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Abstract. Systematic, routine, and comprehensive evalua-
tion of Earth system models (ESMs) facilitates benchmark-
ing improvement across model generations and identifying
the strengths and weaknesses of different model configura-
tions. By gauging the consistency between models and ob-
servations, this endeavor is becoming increasingly neces-
sary to objectively synthesize the thousands of simulations
contributed to the Coupled Model Intercomparison Project
(CMIP) to date. The Program for Climate Model Diagnosis
and Intercomparison (PCMDI) Metrics Package (PMP) is an
open-source Python software package that provides quick-
look objective comparisons of ESMs with one another and
with observations. The comparisons include metrics of large-
to global-scale climatologies, tropical inter-annual and intra-
seasonal variability modes such as the El Nifio—Southern Os-
cillation (ENSO) and Madden—Julian Oscillation (MJO), ex-

tratropical modes of variability, regional monsoons, cloud ra-
diative feedbacks, and high-frequency characteristics of sim-
ulated precipitation, including its extremes. The PMP com-
parison results are produced using all model simulations
contributed to CMIP6 and earlier CMIP phases. An impor-
tant objective of the PMP is to document the performance
of ESMs participating in the recent phases of CMIP, to-
gether with providing version-controlled information for all
datasets, software packages, and analysis codes being used in
the evaluation process. Among other purposes, this also en-
ables modeling groups to assess performance changes during
the ESM development cycle in the context of the error dis-
tribution of the multi-model ensemble. Quantitative model
evaluation provided by the PMP can assist modelers in their
development priorities. In this paper, we provide an overview
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of the PMP, including its latest capabilities, and discuss its
future direction.

1 Introduction

Earth system models (ESMs) are key tools for projecting cli-
mate change and conducting research to enhance our under-
standing of the Earth system. With the advancements in com-
puting power and the increasing importance of climate pro-
jections, there has been an exponential growth in the diver-
sity of ESM simulations. During the 1990s, the Atmospheric
Model Intercomparison Project (AMIP; Gates, 1992; Gates
et al., 1999) was a centralizing activity within the modeling
community which led to the creation of the Coupled Model
Intercomparison Project (CMIP; Meehl et al., 1997, 2000,
2007; Covey et al., 2003; Taylor et al., 2012). Since 1989,
the Program for Climate Model Diagnosis and Intercompar-
ison (PCMDI) has worked closely with the World Climate
Research Programme’s (WCRP) Working Group on Cou-
pled Modeling (WGCM) and Working Group on Numeri-
cal Experimentation (WGNE) to design and implement these
projects (Potter et al., 2011). The most recent phase of CMIP
(CMIP6; Eyring et al., 2016b) provides a set of well-defined
experiments that most climate modeling centers perform and
subsequently makes results available for a large and diverse
community to analyze.

Evaluating ESMs is a complex endeavor, given the vast
range of climate characteristics across space- and timescales.
A necessary step involves quantifying the consistency be-
tween ESMs with available observations. Climate model per-
formance metrics have been widely used to objectively and
quantitatively gauge the agreement between observations and
simulations to summarize model behavior with a wide range
of climate characteristics. Simple examples include either the
model bias or the pattern similarity (correlation) between an
observed and simulated field (e.g., Taylor, 2001). With the
rapid growth in the number, scale, and complexity of simu-
lations, the metrics have been used more routinely, as exem-
plified by the Intergovernmental Panel on Climate Change
(IPCC) Assessment Reports (e.g., Gates et al., 1995; McA-
vaney et al., 2001; Randall et al., 2007; Flato et al., 2014;
Eyring et al., 2021). A few studies have been exclusively
devoted to objective model performance assessment using
summary statistics. Lambert and Boer (2001) evaluated the
first set of CMIP models from CMIP1 using statistics for the
large-scale mean climate. Gleckler et al. (2008) identified a
variety of factors relevant to model metrics and demonstrated
techniques to quantify the relative strengths and weaknesses
of the simulated mean climate. Reichler and Kim (2008)
attempted to gauge model improvements across the early
phases of CMIP. The scope of objective model evaluation
has greatly broadened beyond the mean state in recent years
(e.g., Gleckler et al., 2016; Eyring et al., 2019), including
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attempts to establish performance metrics for a wide range
of climate variability (e.g., Kim et al., 2009; Sperber et al.,
2013; Ahn et al., 2017; Fasullo et al., 2020; Lee et al., 2021b;
Planton et al., 2021) and extremes (e.g., Sillmann et al., 2013;
Srivastava et al., 2020; Wehner et al., 2020, 2021). Guilyardi
et al. (2009) and Reed et al. (2022) emphasized that metrics
should be concise, interpretable, informative, and intuitive.

With the growth of data size and diversity of ESM simu-
lations, there has been a pressing need for the research com-
munity to become more efficient and systematic in evaluat-
ing ESMs and documenting their performances. To respond
to the need, PCMDI developed the PCMDI Metrics Package
(PMP) and released its first version in 2015 (see “Code and
data availability” section for all versions). A centralizing goal
of the PMP then and now is to quantitatively synthesize re-
sults from the archive of CMIP simulations via performance
metrics that help characterize the overall agreement between
models and observations (Gleckler et al., 2016). For our pur-
poses, “performance metrics” are typically (but not exclu-
sively) well-established statistical measures that quantify the
consistency between observed and simulated characteristics.
Common examples include a domain average bias, a root
mean square error (RMSE), a spatial pattern correlation, or
others, typically selected depending on the application. An-
other goal of the PMP is to further diversify the suite of high-
level performance tests that help characterize the simulated
climate. The results provided by the PMP are frequently used
to address two overarching and recurring questions: (1) what
are the relative strengths and weaknesses between different
models? (2) How are models improving with further devel-
opment? Addressing the second question is often referred to
as “benchmarking”, and this motivates an important empha-
sis of the effort described in this paper — striving to advance
the documentation of all data and results of the PMP in an
open and ultimately reproducible manner.

In parallel, the current progress towards systematic model
evaluation remains dynamic, with evolving approaches and
many independent paths being pursued. This has resulted
in the development of diversified model evaluation soft-
ware packages. Examples in addition to the PMP include
the ESMValTool (Eyring et al., 2016a, 2019, 2020; Righi
et al., 2020), the Model Diagnostics Task Force (MDTF)-
Diagnostics package (Maloney et al., 2019; Neelin et al.,
2023), the International Land Model Benchmarking (IL-
AMB) software system (Collier et al., 2018) that focuses on
land surface and carbon cycle metrics, and the International
Ocean Model Benchmarking (IOMB) software system (Fu
et al., 2022) that focuses on surface and upper-ocean biogeo-
chemical variables. Some tools have been developed with a
more targeted focus on a specific subject area, such as the
Climate Variability Diagnostics Package (CVDP) that diag-
noses climate variability modes (Phillips et al., 2014; Fa-
sullo et al., 2020) and the Analyzing Scales of Precipita-
tion (ASoP) that focuses on analyzing precipitation scales
across space and time (Klingaman et al., 2017; Martin et al.,
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2017; Ordonez et al., 2021). The regional climate commu-
nity also has actively developed metrics packages such as
the Regional Climate Model Evaluation System (RCMES;
H. Lee et al., 2018). Separately, a few climate modeling cen-
ters have developed their own model evaluation packages to
assist in their in-house ESM development, e.g., the E3SM
Diags (Zhang et al., 2022). There also have been other ef-
forts to enhance the usability of in situ and field campaign
observations in ESM evaluations, such as Atmospheric Ra-
diation Measurement (ARM) data-oriented metrics and di-
agnostics package Diag (ARM-DIAGS; Zhang et al., 2018,
2020) and Earth System Model Aerosol-Cloud Diagnostics
(ESMAC Diags; Tang et al., 2022, 2023). While they all have
their own scientific priorities and technical approaches, the
uniqueness of the PMP is its focus on the objective char-
acterization of the physical climate system as simulated by
community models. An important prioritization of the PMP
is to advance all aspects of its workflow in an open, trans-
parent, and reproducible manner, which is critical for bench-
marking. The PMP summary statistics characterizing CMIP
simulations are version-controlled and made publicly avail-
able as a resource to the community.

In this paper, we describe the latest update of the PMP
and its focus on providing a diverse suite of summary statis-
tics that can be used to construct “quick-look” summaries of
ESM performance from simulations made publicly available
to the research community, notably CMIP. The rest of the
paper is organized as follows. In Sect. 2, we provide a tech-
nical description of the PMP and its accompanying reference
datasets. In Sect. 3, we describe various sets of simulation
metrics that provide an increasingly comprehensive portrayal
of physical processes across timescales ranging from hours
to centuries. In Sect. 4, we introduce the usage of the PMP
for model benchmarking. We discuss the future direction and
the remaining challenges in Sect. 5 and conclude with a sum-
mary in Sect. 6. To assist the reader, the table in Appendix A
summarizes the acronyms used in this paper.

