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Abstract. The spatial heterogeneity related to complex to-
pography in California demands high-resolution (< 5 km)
modeling, but global convection-permitting climate models
are computationally too expensive to run multi-decadal sim-
ulations. We developed a 3.25 km California climate mod-
eling framework by leveraging regional mesh refinement
(CARRM) using the U.S. Department of Energy (DOE)’s
global Simple Cloud-Resolving E3SM Atmosphere Model
(SCREAM) version 0. Four 5-year time periods (2015–2020,
2029–2034, 2044–2049, and 2094–2099) were simulated by
nudging CARRM outside California to 1° coupled simula-
tion of E3SMv1 under the Shared Socioeconomic Pathways
(SSP)5-8.5 future scenario. The 3.25 km grid spacing adds
considerable value to the prediction of the California climate
changes, including more realistic high temperatures in the
Central Valley and much improved spatial distributions of
precipitation and snowpack in the Sierra Nevada and coastal
stratocumulus. Under the SSP5-8.5 scenario, CARRM simu-
lation predicts widespread warming of 6–10 °C over most of
California, a 38 % increase in statewide average 30 d winter–
spring precipitation, a near-complete loss of the alpine snow-
pack, and a sharp reduction in shortwave cloud radiative forc-
ing associated with marine stratocumulus by the end of the
21st century. We note a climatological wet precipitation bias
for the CARRM and discuss possible reasons. We conclude
that SCREAM RRM is a technically feasible and scientif-
ically valid tool for climate simulations in regions of in-
terest, providing an excellent bridge to global convection-
permitting simulations.

1 Introduction

California is a topographically diverse state known for the
rugged Sierra Nevada mountain range, the expansive Central
Valley, and its scenic and complex coastline. California has
a unique and diverse combination of Mediterranean, moun-
tain, and desert climates, each of which includes its own mi-
croclimates due to fine-scale heterogeneity caused by com-
plex topography, coastline, and elevation differences. Due to
the seasonal persistence of high-pressure ridges, California
is under the influence of large-scale subsidence that typi-
cally results in dry summer months (Karnauskas and Um-
menhofer, 2014). The high-pressure ridge in combination
with marine fog results in a relatively cool summer climate
along the coast (Pilié et al., 1979; Samelson et al., 2021),
while low-lying inland valleys and desert areas are subjected
to a much hotter summer climate. Atmospheric rivers (ARs)
are responsible for the majority of California’s precipitation
(Huang and Swain, 2022) and are characterized as narrow,
concentrated moisture surges from the central Pacific Ocean,
often during wintertime (Ralph et al., 2006; Leung and Qian,
2009; Dettinger et al., 2011; Chen et al., 2018; Swain et al.,
2018; Huang et al., 2020; Rhoades et al., 2021; Huang and
Swain, 2022). California’s precipitation patterns are highly
intermittent, with snowpack acting as a key natural store of
that precipitation during the wet winter season and spring
snowmelt runoff producing large freshwater supply primar-
ily from the Sierra Nevada (Bales et al., 2011; Hanak et al.,
2017). Snowpack is also important to California’s energy
component, with hydroelectric power providing 56 % of the
western US energy supply and up to 21 % of California’s di-
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verse energy portfolio (Stewart, 1996; Bartos and Chester,
2015; Solaun and Cerdá, 2019).

With climate change, California is likely to experience
significantly warmer temperatures, less snowpack, a shorter
snowpack season, and more precipitation settling as rain
rather than snow, resulting in earlier runoff diversions, in-
creased risk of winter flooding, and reduced summer surface
water supplies (Gleick and Chalecki, 1999; Hayhoe et al.,
2004; Leung et al., 2004). As one of the world’s largest agri-
cultural suppliers and a key US energy supplier, changes
in regional temperature, precipitation, snowpack, and wa-
ter availability in California could significantly affect the
state’s agricultural economy and future power supply ca-
pacity (Tanaka et al., 2006; Hanak and Lund, 2012; Cal-
ifornia Department of Food and Agriculture, 2016; Bartos
and Chester, 2015; Pathak et al., 2018; Arellano-Gonzalez
et al., 2021). Specifically, recent downscaling studies have
found that under the impacts of climate change, Califor-
nia and the western US will experience significant reduc-
tions in snowpack, including reduced winter snowfall, ear-
lier spring snowmelt, and increased interannual variability,
with important implications for water management and flood
risk (Berg et al., 2016; Hall et al., 2017; Musselman et al.,
2017; Rhoades et al., 2017; Walton et al., 2017; Musselman
et al., 2018; Rhoades et al., 2018a; Marshall et al., 2019;
Sun et al., 2019; Siirila-Woodburn et al., 2021). In addition,
other renewable energy facilities, particularly wind and so-
lar, are growing rapidly in California, with wind deployment
plans projected to provide 14 % of the energy supply by 2050
(Edenhofer et al., 2011; Barthelmie and Pryor, 2014). Pre-
dictions of future wind and solar generation in California
have also received attention (Crook et al., 2011; Wang et al.,
2018).

California’s winter precipitation fluctuates dramatically
from year to year due to changes in the location of the
jet stream, and this strong precipitation volatility can sub-
ject California to extreme hydrological events such as
megafloods and extreme droughts (Swain et al., 2018; Det-
tinger, 2016). While the majority of California typically re-
mains dry during the summer months, the high-elevation
deserts in the southeast portion of the state can experience
brief but intense thunderstorms due to the southwest mon-
soon (Adams and Comrie, 1997; Prein et al., 2022; Higgins
et al., 1999). Virtually all parts of California are vulnera-
ble to relatively long-duration heat waves during the summer
months (Gershunov et al., 2009), with inland communities
being most affected. These heat waves not only pose ma-
jor health risks, but they often contribute to increased wild-
fire activity. In the autumn, strong Santa Ana/Diablo winds
from the interior desert plateau rapidly increase the risk of
wildfires (Williams et al., 2019; Keeley et al., 2009). In ad-
dition, the intricate variability in the temperatures and cli-
mates over very short distances across California, such as
the cool downslope mountain–valley circulations at night
(Zängl, 2005; Pagès et al., 2017; Jin et al., 2016; Junquas

et al., 2018) and the elevation dependence of the snow–rain
transition (Guo et al., 2016; Minder et al., 2018; Winter et al.,
2017; Rhoades et al., 2016, 2017), underscore the state’s vul-
nerability to diverse climate extremes. The processes that
give rise to these microclimates require the use of high-
resolution models to understand their interactions and project
how they may become altered under climate change.

