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Abstract. This paper describes the three-dimensional varia-
tional (3D-Var) data assimilation (DA) system for the Model
for Prediction Across Scales – Atmosphere with the Joint Ef-
fort for Data assimilation Integration (JEDI-MPAS). Its core
element is a multivariate background error covariance imple-
mented through multiple linear variable changes, including a
wind variable change from stream function and velocity po-
tential to zonal- and meridional-wind components, a vertical
linear regression representing wind–mass balance, and mul-
tiplication by a diagonal matrix of error standard deviations.
The univariate spatial correlations for the “unbalanced” vari-
ables utilize the Background error on Unstructured Mesh
Package (BUMP), which is one of the generic components
in the JEDI framework. The variable changes and univari-
ate correlations are modeled directly on the native MPAS un-
structured mesh. BUMP provides utilities to diagnose param-
eters of the covariance model, such as correlation lengths,
from an ensemble of forecast differences, though some man-
ual adjustment of the parameters is necessary because of mis-
matches between the univariate correlation function assumed
by BUMP and the correlation structure in the sample of fore-
cast differences. The resulting multivariate covariances, as
revealed by single-observation tests, are qualitatively similar
to those found in previous global 3D-Var systems. Month-
long cycling DA experiments using a global quasi-uniform

60 km mesh demonstrate that 3D-Var, as expected, performs
somewhat worse than a pure ensemble-based covariance,
while a hybrid covariance, which combines that used in 3D-
Var with the ensemble covariance, significantly outperforms
both 3D-Var and the pure ensemble covariance. Due to its
simple workflow and minimal computational requirements,
the JEDI-MPAS 3D-Var system can be useful for the research
community.

1 Introduction

In the 1990s, three-dimensional variational (3D-Var) data
assimilation (DA) became the algorithm of choice in op-
erational numerical weather prediction centers (Parrish and
Derber, 1992; Andersson et al., 1998; Gauthier et al.,
1999; Lorenc et al., 2000), owing to its numerous advan-
tages relative to earlier optimal-interpolation assimilation
schemes. The 3D-Var system is no longer widely used opera-
tionally, both because its natural development path is to four-
dimensional variational assimilation (Rabier et al., 2000;
Rawlins et al., 2007) and because of the rapid development
of ensemble data assimilation in the last 2 decades, including
ensemble-variational techniques that employ sample covari-
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ances from a forecast ensemble within the variational frame-
work (Lorenc, 2003; Buehner, 2005). The central compo-
nents of 3D-Var systems, however, are so-called static covari-
ance models (Bannister, 2008) that provide computationally
tractable representations of complex spatial and multivariate
covariances, and these remain in wide use to provide back-
ground covariances for 4D-Var and as part of hybrid tech-
niques that consider background covariance matrices that are
the sum of a static covariance and an ensemble-based covari-
ance (Hamill and Snyder, 2000).

This paper documents 3D-Var and its associated static
background covariance model for JEDI-MPAS, a data assim-
ilation system using software infrastructure from the Joint
Effort for Data assimilation Integration (JEDI; Trémolet and
Auligné, 2020) and the Model for Prediction Across Scales
– Atmosphere (MPAS; Skamarock et al., 2012). Two com-
panion papers are Liu et al. (2022), which gives an overview
of JEDI-MPAS and initial results from a three-dimensional
ensemble-variational (3DEnVar) scheme, and Guerrette et al.
(2023), which documents an ensemble of data assimilations
(EDA) for JEDI-MPAS.

Our motivation for implementing 3D-Var is twofold. First,
JEDI-MPAS is intended for use not only in our research,
but also by the broader research community. The minimal
computational cost of 3D-Var and its simple workflow make
it well suited where computing is a strong constraint and
when introducing new users to the system. Experience with
WRFDA (Barker et al., 2012), our existing community DA
system, has shown that 3D-Var is often preferred by users.
Equally importantly, the static covariance model from 3D-
Var can be used in hybrid ensemble-variational assimilation
schemes that are known to outperform 3DEnVar alone (Wang
et al., 2008; Buehner et al., 2013; Clayton et al., 2013; Kuhl
et al., 2013). We show the same result for JEDI-MPAS here
(see also Guerrette et al., 2023).

The formulation of the static covariance model employed
here has both familiar and novel elements. We generally fol-
low Wu et al. (2002), including (i) our choice of analysis vari-
ables, (ii) the use of linear regression from a training data set
to define the approximate mass-wind balances that implicitly
determine the multivariate structure of the covariances (see
also Derber and Bouttier, 1999), and (iii) representing uni-
variate correlations directly on the forecast model’s grid (or
mesh, in the case of MPAS). Products of vectors with the uni-
variate spatial correlation matrices, however, are computed
directly on a thinned subset of the MPAS mesh and interpo-
lated to the full-resolution mesh using the Background error
on Unstructured Mesh package (BUMP; Ménétrier, 2020).
This study is the first evaluation of BUMP for use in atmo-
spheric DA.

The outline of the paper is as follows. In the next section,
we give an overview of JEDI-MPAS as configured for 3D-
Var. Section 3 describes the formulation of the static back-
ground covariances and their tuning using BUMP capabili-
ties and a training data set of forecast differences. Section 4

presents single-observation tests that illustrate the structure
of the implied multivariate covariances. In Sect. 5, we sum-
marize results from cycling DA experiments with 3D-Var
and a hybrid scheme, which provide an overall evaluation of
the effectiveness of the JEDI-MPAS static covariances. Sec-
tion 6 concludes and offers ideas for further refinements of
the static covariances.

