang, C., Isson, T., Murphy, J., Hig-
gins, J., West, A. J., Wallace, M., Asael, D., and Pogge von
Strandmann, P.: A lithium-isotope perspective on the evo-
lution of carbon and silicon cycles, Nature, 595, 394–398,
https://doi.org/10.1038/s41586-021-03612-1, 2021.

Krapp, M., Beyer, R. M., Edmundson, S. L., Valdes, P. J., and
Manica, A.: A statistics-based reconstruction of high-resolution
global terrestrial climate for the last 800,000 years, Sci. Data, 8,
228, https://doi.org/10.1038/s41597-021-01009-3, 2021.

Lague, D.: The stream power river incision model: evidence,
theory and beyond, Earth Surf. Proc. Land., 39, 38–61,
https://doi.org/10.1002/esp.3462, 2014.

Larsen, I. J., Almond, P. C., Eger, A., Stone, J. O., Montgomery,
D. R., and Malcolm, B.: Rapid soil production and weather-
ing in the Southern Alps, New Zealand, Science, 343, 637–640,
https://doi.org/10.1126/science.1244908, 2014.

Lawrence, P. and Chase, T.: Representing a new MODIS
consistent land surface in the Community Land
Model (CLM 3.0), J. Geophys. Res., 112, G01023,
https://doi.org/10.1029/2006JG000168, 2007.

Lécuyer, C.: Seawater residence times of some elements of
geochemical interest and the salinity of the oceans, Bul-
letin de la Société Géologique de France, 187, 245–260,
https://doi.org/10.2113/gssgfbull.187.6.245, 2016.

Lee, C.-T. A., Jiang, H., Dasgupta, R., and Torres, M.: A framework
for understanding whole-Earth carbon cycling, in: Deep Carbon,
313–357, https://doi.org/10.1017/9781108677950.011, 2019.

Lenton, T. M., Crouch, M., Johnson, M., Pires, N., and Dolan,
L.: First plants cooled the Ordovician, Nat. Geosci., 5, 86–89,
https://doi.org/10.1038/ngeo1390, 2012.

Li, S., Li, W., Beard, B. L., Raymo, M. E., Wang, X., Chen, Y., and
Chen, J.: K isotopes as a tracer for continental weathering and
geological K cycling, P. Natl. Acad. Sci. USA, 116, 8740–8745,
https://doi.org/10.1073/pnas.1811282116, 2019.

Li, X., Hu, Y., Yang, J., Wei, M., Guo, J., Lan, J., Lin, Q., Yuan,
S., Zhang, J., Wei, Q., Liu, Y., Nie, J., Xia, Y., and Hu, S.:
Climate variations in the past 250 million years and contribut-
ing factors, Paleoceanogr. Paleoclimatol., 38, e2022PA004503,
https://doi.org/10.1029/2022pa004503, 2023.

Liu, Y., Yang, J., Bao, H., Shen, B., and Hu, Y.: Large equatorial
seasonal cycle during Marinoan snowball Earth, Sci. Adv., 6,
eaay2471, https://doi.org/10.1126/sciadv.aay2471, 2020.

Lyla, T., Steve, B., Jonathan, L., and David, J. B.: Modeling the evo-
lutionary rise of ectomycorrhiza on sub-surface weathering envi-
ronments and the geochemical carbon cycle, Am. J. Sci., 311,
369, https://doi.org/10.2475/05.2011.01, 2011.

Maffre, P., Ladant, J.-B., Moquet, J.-S., Carretier, S., Labat,
D., and Goddéris, Y.: Mountain ranges, climate and weath-
ering. Do orogens strengthen or weaken the silicate weath-
ering carbon sink?, Earth Planet. Sc. Lett., 493, 174–185,
https://doi.org/10.1016/j.epsl.2018.04.034, 2018.

Maffre, P., Godderis, Y., Pohl, A., Donnadieu, Y., Carretier,
S., and Hir, G.: The complex response of continental sili-
cate rock weathering to the colonization of the continents by
vascular plants in the Devonian, Am. J. Sci, 322, 461–492,
https://doi.org/10.2475/03.2022.02, 2022.