To reliably predict climate change in California and assess
the impacts of extreme events in the future, high-resolution
climate simulations are needed to resolve microclimate fea-
tures that are highly dependent on the fine-scale heterogene-
ity. These include topographic precipitation, mountain snow-
pack, coastal fog, Santa Ana winds, etc. For example, Cald-
well et al. (2019) found that 25 km was necessary to cap-
ture general mountain topography and the associated cli-
matological precipitation patterns with fidelity. Tang et al.
(2023) showed that the topographic precipitation and moun-
tain snowpack are improved in the E3SMv2 North Ameri-
can 25 km Regionally Refined Model overview relative to the
100 km configuration. However, Huang et al. (2020) found
that even higher resolution, specifically ∼ 3 km, was needed
to accurately simulate and predict precipitation distributions
and potential hazard impacts related to AR events. Rhoades
et al. (2023) recently evaluated RRM-E3SM (regionally re-
fined model with Energy Exascale Earth System Model) at
14 km vs. 7 km vs. 3.5 km horizontal resolutions and demon-
strated the forecast skill of 3.5 km in recreating extreme
floods. A 3 km resolution represents the typical convection-
permitting scale, and thus the resolution advantages go far
beyond the ability to simulate ARs, since the uncertainties
associated with deep convection parameterizations can be
avoided (Hohenegger et al., 2008; Chikira and Sugiyama,
2010; Kendon et al., 2012; Ban et al., 2014; Prein et al.,
2015; Yano et al., 2018; Neumann et al., 2019; Stevens et al.,
2019; Lucas-Picher et al., 2021; Gao et al., 2022, 2023). As
an example, Caldwell et al. (2021) found that many long-
standing biases typically associated with conventionally pa-
rameterized general circulation models (GCMs) are signifi-
cantly reduced when run at ∼ 3 km horizontal resolution.

Recently, global convection-permitting models (GCPMs)
have become a reality thanks to advances in high-
performance computing (HPC), algorithms, and software op-
timizations (Satoh et al., 2019). However, it is still very com-
putationally expensive and difficult to perform interannual
climate simulations using GCPMs, and most simulations us-
ing these types of models have thus far focused on dura-
tions of ∼ 40 d (Stevens et al., 2019; Caldwell et al., 2021;
Hohenegger et al., 2023). Higher resolution requires smaller
time steps to achieve numerical stability, which contributes
greatly to the cost. In addition, managing the large volumes
of data produced by GCPMs further adds more complication.
Given the expensive cost of GCPMs, regional climate models
(RCMs) have played an important role in the last few decades
(Giorgi, 2019; Gutowski et al., 2020), allowing for low-
resolution boundary condition data to be dynamically down-
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scaled to high resolution over regions of interest. The low-
resolution GCMs have been able to provide plausible large-
and synoptic-scale climatologies given large-scale forcing
(e.g., future emissions and land use changes described in
future scenario projections). The sub-grid-scale processes
are represented by downscaling techniques (Giorgi, 2019).
While RCMs were developed based on limited-area nest-
ing models, GCMs now have the capability to employ vari-
able resolution grids and regionally refined meshes by cap-
italizing on unstructured grid development (Fox-Rabinovitz
et al., 2006; Abiodun et al., 2008; Tomita, 2008; Zarzycki
et al., 2014; Skamarock et al., 2018). In contrast to regional
convection-permitting models (CPMs), which refer to re-
gional climate models with limited areas (e.g., Prein et al.,
2015; Kendon et al., 2017), RRMs are global models. When
RRM is run freely, it works exactly like a typical GCM (e.g.,
Tang et al., 2023), and there are studies discussing the up-
scale effects of the refined area in large-scale circulations
(e.g., Sakaguchi et al., 2016). Thus, although both can be
pushed to a convection-permitting (CP) resolution, RRM and
limited-area regional models are fundamentally different in
terms of grid structure and evolutionary history.

Modern regionally refined models (RRM) allow for a
gradual transition of the grid from the synoptic scale to
the kilometer scale (Harris and Lin, 2013; Zarzycki and
Jablonowski, 2014; Guba et al., 2014; Zarzycki et al., 2014;
Rauscher and Ringler, 2014; Harris et al., 2016; Tang et al.,
2019). A unique feature of RRM is that it allows for a seam-
less transition from coarse- to fine-resolution regions, pro-
vided that the model has physical parameterizations that are
scale-aware. It can also be implemented as a configuration
that more closely resembles a RCM by “relaxing” or “nudg-
ing” the refined region to atmospheric and oceanic bound-
ary conditions outside the region of interest (Gutowski et al.,
2020). RRM methods have been used in idealized aquaplanet
simulations (Rauscher et al., 2013; Rauscher and Ringler,
2014; Zarzycki et al., 2014) and Atmospheric Model Inter-
comparison Project (AMIP) and fully coupled simulations
(Rhoades et al., 2016; Wu et al., 2017; Huang and Ullrich,
2017; Tang et al., 2019; Rhoades et al., 2020a; Tang et al.,
2023). RRM is a powerful tool because it has the ability
to replicate results in a region of interest when compared
to global simulations with uniform high resolution (Bogen-
schutz et al., 2023a; Liu et al., 2023). The cost of RRM
is dominated by the high-resolution region, meaning that a
high-resolution mesh that covers about 10 % of the globe
would roughly be equal to about 10 % of the cost of run-
ning the entire globe at this resolution. Thus, the substantial
cost saving RRM provides enables one to run longer-duration
simulations or to produce a larger ensemble size compared to
a GCPM.

Given (1) the impact of climate change on California and
the effects it has on the US economy and energy infras-
tructure, (2) the requirements of California’s complex fine-
scale heterogeneity for convection-permitting scale model-

ing and (3) the purpose of exploring climate change re-
sponse in long-duration integrations, this work proposes to
develop a California convection-permitting climate model-
ing framework. This framework is based on the Simple
Cloud-Resolving E3SM Atmosphere Model (SCREAM) de-
veloped under the United States (U.S.) Department of En-
ergy (DOE) Energy Exascale Earth System Model (E3SM)
project (Caldwell et al., 2021) and RRM configuration (Tang
et al., 2019, 2023). This is the first time that SCREAM is be-
ing used for climate-length simulations. One of the main pur-
poses of this paper is to document the modeling strategy used
to perform this ambitious SCREAM RRM simulation, with
the idea that one could replicate these methods to be used in
other regions and/or time periods. In addition, by comparing
our simulation results to that of a traditional GCM, we aim
to highlight the importance of high resolution to accurately
simulate regional climate patterns and changes in California.

This paper is organized as follows: Sect. 2 describes the
methodology we used, including the California RRM frame-
work, future projection experiment design, and model evalu-
ation strategy. Section 3 presents the results of SCREAMv0
California RRM, including a baseline comparison with ob-
servations and an analysis of the future projection. Finally,
in Sect. 4, we conclude with a discussion on the implication
of our results, as well as a summary on the application of
SCREAM RRM for RCMs.

2 Methods

In this section, we will first focus on the modeling strategy
used in this study, which can be used as guidance for future
studies aiming to use SCREAM RRM for different regions.
It includes the descriptions of SCREAM, the regionally re-
fined model framework, nudging strategy, and future projec-
tion experiment. Then we will provide our methodologies for
evaluation.