2 Software package and data description

The PMP is a Python-based open-source software frame-
work (https://github.com/PCMDI/pcmdi_metrics, last ac-
cess: 8 May 2024) designed to objectively gauge the con-
sistency between ESMs and available observations via well-
established statistics such as those discussed in Sect. 3. The
PMP has been mainly used for the evaluation of CMIP-
participating models. A subset of CMIP experiments, those
conducted using the observation forcings such as “Histor-
ical” and “AMIP” (Eyring et al., 2016b), is particularly
well suited for comparing models with observations. The
AMIP experiment protocol constrains the simulation with
prescribed sea surface temperature (SST), and the Historical
experiment is conducted using coupled model simulations
driven by observed varying natural and anthropogenic forc-
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ings. Some of the metrics applicable to these experiments
may also be relevant to others (e.g., multi-century coupled
control runs called “PiControl” and idealized “4xCO2” sim-
ulations that are designed for estimating climate sensitivity).

The PMP has been applied to multiple generations of
CMIP models in a quasi-operational fashion as new simu-
lations are made available, new analysis methods are incor-
porated, or new observational data become accessible (e.g.,
Gleckler et al., 2016; Planton et al., 2021; Lee et al., 2021b;
Ahn et al., 2022). Shortly after simulations from the most
recent phase of the CMIP (i.e., CMIP6) became accessi-
ble, the PMP quick-look summaries were provided on the
PCMDTI’s website (https://pcmdi.llnl.gov/metrics/, last ac-
cess: 8 May 2024), offering a resource to scientists involved
in CMIP or others interested in the evaluation of ESMs. To
facilitate this, at PCMDI the PMP is technically linked to the
Earth System Grid Federation (ESGF) that is the CMIP data
delivery infrastructure (Williams et al., 2016).

The primary deliverable of the PMP is a collection of sum-
mary statistics. We strive to make the baseline results (raw
statistics) publicly available and well-documented and con-
tinue to make advances with this objective as a priority. For
our purposes, we are referring to model performance “sum-
mary statistics” and “metrics” interchangeably, although in
some situations we consider there to be an important dis-
tinction. For us, a genuine performance metric constitutes a
well-defined and established statistic that has been used in a
very specific way (e.g., a particular variable, analysis, and do-
main) for long-term benchmarking (see Sect. 4). The distinc-
tion between summary statistics and metrics is application-
dependent and evolving as the community advances efforts to
establish quasi-operational capabilities to gauge ESM perfor-
mance. Some visualization capabilities described in Sect. 3
are made available through the PMP. Users can also further
explore the model-data comparisons using their preferred vi-
sualization methods or incorporate the results into their own
studies from the summary statistics from the PMP. Noting
the above, the scope of the PMP is fairly targeted. It is not
intended to be “all-purpose”, e.g., by incorporating the vast
range of diagnostics used in model evaluation.

The PMP is designed to readily work with model out-
put that has been processed using the Climate Model Out-
put Rewriter (CMOR; https://cmor.llnl.gov/, last access:
8 May 2024), which is a software library developed to pre-
pare model output following the CF metadata conventions
(Hassell et al., 2017; Eaton et al., 2022, http://cfconventions.
org/, last access: 8 May 2024) in the Network Common
Data Form (NetCDF). The CMOR is used by most modeling
groups contributing to CMIP, ensuring all model output ad-
heres to the CMIP data structures that themselves are based
on the CF conventions. It is possible to use the PMP on model
output that has not been prepared by CMOR, but this usually
requires additional work, e.g., mapping the data to meet the
community standards.
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For reference datasets, the PMP uses observational
products processed to be compliant with the Obser-
vations for Model Intercomparison Projects (obs4MIPs;
https://pcmdi.github.io/obs4MIPs/, last access: § May 2024).
The obs4MIPs effort was initiated circa 2010 (Gleckler et al.,
2011) to advance the use of the observations in model eval-
uation and research. Substantial progress has been made in
establishing obs4MIPs data standards that technically align
with CMIP model output (e.g., Teixeira et al., 2014; Fer-
raro et al., 2015) with the data products published on the
ESGF (Waliser et al., 2020). Obs4MIPs-compliant data were
prepared with CMOR, and the data directly available via
obs4MIPs are used as PMP reference datasets.

The PMP leverages other Python-based open-source tools
and libraries such as xarray (Hoyer and Hamman, 2017),
eofs (Dawson, 2016), and many others. One of the primary
fundamental tools used in the latest PMP version is the
Python package of Xarray Climate Data Analysis Tools (xC-
DAT; Vo et al., 2023; https://xcdat.readthedocs.io, last ac-
cess: 8 May 2024). The xCDAT is developed to provide a
more efficient, robust, and streamlined user experience in
climate data analysis when using xarray (https://docs.xarray.
dev/, last access: 8 May 2024). Portions of the PMP rely on
the precursor of the xCDAT, a Python library called Com-
munity Data Analysis Tools (CDAT; Williams et al., 2009;
Williams, 2014; Doutriaux et al., 2019), which has been fun-
damental since the early development stages of the PMP. The
xarray software provides much of the functionality of CDAT
(e.g., I/0, indexing, and subsetting). However, it lacks some
key climate domain features that have been frequently used
by scientists and exploited by the PMP (e.g., regridding and
utilization of spatial/temporal bounds for computational op-
erations) and which motivated the development of the xC-
DAT. Completing the transition from CDAT to xCDAT is a
technical priority for the next version of the PMP.

To help advance open and reproducible science, the PMP
has been maintained with an open-source policy with ac-
companying metadata for data reproducibility and reusabil-
ity. The PMP code is distributed and released with version
control. The installation process of the PMP is streamlined
and user-friendly, leveraging the Anaconda distribution and
the conda-forge channel. By employing conda and conda-
forge, users benefit from a simplified and efficient installation
experience, ensuring seamless integration of the PMP’s func-
tionality with minimal dependencies. This approach not only
facilitates a straightforward deployment of the package but
also enhances reproducibility and compatibility across dif-
ferent computing environments, thereby facilitating the ac-
cessibility and widespread adoption of the PMP within the
scientific community. The pointer to the installation instruc-
tions can be found in the “Code and data availability” sec-
tion. The PMP’s online documentation (http://pcmdi.github.
io/pcmdi_metrics/, last access: 8 May 2024) also includes
installation instructions and a user demo for Jupyter Note-
books. A database of pre-calculated PMP statistics for all
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AMIP and Historical simulations in the CMIP archive are
also available online. The archive of these statistics, stored
as JSON files (Crockford, 2006; Crockford and Morningstar,
2017), includes versioning details for all codes and depen-
dencies and data that were used for the calculations. These
files provide the baseline results of the PMP (see the “Code
and data availability” section for details). Advancements in
model evaluation, along with the number of models and com-
plexity of simulations, motivate more systematic documenta-
tion of performance summaries. With PMP workflow prove-
nance information being recorded and the model and ob-
servational data standards maintained by PCMDI and col-
leagues, the PMP strives to make all its results reproducible.

3 Current PMP capabilities

The capabilities of the PMP have been expanded beyond its
traditional large-scale performance summaries of the mean
climate (Gleckler et al., 2008; Taylor, 2001). Various evalua-
tion metrics have been implemented to the PMP for climate
variability such as El Nifio—Southern Oscillation (ENSO)
(Planton et al., 2021; Lee et al., 2021a), extratropical modes
of variability (Lee et al., 2019a, 2021b), intra-seasonal oscil-
lation (Ahn et al., 2017), monsoons (Sperber and Annamalai,
2014), cloud feedback (Zelinka et al., 2022), and the charac-
teristics of simulated precipitation (Pendergrass et al., 2020;
Ahn et al., 2022, 2023) and extremes (Wehner et al., 2020,
2021). These PMP capabilities were built upon model per-
formance tests that have resulted from research by PCMDI
scientists and their collaborators. This section will provide
an overview of each category of the current PMP evaluation
metrics with their usage demonstrations.

3.1 Climatology

Mean state metrics quantify how well models simulate ob-
served climatological fields at a large scale, gauged by a suite
of well-established statistics such as RMSE, mean absolute
error (MAE), and pattern correlation that have been used in
climate research for decades. The focus is on the coupled
Historical and atmospheric-only AMIP (Gates et al., 1999)
simulations which are well-suited for comparison with obser-
vations. The PMP extracts seasonally and annually averaged
fields of multiple variables from large-scale observationally
based datasets and results from model simulations. Different
obs4MIPs-compliant reference datasets are used, depending
on the variable examined. When multiple reference datasets
are available, one of them is considered a “default” (see Ta-
ble 1) while others are identified as “alternatives”. The de-
fault datasets are typically state-of-the-art products, but in
general, we lack definitive measures as to which is the most
accurate, so the PMP metrics are routinely calculated with
multiple products so that it can be determined what differ-
ence the selection of alternative observations makes to judg-
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ment made about model fidelity. The suite of mean climate
metrics (all area-weighted) includes spatial and spatiotempo-
ral RMSE, centered spatial RMSE, spatial mean bias, spatial
standard deviation, spatial pattern correlation, and spatial and
spatiotemporal MAE of the annual or seasonal climatologi-
cal time mean (Gleckler et al., 2008). Often, a space—time
statistic is used that gauges both the consistency of the ob-
served and simulated climatological pattern and its seasonal
evolution (see Eq. (1) in Gleckler et al., 2008). By default, re-
sults are available for selected large-scale domains, including
“Global”, “Northern Hemisphere (NH) Extratropics” (30—
90°N), “Tropics” (30° S-30° N), and “Southern Hemisphere
(SH) Extratropics” (30-90° S). For each domain, results can
also be computed for the land and ocean, land only, or ocean
only. These commonly used domains highlight the applica-
tion of the PMP mean climate statistics at large to global
scales, but we note that the PMP allows users to define their
own domains of interest, including at regional scales. De-
tailed instructions can be found on the PMP’s online doc-
umentation (http://pcmdi.github.io/pcmdi_metrics, last ac-
cess: 8 May 2024).