Maher, K.: The dependence of chemical weathering rates on
fluid residence time, Earth Planet. Sc. Lett., 294, 101–110,
https://doi.org/10.1016/j.epsl.2010.03.010, 2010.

Maher, K. and Chamberlain, C. P.: Hydrologic regulation of chem-
ical weathering and the geologic, Science, 343, 1502–1504,
https://doi.org/10.1126/science.1250770, 2014.

McMahon, W. J. and Davies, N. S.: Evolution of alluvial mu-
drock forced by early land plants, Science, 359, 1022–1024,
https://doi.org/10.1126/science.aan4660, 2018.

Meybeck, M.: Global chemical weathering of surficial rocks esti-
mated from river dissolved loads, Am. J. Sci., 287, 401–428,
https://doi.org/10.2475/ajs.287.5.401, 1987.

Milliman, J. and Farnsworth, K.: River Discharge to the Coastal
Ocean – A Global Synthesis, Cambridge University Press,
https://doi.org/10.1017/CBO9780511781247, 2011.

Milliman, J. and Syvitski, J.: Geomorphic tectonic control of sedi-
ment discharge to ocean – The importance of small mountainous
rivers, J. Geol., 100, 525–544, https://doi.org/10.1086/629606,
1991.

Milliman, J. D., Rutkowski, C., and Meybeck, M.: River dis-
charge to the sea; a global river index (GLORI), loicz
reports & studies, no. 2, https://www.futureearthcoasts.org/
report-and-study-series/ (last access: 15 June 2022), 1995.

Mills, B. J. W., Donnadieu, Y., and Goddéris, Y.: Spa-
tial continuous integration of Phanerozoic global bio-
geochemistry and climate, Gondwana Res., 100, 73–86,
https://doi.org/10.1016/j.gr.2021.02.011, 2021.

Mishra, A., Placzek, C., and Jones, R.: Coupled influence
of precipitation and vegetation on millennial-scale ero-
sion rates derived from 10Be, PLOS ONE, 14, e0211325,
https://doi.org/10.1371/journal.pone.0211325, 2019.

Moon, S., Chamberlain, C. P., and Hilley, G. E.: New es-
timates of silicate weathering rates and their uncertainties
in global rivers, Geochim. Cosmochim. Ac., 134, 257–274,
https://doi.org/10.1016/j.gca.2014.02.033, 2014.

Moquet, J.-S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bour-
rel, L., Chavarri, E., Lagane, C., Laraque, A., Lavado, W.,
Pombosa, R., Noriega, L., Vera, A., and Guyot, J.-L.: Chem-
ical weathering and atmospheric/soil CO2 uptake in the An-
dean and Foreland Amazon basins, Chem. Geol., 287, 1–26,
https://doi.org/10.1016/j.chemgeo.2011.01.005, 2011.

Moquet, J.-S., Guyot, J.-L., Crave, A., Viers, J., Filizola Jr, N.,
Martinez, J., Oliveira, T., Hidalgo Sánchez, L., Lagane, C.,
Lavado, W., Noriega, L., and Pombosa, R.: Amazon River dis-
solved load: temporal dynamics and annual budget from the An-
des to the ocean, Environ. Sci. Pollut. R., 23, 11405–11429,
https://doi.org/10.1007/s11356-015-5503-6, 2016.

Moquet, J.-S., Guyot, J.-L., Morera, S., Crave, A., Rau, P., Vauchel,
P., Lagane, C., Sondag, F., Lavado, W., Pombosa, R., and Mar-
tinez, J.: Temporal variability and annual budget of inorganic dis-
solved matter in Andean Pacific Rivers located along a climate
gradient from northern Ecuador to southern Peru, Cr. Geosci.,
350, 76–87, https://doi.org/10.1016/j.crte.2017.11.002, 2018.