2.1 Modeling strategy

2.1.1 SCREAM description

The framework for the California convection-permitting
RRM in this paper is developed using SCREAM version 0
(Caldwell et al., 2021), developed under the U.S. Depart-
ment of Energy (DOE)-funded E3SM project (Golaz et al.,
2019). SCREAM has a global resolution of 3.25 km and thus
does not parameterize deep convection. SCREAM uses the
Simplified Higher-Order Closure (SHOC) (Bogenschutz and
Krueger, 2013) to serve as a unified cloud macrophysics, tur-
bulence, and shallow convective parameterization; the Pre-
dicted Particles Properties (P3) cloud microphysics scheme
of (Morrison and Milbrandt, 2015); and the RTE+RRTMGP
radiative transfer package to calculate gas optical properties
and radiative fluxes (Pincus et al., 2019). The average aerosol
climatology is interpolated from a 1° E3SMv1 simulation
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(Zhang et al., 2013; Wang et al., 2020; Zhang et al., 2022).
Caldwell et al. (2021) show that SCREAM has an excellent
performance in the simulation of vertical profiles of tropical
clouds and coastal stratocumulus, tropical/extratropical cy-
clones, ARs, and cold air outbreaks, making it well suited to
serve as the model for the California RRM framework.

SCREAM’s dycore enables the numerical solution of
the nonhydrostatic equations of motion (Taylor et al.,
2020) using the High-Order Methods Modeling Environ-
ment (HOMME). HOMME uses virtual potential tempera-
ture as the thermodynamic variable with semi-Lagrangian
tracer transport, which enables the use of much larger time
steps while maintaining advective stability compared to ex-
plicit Eulerian methods. The time discretization uses an
IMplicit–EXplicit (IMEX) Runge–Kutta method in which
there is an implicit Butcher table for terms responsible for
vertically propagating acoustic waves and an explicit Butcher
table used for most equations. The HOMME dycore consists
of spectral elements, with each element containing a 4× 4
grid of Gauss–Lobatto–Legendre (GLL) nodes, while the
physics is handled by a uniformly spaced 2× 2 grid (called a
pg2 grid) which substantially increases the model throughput
(Hannah et al., 2021).

SCREAM contains 128 layers in the vertical, compared
to the 72 vertical layers in E3SM, though the model top in
SCREAM is lower (40 km vs. 60 km). Thus, the vertical res-
olution in SCREAM is nearly twice that of E3SM at most
layers, with enhanced vertical resolution in the lower tropo-
sphere. In particular, the improved vertical resolution of the
lower troposphere was found to be a factor that improved ma-
rine stratocumulus (Bogenschutz et al., 2021, 2023a), which
is important for representing the California coastal climate.

E3SMv1 land model (ELM) Golaz et al. (2019) is placed
on the same RRM mesh as the atmosphere model. The river
routing model (Model for Scale Adaptive River Transport,
MOSART) uses a lat–long grid with the spacing of 0.125° (Li
et al., 2013). The prescribed ice mode from the Los Alamos
sea ice model CICE4 (Hunke et al., 2008) and the data ocean
model are used in our study.

2.1.2 RRM in California

The configuration of the California 3.25 km RRM (hereafter
referred to as CARRM) in this work consists of two main
parts, the first of which deals with the design of the regionally
refined grid and its associated model configuration files (e.g.,
domain files, topography, atmospheric initial condition, and
land surface). The second part handles the generation of the
boundary conditions from the low-resolution (1°) GCM and
nudging settings (to be described in Sect. 2.1.4).

The CARRM grid is progressively refined from the
outer global resolution of ne32 (corresponding roughly
to a resolution of ∼ 100 km) to the convection-permitting
scale for California (ne1024; 3.25 km) with an eighth-
order (28) refinement between them (Fig. 1). We created

the CARRM grid using the offline software tool Spheri-
cal Quadrilateral Mesh Generator (SQuadGen; https://github.
com/ClimateGlobalChange/squadgen, last access: 21 Jan-
uary 2024). The choice of the finest domain may affect the
RRM simulation behavior, but there are no precise rules on
how to choose the best domain. Our basic considerations
include (1) suitability for the science applications, (2) the
need for the domain to cover the entire state of California,
(3) avoiding having the domain boundary reside near sub-
stantial topography, and (4) the desire to keep the domain as
small as possible to avoid excessive computational expense
and allow for long integrations. We note that atmospheric
rivers originating from the central/eastern Pacific are impor-
tant to California precipitation, but 1° GCMs are sufficient to
resolve the synoptic-scale features of these systems (Giorgi,
2019; Neumann et al., 2019). The sensitivity of the size of
the refined mesh for the simulation of atmospheric rivers was
explored with CESM (Rhoades et al., 2020a).

The topography file was generated using the NCAR
topography toolchain (Lauritzen et al., 2015) with ten-
sor hyperviscosity enabled for the RRM grid. Figure 1
shows the topography used for 1° E3SMv1, the E3SMv2
North American 25 km RRM, and the California 3.25 km
RRM used in this study, respectively. Since the topogra-
phy files are on the GLL node, we used matplotlib’s trip-
color function to represent the native spectral element data
as accurately as possible, with each triangle’s color taken
from three GLL vertexes (https://matplotlib.org/stable/api/
_as_gen/matplotlib.pyplot.tripcolor.html, last access: 21 Jan-
uary 2024; note that the tripcolor function does not allow
manually specified color levels). As a reference, Fig. 1 dis-
plays the 3.25 km topographic data from the United States
Geological Survey (USGS) used to downsample to the des-
tination resolution of RRM. Note that 3.25 km is the nomi-
nal resolution and that the effective resolution (fully resolved
scale derived from kinetic energy spectra compared to obser-
vations) of California is actually at about 6 times the nomi-
nal resolution (Neumann et al., 2019; Caldwell et al., 2021).
CARRM topography essentially captures the fine spatial pat-
terns shown in the 3 km USGS data, such as features of the
Sierra Nevada, coastal ridges, and the Central Valley. This is
not surprising, since CARRM’s topography was processed
from USGS Global 30 Arc-Second Elevation (GTOPO30)
1 km data and then interpolated to a 3 km cube sphere.

The atmosphere initial condition was generated with
the HICCUP package (https://github.com/E3SM-Project/
HICCUP, last access: 21 January 2024), which has a built-
in download of ERA5 pressure level data. HICCUP inter-
polates the ERA5 data to the model’s vertical levels using
NCO’s vertical interpolation algorithm (Zender, 2008) and
to the horizontal resolution using a TempestRemap horizon-
tal interpolation algorithm (Ullrich and Taylor, 2015; Ullrich
et al., 2016). We adopted the higher-order algorithm here.
The surface temperature and pressure are adjusted using a
procedure described in Trenberth et al. (1993) and based on
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Figure 1. Regionally refined grid for CARRM (a–b). Topography
for (c) 1° E3SMv1, (d) US 25 km RRM, (e) CARRM, and (f) the
United States Geological Survey (USGS) topography. All topogra-
phy data are zoomed to the western United States.

the topography elevation difference plus a dry hydrostatic
atmosphere lapse rate. This procedure also avoids extrapo-
lating excessively high-/low-pressure values by resetting the
surface temperature from extremely warm/cold terrain. The
CARRM mesh used in this work contains good grid proper-
ties (maximum Dinv-based element distortion is 3.021). The
atmosphere initial condition (IC) is in balance, which is pos-
sibly benefited from the surface adjustment (otherwise, in-
stability would occur using this IC directly). As a result, we

1It indicates a high-quality RRM grid if the maxi-
mum Dinv-based element distortion is smaller than 4. See
https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/
872579110/Running+E3SM+on+New+Atmosphere+Grids (last
access: 19 February 2024).

did not need to spin up the atmosphere and adjust the hyper-
viscosity incrementally. The hyperviscosity time step for dy-
namics is set to the default value used in SCREAM 3.25 km
global simulations.