2 JEDI-MPAS 3D-Var configuration

2.1 The forecast model

MPAS is described in detail in Skamarock et al. (2012), or
see Liu et al. (2022) for a more concise summary. Briefly,
MPAS integrates the nonhydrostatic equations of motion cast
in a height-based, terrain-following vertical coordinate and
using dry density and a modified moist potential temperature
as thermodynamic variables. The equations are discretized
on an unstructured mesh with the normal component of hor-
izontal velocity defined on the edges of mesh cells and other
prognostic variables defined at the cell centers. MPAS sup-
ports global and regional meshes, as well as meshes with
quasi-uniform or variable resolution.

In all experiments presented here, MPAS is configured
with a global quasi-uniform mesh of 60 km resolution and 55
vertical levels up to a model top of 30 km. The physical pa-
rameterizations are those of the “mesoscale reference” suite,
as listed in Table 2 of Liu et al. (2022).

2.2 The DA system

JEDI-MPAS implements various abstract classes for MPAS
within the JEDI framework (Trémolet, 2020). Those abstract
classes reside in object-oriented prediction systems (OOPS)
and comprise all the building blocks and operations on them
necessary for data assimilation algorithms. JEDI also con-
tains generic (model independent) implementations of some
building blocks, including observation operators and qual-
ity control (the Unified Forward Operator, UFO), observa-
tion storage and access (the Interface for Observation Data
Access, IODA), and the background error covariance ma-
trix (the System-Agnostic Background Error Representation,
SABER).

The variational application of OOPS minimizes a cost
function given in Eq. (3) of Liu et al. (2022). Denoting by x

the concatenation of the analysis variables across all model
levels and mesh locations, the cost function measures the si-
multaneous fit of x to a background state xb, which is our
best estimate of x before considering the observations, and
to the observations y (also concatenated into a single vector)
via an observation operator h(x) that maps a given state to
the observation variables.

The minimization proceeds iteratively by linearizing the
observation operator in the neighborhood of the latest iterate
xg and computing the next iterate as the minimizer of the
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resulting quadratic cost function,

J (δx)=
1
2
(δx− δxg)

TB−1(δx− δxg)

+
1
2
(Hδx− d)TR−1(Hδx− d), (1)

where δx = x− xg is the increment relative to xg , δxg =
xb−xg . d = y−h(xg) is the observation departure from xg;
H is the linearization of h near xg; and B and R are the back-
ground and observational error covariance matrices, respec-
tively. This incremental formulation is central to the archi-
tecture of OOPS and distinguishes increments, which can be
operated on by B and H, from the full state, which is an argu-
ment to h. In what follows, increments will be indicated by
variables preceded with δ.

All the minimization schemes for Eq. (1) and precondi-
tioners available in OOPS involve only the application of B
to increments, rather than its square root or inverse. For the
single-observation test and cycling experiments shown later,
we employ the B-preconditioned incremental variational ap-
plication of OOPS and the Derber–Rosati Inexact Precondi-
tioned Conjugate Gradient algorithm (Golub and Ye, 1999;
Derber and Rosati, 1989).

2.3 Analysis variables and variable change

The analysis variables are the horizontal velocity (v), tem-
perature (T ), specific humidity (q), and surface pressure ps
at the MPAS cell centers, as described in Liu et al. (2022).
Transformations to other variables are necessary for some
observation operators and for initial conditions for MPAS
forecasts. Those transformations also follow Liu et al. (2022)
but with one significant improvement when computing the
dry density ρd and potential temperature θd for MPAS initial
conditions.

In Liu et al. (2022), ρd and θd are computed from the an-
alyzed T , ps, and q by assuming hydrostatic balance. Here,
we instead compute increments for ρd and θd (i.e., δρd and
δθd) from the increments δT , δps, and δq. This approach,
which is implemented by linearizing the corresponding cal-
culations of Liu et al. (2022, steps 3 and 4 of their Sect. 3.3),
assumes hydrostatic balance only for the increments and not
the full analyzed fields.

Assuming hydrostatic balance just for the increments is
preferable because that balance is only approximate and,
moreover, the discretized form of hydrostatic balance used
in the variable transformation is not precisely equivalent to
that implied by the discrete MPAS equations. Since the hy-
drostatic integral is computed from the surface upward, dif-
ferences between the incremental and full-field formulations
can be expected to accumulate with height. Consistently with
this, JEDI-MPAS cycling experiments (not shown) using the
new incremental update for ρd and θd exhibit reduced tem-
perature bias in the stratosphere, especially near the model
top.

The state (x) and increment (δx) objects in JEDI-MPAS
are basically inherited from MPAS’s “pool type” data struc-
ture. Thus, it is natural to choose the existing mesh decom-
position and communication utilities of MPAS to handle the
parallelism of the state and increment of JEDI-MPAS. The
state and increment objects in JEDI-MPAS only contain their
values on their own grid point without a halo region. The
halo exchange (and its adjoint) is performed when needed,
such as horizontal interpolation of the state or increment to
the observation location and a linear variation transform con-
taining the spatial derivatives.

3 Multivariate background error covariance

In this section, we will present how the multivariate static
background error covariance is designed for JEDI-MPAS.
With a series of linear variable changes, the JEDI-MPAS
analysis variables are transferred into a set of variables that
are independent of each other. Then, we will describe how
the B statistics (or parameters) can be trained from samples.
The characteristics of diagnosed B statistics at the MPAS
60 km uniform mesh will be discussed. Lastly, we will dis-
cuss what modification is made to the diagnosed B statistics
to resolve the discrepancy between the assumption and actual
sample data set.