Müller, R. D., Mather, B., Dutkiewicz, A., Keller, T., Merdith, A.,
Gonzalez, C. M., Gorczyk, W., and Zahirovic, S.: Evolution of
Earth’s tectonic carbon conveyor belt, Nature, 605, 629–639,
https://doi.org/10.1038/s41586-022-04420-x, 2022.

Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to
present, Copernicus Climate Change Service (C3S) Climate Data
Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30,
2019.

Geosci. Model Dev., 17, 3949–3974, 2024 https://doi.org/10.5194/gmd-17-3949-2024

https://doi.org/10.1038/s41586-021-03612-1
https://doi.org/10.1038/s41597-021-01009-3
https://doi.org/10.1002/esp.3462
https://doi.org/10.1126/science.1244908
https://doi.org/10.1029/2006JG000168
https://doi.org/10.2113/gssgfbull.187.6.245
https://doi.org/10.1017/9781108677950.011
https://doi.org/10.1038/ngeo1390
https://doi.org/10.1073/pnas.1811282116
https://doi.org/10.1029/2022pa004503
https://doi.org/10.1126/sciadv.aay2471
https://doi.org/10.2475/05.2011.01
https://doi.org/10.1016/j.epsl.2018.04.034
https://doi.org/10.2475/03.2022.02
https://doi.org/10.1016/j.epsl.2010.03.010
https://doi.org/10.1126/science.1250770
https://doi.org/10.1126/science.aan4660
https://doi.org/10.2475/ajs.287.5.401
https://doi.org/10.1017/CBO9780511781247
https://doi.org/10.1086/629606
https://www.futureearthcoasts.org/report-and-study-series/
https://www.futureearthcoasts.org/report-and-study-series/
https://doi.org/10.1016/j.gr.2021.02.011
https://doi.org/10.1371/journal.pone.0211325
https://doi.org/10.1016/j.gca.2014.02.033
https://doi.org/10.1016/j.chemgeo.2011.01.005
https://doi.org/10.1007/s11356-015-5503-6
https://doi.org/10.1016/j.crte.2017.11.002
https://doi.org/10.1038/s41586-022-04420-x
https://doi.org/10.24381/cds.68d2bb30


H. Zuo et al.: A revised model of global silicate weathering 3973

Olson, S., Jansen, M. F., Abbot, D. S., Halevy, I., and Goldblatt, C.:
The effect of ocean salinity on climate and its implications for
Earth’s habitability, Geophys. Res. Lett., 49, e2021GL095748,
https://doi.org/10.1029/2021GL095748, 2022.

Park, Y., Maffre, P., Godderis, Y., Macdonald, F., Anttila, E., and
Swanson-Hysell, N.: Emergence of the Southeast Asian islands
as a driver for Neogene cooling, P. Natl. Acad. Sci. USA, 117,
25319–25326, https://doi.org/10.1073/pnas.2011033117, 2020.

Phillips, J.: The convenient fiction of steady-
state soil thickness, Geoderma, 156, 389–398,
https://doi.org/10.1016/j.geoderma.2010.03.008, 2010.

Prentice, I. C. and Webb III, T.: BIOME 6000: recon-
structing global mid-Holocene vegetation patterns from
palaeoecological records, J. Biogeogr., 25, 997–1005,
https://doi.org/10.1046/j.1365-2699.1998.00235.x, 1998.

Prentice, I. C., Jolly, D., and BIOME 6000 participants: Mid-
Holocene and glacial-maximum vegetation geography of the
northern continents and Africa, J. Biogeogr., 27, 507–519,
https://doi.org/10.1046/j.1365-2699.2000.00425.x, 2000.

Quye-Sawyer, J., Whittaker, A. C., and Roberts, G. G.: Cal-
ibrating fluvial erosion laws and quantifying river response
to faulting in Sardinia, Italy, Geomorphology, 370, 107388,
https://doi.org/10.1016/j.geomorph.2020.107388, 2020.

Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of late Ceno-
zoic climate, Nature, 359, 117–122, 1992.

Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Erosional and cli-
matic effects on long-term chemical weathering rates in granitic
landscapes spanning diverse climate regimes, Earth Planet. Sc.
Lett., 224, 547–562, https://doi.org/10.1016/j.epsl.2004.05.019,
2004.

Royden, L. and Taylor Perron, J.: Solutions of the stream
power equation and application to the evolution of river
longitudinal profiles, J. Geophys. Res-Earth., 118, 497–518,
https://doi.org/10.1002/jgrf.20031, 2013.

Rudnick, R. and Gao, S.: Composition of the Continental Crust,
Treatise on Geochemistry, 1–64 pp., https://doi.org/10.1016/B0-
08-043751-6/03016-4, 2003.

Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital El-
evation Models (PaleoDEMS) for the Phanerozoic, PA-
LEOMAP Project [data set], https://www.earthbyte.org/
paleodem-resource-scotese-and-wright-2018/ (last access:
20 April 2019), 2018.

Shao, Y., Anhäuser, A., Ludwig, P., Schlüter, P., and Williams,
E.: Statistical reconstruction of global vegetation for the
last glacial maximum, Global Planet. Change, 168, 67–77,
https://doi.org/10.1016/j.gloplacha.2018.06.002, 2018.

Small, E., Anderson, R., and Hancock, G.: Estimates of the rate of
regolith production using 10Be and 26Al from an alpine hillslope,
Geomorphology, 27, 131–150, https://doi.org/10.1016/S0169-
555X(98)00094-4, 1999.

Stallard, R. F.: River Chemistry, Geology, Geomorphology, and
Soils in the Amazon and Orinoco Basins, in: The Chemistry
of Weathering, edited by: Drever, J. I., Springer Netherlands,
Dordrecht, 293–316, https://doi.org/10.1007/978-94-009-5333-
8_17, 1985.

Stallard, R. F. and Edmond, J. M.: Geochemistry of the
Amazon: 1. Precipitation chemistry and the marine
contribution to the dissolved load at the time of peak

discharge, J. Geophys. Res-Oceans., 86, 9844–9858,
https://doi.org/10.1029/JC086iC10p09844, 1981.

Stallard, R. F. and Edmond, J. M.: Geochemistry of the Ama-
zon: 2. The influence of geology and weathering environment
on the dissolved load, J. Geophys. Res-Oceans., 88, 9671–9688,
https://doi.org/10.1029/JC088iC14p09671, 1983.

Strudley, M., Murray, A. B., and Haff, P.: Emergence of
pediments, tors, and piedmont junctions from a bedrock
weathering-regolith thickness feedback, Geology, 34, 805–808,
https://doi.org/10.1130/G22482.1, 2006.

Suchet, P. and Probst, J.-L.: A global model for present-
day atmospheric/soil CO2 consumption by chemical erosion
of continental rocks (GEM-CO2), Tellus B., 47, 273–280,
https://doi.org/10.1034/j.1600-0889.47.issue1.23.x, 2002.

Syvitski, J. and Milliman, J.: Geology, geography, and hu-
mans battle for dominance over the delivery of flu-
vial sediment to the coastal ocean, J. Geol., 115, 1–19,
https://doi.org/10.1086/509246, 2007.

Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative
feedback mechanism for the long-term stabilization of Earth’s
surface temperature, J. Geophys. Res.-Oceans, 86, 9776–9782,
https://doi.org/10.1029/JC086iC10p09776, 1981.

Wang, G., Feng, X., Han, J., Zhou, L., Tan, W., and Su, F.: Pa-
leovegetation reconstruction using δ13C of Soil Organic Mat-
ter, Biogeosciences, 5, 1325–1337, https://doi.org/10.5194/bg-5-
1325-2008, 2008.

West, A. J.: Thickness of the chemical weathering zone and
implications for erosional and climatic drivers of weather-
ing and for carbon-cycle feedbacks, Geology, 40, 811–814,
https://doi.org/10.1130/g33041.1, 2012.