2.1.3 Time steps and computational cost

CARRM has a total of 152 712 GLL columns (dycore) and
67 872 physical columns (pg2 grids). For reference, E3SMv1
has 48 602 physical columns (Golaz et al., 2019), and the
E3SMv2 North American 25 km RRM (NARRM) has 57 816
physical columns (Tang et al., 2023), representing a slightly
higher storage demand for CARRM compared to NARRM
(Table 1).

Table 1 provides the time steps we used for CARRM sim-
ulations. Because the time steps must be uniform globally
based on the finest region, our configuration follows the pa-
rameters used in the global convection-permitting simulation
of SCREAMv0 (Caldwell et al., 2021).

All CARRM simulations were performed using the Liver-
more Computing (LC) Quartz machine with an Intel® Xeon®

CPU (E5-2695 v4 at 2.10 GHz; 36 core; 120 nodes) using
only Message Passing Interface (MPI) processes. We used
a 120-node configuration to balance throughput and queue
time. Although we did not systematically evaluate the per-
formance of CARRM, we found that scaling from 30 to 120
nodes was quite good in 1 month of testing, with almost no
loss of scaling performance. Jobs were resubmitted once ev-
ery simulated month, and the total throughput (including I/O)
was about 0.68 simulation years per day or about 240 simu-
lation days per day. For comparison, the global SCREAMv0
simulation Caldwell et al. (2021) run on the National En-
ergy Research Scientific Computing Center (NERSC) Cori
system with Knights Landing (KNL) used 1536 nodes (68
physical cores per node) with a throughput of 4–5 simulation
days per day. The NARRM was run on Argonne National
Laboratory’s Chrysalis which used 80 AMD Epyc 7532 64-
core nodes with a throughput of about 10 simulated years per
day (Tang et al., 2023).

In addition to occasional node failures, we encountered
several instability failures during the simulation with “EOS
bad state: d(phi), dp3d, or vtheta_dp < 0” or “negative layer
thickness” model-produced errors. While the specific cause
of these errors is unclear, we note that all errors were pro-
duced between the months of November and April and thus
could be a result of topography-related baroclinic instabil-
ity associated with winter storms. The error frequency is
three times for 2015–2020, seven times for 2029–2034, two
times for 2044–2049, and three times for 2094–2099. We got
around these instability failures by temporarily halving the
model time steps uniformly. All instances have been prop-
erly documented to ensure reproducibility.
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Table 1. Column numbers and time steps used in E3SMv1, E3SMv2 NARRM, and SCREAMv0 CARRM.

Model Column no. Time steps (s)

Dynamics Physics
Dynamics

Physics
Dycore Dycore Remap Advection Hyperviscosity

E3SMv1 48 602 48 602 300 900 300 100 1800
NARRM 130 088 57 816 75 150 450 75 1800
CARRM 152 712 67 872 9.375 18.75 75 9.375 75

2.1.4 Nudging strategy

Since SCREAM does not have a deep convective parame-
terization, and hence lacks the ability to run with a 100 km
resolution, we cannot perform a completely free-running in-
tegration using CARRM. We use the approach of RCMs, us-
ing lower and lateral boundary conditions provided by future
scenario simulations from low-resolution GCMs to provide
coarse-scale fields that drive CARRM.

We reproduced the future projection scenario (to be de-
scribed in further detail in Sect. 2.1.4) described in Zheng
et al. (2022) using the 1° fully coupled E3SMv1. We out-
put the 3 h vertical distribution of winds, temperature, and
specific humidity. The consistency among the boundary con-
ditions is important because the internal variability is fully
dependent on this unique realization. Sea surface tempera-
ture (SST) and ice cover were obtained from the same cou-
pled simulation as lower boundary conditions to drive Data
Ocean and Prescribed CICE4 (the latest Los Alamos sea ice
model) (Hunke et al., 2008). The e3sm_to_cmip tool (https:
//github.com/E3SM-Project/e3sm_to_cmip, last access: 21
January 2024) was used to get 1° lat–long time series which
were further processed to meet the format of the Data
Ocean streamfile (https://esmci.github.io/cime/versions/ufs_
release_v1.1/html/data_models/data-ocean.html, last access:
21 January 2024). We retrospectively noticed that the step
of replacing the missing value of SST to −1.8 °C in the
streamfile-generation procedure caused the model to regard
that the “−1.8 °C” value over land is valid. This caused some
points along the coastline to inherit a spurious cold SST from
the 1° streamfile. This spurious signature is directly reflected
in the SST and surface fluxes from the RRM output with lit-
tle direct effect on the variables not at the bottom level of the
atmosphere.

The nudging capability that has been implemented into
E3SM and used by RRM is described in Tang et al. (2019),
which allows selected areas of the globe to be nudged while
allowing other regions to be simulated freely. In this work,
we want to nudge the coarse outer domain but allow the
high-resolution mesh over California to integrate freely. To
allow this, a nudging coefficient is set by a Heaviside window
function from 1 (other global areas) to 0 (where California is

fully covered; free run) in the lat–long direction (Fig. 2). The
nudging strength is consistent in the vertical direction.

The winds, temperature, and specific humidity profiles
were interpolated vertically by netCDF Operator (NCO) and
horizontally by the TempestRemap higher-order algorithm.
Lateral boundary conditions were updated every 3 h by lin-
early interpolating each pair of nudging time slices (current
time step and the next 3 h) onto the model’s physical time
step with a relaxation timescale of 2 d. The selection of a 2 d
relaxation timescale was not the result of an exhaustive study
to find an optimal timescale, as running CARRM is still rel-
atively expensive, thus making tuning fairly time-intensive.
However, we did test relaxation timescales of 1, 6, and 24 h.
We found that the 2 d timescale gave the most consistent re-
sults between RRM and 1° E3SMv1 global precipitation pat-
terns and the smallest bias for California precipitation.

We found that when the nudging strength is very strong
(timescale= 1 h), a spurious circulation formed in Califor-
nia, which may be due to the inconsistency between the tem-
perature of the boundary forcing and that of the freely in-
tegrated spin-up temperature over California; when the two
are coupled too frequently, the large gradient of temperature
across the nudging boundary will force the wind shear to
adjust by thermal wind balance. Therefore, a very short re-
laxation timescale is not desirable. The 3 h evolution of in-
stantaneous total (vertically integrated) vapor transport for
1° E3SMv1 and SCREAMv0 CARRM on 21 December
2097 is shown in Fig. 2 for an atmospheric river event as
it makes landfall on the west coast. This is just one exam-
ple to show that the general meteorology and climate of the
E3SMv1 simulation are well reproduced in the 100 km do-
main of SCREAM. Note that there are some differences be-
tween them, which is expected to be a natural effect of nudg-
ing, especially since we used a weak relaxation timescale.