3.1 Multivariate background error covariance design

The basic design of the JEDI-MPAS multivariate background
error covariance follows that of the Gridpoint Statistical In-
terpolation (GSI; Wu et al., 2002) system, except in our
use of BUMP Normalized Interpolated Convolution from an
Adaptive Subgrid (NICAS; Ménétrier, 2020), rather than re-
cursive filters, to model the univariate spatial correlations
(see further description at the end of this section). The mul-
tivariate covariances are implemented as two linear variable
changes, K1 and K2, applied to a block-diagonal covariance
matrix

B=K1K26C6KT
2 KT

1 , (2)

where the block-diagonal covariance matrix has been written
as the product of a block-diagonal correlation matrix C and
a diagonal matrix 6 of standard deviations.

The linear variable changes K1 and K2 can be expressed
in the following matrix forms.

K1 :


δv

δT

δq

δps

=


k×∇ −∇ 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I



δψ

δχ

δT

δq

δps

 (3)
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and

K2 :


δψ

δχ

δT

δq

δps

=


I 0 0 0 0
L I 0 0 0
M 0 I 0 0
0 0 0 I 0
N 0 0 0 I



δψ

δχu
δTu
δq

δps,u

 (4)

Here, K1 computes increments for v from spatial deriva-
tives (indicated schematically by the gradient terms in the
upper-left block) of increments of stream function ψ and ve-
locity potential χ . K1 and the corresponding adjoint opera-
tor, KT

1 , are model-dependent JEDI components that oper-
ate on the MPAS native mesh and are implemented in Con-
trol2Analysis, a linear variable change class. Details of the
calculation of v from ψ and χ are given in the Appendix.

K2 is a linear variable change that computes δχ , δT , and
δps from δψ and the residual or “unbalanced” increments
δχu, δTu, and δps,u (for velocity potential, temperature, and
surface pressure, respectively), so called because they are by
assumption independent of δψ . The relation of δχ , δT , and
δps to δψ is based on linear regression from a training data
set, following Derber and Bouttier (1999). As in Derber and
Bouttier (1999), we choose to use δψ at a given mesh cell
and on the full set of vertical levels as predictors for δT and
δps at the same mesh cell and on any specific level, which
makes M and N block diagonal with blocks corresponding
to mesh cells and full matrices in each block. We retain δψ
only on the same level as a predictor for δχ , which makes L
a diagonal matrix.

Lastly, 6C6T is the covariance matrix for δψ ; δq; and
the unbalanced increments δχu, δTu, and δps,u. We assume
these variables are mutually independent, so C is block di-
agonal with blocks that give the univariate spatial (horizontal
and vertical) correlation for each variable. The matrix 6 is a
diagonal matrix with elements that specify the standard de-
viation for δψ , δχu, δTu, dq, and δps,u.

The operations K2, KT
2 , 6, 6T , and C use the Background

error on Unstructured Mesh Package (BUMP) in the System-
Agnostic Background-Error Representation (SABER) repos-
itory, which is a generic component within JEDI, through
the MPAS model interfaces. The BUMP Vertical BALance
(VBAL) driver is used for K2 and KT

2 . It is based on the
explicit vertical covariance matrices defined for a set of lat-
itudes and is interpolated at the model grid points’ latitude.
The BUMP VARiance (VAR) driver is used for 6 and 6T .
It simply applies the pre-computed error standard devia-
tions. The spatial correlation matrix is pre-computed from
the given correlation lengths with BUMP–NICAS. Similarly
to the GSI recursive filters, NICAS works in the grid-point
space. However, it applies the convolution function explic-
itly, instead of recursively for GSI. Thus, the choice of the
convolution function in NICAS is free, as long as it is positive
definite. We choose a widely used fifth-order piecewise func-
tion of Gaspari and Cohn (1999), which resembles the Gaus-
sian function but is compactly supported. To make the ex-

plicit convolution affordable for high-dimensional systems, it
is actually performed on a low-resolution unstructured mesh.
A linear interpolation is required to go from the unstructured
mesh to the full model grid. Finally, an exact normalization
factor is pre-computed and applied to ensure that the whole
NICAS correlation operator is normalized (i.e., diagonal ele-
ments of the equivalent correlation matrix are “1”). Thus, the
NICAS correlation matrix can be written as C= NSC̃STNT ,
where C̃ is the convolution operator on the low-resolution
mesh, S is the interpolation from the mesh to the full model
grid, and N is the diagonal normalization operator. The low-
resolution mesh density can be locally adjusted depending on
the diagnosed correlation lengths (or provided by the user).
Figure 1 shows a diagram for Eq. (2), with corresponding
BUMP drivers and MPAS-specific linear variable change.

3.2 Training the covariance model

The designed multivariate background error covariance has
several parameters to be determined. These parameters are
diagnosed from 366 samples of National Centers for Envi-
ronmental Prediction (NCEP) Global Forecast System (GFS)
48 and 24 h forecast differences, valid at the same time of day
and spanning the months of March, April, and May 2018.
Here, the 24 h forecast lead time difference is chosen to re-
move the effect of the diurnal cycle in the perturbation sam-
ples. The GFS forecast files of 0.25° resolution on the pres-
sure levels are interpolated to the 60 km MPAS mesh with
55 vertical levels for the following training procedures. With
a recent (early June 2023) version of JEDI-MPAS source
code after initial submission of this paper, we have trained
the static B parameters from MPAS model’s own forecast
with the same methodology described here. The overall B
statistics diagnosed from MPAS-based samples were simi-
lar to that from GFS-based samples reported here, except for
the error standard deviations in the stratosphere, which were
larger for MPAS-based samples. In the 1-month cycling ex-
periment, this led to a reduction in temperature and wind root
mean square errors (RMSEs) in 6 h forecasts in the strato-
sphere.