West, A. J., Galy, A., and Bickle, M.: Tectonic and climatic con-
trols on silicate weathering, Earth Planet. Sc. Lett., 235, 211–
228, https://doi.org/10.1016/j.epsl.2005.03.020, 2005.

Whipple, K., Heimsath, A., and DiBiase, R.: Soil production lim-
its and the transition to bedrock-dominated landscapes, Nat.
Geosci., 5, 210–214, https://doi.org/10.1038/ngeo1380, 2012.

White, A. F. and Blum, A. E.: Effects of climate on chemical weath-
ering in watersheds, Geochim. Cosmochim. Ac., 59, 1729–1747,
https://doi.org/10.1016/0016-7037(95)00078-E, 1995.

White, A. F. and Brantley, S. L.: The effect of time on the
weathering of silicate minerals: Why do weathering rates dif-
fer in the laboratory and field?, Chem. Geol., 202, 479–506,
https://doi.org/10.1016/j.chemgeo.2003.03.001, 2003.

Wittmann, H., Oelze, M., Gaillardet, J., Garzanti, E., and Blanck-
enburg, F.: A global rate of denudation from cosmogenic nu-
clides in the Earth’s largest rivers, Earth-Sci. Rev., 204, 103147,
https://doi.org/10.1016/j.earscirev.2020.103147, 2020.

Wittmann, H., Blanckenburg, F., Bourgoin, L., Guyot, J.-L., Filizola
Jr., N., and Kubick, P. W.: Sediment production and delivery in
the Amazon River basin quantified by in situ produced cosmo-
genic nuclides and recent river loads, Geol. Soc. Am. Bull., 123,
934–950, https://doi.org/10.1130/B30317.1, 2011.

Wittmann, H., Blanckenburg, F., Dannhaus, N., Bouchez, J., Gail-
lardet, J., Guyot, J.-L., Bourgoin, L., Roig, H., Filizola Jr, N.,
and Christl, M.: A test of the cosmogenic 10 Be(meteoric)/9

Be proxy for simultaneously determining basin-wide erosion
rates, denudation rates, and the degree of weathering in
the Amazon basin, J. Geophys. Res-Earth., 120, 2498–2528,
https://doi.org/10.1002/2015JF003581, 2015.

https://doi.org/10.5194/gmd-17-3949-2024 Geosci. Model Dev., 17, 3949–3974, 2024

https://doi.org/10.1029/2021GL095748
https://doi.org/10.1073/pnas.2011033117
https://doi.org/10.1016/j.geoderma.2010.03.008
https://doi.org/10.1046/j.1365-2699.1998.00235.x
https://doi.org/10.1046/j.1365-2699.2000.00425.x
https://doi.org/10.1016/j.geomorph.2020.107388
https://doi.org/10.1016/j.epsl.2004.05.019
https://doi.org/10.1002/jgrf.20031
https://doi.org/10.1016/B0-08-043751-6/03016-4
https://doi.org/10.1016/B0-08-043751-6/03016-4
https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
https://doi.org/10.1016/j.gloplacha.2018.06.002
https://doi.org/10.1016/S0169-555X(98)00094-4
https://doi.org/10.1016/S0169-555X(98)00094-4
https://doi.org/10.1007/978-94-009-5333-8_17
https://doi.org/10.1007/978-94-009-5333-8_17
https://doi.org/10.1029/JC086iC10p09844
https://doi.org/10.1029/JC088iC14p09671
https://doi.org/10.1130/G22482.1
https://doi.org/10.1034/j.1600-0889.47.issue1.23.x
https://doi.org/10.1086/509246
https://doi.org/10.1029/JC086iC10p09776
https://doi.org/10.5194/bg-5-1325-2008
https://doi.org/10.5194/bg-5-1325-2008
https://doi.org/10.1130/g33041.1
https://doi.org/10.1016/j.epsl.2005.03.020
https://doi.org/10.1038/ngeo1380
https://doi.org/10.1016/0016-7037(95)00078-E
https://doi.org/10.1016/j.chemgeo.2003.03.001
https://doi.org/10.1016/j.earscirev.2020.103147
https://doi.org/10.1130/B30317.1
https://doi.org/10.1002/2015JF003581