2.1.5 Future projection experimental design

We choose the high-emission Shared Socioeconomic Path-
ways (SSP)5-8.5 scenario for our future climate projection,
which is comparable to the radiative forcing path of the high-
est Representative Concentration Pathway (RCP8.5). We rec-
ognize that SSP5-8.5 is a “worst-case” scenario that is un-
likely to happen, due to policy interventions that promote
carbon emission mitigation and sequestration, and thus rep-
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Figure 2. (a) Nudging coefficient map over California where nudging is not applied in red areas. (b) 6 h evolution of instantaneous total
vertically integrated vapor transport in 21 December 2097 for E3SMv1 and SCREAMv0 CARRM.

resents an upper-bound case of the ScenarioMIP (Kriegler
et al., 2017). However, the differences between the more
plausible SSP3-7.0 and SSP5-8.5 before 2050 are relatively
small (Masson-Delmotte et al., 2021; Tebaldi et al., 2021).
Both of these scenarios predict similar development trends,
including high GHG emissions, increased energy usage, and
limited climate change mitigation measures before 2050
(O’Neill et al., 2016). The chief reason for our choice to
run the SSP5-8.5 scenario is due to the fact that we had to
re-run the publicly available version of E3SM (i.e., version
1) to produce the necessary nudging data for the coarse-grid
region, and SSP5-8.5 is the only scientifically validated sce-
nario for the publicly released version 1 future projection.

Given the relatively high cost of CARRM, we choose to
run four 5-year segments rather than integrating the entire
85-year SSP5-8.5 simulation. Our goal is to pick segments
which represent various points within the 85-year future pro-
jection time line. In addition, we consider the El Niño–
Southern Oscillation (ENSO), which can explain hydrolog-
ical events in California (Harrison and Larkin, 1998; Det-
tinger et al., 1998; Wise, 2012; Hoell et al., 2016; Patricola
et al., 2020; Mahajan et al., 2022). Since internal variabil-
ity like ENSO is well inherited from the boundary forcing
(Giorgi, 2019; Laprise et al., 2000), our nudging strategy en-
ables us to conduct RRM simulations by selecting the time
periods containing a strong ENSO signal.

As an expediency, the spatial and temporal variability in
the California climate may be better represented by selecting
the time periods with larger ENSO variability, since we are
only able to run one ensemble member. Our simulation seg-
ment strategy also accelerates the validation process of the
CARRM framework and in particular allows us to provide
simulation outputs as soon as possible to the downstream en-

ergy infrastructure experts who are more interested in vali-
dating a certain time slice (e.g., mid-century) or specific ex-
treme events (e.g., heat waves, floods, and wildfires) rather
than the entire time series. For the full period 2015–2100
of SSP5-8.5, we chose 2015–2020 (as baseline), 2029–2034
(which includes a strong El Niño year followed by a strong
La Niña event lasting 3 years), 2044–2049 (mid-century of
interest to the infrastructure planners), and 2094–2099 (the
end of the century) for a total of 20 years (Fig. 3). Here all
usages of the word “year” refer to “water year” (from Octo-
ber to the next September). One can also cast the simulation
segments as being run according to different global warming
levels of interest to the Intergovernmental Panel on Climate
Change Sixth Assessment Report (IPCC AR6). From another
perspective, the four simulation segments provide different
levels of global warming (about 0.9, 1.7, 2.8, and 7.6 °C) rel-
ative to the 1850–1869 baseline (Zheng et al., 2022).

In retrospect, when we examine the relationship between
precipitation and ENSO across the four segments, the 5-
year mean precipitation barely reflects the ENSO signal. In
addition, we do not see a significant modulation of ENSO
on monthly precipitation. Instead, the climate change signal
seems to be more dominant, with heavy precipitation events
occurring essentially every year at the end of the century.
Compared to the Community Earth System Model Large En-
semble (CESMv1-LE), the ENSO variability in E3SMv1 pi-
Control and historical ensemble simulations is slightly closer
to observations, while being strongly shifted to a 3-year pe-
riod. The overall score for the spatial pattern compared to
observations is also higher but still muted along the North
American coast (Golaz et al., 2019). This may partially limit
the ability of ENSO to modulate the climate in our simula-
tions.
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Figure 3. Niño 3.4 index from E3SMv1 SSP5-8.5 projection. Shaded areas are labeled with the four segments of the CARRM simulations.
The global warming levels for the four simulation segments are about 0.9, 1.7, 2.8, and 7.6 °C relative to the 1850–1869 baseline.

To provide well-established regional climate projections,
the following three-step approach is usually used (Giorgi,
2019): (1) drive a high-resolution model with a reanaly-
sis dataset to identify biases in the model dynamics/physics
and nudging strategy, akin to a hindcast as described in Ma
et al. (2015); (2) drive the high-resolution model with his-
torical GCM simulations to identify climate change signals
for given historical periods and identify the biases from low-
resolution GCMs (baseline); and (3) perform regional fu-
ture projections driven by the same GCM to assess climate
change signals for future time slices by comparing with the
baseline. One reason for not performing the first step in this
paper is that hindcast-style simulations are primarily useful
in short-term simulations to help select the physical schemes
with optimal performance in the region of interest. However,
unlike commonly employed regional climate downscaling
approaches such as the Weather Research and Forecasting
(WRF) model, SCREAM does not have multiple physics op-
tions to choose from. We note that we have performed hind-
casts of several AR events with CARRM (Bogenschutz et
al., 2024). In addition, we integrate steps 2 and 3 since we
treat the first 5 years of SSP5-8.5 as a baseline (2015–2020,
akin to a historical run) in which we compare the simulated
climatology to observations.

2.2 Evaluation strategy

2.2.1 Evaluation datasets

To properly evaluate CARRM, it is important to compare
it against observational datasets of sufficient temporal and
horizontal resolution since one would expect that typical
added values from convection-permitting simulations are
most likely to occur at small temporal and spatial scales.
Moreover, it is desirable that the observational datasets cover
a long record to account for the possible range of natural vari-
ability.