Since 6C6T depends on the statistics of δψ and δχ , we
first need to calculate perturbations of ψ and χ from δv of
each forecast difference. This is essentially the inverse op-
eration of K1 and can be expressed as solving a Poisson
equation with vorticity or divergence as a source term. Be-
cause solving a Poisson equation efficiently on the unstruc-
tured grid is not an easy task, we have adopted a spherical-
harmonics-based function from the NCAR Command Lan-
guage (NCL, 2019) that operates on an intermediate latitude–
longitude grid. We begin by interpolating δv fields to the in-
termediate grid and then calculate δψ and δχ through the
uv2sfvpf function of NCL and interpolate back to the MPAS
mesh. Note that because the definition of δχ (shown in Eq. 3)
is opposite in sign to that assumed in the NCL function, mul-
tiplying δχ (from NCL) by −1 is required.
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Figure 1. A diagram for Eq. (2). The symmetric correlation matrix, C, is wrapped with a series of forward linear (or tangent linear, TL)
variable changes and corresponding adjoint (AD) variable changes.

For K2, the BUMP VBAL driver calculates the cross-
variable linear regression coefficients, which are denoted as
L, M, and N in Eq. (4). The vertical autocovariance matrix
of δψ and the vertical cross-covariance matrices between
δψ and each of δχ , δT , and δps are computed and aver-
aged over latitude bands of ±10°. The desired matrices of
regression coefficients are obtained in the standard way by
right-multiplying the cross-variable covariance by the inverse
autocovariance of the predictor variable (δψ in our design).
The vertical autocovariance matrices are usually poorly con-
ditioned, and thus direct computation of their inverses will
yield noisy results in the presence of sampling error. To over-
come this, we apply a pseudo-inverse, which only includes
some dominant eigenmodes to calculate the inverse matrix.
We have chosen the 20 leading modes (among a total of 55
modes) for the pseudo-inverse of the δψ autocovariance ma-
trix.

For 6, the BUMP VAR driver calculates variances for
δψ , δχu, δTu, δq, and δps,u from the samples and filters
them horizontally to damp the sampling noise. The horizon-
tal smoother is also based on NICAS, with an appropriate
mean-preserving normalization factor.

The correlation matrix, C, consists of blocks that specify
the univariate spatial correlation for δψ , δχu, δTu, δq, and
δps,u. The BUMP Hybrid DIAGnostic (HDIAG) driver diag-
noses the horizontal and vertical correlation lengths used in
modeling C parameters. HDIAG can diagnose the horizontal
and vertical spatial correlations from the samples. First, it de-
fines a low-resolution unstructured mesh. Around each mesh
node, diagnostic points are randomly and isotropically drawn
for different horizontal separation classes. Second, HDIAG
calculates the horizontal correlation between each mesh node
and its own diagnostic points from the samples, at all lev-
els. The vertical correlation is also calculated at each mesh
node, between each level and the neighboring levels. The
third step is a horizontal averaging of these raw correlations,
either over all the mesh nodes or over local neighborhoods.
The average is binned depending on the level and the hori-
zontal separation for the horizontal correlation and depend-
ing on the levels concerned for the vertical correlation. As a
final step, HDIAG fits a Gaspari and Cohn (1999) function
for each averaged correlation curve. Thus, we obtain hori-
zontal and vertical correlation length values for each level.
If the averaging and curve-fitting steps are performed over
local neighborhoods, an extra interpolation step is necessary

to obtain 3D fields of length scales on the model grid. These
length-scale profiles or 3D fields can be stored and provided
to NICAS in order to model the spatial correlation operator.
In this study, the local correlation lengths were obtained from
raw statistics within a 3000 km radius for a given diagnostic
point.

3.3 Diagnosed statistics

The regression coefficients that appear in the definition (4)
of K2, which are computed by BUMP VBAL, are shown
in Fig. 2 for a location near 34.8° N latitude. Considering
first Fig. 2a, the δT –δψ coefficients are largest at small sep-
arations. Their structure is dipolar, with δT at a given level
positively related to δψ at nearby but higher levels, and neg-
atively related to δψ at nearby but lower levels. The δT –
δψ coefficients are generally consistent with approximate
geostrophic and hydrostatic balance, which together relate ψ
to the mass field and the vertical derivative of the mass field
to buoyancy. The coefficient structure is different for model
levels lower than 10, perhaps due to the effects of the bound-
ary layer and terrain. Figure 2b shows δχ–δψ coefficients,
which relate δχ at a given level to δψ at the same level. The
balanced part of δχ depends positively on δψ near the sur-
face, consistent with Ekman balance, under which vertical
vorticity near the surface drives horizontal convergence in the
boundary layer. Finally and not unexpectedly, δps has a pos-
itive dependence on δψ in the lower troposphere (Fig. 2c).

Figure 3 shows the variance that can be predicted knowing
δψ normalized by the total variance, for δT , δχ , and δps.
There are substantial variations with latitude and height. For
δT , the δT –δψ regression can explain up to 70 % of the total
variance in mid-latitude and high-latitude regions in the tro-
posphere. For δχ , the regression explains up to 35 % of the
total variance in the mid-latitudes near the surface (below
model level 10), while for δps, the regression explains sub-
stantial variance everywhere except the tropics. These bal-
anced ratios are similar to those found in Wu et al. (2002)
(their Fig. 1) and Barker et al. (2012) (their Fig. 5), and their
geographic variations confirm that the regressions primarily
reflect dynamical balances characteristic of mid-latitudes and
high latitudes.

The other quantities that must be estimated from the train-
ing data set are the standard deviations that form the diago-
nal of 6 and the fields of horizontal and vertical correlation

https://doi.org/10.5194/gmd-17-3879-2024 Geosci. Model Dev., 17, 3879–3895, 2024



3884 B.-J. Jung et al.: JEDI-MPAS 3D-Var

Figure 2. Regression coefficients near 34.8° N between (a) δT and δψ [K (m2 s−1)−1
], (b) δχ and δψ [(m2 s−1) (m2 s−1)−1

], and (c) δps
and δψ [Pa (m2 s−1)−1

]. These are the nonzero elements at this mesh cell of the submatrices M, L, and N, respectively, of K2 (see Eq. 4).