Although the primary deliverable of the PMP is the met-
rics, the PMP results can be visualized in various ways. For
individual fields, we often first plot Taylor diagrams, a polar
plot leveraging the relationship between the centered RMSE,
the pattern correlation, and the observed and simulated stan-
dard deviation (Taylor, 2001). The Taylor diagram has be-
come a standard plot in the model evaluation workflow across
modeling centers and research communities (see Sect. 5).
To interpret results across CMIP models for many variables,
we routinely construct normalized portrait plots or Gleckler
plots (Gleckler et al., 2008) that provide a quick-look exam-
ination of the strengths and weaknesses of different models.
For example, in Fig. 1, the PMP results display quantitative
information of simulated seasonal climatologies of various
meteorological model variables via a normalized global spa-
tial RMSE (Gleckler et al., 2008). Variants of this plot have
been widely used for presenting model evaluation results, for
example, in the IPCC Fifth (Flato et al., 2014; their Figs. 9.7,
9.12, and 9.37) and Sixth Assessment Reports (Eyring et al.,
2021, Chap. 3; their Fig. 3.42). Because the error distribution
across models is variable dependent, the statistics are often
normalized to help reveal differences, in this case via the me-
dian RMSE across all models (see Gleckler et al., 2008, for
more details). This normalization enables a common color
scale to be used for all statistics on the portrait plot, high-
lighting the relative strengths and weaknesses of different
models. In this example (Fig. 1), an error of —0.5 indicates
that a model’s error is 50 % smaller than the typical (median)
error across all models, whereas an error of 0.5 is 50 % larger
than the typical error in the multi-model ensemble. In many
cases, the horizontal bands in the Gleckler plots show that
simulations from a given modeling center have similar error
structures relative to the multi-model ensemble.
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The parallel coordinate plot (Inselberg, 1997, 2008, 2016;
Johansson and Forsell, 2016) that retains the absolute value
of the error statistics is used to complement the portrait plot.
Some previous studies have utilized parallel coordinate plots
for analyzing climate model simulations (e.g., Steed et al.,
2012; Wong et al., 2014; Wang et al., 2017), but to date, only
a few studies have applied it to collective multi-ESM evalu-
ations (see Fig. 7 in Boucher et al., 2020). In the PMP, we
generally construct parallel coordinate plots using the same
data as in a portrait plot. However, a fundamental difference
is that metric values can be more easily scaled to highlight
absolute values rather than the normalized relative results of
the portrait plot. In this way, the portrait and parallel coor-
dinate plots complement one another, and in some applica-
tions, it can be instructive to display both. Figure 2 shows
the spatiotemporal RMSE, defined as the temporal average of
spatial RMSE calculated in each month of the annual cycle,
of CMIP5 and CMIP6 models in the format of parallel co-
ordinate plot. Each vertical axis represents a different scalar
measure gauging a distinct aspect of model fidelity. While
polylines are frequently used to connect data points from
the same source (i.e., metric values from the same model
in our case) in parallel coordinate plots, we display results
from each model using an identification symbol to reduce
visual clutter in the plot and help identify outlier models.
In the example of Fig. 2, each vertical axis is aligned with
the median value midway through its max/min range scale.
Thus, for each axis, the models in the lower half of the plot
perform better than the CMIPS—CMIP6 multi-model median,
while in the upper half, the opposite is true. For each vertical
axis that is for a different model variable, we have added vio-
lin plots (Hintze and Nelson, 1998) to show probability den-
sity functions representing the distributions of model perfor-
mance obtained from CMIP5 (shaded in blue on the left side
of the axis) and CMIP6 (shaded in orange on the right side
of the axis). Medians of each CMIP5 and CMIP6 group are
highlighted using polylines, which indicates that the RMSE
is reduced in CMIP6 relative to CMIP5 in general for the
majority of the subset of model variables.

3.2 El Niiio—Southern Oscillation

The El Nino-Southern Oscillation (ENSO) is Earth’s dom-
inant inter-annual mode of climate variability, which im-
pacts global climate via both regional oceanic effects and
far-reaching atmospheric teleconnections (McPhaden et al.,
2006, 2020). In response to increasing interest in a com-
munity approach to ENSO evaluation in models (Bellenger
et al., 2014), the international Climate and Ocean Variabil-
ity, Predictability and Change (CLIVAR) research focus on
ENSO in a Changing Climate, together with the CLIVAR
Pacific Region Panel, developed the CLIVAR ENSO Met-
rics Package (Planton et al., 2021) which is now utilized
within the PMP. The ENSO metrics used to assess/evalu-
ate the models are grouped into three categories: (1) perfor-
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Table 1. List of variables and observation datasets used as reference datasets for the PMP’s mean climate evaluation in this paper (Sect. 3.1
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and Figs. 1-2). “As above” indicates the same as above.

Variable Variable full name Product Reference

ps Precipitation GPCP-2-3 Adler et al. (2018)

psl Sea level pressure ERA-5 Hersbach et al. (2020)
rlds Surface downwelling longwave radiation CERES-EBAF-4-1 Loeb et al. (2018)
rltcre Longwave cloud radiative effect As above

rlus Surface upwelling longwave radiation As above

rlut Upwelling longwave at the top of atmosphere As above

rsds Surface downwelling shortwave radiation As above

rsdt TOA incident shortwave radiation As above

1stcre Shortwave cloud radiative effect As above

rsut Upwelling shortwave at the top of atmosphere As above

It Net radiative flux As above

ta-200, ta-850 Air temperature at 850 and 200 hPa ERA-5 Hersbach et al. (2020)
tas 2 m air temperature As above

tauu Surface zonal wind stress ERA-INT Dee et al. (2011)

ts Surface temperature ERA-5 Hersbach et al. (2020)
ua-200, ua-850  Zonal wind component at 850 and 200 hPa As above

va-200, va-850  Meridional wind component at 850 and 200hPa  As above

zg-500 Geopotential height at 500 hPa As above

mance (i.e., background climatology and basic ENSO char-
acteristics), (2) teleconnections (ENSO’s worldwide telecon-
nections), and (3) processes (ENSO’s internal processes and
feedback). Planton et al. (2021) found that CMIP6 models
generally outperform CMIP5 models in several ENSO met-
rics, in particular for those related to tropical Pacific sea-
sonal cycles and ENSO teleconnections. This effort is dis-
cussed in more detail in Planton et al. (2021), and detailed
descriptions of each metric in the package are available in
the ENSO package online open-source code repository on
its GitHub wiki pages (see https://github.com/CLIVAR-PRP/
ENSO_metrics/wiki, last access: 8 May 2024).

Figure 3 demonstrates the application of the ENSO met-
rics to CMIP6, showing the magnitudes of inter-model and
inter-ensemble spreads, along with observational uncertainty
varying across metrics. For a majority of the ENSO per-
formance metrics, model error and inter-model spread are
substantially larger than observational uncertainty (Fig. 3a—
n). This highlights the systematic biases, like the double In-
tertropical Convergence Zone (ITCZ) (Fig. 3a), that are per-
sisting through CMIP phases (Tian and Dong, 2020). Sim-
ilarly, ENSO process metrics (Fig. 3t-w) indicate large er-
rors in the feedback loops generating SST anomalies, in-
dicating a different balance of processes in the model and
in the reference and possibly compensating errors (Bayr et
al., 2019; Guilyardi et al., 2020). In contrast, for ENSO
teleconnection metrics, the observational uncertainty is sub-
stantially larger, thus challenging validation of model error
(Fig. 30-1). For some metrics, such as the ENSO duration
(Fig. 3f), the ENSO asymmetry metric (Fig. 3i), and the
ocean-driven SST metric (Fig. 3s), there are larger inter-
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ensemble spreads than the inter-model spreads. From such
results, Lee et al. (2021a) examined the inter-model and
inter-member spread of these metrics from the large ensem-
bles available from CMIP6 and the U.S. CLIVAR Large En-
semble Working Group. They argued that to robustly charac-
terize baseline ENSO characteristics and physical processes,
larger ensemble sizes are needed compared to existing state-
of-the-art ensemble projects. By applying the ENSO met-
rics to historical and PiControl simulations of CMIP6 via the
PMP, Planton et al. (2023) developed equations based on sta-
tistical theory to estimate the required ensemble size for a
user-defined uncertainty range.