In this study, we use the 4 km PRISM (Parameter-elevation
Regressions on Independent Slopes Model) observation-
based gridded dataset of 30-year normal to evaluate maxi-
mum, average, and minimum temperature and precipitation
(PRISM Climate Group, Oregon State University, https://
prism.oregonstate.edu, last access: 21 January 2024). PRISM
adopts the primary assumption that “elevation is the most im-
portant factor in the distribution of climate variables” for a
localized region, and calculates the local climate–elevation
relationship by considering coastline, temperature inversion,
cold pool, topographic factors, etc., to weigh the in situ data.
For example, PRISM calculates precipitation–elevation re-
gression functions under each category based on slope ori-
entation categories to distinguish precipitation on windward
and leeward slopes. PRISM and other observation-based
gridded products have been known to underestimate extreme
precipitation (particularly from ARs) (Lundquist et al., 2019;
Rhoades et al., 2023). Given this issue in PRISM and other
gridded products and the potential to “falsely” attribute an
over-precipitation bias, we also use a probabilistic gridded
product for daily extreme precipitation (Risser et al., 2019).
These probabilistic data provide 10- to 100-year return val-
ues for the largest seasonal daily precipitation. For CARRM,
we compute the 10-year return values of the largest seasonal
daily precipitation based on the 20 years of available outputs.
The location, shape, and scale parameters for the general-
ized extreme value (GEV) distribution were estimated using
maximum likelihood estimation in NCL (NCAR Command
Language). However, we only have 20 years of simulation in
total, so we cannot reasonably estimate the parameters for the
GEV distribution for daily precipitation extremes. In addition
to PRISM, we use the unsplit Livneh gridded product, which
does not underestimate the extreme precipitation as much
when compared to the time-adjusted Livneh (Pierce et al.,
2021). To evaluate the snow water equivalent (SWE), we
use assimilated snow observations developed by the Univer-
sity of Arizona (UA-SWE) and Western United States UCLA
Daily Snow Reanalysis (WUS-SR) Version 1. The UA-SWE
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data (Zeng et al., 2018; Broxton et al., 2019) were derived
from in situ measurements from the Snow Telemetry network
and Cooperative Observer Program with assimilated temper-
ature and precipitation from PRISM. This is a 40-year dataset
and has a spatial resolution of 4 km. The WUS snow reanaly-
sis (Fang et al., 2022a) has an ultra-high resolution of 500 m
from water years 1985 to 2021, which assimilated cloud-free
Landsat observations (Fang et al., 2022b). For consistency in
the analysis period, all observation-based gridded products
were analyzed for the water years 1984 to 2020, unless oth-
erwise stated.

In addition to the observation-based gridded products,
we use in situ temperature and precipitation measurements
from the Global Historical Climatology Network (GHCN)
(Menne et al., 2012a, b) and SWE from the Snow Teleme-
try (SNOTEL) network (https://nwcc-apps.sc.egov.usda.gov/
imap/, last access: 15 February 2024). Four representative
sites are chosen for GHCN, namely Sacramento, San Fran-
cisco, Tahoe City, and Death Valley. The stations for SWE
are Tahoe City, Adin Mtn, Truckee, and Leavitt Lake so that
they match the available SNOTEL sites. We choose those
stations to represent the varying microclimate across Cali-
fornia and for their proximity to populated cities. Only val-
ues with an empty QFlag (the data quality flag) field are
kept in GHCN records, meaning that they pass all quality
assurance checks. The temperatures of −60.3 F in SNOTEL
records seem to be invalid and are set to “missing”. We also
obtained the time series of PRISM and UA-SWE for the
same locations. The period for in situ records is different
among stations, datasets, and variables. The 1989–2020 wa-
ter years are used in all station analyses. In addition to serv-
ing as the “truth” in the comparison to CARRM, the in situ
observations also provide an additional comparison to the
observation-based gridded products and highlight uncertain-
ties from the gridding process/statistical co-variate assump-
tions employed in these products.

To characterize unstructured grids and model/observation
raw resolutions as directly as possible, all analyses in this
paper are based on the model’s native grids (unless other-
wise stated). Most output variables of SCREAMv0 reside
on physical columns, except for those output from the dy-
core (GLL columns). Each coordinate of the physical (pg2)
grid corresponds to four vertices and can be drawn directly
by NCL’s CellFill method without interpolation, where each
color block represents the cell average of the physical col-
umn data. To match the pg2 grid of CARRM, we interpolated
the GLL column output of E3SMv1 to the physical column
with the higher-order (atmosphere output) or monotone (land
output) algorithm via TempestRemap. For the calculation of
California regional averages, a mask file was generated using
a high-resolution California shapefile, and then the regional
averages were obtained by the NCO’s ncra calculator with
mask and grid area weights being applied. The statistics of a
single grid point are obtained directly by extracting the time
series of that point.

2.2.2 Atmospheric river tracking with
TempestExtremes

The response of atmospheric river (AR)-contributed precip-
itation with climate change in California is briefly analyzed
in Sect. 3.3. We used TempestExtremes v2.2.1 (Ullrich and
Zarzycki, 2017; Ullrich et al., 2021) to track the 6 h in-
stantaneous IVT (total vertically integrated vapor transport)
with the key parameters including the (1) minimum Lapla-
cian of IVT= 20 000 kg m−1 s−1, (2) latitude of AR-tagged
grid point > 15°, and (3) blob area of IVT > 4×105 km2. We
did not isolate single-AR events in TempestExtremes using
StitchBlobs in order to compute the probability density dis-
tributions (PDFs) with as large a sample size as possible.
Using StitchBlobs would make the sample size of variables
corresponding to individual AR events in each 5-year win-
ter very small. As a result, we did not divide ARs into a
category-based definition such as in Ralph et al. (2019) and
Rhoades et al. (2020b). Therefore, the terminology of “AR”
in the context of this paper is strictly AR-related IVT 6 h sam-
ples.

Note that the tracker must be applied to an orthogonal grid,
and we interpolated the model output to the 1° lat–long grid
by the TempestRemap higher-order algorithm in advance.
For simplicity, we did not stitch AR tracks and treat AR and
California precipitation as one-to-one samples every 6 h. To
explore the relationship between AR and California precipi-
tation, we calculated the following statistics for each simula-
tion period during December–January–February (DJF):

– We calculated the percentage of California precipitation
contributed by ARs. AR-contributed California precip-
itation was obtained by interpolating the 1° AR mask
back to the model’s native pg2 grid and then associating
any precipitation as AR-produced when AR masks exist
over California.

– We calculated the highest latitude reached for each AR
making landfall on California.

– We calculated the “duration” of an AR after California
landfall, obtained by counting the sample size of AR
mask that makes landfall in California and multiplying
6 h. We recognize this is different from the concept of
an event’s duration and does not require the samples to
be sequential.

– We calculated the maximum IVT (the intensity of AR
snapshots) within each AR mask that makes landfall in
California.

– We calculated the average total vertically integrated pre-
cipitable water of each AR mask that makes landfall in
California.

– We calculated the average 850 hPa zonal wind speed of
each AR mask that makes landfall in California.
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3 Results

3.1 Baseline comparison with observations

To compare with observations, we use a baseline with the
first 5 water years (October 2015–September 2020) of the
SSP5-8.5 projection. Since the simulation period is not cor-
responding to the “real world” (because our simulations are
not hindcasts using realistic boundary conditions), the sim-
ulation can only be compared to observations in a statistical
sense (e.g., long-term averages).