Figure 3. Ratio of balanced variance (i.e., that predicted by δψ) to total variance for (a) δT , (b) δχ , and (c) δps.

scales for each of the variables δψ , δχu, δTu, δq, and δps,u,
which together specify the correlation matrix C. Figure 4
shows the vertical profiles of horizontally averaged standard
deviations for each variable. For δψ and δχu, the standard de-
viation increases upward from the surface to a peak near the
tropopause. The standard deviation of δTu, in contrast, gen-
erally decreases upward from a peak at the surface. For δq,
the profile of standard deviations has a shape similar to that
for q itself, peaked in the lower troposphere and decreasing
steadily with height above.

Figures 5 and 6 show the vertical profiles of horizontally
averaged horizontal and vertical correlation lengths, respec-
tively. The horizontal correlation lengths generally increase
with height in the stratosphere and are nearly constant in the
troposphere, though δχu has substantial variations in hori-
zontal length scale throughout the profile. The horizontal cor-
relation lengths for δψ and δχu are larger than those for δTu
and δq, while the horizontal correlation length for δps,u is
roughly 3700 km, much larger than the horizontal correlation
lengths for δTu and δq near the surface. The vertical corre-
lation lengths have minima near the surface for all variables
and then increase with height toward a peak near the model

top. The vertical correlation lengths for δψ and δχu are again
larger than those for δTu and δq.

3.4 Additional tuning

The parameters shown in the previous section are the raw
statistics from the BUMP training applications. We have ap-
plied two additional modifications to these raw statistics.
Without these modifications, the resulting static B performs
poorly in 3D-Var and is unable to improve on 3DEnVar in
hybrid applications (not shown).

First, the background error standard deviation for all vari-
ables (6) is scaled by a factor of 1/3. While the cycling in-
terval shown later in this study is 6 h, which is typical, the
forecast differences used in the training reflect forecast-error
evolution over 24 h. Thus, it is reasonable to scale the diag-
nosed background error standard deviation to match the error
growth for a 6 h interval. Here, we choose the single scal-
ing factor of 1/3 for all variables, based on a limited set of
sensitivity tests of cycling experiments with different scaling
factors.

We also reduce the diagnosed horizontal correlation
lengths for δψ and δχu by half. Figure 7 shows the raw hori-
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Figure 4. Horizontally averaged standard deviations for (a) δψ ,
(b) δχu, (c) δTu, and (d) δq. The horizontally averaged standard
deviation for δps,u is 53.05 Pa.

zontal correlation function for δψ on model level 15 together
with the best-fit correlation function, which is diagnosed by
BUMP by adjusting the length scale of the fifth-order, com-
pactly supported function from Gaspari and Cohn (1999).
There is a clear discrepancy between the sample correlation
function and that assumed in BUMP – the raw correlation
decreases more rapidly for small separations and has larger
correlations at large separations. The implied velocity vari-
ance in the modeled covariance (Eq. 2) is proportional to the
second derivative at the origin of the δψ (and δχ ) correlation
(Lorenc, 1981; Daley, 1985). That is, δψ correlations that
more strongly peak at the origin will produce larger velocity
variance even if the δψ variance is fixed. Thus, the modeled
covariances greatly underestimate the velocity variance rel-
ative to the statistics of the original training data. Reducing
the horizontal correlation length for δψ and δχu by a factor
of 2 increases the second derivative of their correlation, and
therefore the velocity variance, by a factor of 4, leading to a
better fit to the velocity variance in the training data. Ideally,
the mismatch between the assumed correlation structure and
that of the training data would be addressed by a more flexi-
ble correlation model in BUMP. A capability for this is now
available, and we hope to report on its use in the future. In
other systems, the necessary flexibility has been achieved us-

Figure 5. Horizontally averaged horizontal correlation lengths [km]
for (a) δψ , (b) δχu, (c) δTu, and (d) δq. The horizontally averaged
length for δps,u is 3702.3 km.

ing sums of recursive filters with different length scales (Wu
et al., 2002; Kleist et al., 2009) or modeling the correlations
in spectral space (Parrish and Derber, 1992; Lorenc et al.,
2000).

4 Single-observation tests

To explore the structure of diagnosed and tuned multivari-
ate B, two sets of a single-observation test were performed;
one for assimilating a single zonal-wind observation with
1 ms−1 innovation and 1 ms−1 observation-error standard
deviation and the other for assimilating a single temperature
observation with 1 K innovation and 1 K observation-error
standard deviation. Both single observations are placed at
(40.4113° N, 38.68° W) and at roughly 800 hPa, a location
that corresponds to one of the MPAS cell centers and vertical
level 15.

Figure 8 shows the analysis increments from the single
temperature observation, for the zonal and meridional com-
ponents of v (left and center columns, respectively) and for T
(right column), on the three different vertical levels (10, 15,
and 20, shown in the bottom, middle, and top rows). The T
increments have a horizontally isotropic structure with maxi-
mum values at level 15, where the observation is located. The
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Figure 6. Horizontally averaged vertical correlation lengths [km]
for (a) δψ , (b) δχu, (c) δTu, and (d) δq.

Figure 7. The isotropic correlation function for δψ on the 15th
model level, based on the sample of forecast differences (blue). Also
shown are the correlation function assumed in BUMP (orange) us-
ing the length scale that gives the best fit to the sample-derived cor-
relation, as well as the tuned correlation function (green).

wind increments are, to a first approximation, linked to the T
increment through the thermal-wind relation: cyclonic circu-
lation is introduced on level 10, below the maximum tem-
perature increment, and an anti-cyclonic circulation appears
above, on level 20. This reflects the approximate geostrophic
and hydrostatic relations captured by K2 and is consistent
with Parrish and Derber (1992) (their Fig. 2), which uses the
linear balance equation between mass and momentum vari-
ables.