3.3 Extratropical modes of variability

The PMP includes objective measures of the pattern and am-
plitude of extratropical modes of variability from PCMDI’s
research, which has expanded beyond its traditional large-
scale performance summaries to include inter-annual vari-
ability, considering increasing interest in setting an objective
approach for the collective evaluation of multiple modes. Ex-
tratropical modes of variability (ETMoV) metrics in the PMP
were developed by Lee et al. (2019a) that stem from ear-
lier works (e.g., Stoner et al., 2009; Phillips et al., 2014).
Lee et al. (2019a) illustrated a challenge when evaluating
modes of variability using the traditional empirical orthogo-
nal functions (EOF). In particular, when a higher-order EOF
of a model more closely corresponds to a lower-order ob-
servationally based EOF (or vice versa), it can significantly
affect conclusions drawn about model performance. To cir-
cumvent this issue in evaluating the inter-annual variability
modes, Lee et al. (2019a) used the common basis function

https://doi.org/10.5194/gmd-17-3919-2024
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Figure 1. Portrait plot for spatial RMSE (uncentered) of global seasonal climatologies for (a) CMIP5 (models ACCESS1-0 to NorESM1-
ME on the ordinate) and (b) CMIP6 (models ACCESS-CM2 to UKESM1-1-LL on the ordinate) for the 1981-2005 epoch. The RMSE is
calculated for each season (shown as triangles in each box) over the globe, including both land and ocean, and model and reference data were
interpolated to a common 2.5 x 2.5° grid. The RMSE of each variable is normalized by the median RMSE of all CMIP5 and CMIP6 models.
A result of 0.2 (—0.2) is indicative of an error that is 20 % greater (lesser) than the median RMSE across all models. Models in each group
are sorted in alphabetical order. Full names of variable names on the abscissa and their reference datasets can be found in Table 1. Detailed
information for models can be found in the Earth System Documentation (ES-DOC, https://search.es-doc.org/, last access: 8§ May 2024;
Pascoe et al., 2020). The interactive version of the portrait plot in this figure is available on the PMP result pages on the PCMDI website

(https://pcmdi.llnl.gov/metrics/mean_clim/, last access: 8 May 2024).

(CBF) approach that projects the observed EOF pattern onto
model anomalies. This approach has been previously applied
for the evaluation of intra-seasonal variability modes (Sper-
ber, 2004; Sperber et al., 2005). In the PMP, the CBF ap-
proach is taken as a default method, and the traditional EOF

https://doi.org/10.5194/gmd-17-3919-2024

approach is also enabled as an option for the ETMoV metrics
calculations.

The ETMoV metrics in the PMP measure simulated pat-
terns and amplitudes of ETMoV and quantify their agree-
ment with observations (e.g., Lee et al., 2019a, 2021b). The
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Figure 2. Parallel coordinate plot for spatiotemporal RMSE (Gleckler et al., 2008) from mean climate evaluation. Each vertical axis represents
a different variable. Results from each model are displayed as symbols. The middle of each vertical axis is aligned with the median statistic
of all CMIPS and CMIP6 models. The cross-generation model distributions of model performance are shaded on the left (CMIPS; blue) and
right (CMIP6; orange) sides of each axis. Also, medians from CMIP5 (blue) and CMIP6 (orange) model groups are highlighted as lines.
Full names for model variables on the abscissa and their reference datasets can be found in Table 1. The time epoch used for this analysis
is 1981-2005. Detailed information for models can be found in the Earth System Documentation (ES-DOC, https://search.es-doc.org/, last
access: 8 May 2024; Pascoe et al., 2020). The interactive version of the portrait plot in this figure is available on the PMP result pages on the
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PMP’s ETMoV metrics evaluate five atmospheric modes —
the Northern Annular Mode (NAM), North Atlantic Oscilla-
tion (NAO), Pacific North America pattern (PNA), North Pa-
cific Oscillation (NPO), and Southern Annular Mode (SAM)
— and three ocean modes diagnosed by the variance of sea
surface temperature — Pacific Decadal Oscillation (PDO),
North Pacific Gyre Oscillation (NPGO), and Atlantic Multi-
decadal Oscillation (AMO). The AMO is included for ex-
perimental purposes, considering the significant uncertainty
in detecting the AMO (Deser and Philips, 2021; Zhao et al.,
2022). The amplitude metric, defined as the ratio of standard
deviations of the model and observed principal components,

Geosci. Model Dev., 17, 3919-3948, 2024

has been used to examine the evolution of the performance
of models across different CMIP generations (Fig. 4). Green
shading predominates, indicating where the simulated ampli-
tude of variability is similar to observations. In some cases,
such as for SAM in September—October—November (SON),
the models overestimate the observed amplitude.

The PMP’s ETMoV metrics have been used in several
model evaluation studies. For example, Orbe et al. (2020)
analyzed models from US climate modeling groups, includ-
ing the U.S. Department of Energy (DOE), National Aero-
nautics and Space Administration (NASA), National Center
for Atmospheric Research (NCAR), and National Oceanic
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Figure 3. Application of ENSO metrics to CMIP6 models. Model names with an asterisk (*) indicate that 10 or more ensemble members
were used in this analysis. Dots indicate metric values from individual ensemble members, while bars indicate the average of metric values
across the ensemble members. Bars colored for easier identification of model names at the bottom of the figure. Metrics were grouped into
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be found at https://github.com/CLIVAR-PRP/ENSO_metrics/wiki (last access: 8 May 2024).
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Figure 4. Portrait plots of the amplitude of extratropical modes of variability simulated by CMIP3, CMIP5, and CMIP6 models in their
historical or equivalent simulations, as gauged by the ratio of spatiotemporal standard deviations of the model and observed principal com-
ponents (PCs), obtained using the CBF method in the PMP. Columns (horizontal axis) are for mode and season, and rows (vertical axis) are
for models from CMIP3 (top), CMIP5 (middle), and CMIP6 (bottom), separated by horizontal thick black lines. For sea-level-pressure-based
modes (SAM, NAM, NAO, NPO, and PNA) in the upper-left hand triangle, the model results are shown relative to NOAA-20CR. For SST-
based modes (NPGO and PDO), results are shown relative to HadISSTv1.1. Numbers in parentheses following model names indicate the

number of ensemble members for the model. Metrics for individual ensemble members were averaged for each model. White boxes indicate
a missing value.
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and Atmospheric Administration (NOAA), where they found
that the improvement in the ETMoV performance is highly
dependent on the mode and season when comparing across
different generations of those models. Sung et al. (2021) ex-
amined the performance of models run at the Korea Mete-
orological Administration (K-ACE and UKESM1) in repro-
ducing ETMoVs from their Historical simulations and con-
cluded that these models reasonably capture most ETMoVs.
Lee et al. (2021b) collectively evaluated ~ 130 models from
CMIP3, CMIPS, and CMIP6 archive databases using their
~ 850 Historical and ~ 300 AMIP simulations, where they
found the spatial pattern skill improved in CMIP6 compared
to CMIP5 or CMIP3 for most modes and seasons, while
the improvement in amplitude skill is not clear. Arcodia et
al. (2023) used the PMP to derive PDO and AMO to inves-
tigate their role in decadal variability in the subseasonal pre-
dictability of precipitation over the western coast of North
America and concluded that no significant relationship was
found.

3.4 Intra-seasonal oscillation

The PMP has implemented metrics for the Madden—Julian
Oscillation (MJO; Madden and Julian, 1971, 1972, 1994).
The MJO is the dominant mode of tropical intra-seasonal
variability characterized by a pronounced eastward propa-
gation of large-scale atmospheric circulation coupled with
convection, with a typical periodicity of 30-60d. Selected
metrics from the MJO diagnostics package, developed by the
CLIVAR MJO Working Group (Waliser et al., 2009), have
been implemented in the PMP, following Ahn et al. (2017).
We have particularly focused on metrics for the MJO prop-
agation: east: west power ratio (EWR) and east power nor-
malized by observation (EOR). The EWR is proposed by
Zhang and Hendon (1997), which is defined as the ratio of
the total spectral power over the MJO band (eastward prop-
agating, wavenumbers 1-3, and period of 30-60d) to that
of its westward-propagating counterpart in the wavenumber
frequency power spectra. The EWR metric has been widely
used in the community to examine the robustness of the
eastward-propagating feature of the MJO (e.g., Hendon et al.,
1999; Lin et al., 2006; Kim et al., 2009; Ahn et al., 2017).
The EOR is formulated by normalizing a model’s spectral
power within the MJO band by the corresponding observed
value. Ahn et al. (2017) showed EWRs and EORs of the
CMIP5 models. Using daily precipitation, the PMP calcu-
lates EWR and EOR separately for boreal winter (Novem-
ber to April) and boreal summer (March to October). We
apply the frequency—wavenumber decomposition method to
precipitation from observations (Global Precipitation Clima-
tology Project (GPCP)-based; 1997-2010) and the CMIP5
and CMIP6 Historical simulations for 1985-2004. For distur-
bances with wavenumbers 1-3 and frequencies correspond-
ing to 30-604d, it is clear in observations that the eastward-
propagating signal dominates over its westward-propagating
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Figure 5. MJO EWR diagnostics — wavenumber—frequency power
spectra — from (a) GPCP v1.3 (Huffman et al., 2001) and (b) the
IPSL-CM5B-LR model of CMIPS. The EWR is defined as the ratio
of eastward power (averaged in the box on the right) to westward
power (averaged in the box on the left) from the 2-dimensional
wavenumber—frequency power spectra of daily 10°N-10°S aver-
aged precipitation in November to April (shaded; mm? d=2). Power
spectra are calculated for each year and then averaged over all years
of data. The units of power spectra for the precipitation is mm? d—2
per frequency interval per wavenumber.

counterpart with an EWR value of about 2.49 (Fig. 5a). Fig-
ure 5b shows the wavenumber—frequency power spectrum
from CMIP5 IPSL-CM5B-LR as an example, which has an
EWR value that is comparable to the observed value.