For air temperatures at 2 m height (hereafter referred to
as “T2m”), Fig. 4 clearly shows much richer spatial pat-
terns simulated in CARRM than the 1° E3SMv1. The 1°
E3SMv1 largely fails to capture prominent temperature gra-
dients associated with the coastline, Central Valley, Sierra
Nevada, and Mojave/Colorado deserts. Compared to PRISM,
CARRM produces a very realistic spatial distribution of daily
maximum, mean, and minimum T2m. Good representation
of complex topography can form temperature gradients sim-
ply by the lapse rate effect, and cooler/denser air masses at
night tend to drive subsidence warming in the valley. Note
that the daily maximum T2m values are slightly higher in
CARRM than in PRISM in parts of the Central Valley (up
to 2 °C), while the maximum T2m is underestimated by 2–
4 °C over the Colorado Desert and by 0–3 °C in the Sierra
Nevada. Daily minimum T2m is overall warmer (up to 2–
5 °C) in CARRM than in PRISM (also see Fig. 9), and the
mean T2m is fairly similar in RRM against PRISM. Caldwell
et al. (2021) reported that SCREAMv0 does have an over-
all warm bias for T2m, especially at high latitudes, while we
also see the cold bias in daily maximum T2m. A further com-
parison with GHCN and PRISM at Tahoe City shows that
the seasonal mean of maximum T2m in June–July–August
(JJA) is 1–2 °C colder than GHCN/PRISM (Fig. 8c), while
the minimum T2m in September–October–November (SON)
is about 2 °C warmer than GHCN/PRISM (Fig. 9c). Note
that the simulations represent only 5-year averages, whereas
PRISM represents 30-year averages. This is especially im-
portant given the large interannual variability in the Califor-
nia climate, and the results might obscure “warm” or “cold”
biases (and are relevant for the results to be presented for
precipitation/snowpack).

The temporal and spatial variability in the precipitation is
more pronounced than that for temperature in the state of
California. Dettinger et al. (2011) highlight the large interan-
nual variability in the California precipitation, which warns
of the potential issues with comparing 5-year vs. 30-year nor-
mals. Therefore, we also show the 5 wettest and driest water
years during 1981–2020 for PRISM analysis and the unsplit
Livneh gridded product in addition to the 30-year average
to characterize the observed natural variability (Fig. A1a–
f). The high mountains (i.e., the Sierra Nevada, the Cascade
Range, and the Klamath Mountains) manifest a significant
topographic precipitation pattern with moist air coming from

the northwest and higher annual rainfall in the north than in
the south. In addition, the relatively smaller ranges, such as
the Transverse and Peninsular ranges of southern and central
California, also receive considerable annual mean precipita-
tion. The northern part of the Central Valley can receive a
substantial amount of precipitation, while the southeastern
desert east of the Sierra Nevada highlands typically receives
very little.

CARRM essentially captures the spatial distribution of
precipitation in PRISM and provides much better details than
1° E3SMv1, e.g., the local precipitation maxima in the Sierra
Nevada and the Coast Ranges, and the relative dry area in
the Central Valley (Fig. 5). Despite this large internal vari-
ability, it is clear that the CARRM precipitation is signifi-
cantly higher than observed, with the wettest year in 2015–
2020 even exceeding the wettest years of PRISM/Livneh
(Fig. A1g–i). One could argue, given the large interannual
variability in California, that we need at least 15–20 years of
baseline to determine if the CARRM’s meteorology (temper-
ature/precipitation/SWE) statistics are converged. Given that
observation-based gridded products might underestimate ex-
treme precipitation (Lundquist et al., 2019; Rhoades et al.,
2023), we also use a probabilistic gridded product for daily
extreme precipitation (Risser et al., 2019). The 10-year return
values for the largest seasonal daily precipitation are com-
pared in Fig. A2. Again, the return levels are much higher
in CARRM. Note that we only have 20 years of simulation
to estimate the parameters of the GEV distribution, and we
found the extreme values weakened quite a bit when using
20 years of data compared to using 10 years of data. There-
fore, the return values of CARRM may not be robust.

We have formulated several hypotheses regarding the
overestimated precipitation in CARRM. First, the wet bias is
partially inherited from the large-scale biases in 1° E3SMv1.
Note the larger statewide mean precipitation (2.9 mm d−1)
compared to PRISM (1.7 mm d−1) (Fig. 5). We also note a
slightly stronger meridional moisture flux across the coast-
line of California in E3SMv1 when compared to ERA5 re-
analysis (Fig. A5), which may contribute to the overpredic-
tion of California precipitation.

Second, GCMs typically underestimate the strength and
duration of high-pressure blocking ridges that dominate the
dry years in California (Davini and D’Andrea, 2020; Schie-
mann et al., 2020); this can be seen in the comparison with
ERA5 (Fig. A6). Additionally, SCREAM physics likely con-
tain their own biases (e.g., cloud microphysics) that are cur-
rently not well understood, which will be explored in future
work by utilizing CARRM for atmospheric river hindcast ex-
periments. Caldwell et al. (2009) suggested that the overes-
timated precipitation in California may be a common issue
for the physics of RCMs, as reanalysis-driven RCMs tend to
produce more precipitation and higher relative humidity than
reanalysis. The 3 km WRF hindcasts in Huang et al. (2020)
did not show a wet bias, while 3 km RRM-E3SM in Rhoades
et al. (2023) and 3 km/800 m SCREAM CARRM hindcasts
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Figure 4. Baseline (2015–2020 water years) multi-year average daily maximum (a, d, g), mean (b, e, h), and minimum (c, f, i) 2 m tem-
peratures (referred to as T2m; °C) from 1° E3SMv1 (a, b, c), SCREAMv0 CARRM (d, e, f), and the PRISM observation-based gridded
product (g, h, i). The statewide average is shown in the top-right corner.

in Bogenschutz et al. (2024) found a wet bias, especially in
the Sierra Nevada. Bogenschutz et al. (2024) serve as a direct
comparison to this work because we use the same code base
(SCREAM) and RRM configuration; the main difference is
that our simulations are not hindcasts (i.e., our boundary con-
ditions are prescribed from a GCM simulation). The wet bias
found in Bogenschutz et al. (2024) is much weaker than our
current work, suggesting that most of the bias produced by

CARRM climate runs is likely due to the large-scale forcing
rather than biases in the physics.

Last, ∼ 3 km is a convection-permitting scale and not a
fully convection-resolving scale. Unresolved processes at
convection-permitting scales may spuriously accumulate en-
ergy on the effective resolution (the fully resolved scale
derived from kinetic energy spectra compared to observa-
tions; ∼ 20 km for CARRM), which can detrimentally af-
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Figure 5. Same as Fig. 4 but for precipitation (mm d−1; a, c, e) and snow water equivalent (referred to as SWE; m; b, d, f). The observation-
based gridded products used for comparison are PRISM (e) and UA-SWE (f). The megaton (Mt) of the multi-year mean statewide SWE
storage is 0.16, 10, and 6.3 Mt for E3SMv1, CARRM, and UA-SWE, respectively.
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fect the synoptic scales (Neumann et al., 2019). The con-
vergence of convection-permitting models is suggested to
require the resolution of large-eddy simulations O(100 m)
(Bryan et al., 2003; Petch, 2006; Langhans et al., 2012),
and vertical mass fluxes at O(1–5 km) km may be too strong
(Chan et al., 2012). In idealized rising thermal bubble ex-
periments, the 900 hPa vertical velocity in non-hydrostatic
SCREAM dycore at 3 h was found to converge at 1.56 km
(Liu et al., 2022). The wet bias in CARRM may reveal the in-
sufficiency of convection-permitting resolution and suggest
an even higher-resolution requirement to represent convec-
tive mass fluxes more realistically.