Similarly, Fig. 9 shows the analysis increments from the
single zonal-wind observation. The positive zonal-wind in-
crement is maximized at the observation location on the 15th
model level. To the north and south of the observation loca-
tion, negative zonal-wind increments are introduced, which
– together with the increments of meridional winds – rep-
resent a cyclonic circulation to the north of the observation
and an anti-cyclonic circulation to the south. Temperature in-
crements are negative below the cyclonic circulation (i.e., on
level 10) and positive above (on level 20) and vice versa for
the anti-cyclonic circulation. The structure of the increments
again reflects thermal-wind balance, and in this case is con-
sistent with Wu et al. (2002) (their Fig. 9) or Kleist et al.
(2009) (their Fig. 3).

Figure 10 shows the surface pressure increments from two
single-observation tests. When the single temperature ob-
servation is assimilated, cyclonic circulation is introduced
into the lower troposphere. The negative surface pressure in-
crement is approximately geostrophically related to this cy-
clonic circulation. When the single zonal-wind observation
is assimilated, the zonal-wind increments extend through-
out the troposphere, including to the surface. The dipole of
positive and negative surface pressure increments, south and
north, respectively, of the observation location, is geostroph-
ically related to the increment of the surface wind.

5 Cycling experiments

5.1 Experimental design and assimilated observations

For further evaluation of the multivariate static B for JEDI-
MPAS, three sets of 1-month (15 April–14 May 2018)
cycling experiments were performed on NCAR’s high-
performance computing system, Cheyenne. As a reference
experiment, the “3DEnVar” experiment was performed us-
ing the pure ensemble covariances, as in Liu et al. (2022).
At each cycle, a 20-member ensemble of 6 h MPAS fore-
casts was made using initial conditions from the Global En-
semble Forecast System (GEFS; Zhou et al., 2017). Covari-
ance localization was applied to the ensemble covariances
via BUMP’s generic localization scheme, using globally con-
stant localization scales of 1200 km horizontally and 6 km
vertically. To demonstrate the static covariances, the “3D-
Var” experiment was performed with the static B formulated
and tuned as described in the preceding sections. Lastly, the
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Figure 8. Analysis increments for the (left column) zonal component of v [ms−1
], (center column) meridional component of v [ms−1

], and
(right column) T [K] on model level (upper row) 20, (middle row) 15, and (lower row) 10, from a single temperature observation with 1 K
innovation and 1 K observation-error standard deviation, located at (40.41° N, 38.68° W) on model level 15 with a marker ×.

“Hybrid-3DEnVar” experiment was performed using a hy-
brid covariance given by a weighted sum of static and ensem-
ble B (Hamill and Snyder, 2000). Here, we choose a weight
of 0.5 for each component, similarly to Wang et al. (2013),
Clayton et al. (2013), and Kuhl et al. (2013). This final ex-
periment evaluates the effectiveness of our static B for hy-
brid applications. In all three experiments, the same global
MPAS quasi-uniform 60 km mesh is used both for analysis

and background fields and for analysis increment. For the
minimization, two outer loops are used, with 60 inner itera-
tions for each outer loop.

The observation files are converted from GSI’s ncdiag
files, which contain the observation location, observation
value, observation error, GSI’s quality control, and satel-
lite bias correction information. The observation quality
control basically follows the GSI’s quality control (called
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Figure 9. Same as Fig. 8, except from a single zonal-wind observation with 1 ms−1 innovation and 1 ms−1 observation-error standard
deviation, located at (40.41° N, 38.68° W) on model level 15 with a marker ×.

“PREQC”), and the background innovation check is added,
which filters out the observation when the absolute value of
observation departure is larger than 3 times the given ob-
servation error. In all three experiments, the surface pres-
sure, radiosondes (wind, temperature or virtual tempera-
ture, and specific humidity), aircraft (wind, temperature, spe-
cific humidity), atmospheric motion vectors, Global Naviga-
tion Satellite System Radio Occultation (GNSS RO) refrac-
tivity, and clear-sky Advanced Microwave Sounding Unit-

A (AMSU-A) radiances from NOAA-15, NOAA-18, and
NOAA-19; MetOp-A and MetOp-B; and Aqua satellites are
assimilated. The AMSU-A radiances are bias-corrected from
GSI’s information and pre-thinned with a 145 km mesh.

5.2 Results

Figure 11 shows the time series of background RMSEs for
surface pressure during the cycling period. The RMSEs are
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Figure 10. Analysis increments for ps [Pa] (left) from a single temperature observation with 1 K innovation and 1 K observation-error
standard deviation and (right) from a single zonal-wind observation with 1 ms−1 innovation and 1 ms−1 observation-error standard deviation.
The observation location is marked with ×.

Figure 11. Time series (00:00 UTC, 15 April, to 18:00 UTC, 14 May 2018) of background RMSEs for ps verified with GFS analysis over
(a) northern extratropical (30–90° N; NXTro), (b) tropical (30° S–30° N; Tro), and (c) southern extratropical (30–90° S; SXTro) regions.

calculated with respect to GFS analysis at the valid time as
a reference. For surface pressure, 3D-Var gives somewhat
smaller RMSEs compared to the 3DEnVar experiment, ex-
cept for the southern extratropical region. Hybrid-3DEnVar
gives smaller RMSEs compared to 3D-Var. Figure 12 shows
the vertical profiles of relative RMSE changes for back-
ground fields during the cycling period, with the RMSE of
3DEnVar as reference. The confidence intervals with 95 %
significant level are also shown as error bars, from a boot-
strap resampling method with a resampling size of 10 000.
Compared to 3DEnVar, the 3D-Var experiment shows some
degradation in the troposphere and some improvement in
the stratosphere in general. Hybrid-3DEnVar shows overall
improvement over both 3DEnVar and 3D-Var experiments
and throughout levels in both the troposphere and the strato-
sphere.