3974 H. Zuo et al.: A revised model of global silicate weathering

Woillez, M.-N., Kageyama, M., Krinner, G., de Noblet-Ducoudré,
N., Viovy, N., and Mancip, M.: Impact of CO2 and cli-
mate on the Last Glacial Maximum vegetation: results
from the ORCHIDEE/IPSL models, Clim. Past, 7, 557–577,
https://doi.org/10.5194/cp-7-557-2011, 2011.

Yao, Y.-F., Bera, S., Ferguson, D. K., Mosbrugger, V., Pau-
dayal, K. N., Jin, J.-H., and Li, C.-S.: Reconstruction of
paleovegetation and paleoclimate in the Early and Middle
Eocene, Hainan Island, China, Clim. Change, 92, 169–189,
https://doi.org/10.1007/s10584-008-9457-2, 2009.

Zeichner, S. S., Nghiem, J., Lamb, M. P., Takashima, N., de Leeuw,
J., Ganti, V., and Fischer, W. W.: Early plant organics increased
global terrestrial mud deposition through enhanced flocculation,
Science, 371, 526–529, https://doi.org/10.1126/science.abd0379,
2021.

Zhang, M., Liu, Y., Zhu, J., Wang, Z., and Liu, Z.: Impact of dust
on climate and AMOC during the Last Glacial Maximum sim-
ulated by CESM1.2, Geophys. Res. Lett., 49, e2021GL096672,
https://doi.org/10.1029/2021GL096672, 2022.

Zhang, S., Bai, X., Zhao, C., Tan, Q., Yun, L., Wang, J., Li,
L., Wu, L., Chen, F., Li, C., Deng, Y., Yang, Y., and Xi,
H.: Global CO2 consumption by silicate rock chemical weath-
ering: Its past and future, Earths Future, 9, e2020EF001938,
https://doi.org/10.1029/2020EF001938, 2021.

Zhang, Y., Mills, B., Yang, T., He, T., and Zhu, M.: Simulat-
ing the long-term carbon cycle in the Phanerozoic: current sta-
tus and future developments, Chinese Journal, 68, 1580–1592,
https://doi.org/10.1360/TB-2022-0813, 2022.

Zuo, H.: zuohaoyue1/Silicate-weathering-model: Silicate weath-
ering model through fitting parameters (Version v1), Zenodo
[code], https://doi.org/10.5281/zenodo.8423769, 2023.

Geosci. Model Dev., 17, 3949–3974, 2024 https://doi.org/10.5194/gmd-17-3949-2024

https://doi.org/10.5194/cp-7-557-2011
https://doi.org/10.1007/s10584-008-9457-2
https://doi.org/10.1126/science.abd0379
https://doi.org/10.1029/2021GL096672
https://doi.org/10.1029/2020EF001938
https://doi.org/10.1360/TB-2022-0813
https://doi.org/10.5281/zenodo.8423769

	Abstract
	Introduction
	Model and data
	Theoretical model for silicate weathering
	The weathering profile and weathering flux
	Soil production rate
	Erosion rate
	The final solution for the weathering flux

	Data
	Climate data for the present day
	Climate data for the Last Glacial Maximum (LGM) and the future
	Surface topography
	Lithology
	Catchment measurements of weathering and erosional fluxes
	Vegetation
	Leached soil

	Evaluation of model performance
	Experiments

	Results
	Influence of the climate forcing and erosion rate in the original Park20 model
	Maximizing R2 – a new control model
	Influence of the temperature-modulated soil production rate
	Implication of leached soil
	Influence of vegetation
	Final parameters

	Discussion
	Multiple effects of vegetation on silicate weathering
	Influence of runoff
	Leached soil
	Sensitivity of global silicate weathering to climate change
	Caveats and future directions

	Summary
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