Figure 6 shows the EWR from individual models’ multi-
ple ensemble members and their average. The average EWR
of the CMIP6 model simulations is more realistic than that
of the CMIP5 models. Interestingly, a substantial spread ex-
ists across models and also among ensemble members of a
single model. For example, while the average EWR value for
the CESM2 ensemble is 2.47 (close to 2.49 from the GPCP
observations), the EWR values of the individual ensemble
members range from 1.87 to 3.23. Kang et al. (2020) sug-
gested that the ensemble spread in the propagation character-
istics of the MJO can be attributed to the differences in the
moisture mean state, especially its meridional moisture gra-
dient. A cautionary note should be given to the fact that the
MJO frequency and wavenumber windows are chosen to cap-
ture the spectral peak in observations. Thus, while the EWR
provides an initial evaluation of the propagation characteris-
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MJO Metrics: Precipitation East-West Power Ratio: CMIP 5 & 6 Historical (NDJFMA)
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Figure 6. MJO east—west power ratio (EWR; unitless) from CMIP5 and CMIP6 models. Models in two different groups (CMIPS — blue;
CMIP6 - orange) are sorted by the value of the metric and compared to two observation datasets (purple; GPCP v1.2 and v1.3; Huffman
et al., 2001). Horizontal dashed lines indicate EWR from the default primary reference observation (i.e., GPCP v1.3; black) averages of
CMIPS5 and CMIP6 models. The interactive plot is available at https://pcmdi.llnl.gov/research/metrics/mjo/ (last access: 8§ May 2024), where
the horizontal axis can be re-sorted by the CMIP group or model names as well. Hovering the mouse cursor over the boxes will show tool

tips for metric values and a preview of the dive-down plots that are

tics of the observed and simulated MJO, it is instructive to
look at the frequency—wavenumber spectra, as in some cases
the dominant periodicity and wavenumber in a model may
be different than in observations. It is worthwhile to note that
the PMP can be used to obtain EWR and EOR of other daily
variables for MJO analysis, such as outgoing longwave ra-
diation (OLR) or zonal wind at 850 hPa (U-850) or 250 hPa
(U-250), as shown in Ahn et al. (2017).

3.5 Monsoons

Based on the work of Sperber and Annamalai (2014), skill
metrics in the PMP quantify how well models represent the
onset, decay, and duration of regional monsoons. From ob-
servations and Historical simulations, the climatological pen-
tad data of precipitation are area-averaged for six monsoon
domains: all-India rainfall, Sahel, Gulf of Guinea, North
American monsoon, South American monsoon, and northern
Australia (Fig. 7). For the domains in the Northern Hemi-
sphere, the 73 climatological pentads run from January to
December, while for the domains in the Southern Hemi-
sphere, the pentads run from July to June. For each domain,
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shown in Fig. 5.

the precipitation is accumulated at each subsequent pentad
and then divided by the total precipitation to give the frac-
tional accumulation of precipitation as a function of pentad.
Thus, the annual cycle behavior is evaluated irrespective of
whether a model has a dry or wet bias. Except for the Gulf of
Guinea, the onset and decay of monsoon occur for a frac-
tional accumulation of 0.2 and 0.8, respectively. Between
these fractional accumulations, the accumulation of precip-
itation is nearly linear as the monsoon season progresses.
Comparison of the simulated and observed onset, duration,
and decay are presented in terms of the difference in the
pentad index obtained from the model and observations (i.e.,
model minus observations). Therefore, negative values indi-
cate that the onset or decay in the model occurs earlier than
in observations, while positive values indicate the opposite.
For duration, negative values indicate that for the model it
takes fewer pentads to progress from onset to decay com-
pared to observations (i.e., the simulated monsoon period is
too short), while positive values indicate the opposite.

For CMIPS, we find systematic errors in the phase of the
annual cycle of rainfall. The models are delayed in the on-
set of summer rainfall over India, the Gulf of Guinea, and

https://doi.org/10.5194/gmd-17-3919-2024
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Figure 7. Demonstration of the monsoon metrics obtained from observation datasets (GPCP v1.3 and CMORPH v1.0; Joyce et al., 2004;
Xie et al., 2017) and a CMIP6 model’s Historical simulation conducted using CNRM-CM6-1. The results are obtained for monsoon regions:
all-India rainfall (AIR), Sahel, Gulf of Guinea (GoG), North American monsoon (NAM), South American monsoon (SAM), and northern
Australia (AUS). The regions are defined in Sperber and Annamalai (2014). Metrics for onset (On), duration (Du), and decay (De) derived
as differences to the default observation (GPCP v1.3) in pentad indices (observation minus model) are shown at lower right of each panel.
Pentad indices for the onset and decay of each region are also shown as vertical lines.

the South American monsoon, with early onset prevalent for
the Sahel and the North American monsoon. The lack of
consistency in the phase error across all domains suggests
that a “global” approach to the study of monsoons may not
be sufficient to rectify the regional differences. Rather, re-
gional process studies are necessary for diagnosing the un-
derlying causes of the regionally specific systematic model
biases over the different monsoon domains. Assessment of
the monsoon fidelity in CMIP6 models using the PMP is in
progress.

3.6 Cloud feedback and mean state

Uncertainties in cloud feedback are the primary driver
of model-to-model differences in climate sensitivity — the
global temperature response to a doubling of atmospheric
CO». Recently, an expert synthesis of several lines of ev-
idence spanning theory, high-resolution models, and ob-
servations was conducted to establish quantitative bench-
mark values (and uncertainty ranges) for several key cloud
feedback mechanisms. The assessed feedbacks are those
due to changes in high-cloud altitude, tropical marine low-
cloud amount, tropical anvil cloud area, land cloud amount,
middle-latitude marine low-cloud amount, and high-latitude
low-cloud optical depth. The sum of these six components
yields the total assessed cloud feedback, which is part of the
overall radiative feedback that fed into the Bayesian calcula-
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tion of climate sensitivity in Sherwood et al. (2020). Zelinka
et al. (2022) estimated these same feedback components
in climate models and evaluated them against the expert-
judgment values determined in Sherwood et al. (2020), ul-
timately deriving a root mean square error metric that quan-
tifies the overall match between each model’s cloud feedback
and those determined through expert judgment.

Figure 8 shows the model-simulated values for each indi-
vidual feedback computed in amip-p4K simulations as part
of CMIP5 and CMIP6 alongside the expert-judgment values.
Each model is color-coded by its equilibrium climate sen-
sitivity (determined using abrupt-4xCO2 simulations, as de-
scribed in Zelinka et al., 2020), and the values from an illus-
trative model (GFDL-CM4) are highlighted. Among the key
results apparent from this figure is that models typically un-
derestimate the strength of both positive tropical marine low-
cloud feedback and the negative anvil cloud feedback rela-
tive to the central expert assessed value. The sum of all six
assessed feedback components is positive in all but two mod-
els, with a multi-model mean value that is close to the expert-
assessed value but exhibits substantial inter-model spread.

In addition to evaluating the ability of models to match the
assessed cloud feedback components, Zelinka et al. (2022)
investigated whether models with fewer erroneous mean-
state clouds tend to have smaller errors in their overall cloud
feedback RMSE. This involved computing the mean state
cloud property error metric developed by Klein et al. (2013).

Geosci. Model Dev., 17, 3919-3948, 2024
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Figure 8. Cloud feedback components estimated in amip-p4K simulations from CMIP5 and CMIP6 models. Symbols indicate individual
model values, while horizontal bars indicate multi-model means. Each model is color-coded by its equilibrium climate sensitivity (ECS),
with color boundaries corresponding to the likely and very likely ranges of ECS, as determined in Sherwood et al. (2020). Each compo-
nent’s expert-assessed likely and very likely confidence intervals is indicated with black error bars. An illustrative model (GFDL-CM4) is

highlighted.