Figure 13 shows the observation space verification for ra-
diosondes. The relative changes of the root mean square
(rms) first-guess departure (OMB, observation minus back-
ground) are mostly consistent with the model space verifi-
cation in Fig. 12. Compared to the RMSEs of 3DEnVar, the

RMSEs of Hybrid-3DEnVar are significantly improved, ex-
cept for temperature observation. The RMSEs of 3D-Var are
degraded by ∼ 5 %. In the observation space verification for
AMSU-A radiance observations (not shown), which assim-
ilates the channels sensitive to the atmospheric temperature
profile, Hybrid-3DEnVar shows neutral to slightly improved
impact in the RMSEs for channels 5 and 6. For channels 7,
8, and 9, both 3D-Var and Hybrid-3DEnVar show significant
improvement over 3DEnVar. Larger improvement is shown
over both high latitudes. This is consistent with the large
temperature RMSE reduction in the model space verification
(Fig. 12a).

Additional 10 d extended forecasts were conducted at each
00:00 UTC initialization time to evaluate the impact of anal-
ysis on the longer forecast lengths. The changes in RMSE for
3D-Var and Hybrid-3DEnVar relative to 3DEnVar are shown
in Fig. 14. At short forecast lead times, the relative RMSEs
look similar to the relative RMSEs for the 6 h background
forecasts shown in Figs. 11 and 12. It is notable that the larger
water vapor mixing ratio (Qv) RMSE for 3D-Var lasts until
6 d forecasts (Fig. 14f). This might be because the moisture

https://doi.org/10.5194/gmd-17-3879-2024 Geosci. Model Dev., 17, 3879–3895, 2024



3890 B.-J. Jung et al.: JEDI-MPAS 3D-Var

Figure 12. Vertical profiles of relative background RMSE changes (with respect to GFS analysis) for (a) T , (b) Qv, (c) zonal wind, and
(d) meridional wind, compared to the 3DEnVar experiment. Statistics are aggregated for the period from 00:00 UTC, 18 April, to 18:00 UTC,
14 May 2018, with 95 % confidence intervals.

variable is univariate in the current B design (Sect. 3.1), while
the moisture analysis in 3DEnVar or Hybrid-3DEnVar can
be done through the multivariate ensemble covariances. The
benefit of hybrid background error covariance can be found
for up to 5 d lead times for surface pressure, temperature, and
zonal- and meridional-wind fields. The benefit of hybrid co-
variance is only kept for∼ 2 d lead times for humidity fields.

6 Conclusions

This study has described the multivariate static background
error covariances for JEDI-MPAS 3D-Var. Similarly to Liu
et al. (2022), JEDI-MPAS 3D-Var utilizes generic JEDI com-
ponents through interfaces that are specific to MPAS.

The formulation of the JEDI-MPAS static B generally fol-
lows Wu et al. (2002) but with the novel use of BUMP
for multiple elements of the covariance model. Two linear
variable transforms represent the multivariate relationship.
One transform is a variable change from stream function
ψ and velocity potential χ to v, which directly operates
on the MPAS native mesh. The other transform, which uses
the BUMP driver VBAL from JEDI’s SABER repository, is
based on linear regression over vertical columns of incre-
ments in other variables against increments in ψ . The full
multivariate covariances are then given by these linear trans-
forms (and their adjoints) applied to a univariate covariance.
The univariate correlation matrix employs BUMP–NICAS,
which efficiently computes the three-dimensional convolu-
tion of an input vector with a specified spatial correlation

Geosci. Model Dev., 17, 3879–3895, 2024 https://doi.org/10.5194/gmd-17-3879-2024



B.-J. Jung et al.: JEDI-MPAS 3D-Var 3891

Figure 13. Vertical distribution of relative rms changes of observation minus background, or first-guess departure, for the (a) virtual temper-
ature Tv, (b) specific humidity (c) zonal wind, and (d) meridional wind of radiosonde observations. Statistics are aggregated for the period
from 00:00 UTC, 18 April, to 18:00 UTC, 14 May 2018, with 95 % confidence intervals.

function on an optimally subsampled mesh and then interpo-
lates back to the full MPAS mesh.

For the experiments presented here, we estimated vari-
ous parameters in the covariance model from a training data
set of 366 differences between 48 and 24 h forecasts on the
60 km MPAS mesh. In general, the regression coefficients
capture the linear, approximately geostrophic balance be-
tween mass and momentum variables that holds outside the
tropics. While the error standard deviations for ψ and χu be-
come larger at higher vertical levels, up to a peak near the
tropopause, the error standard deviations for Tu and q are
larger in the middle to lower troposphere. The horizontal and
vertical correlation lengths for errors in ψ and χu are, in gen-
eral, larger than those for errors in Tu and q. We also made
two modifications to the parameters objectively estimated by

BUMP. The error standard deviation is scaled by a factor of
1/3 to match the 24 h time differences (i.e., 48 h forecast and
24 forecast pairs) in the training samples to the typical 6 h
DA cycling interval. In addition, the horizontal correlation
lengths for increments of ψ and χu are reduced by half to
compensate for the discrepancy between the raw correlation
structure from the training data set and the correlation func-
tion assumed in BUMP, which has much less curvature at
small separations.