This error metric quantifies the spatiotemporal error in cli-
matological cloud properties for clouds with optical depths
greater than 3.6, weighted by their net top-of-atmosphere
(TOA) radiative impact. The observational baseline against
which the models are compared comes from the Interna-
tional Satellite Cloud Climatology Project H-series Gridded
Global (ISCCP HGG) dataset (Young et al., 2018). Zelinka
et al. (2022) showed that models with smaller mean state
cloud errors tend to have stronger but not necessarily better
(less erroneous) cloud feedback, which suggests that improv-
ing mean state cloud properties does not guarantee improve-
ment in the cloud response to warming. However, the models
with the smallest errors in cloud feedback tend also to have
fewer erroneous mean state cloud properties, and no models
with poor mean state cloud properties have feedback in good
agreement with expert judgment.

The PMP implementation of this code computes cloud
feedback by differentiating fields from amip-p4K and amip
experiments and normalizing by the corresponding global

Geosci. Model Dev., 17, 3919-3948, 2024

mean surface temperature change rather than from differen-
tiating abrupt-4xCO2 and PiControl experiments and com-
puting feedback via regression (as was done in Zelinka et
al., 2022). This choice is made to reduce the computational
burden and also because cloud feedbacks derived from these
simpler atmosphere-only simulations have been shown to
closely match those derived from fully coupled quadrupled
CO» simulations (Qin et al., 2022). The code produces fig-
ures in which the user-specified model results are highlighted
and placed in the context of the CMIP5 and CMIP6 multi-
model results (e.g., Fig. 8).

3.7 Precipitation

Recognizing the importance of accurately simulating pre-
cipitation in ESMs and a lack of objective and systematic
benchmarking for it and being motivated by discussions with
WGNE and WGCM working groups of WCRP, the DOE
has initiated an effort to establish a pathway to help mod-
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elers gauge improvement (U.S. DOE, 2020). The 2019 DOE
workshop “Benchmarking Simulated Precipitation in Earth
System Models” generated two sets of precipitation metrics:
baseline and exploratory metrics (Pendergrass et al., 2020).
In the PMP, we have focused on implementing the baseline
metrics for benchmarking simulated precipitation. In paral-
lel, a set of exploratory metrics that could be added to metric
suites, including PMP, in the future was illustrated by Le-
ung et al. (2022) to extend the evaluation scope to include
process-oriented and phenomena-based diagnostics and met-
rics.

The baseline metrics gauge the consistency between ESMs
and observations, focusing on the holistic set of observed
rainfall characteristics (Fig. 9). For example, the spatial dis-
tribution of mean state precipitation and seasonal cycle are
outcomes of the PMP’s climatology metrics (described in
Sect. 3.1) which provide collective evaluation statistics such
as RMSE, standard deviation, and pattern correlation over
various domains (e.g., global, NH and SH extratropics, and
tropics, with each domain as a whole, and over land and
ocean, in separate domains). Evaluation of precipitation vari-
ability across many timescales with PMP is documented in
Ahn et al. (2022); we summarize some of the findings here.
The precipitation variability metric measures forced (diurnal
and annual cycles) and internal variability across timescales
(subdaily, synoptic, subseasonal, seasonal, and inter-annual)
in a framework based on power spectra of 3h total and
anomaly precipitation. Overall, CMIP5 and CMIP6 models
underestimate the internal variability, which is more pro-
nounced in the higher-frequency variability, while they over-
estimate the forced variability (Fig. 10). For the diurnal cy-
cle, PMP includes metrics from Covey et al. (2016). Addi-
tionally, the intensity and distribution of precipitation are as-
sessed following Ahn et al. (2023). Extreme daily precipi-
tation indices and their 20-year return values are calculated
using a non-stationary generalized extreme value statistical
method. From the CMIP5 and CMIP6 historical simulations,
we evaluate model performance of these indices and their re-
turn values in comparison with gridded land-based daily ob-
servations. Using this approach, Wehner et al. (2020) found
that at the models’ standard resolutions, no meaningful dif-
ferences were found between the two generations of CMIP
models. Wehner et al. (2021) extended the evaluation of sim-
ulated extreme precipitation to seasonal 3 h precipitation ex-
tremes produced by available HighResMIP models and con-
cluded that the improvement is minimal with the models’
increased spatial resolutions. They also noted that the order
of operations of regridding and calculating extremes affects
the ability of models to reproduce observations. Drought
metrics developed by Xue and Ullrich (2021) are not im-
plemented in PMP directly but are wrapped by the Co-
ordinated Model Evaluation Capabilities (CMEC; Ordonez
et al., 2021), which is a parallel framework for supporting
community-developed evaluation packages. Together, these
metrics provide a streamlined workflow for running the en-
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tire baseline metrics via the PMP and CMEC that is ready for
use by operational centers and in the CMIP7.

3.8 Relating metrics to underlying diagnostics

Considering the extensive collection of information gener-
ated from the PMP, efforts have supported improved visu-
alizations of metrics using interactive graphical user inter-
faces. These capabilities can facilitate the interpretation and
synthesis of vast amounts of information associated with the
diverse metrics and the underlying diagnostics from which
they were derived. Via the interactive navigation interface,
we can explore the underlying diagnostics behind the PMP’s
summary plots. On the PCMDI website, we provide inter-
active graphical interfaces to enable navigating the support-
ing plots to the underlying diagnostics of each model’s en-
semble members and their average. For example, for the in-
teractive mean climate plots (https://pcmdi.llnl.gov/metrics/
mean_clim/, last access: 8 May 2024), hovering the mouse
cursor over a square or triangle in the portrait plot, or
over the markers or lines in the parallel coordinate plot, re-
veals the diagnostic plot from which the metrics were gen-
erated. It allows the user to toggle between several met-
rics (e.g., RMSE, bias, and correlation) and regions (e.g.,
global, Northern/Southern hemispheres, and tropics), along
with relevant provenance information. Users can click on
the interactive plots to get dive-down diagnostics informa-
tion for the model of interest which provides detailed anal-
ysis to better understand how the metric was calculated. As
with the PMP’s mean climate metrics output, we currently
provide interactive summary graphics for ENSO (https:
/lpcmdi.llnl.gov/metrics/enso/, last access: 8§ May 2024),
extratropical modes of variability (https://pcmdi.llnl.gov/
metrics/variability_modes/, last access: 8§ May 2024), mon-
soon (https://pcmdi.llnl.gov/metrics/monsoon/, last access:
8 May 2024), MJO (https://pcmdi.llnl.gov/metrics/mjo/, last
access: 8 May 2024), and precipitation benchmarking (https:
/lpcmdi.llnl.gov/metrics/precip/, last access: 8 May 2024).
We plan to expand this capability to other metrics in the
PMP, such as the cloud feedback analysis. The majority of
the PMP’s interactive plots have been developed using Bokeh
(https://bokeh.org/, last access: 8 May 2024), a Python data
visualization library that enables the creation of interactive
plots and applications for web browsers.

4 Model benchmarking

While the PMP originally focused on evaluating multiple
models (e.g., Gleckler et al., 2008), in parallel there has been
increasing interest from model developers and modeling cen-
ters to leverage the PMP to track performance evolution in
the model development cycle, as discussed in Gleckler et
al. (2016). For example, metrics from the PMP have been
used to document performance of ESMs developed in the
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Figure 9. Proposed suite of baseline metrics for simulated precipitation benchmarking (figure reprinted from workshop report; U.S. DOE,

2020).

U.S. DOE Exascale Earth System Model (E3SM; Caldwell
etal., 2019; Golaz et al., 2019; Rasch et al., 2019; Hannah et
al., 2021; Tang et al., 2021), NOAA Geophysical Fluid Dy-
namics Laboratory (GFDL; Zhao et al., 2018), Institut Pierre-
Simon Laplace (IPSL; Boucher et al., 2020; Planton et al.,
2021), National Institute of Meteorological Sciences—Korea
Meteorological Administration (NIMS-KMA; Sung et al.,
2021), University of California, Los Angeles (Lee et al.,
2019b), and the Community Integrated Earth System Model
(CIESM) project (Lin et al., 2020).

To make the PMP more accessible and useful for model-
ing groups, efforts are underway to broaden workflow op-
tions. Currently, a typical application involves computing a
particular class of performance metrics (e.g., mean climate)
for all CMIP simulations available via ESGF. To facilitate the
ability of modeling groups to routinely use the PMP during
their development process, we are working to provide a cus-
tomized workflow option to run all the PMP metrics more
seamlessly on a single model and to compare these results
with a database of PMP results obtained from CMIP simula-
tions (see the “Code and data availability” section). Via the
PMP-documented and pre-calculated metrics from simula-
tions in the CMIP archive, it is possible to readily incorporate
CMIP results into the assessment of new simulations without
retrieving all CMIP simulations and recomputing the results.
The resulting quick-look feedback can highlight model im-
provement (or deterioration) and can assist in determining
development priorities or in the selection of a new model ver-
sion.

Geosci. Model Dev., 17, 3919-3948, 2024

As an example, here, we show PMP results obtained from
GFDL-CM3 from CMIP5 and GFDL-CM4 from CMIP6 for
a demonstration using the Taylor diagram to compare ver-
sions of a given model (Fig. 11). One advantage of the Taylor
diagram is that it collectively represents three statistics (i.e.,
centered RMSE, standard deviation, and correlation) in a sin-
gle plot (Taylor, 2001), which synthesizes the performance
intercomparison of multiple models (or different versions of
a model). In this example, four variables were selected to
summarize performance evolution (shown by arrows) in mul-
tiple seasons. Except for boreal winter, both model versions
are nearly identical in terms of net TOA radiation; however,
in all seasons the longwave cloud radiative effect is clearly
improved in the newer model version. The TOA flux im-
provements likely contributed to the precipitation improve-
ments by improving the balances of radiative cooling and la-
tent heating. The improvement in the newer model version
is consistent with that documented by Held et al. (2019) and
evident via the arrow directions pointing to the observational
reference point.

Parallel coordinate plots can also be used to summarize
the comparison of two simulations for their performance. In
Fig. 12, we demonstrate the comparison of selected metrics:
the mean climate (see Sect. 3.1), ENSO (Sect. 3.2), and ET-
MoV (Sect. 3.3). To facilitate comparison of a subset of mod-
els, a few models can be selected and highlighted as con-
nected lines across individual vertical axes on the plot. A
proposed application of it from PMP is to select two mod-
els or two versions of a model to contrast their performance
(solid lines) against the backdrop of results from other mod-
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(b) Metric for precip variability across timescales
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Figure 10. Example of (a) an underlying diagnostic and (b) its resulting metrics for precipitation variability across timescales. (a) Power
spectra of 3 h total (left) and anomaly (right) precipitation from IMERG (black), TRMM (gray), CMORPH (silver), CMIP5 (blue), and
CMIP6 (red) averaged over the tropics (30° S—-30° N). The colored shading indicates the 95 % confidence interval for each observational
product and for the CMIP5 and CMIP6 means. (b) Metrics for forced and internal precipitation variability are based on power spectra.
The reference observational product displayed is GPM IMERG (Huffman et al., 2015). The gray boxes represent the spread of the three
observational products (“X” for IMERG, “—” for TRMM, and “+” for CMORPH) from the minimum to maximum values. Blue and red
boxes indicate the 25th to the 75th percentile of CMIP models as a measure of spread. Individual models are shown as thin dashes, the
multi-model mean as a thick dash, and the multi-model median as an open circle. Details of the diagnostics and metrics are described in Ahn

etal. (2022).

els, which are shown as violin plots for the distribution of
statistics from other models on each vertical axis. In this
example, we contrast the performance of two GFDL mod-
els: GFDL-CM3 and GFDL-CM4. Figure 12a is a modified
version of Fig. 2 that is designed to highlight the difference
in performance more efficiently. Each vertical axis indicates
performance for each metric defined for the climatology of
variables (i.e., temporally averaged spatial RMSE of annual
cycle climatology patterns; Fig. 12a), ENSO characteristics
(Fig. 12b), or inter-annual variability mode obtained from
seasonal or monthly averaged time series (Fig. 12c). It is
shown that GFDL-CM4 is superior to GFDL-CM3 for most
cases across selected metrics (downward arrows in green),
while inferior for a few cases (upward arrows in red), which
is consistent with previous findings (Held et al., 2019; Plan-
ton et al., 2021; Chen et al., 2021). Such applications of the
parallel coordinate plot can enable quick overall assessment
and tracking of the ESM performance evolution during its de-
velopment cycle. More examples showing other models are
available in the Supplement (Figs. S1 to S3).

It is worth noting that there have been efforts to coalesce
objective model evaluation concepts used in the research
community (e.g., Knutti et al., 2010). However, the field con-
tinues to evolve rapidly with definitions still being debated
and finessed. Via the PMP, we produce hundreds of summary
statistics, enabling a broad net to be cast in the objective char-
acterization of a simulation, at times helping modelers iden-
tify previously unknown deficiencies. For benchmarking, ef-
forts are underway to establish a more targeted path which
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likely involves a consolidated set of carefully selected met-
rics.

5 Discussion

Efforts are underway to include new metrics into the PMP to
advance the systematic objective evaluation of ESMs. For ex-
ample, in coordination with the World Meteorological Orga-
nization (WMO)’s WGNE MIJO Task Force, additional can-
didate MJO metrics for PMP inclusion have been identified
to facilitate more comprehensive assessments of the MJO.
Implementation of metrics for MJO amplitude, periodicity,
and structure into the PMP is planned. An ongoing collab-
oration with NCAR aims to incorporate metrics related to
the upper atmosphere, specifically the Quasi-Biennial Os-
cillation (QBO) and QBO-MJO metrics (e.g., Kim et al.,
2020). We also have plans to grow the scope of PMP be-
yond its traditional atmospheric realm, for example, includ-
ing the ocean and polar regions through collaboration with
the U.S. DOE’s project entitled High Latitude Application
and Testing of ESMs (HiLAT, https://www.hilat.org/, last ac-
cess: 8 May 2024). In addition, the PMP framework is also
well poised to contribute to high-resolution climate mod-
eling activities, such as the High-Resolution Model Inter-
comparison Project (HighResMIP; Haarsma et al., 2016) and
the DYnamics of the Atmospheric general circulation Mod-
eled On Non-hydrostatic Domains (DYAMOND; Stevens et
al., 2019). This motivates the development of specialized
metrics for high-resolution models, targeting the simulation
features enabled by high-resolution models. Another poten-
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Figure 11. Taylor diagram contrasting performance of an ESM in their two different versions (i.e., GFDL-CM3 from CMIP5 and GFDL-
CM4 from CMIP6) in its Historical simulation for multiple variables (precipitation [pr], longwave cloud radiative effect [rltcre], shortwave
cloud radiative effect [rstcre], and total radiation flux [rt]) in their climatology over the globe for (a) December—February (DJF), (b) March—
May (MAM), (c¢) June—August (JJA), and (d) September—November (SON) seasons. The arrow is directed toward the newer version of the

model from the older version (i.e., GFDL-CM3 — GFDL-CM4).

tial avenue for the PMP involves leveraging machine learn-
ing (ML) techniques and other state-of-the-art data science
techniques being used for process-oriented ESM evaluation
works (e.g., Nowack et al., 2020; Labe and Barnes, 2022;
Dalelane et al., 2023). Applications of ML detection, such
as for storms, using TempestExtremes (Ullrich and Zarzycki
2017; Ullrich et al., 2021), and fronts (e.g., Biard and Kunkel,
2019), can enable additional specialized storm metrics for
high-resolution simulations. For convection-permitting mod-

Geosci. Model Dev., 17, 3919-3948, 2024

els, yet more storm metrics can be applied such as mesoscale
convective systems. Atmospheric blocking metrics and atmo-
spheric river evaluation metrics using the ML pattern detec-
tion capabilities in the latest TempestExtremes (Ullrich et al.,
2021) are currently under development to be implemented
into the PMP. These example enhancements of the PMP are
indicative of an increasing priority to target regional simula-
tion characteristics. With a deliberate emphasis on processes
intrinsic to specific regions, this may lead to enabling po-
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Figure 12. Parallel coordinate plot contrasting the performance of two different versions of the GFDL model (i.e., GFDL-CM3 from CMIP5
and GFDL-CM4 from CMIP6) in their Historical experiment for errors from (a) mean climate, (b) ENSO, and (c) extratropical modes of
variability. Improvement (degradation) in the later version of the model is highlighted as a downward green (upward red) arrow between
lines. The middle of each vertical axis is set to the median of the group of benchmarking models (i.e., CMIP5 and CMIP6), with the axis
range stretched to maximum distance to either minimum or maximum from the median for visual consistency. The inter-model distributions
of model performance are shown as shaded violin plots along each vertical axis.

https://doi.org/10.5194/gmd-17-3919-2024 Geosci. Model Dev., 17, 3919-3948, 2024



3938

tential applications of the PMP within the regional climate
modeling activities such as the COordinated Regional cli-
mate Downscaling EXperiment (CORDEX; Gutowski et al.,
2016).

The comprehensive database of PMP results offers a re-
source for exploring the range of structural errors in CMIP
class models and their interrelationships. For example, exam-
ination of cross-metric relationships between mean state and
variability biases can shed additional light on the propagation
of errors (e.g., Kang et al., 2020; Lee et al., 2021b). There
continues to be interest in ranking models for specific ap-
plications (e.g., Ashfaq et al., 2022; Goldenson et al., 2023;
Longmate et al., 2023; Papalexiou et al., 2020; Singh and
AchutaRao, 2020) or to “move beyond one model one vote”
in multi-model analysis to reduce uncertainties in the spread
of multi-model projections (e.g., Knutti, 2010; Knutti et al.,
2017; Sanderson et al., 2017; Herger et al., 2018; Hausfa-
ther et al., 2022; Merrifield et al., 2023). While we acknowl-
edge potential interests in using the results of the PMP or
equivalent to rank models or identify performance outliers
(e.g., Sanderson and Wehner, 2017), we believe the many
challenges associated with model weighting are application-
dependent and thus leave it up to users of the PMP to make
those judgments.