We evaluated the JEDI-MPAS static B in cycling data as-
similation experiments extending over a month and assim-
ilating observations from a significant fraction of the global
observing network, including GNSS RO, AMSU-A, and con-
ventional observations. The 3D-Var system using this static
B generally performs close to, but worse than, EnVar using
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Figure 14. Relative RMSE changes as a function of forecast lead time for (a–d) near-surface and (e–h) three-dimensional variables, compared
to the 3DEnVar experiment. Shown are (a) T at 2 m, (b) q at 2 m, (c) zonal wind at 10 m, (d) ps, (e) T , (f) Qv, (g) zonal wind, and
(h) meridional wind. Statistics are aggregated over 27 extended forecasts with 95 % confidence intervals.

pure ensemble covariances as in Liu et al. (2022), while us-
ing a hybrid background covariance that is a weighted sum of
the static B and ensemble covariances improves significantly
on both 3D-Var and EnVar. Neither of these results is novel,
as numerous studies have shown the advantage of EnVar over
3D-Var and of the hybrid algorithm over EnVar, but they do
demonstrate clearly the effectiveness of the static B.

The static background covariances presented here are an
initial implementation, with plenty of room for further refine-
ments. Two extensions that are already underway are train-
ing the covariance model based on an ensemble from JEDI-
MPAS, such as that provided by the EDA of Guerrette et al.
(2023), and including hydrometeor increments, which will
be especially important for all-sky assimilation of radiances.
There are also BUMP capabilities that we have yet to exer-
cise, including more general correlation functions that should
remove the need for manual retuning of correlation lengths
diagnosed by BUMP and joint estimation of hybridization
and localization coefficients (Ménétrier and Auligné, 2015).
In the current B design, the moisture variable is univariate,
which may limit the performance of moisture analysis even
with Hybrid-3DEnVar configuration. To this end, we will ex-
plore more sophisticated moisture variables, such as pseudo-
relative humidity (Dee and da Silva, 2003) or normalized rel-
ative humidity (Hólm et al., 2002).

Appendix A: Diagnosing velocity from the stream
function and velocity potential in MPAS

To compute horizontal velocity v fromψ and χ on the MPAS
mesh, we rely on the fact that the irrotational component of
velocity is given by (minus) the gradient of χ , while the

nondivergent component of velocity is given by the cross-
product of the vertical unit vector and the gradient of ψ . The
edge-normal component of velocity u on the MPAS mesh
is oriented parallel to the segment connecting the centers of
adjacent cells and, naturally, normal to the edge itself. The
natural finite difference relation is then

u=−δcχ − δvψ, (A1)

where, in an abuse of our previous notation, δc is the differ-
ence operator between the centers of the mesh cells adjoining
the edge and δv is the difference operator between the cell
vertices at either end of the edge.

Implementing Eq. (A1) is straightforward given the MPAS
mesh conventions and the mesh information in MPAS initial-
ization files (MPAS Mesh Specification, 2015). The differ-
ence operators are defined as

δcχ =
χc,2−χc,1

1c
,

δvψ =
ψv,2−ψv,1

1v
, (A2)

where 1c is the distance between cell centers sharing
the edge and 1v is the distance between vertices on the
edge. The ordering of the cells and vertices is such that
this formula will give the correct signs for the veloci-
ties on the MPAS mesh. For a given edge in the files,
the lengths 1c and 1v are in the variables dcEdge(edge)
and dvEdge(edge), respectively. The cells sharing an
edge are cellsOnEdge(2,edge) and cellsOnEdge(1,edge),
and the vertices are verticesOnEdge(2,edge) and ver-
ticesOnEdge(1,edge).

Although Eqs. (A1) and (A2) use the full variables (i.e., ψ
and χ ), they are also applicable to the incremental variables
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(i.e., δψ and δχ ) because of their linear form. The computa-
tion begins with δψ and δχ at the cell centers. Values of δψ
at the cell vertices are computed by interpolating δψ from the
centers of the three cells containing each vertex, before ap-
plying Eq. (A1). MPAS provides a utility that employs radial
basis functions to reconstruct the vector wind at a cell cen-
ter from δu on the edges of the cell (following Bonaventura
et al., 2011), which provides the final δv. Because these three
steps involve a different subset of the MPAS mesh (i.e., cells,
vertices, and edges), a halo exchange routine from MPAS is
required and called between each step. We have also imple-
mented the adjoint operator of the halo exchange, which is
needed when applying KT

1 .

Code and data availability. JEDI-MPAS 2.0.0-beta has been pub-
licly released on GitHub, accessible in the release/2.0.0-beta
branch of mpas-bundle (https://github.com/JCSDA/mpas-bundle/
tree/release/2.0.0-beta, last access: 6 May 2024). It is also avail-
able from Zenodo at https://doi.org/10.5281/zenodo.7630054 (Joint
Center For Satellite Data Assimilation and National Center For
Atmospheric Research, 2022). Global Forecast System analysis
data were downloaded from the NCAR Research Data Archive:
https://doi.org/10.5065/D65D8PWK (last access: 1 June 2023; Na-
tional Centers for Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department of Commerce, 2015). Global En-
semble Forecast System ensemble analysis data were downloaded
from https://www.ncei.noaa.gov/products/weather-climate-models/
global-ensemble-forecast (last access: 1 June 2023; NOAA,
2023). Conventional and satellite observations assimilated were
downloaded from https://doi.org/10.5065/Z83F-N512 (last ac-
cess: 1 June 2023; National Centers for Environmental Predic-
tion/National Weather Service/NOAA/U.S. Department of Com-
merce, 2008) and https://doi.org/10.5065/DWYZ-Q852 (last ac-
cess: 1 June 2023; National Centers for Environmental Prediction/-
National Weather Service/NOAA/U.S. Department of Commerce,
2009).
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