In addition to the scientific challenges associated with di-
versifying objective summaries of model performance, there
is potential to leverage rapidly evolving technologies, includ-
ing new open-source tools and methods available to scien-
tists. We expect that the ongoing PMP code modernization
effort to fully adapt the xCDAT and xarray will facilitate
greater community involvement. As the PMP evolves with
these technologies, we will continue to maintain rigor in the
calculation of statistics for the PMP metrics, for example, by
incorporating the latest advancements in the field. A promi-
nent example in the objective comparison of models and ob-
servations involves the methodology of horizontal interpola-
tion, and in future versions of the PMP, we are planning a
more stringent conservation method (Taylor, 2024). To im-
prove the clarity of key messages from multivariate PMP
metrics data, we will consider implementing the advances
in high-dimensional data visualization, e.g., the circular plot
discussed in J. Lee et al. (2018) and variations in the paral-
lel coordinate plots proposed in this paper and by Hassan et
al. (2019) and Lu et al. (2020).

Current progress towards systematic model evaluation is
exemplified by the diversity of tools being developed (e.g.,
the PMP, ESMValTool, MDTF, ILAMB, IOMB, and other
packages). Each of these tools has its own scientific priorities
and technical approaches. We believe that this diversity has
made, and will continue to make, the model evaluation pro-
cess even more comprehensive and successful. The fact that
there is some overlap in a few cases is advantageous because
it enables the cross-verification of results, which is particu-
larly useful in more complex analyses. Despite possible ad-
vantages, having no single best or widely accepted approach

Geosci. Model Dev., 17, 3919-3948, 2024

J. Lee et al.

: Systematic and objective evaluation of Earth system models

for the community to follow does introduce complexity to the
coordination of model evaluation. To facilitate the collective
usage of individual evaluation tools, the CMEC has initiated
the development of a unified code base that technically co-
ordinates the operation of distinct but complementary tools
(Ordonez et al., 2021). Currently, the PMP, ILAMB, MDTF,
and ASoP have become CMEC compliant by adopting com-
mon interface standards that define how evaluation tools in-
teract with observational data and climate model output. We
expect that CMEC can also help the model evaluation com-
munity to establish standards for archiving the metrics out-
put, similar to what the community did for the conventions
to describe climate model data (e.g., CMIP application of CF
Metadata Conventions (http://cfconventions.org/, last access:
8 May 2024); Hassell et al., 2017; Eaton et al., 2022).

6 Summary and conclusion

The PCMDI has actively developed the PMP with support
from the U.S. DOE to improve the understanding of ESMs
and to provide systematic and objective ESM evaluation ca-
pabilities. With its focus on physical climate, the current
evaluation categories enabled in the PMP include seasonal
and annual climatology of multiple variables, ENSO, vari-
ous variability modes in the climate system, MJO, monsoon,
cloud feedback and mean state, and simulated precipitation
characteristics. The PMP provides quasi-operational ESM
evaluation capabilities that can be rapidly deployed to ob-
jectively summarize a diverse suite of model behavior with
results made publicly available. This can be of value in the
assessment of community intercomparisons like CMIP, the
evaluation of large ensembles, or the model development
process. By documenting objective performance summaries
produced by the PMP and making them available via de-
tailed version control, additional research is made possible
beyond the baseline model evaluation, model intercompari-
son, and benchmarking. The outcomes of PMP’s calculations
applied to the CMIP archive culminate in the PCMDI Simu-
lation Summary (https://pcmdi.llnl.gov/metrics/, last access:
8 May 2024) that has served as a comprehensive data portal
for objective model-to-observation comparisons and model-
to-model benchmarking and intercomparisons. Special atten-
tion is dedicated to the most recent ensemble of models con-
tributing to CMIP6. By offering a diverse and comprehensive
suite of evaluation capabilities, the PMP framework equips
model developers with quantifiable benchmarks to validate
and enhance model performance.

We expect that the PMP will continue to play a cru-
cial role in benchmarking ESMs. Improvements in the
PMP, along with progress in interconnected model inter-
comparison project (MIP) community projects, will greatly
contribute to advancing the evaluation of ESMs, includ-
ing connection to the community efforts (e.g., the CMIP
Benchmarking Task Team). Enhancements in version con-
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trol and transparency within obs4MIPs are set to enhance the
provenance and reproducibility of the PMP results, thereby
strengthening the foundation for rigorous and repeatable per-
formance benchmarking. The PMP’s collaboration with the
CMIP Forcing Task Team, through the Input4dMIPs (Durack
et al., 2018) and the CMIP6PIlus projects, will further expand
the utility of performance metrics in identifying problems as-
sociated with the forcing dataset and their application and
use in reproducing the observed record of historical climate.
Furthermore, as ESMs advance towards more operational-
ized configurations to meet the demands of decision-making
processes (Jakob et al., 2023), the PMP holds significant po-
tential to provide interoperable ESM evaluation and bench-
marking capabilities to the community.
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Appendix A: Table of acronyms

Acronym
AMIP
AMO
ARM
ASoP
CBF
CDAT
CIESM
CLIVAR

CMEC
CMIP
CMOR
CVDP

DOE

ENSO

EOF

EOR

ESGF

ESM
ESMAC Diags
ETMoV
EWR

GFDL
ILAMB
IOMB

IPCC

IPSL

ISCCP HGG

ITCZ
JSON
MAE
MDTF
MIPs
MIJO
NAM
NAO
NASA
NCAR
NetCDF
NH
NIMS-KMA

NOAA

NPGO
NPO
PCMDI

PDO
PMP
PNA
RCMES
RMSE
SAM
SH

SST
TOA
WCRP
WGCM
WGNE
xCDAT

Description

Atmospheric Model Intercomparison Project
Atlantic Multi-decadal Oscillation

Atmospheric Radiation Measurement
Analyzing Scales of Precipitation

Common basis function

Community Data Analysis Tools

Community Integrated Earth System Model
Climate and Ocean Variability, Predictability and
Change

Coordinated Model Evaluation Capabilities
Coupled Model Intercomparison Project
Climate Model Output Rewriter

Climate Variability Diagnostics Package

U.S. Department of Energy

El Nifio—Southern Oscillation

Empirical orthogonal function

East power normalized by observation

Earth System Grid Federation

Earth system model

Earth System Model Aerosol-Cloud Diagnostics
Extratropical modes of variability

East : west power ratio

Geophysical Fluid Dynamics Laboratory
International Land Model Benchmarking
International Ocean Model Benchmarking
Intergovernmental Panel on Climate Change
Institut Pierre-Simon Laplace

International Satellite Cloud Climatology Project
H-series Gridded Global

Intertropical Convergence Zone

JavaScript Object Notation

Mean absolute error

Model Diagnostics Task Force

Model Intercomparison Projects
Madden—-Julian Oscillation

Northern Annular Mode

North Atlantic Oscillation

National Aeronautics and Space Administration
National Center for Atmospheric Research
Network Common Data Form

Northern Hemisphere

National Institute of Meteorological Sciences—
Korea Meteorological Administration

National Oceanic and Atmospheric Administra-
tion

North Pacific Gyre Oscillation

North Pacific Oscillation

Program for Climate Model Diagnosis and Inter-
comparison

Pacific Decadal Oscillation

PCMDI Metrics Package

Pacific North America pattern

Regional Climate Model Evaluation System
Root mean square error

Southern Annular Mode

Southern Hemisphere

Sea surface temperature

Top of atmosphere

World Climate Research Programme

Working Group on Coupled Models

Working Group on Numerical Experimentation
Xarray Climate Data Analysis Tools
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Code and data availability. The source code of the
PMP is available as an open-source Python package at
https://github.com/PCMDI/pcmdi_metrics ~ (last  access: 8
May 2024), with all released versions archived on Zen-
odo at  https://doi.org/10.5281/zen0do.592790  (Lee et
al., 2023b). The online documentation 1is available at
http://pcmdi.github.io/pcmdi_metrics ~ (last access: 8 May
2024). The PMP result database that includes calcu-
lated metrics is available on the GitHub repository at
https://github.com/PCMDI/pcmdi_metrics_results_archive

(last access: 8 May 2024), with versions archived on Zen-
odo at https://doi.org/10.5281/zenodo.10181201 (Lee et al.,
2023a). The PMP installation process is streamlined us-
ing the Anaconda distribution and the conda-forge channel
(https://anaconda.org/conda-forge/pcmdi_metrics, Anaconda
pemdi_metrics, 2024). The installation instructions are available at
http://pcmdi.github.io/pcmdi_metrics/install.html (PMP Installa-
tion, 2024). The interactive visualizations of the PMP results are
available on the PCMDI website at https://pcmdi.llnl.gov/metrics
(PCMDI Simulation Summaries, 2024). The CMIP5 and
CMIP6 model outputs and obs4MIPs datasets used in this
paper are available via the Earth System Grid Federation at
https://esgf-node.llnl.gov/ (ESGF LLNL Metagrid, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-3919-2024-supplement.
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