Snowpack is the most prominent quantity to demonstrate
the added value of using CARRM (when compared to the
poorly resolved snowpack in the low-resolution simulations),
which is represented by snow water equivalent (SWE or wa-
ter equivalent snow depth; i.e., the amount of water that
would be produced by the snowpack if it were instanta-
neously melted) (Fig. 5). SWE reflects the variability in the
snow density and snowmelt. The statewide mean SWE is
similar for UA-SWE and WUS-SR reanalysis, as shown in
the March–April–May (MAM) and DJF averages from 1984
to 2020 water years (Fig. A3c–d, g–h), despite the fact that
WUS-SR better resolves the fine structures in the Sierra
Nevada due to its ultra-high resolution (Fig. A4). WUS-SR
would be a great reference for the California SWE when
the model resolution goes beyond 1 km in CP models. The
1° E3SMv1 produces negligible SWE (SWE < 0.1 m), while
CARRM essentially captures the spatial distribution of SWE
in the Sierra Nevada. Note that similar to precipitation, the
SWE simulated by CARRM has a positive bias when com-
pared to UA observations.

3.2 General characteristics of the future projection

This section will present climate statistics for four time pe-
riods (2015–2020, 2029–2034, 2044–2049, and 2094–2099
water years). It will include spatial distributions of seasonal
averages, statewide seasonal averages (time series), and daily
intra-seasonal statistics at selected locations. The spatial dis-
tributions will highlight the seasons in which a variable of
interest exhibits the most distinct patterns.

3.2.1 2 m air temperature

Figure 6 depicts the spatial distribution of daily maximum
T2m during the summer seasons (June–July–August) for the
SSP5-8.5 scenario. This figure roughly indicates a general
trend in the likelihood of heat waves. In the Central Valley,
daily maximum T2m are projected to rise from the current
average of 36 °C to approximately 43.5 °C by the end of the
century (also shown in the difference plots Fig. A7). Sim-
ilarly, the Mojave/Colorado deserts are expected to experi-
ence temperatures exceeding 48 °C by the end of the century.
Moreover, the Sierra Nevada is projected to undergo general

warming of approximately 10 °C. The warming level of daily
minimum T2m is even more prominent (not shown). For
comparison, the warming level from 1981–2000 to 2081–
2100 is 6–8 °C in July using a hybrid dynamical–statistical
downscaling (Walton et al., 2017). By employing the defini-
tion of heat waves based on the current climate regime, e.g.,
3 consecutive days with maximum T2m surpassing 37.8 °C,
it is anticipated that nearly half of the Central Valley and
California Desert will be subjected to continuous heat waves
by mid-century. Moreover, by the end of the century, most
of California is expected to experience prolonged periods of
heat waves according to CARRM projections. The DJF daily
maximum T2m in DJF is shown in Figs. A8 and A9. The
warming level over the Sierra Nevada is about 9 °C in DJF.
This is expected to have a significant impact on snow.

The statewide average T2m is essentially inherited from 1°
E3SMv1 (Fig. 7). The response of statewide-averaged T2m
to GHGs is very clear. Across all seasons, there is a consis-
tent and monotonic increase in daily maximum, mean, and
minimum T2m over time. Of particular note is that during
the summer season, the statewide average daily maximum
T2m can approach nearly 40 °C, while the daily mean T2m
can rise to 20 °C from spring to autumn. This prominent
warming is expected to have severe implications for Califor-
nia’s agriculture. For example, given that the growth of wine
grapes typically commences at around 10 °C, such substan-
tial warming could lead to a pronounced advancement in the
average grape ripening period and a decline in overall quality
(Hayhoe et al., 2004). Even more importantly, extreme tem-
perature and humidity associated with climate change has
a great impact on human survivability, especially for older
populations that work in agriculture (Vanos et al., 2023).

While CARRM may return essentially the same result in
terms of statewide mean temperature statistics, the superior
representation of spatial distribution allows one to examine
temperature trends at specific locations. As an example, we
compared the daily statistics of four representative locations:
Sacramento (a point in Central Valley), Death Valley (one of
the hottest points in the Mojave Desert), Tahoe City (a city
representative of the High Sierra), and San Francisco (a ma-
jor city in the Bay Area, typically subjected to the marine
layer) (Figs. 8, 9). Box plots give the minimum, lower quar-
tile, median, upper quartile, and maximum of daily samples
for each segment per season, with a sample size of ∼ 450
(5 years× 3 months× 30 d) samples per box. Overall, the
distribution of daily maximum T2m in the CARRM base-
line is very consistent with GHCN in situ observation and
PRISM gridded reanalysis, while CARRM shows a general
warm bias in daily minimum T2m.

Though the overall warming trend is comparable between
1° E3SMv1 and CARRM, CARRM can better differentiate
temperatures across geographical locations. For example, the
daily maximum T2m in Death Valley is 15–20 °C higher in
CARRM than in 1° E3SMv1, while the daily minimum T2m
in Tahoe City is 5–10 °C lower in CARRM, representing a
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Figure 6. Multi-year summer average of daily maximum T2m in 2015–2020, 2029–2034, 2044–2049, and 2094–2099 water years (columns
from left to right) simulated by 1° E3SMv1 (a–d) and SCREAMv0 CARRM (e–h). The statewide average is shown in the top-right corner.

wide range of temperature spatiotemporal variability across
California landscapes in Death Valley and the Tahoe City, re-
spectively. This discrepancy directly reflects the influence of
topography and elevation differences. As 1° E3SMv1 cannot
resolve such topographical details, the contrast in daily maxi-
mum T2m between Death Valley and Tahoe City is smoothed
out (Fig. 1c).

The local variations in the temperature are better captured
by CARRM. For example, in CARRM, although the max-
imum daily T2m in summer is similar between Sacramento
and Death Valley (rising from 45 °C at present to nearly 60 °C
by the end of the century), the mean daily T2m is approxi-
mately 10° higher in Death Valley compared to Sacramento.
It is alarming that 60 °C would be substantially higher than
the historical all-time record reached this past year (which
is about 56.67 °C). Note that the record of the daily max-
imum T2m in the GHCN observational data in Fig. 8d is
54.4 °C during the 1989–2020 water years. This indicates
that the daily temperature variability in Death Valley is rel-
atively small, implying that one could feel a much warmer
body temperature in Death Valley.

3.2.2 Precipitation

The spatial variability in the winter precipitation (December–
January–February) is shown in Fig. 10. As we found that
CARRM has a wet bias when compared to observations,
the key takeaway from future projection simulations using
CARRM lies in the relative trends rather than absolute mag-
nitudes. In our simulations, the signal of the forced response
of precipitation to GHG in California remains obscure during
the first half of the century but shows a significant increase
towards the end of the century. Note that the sign of the pre-
cipitation change is the same in 1° E3SMv1 and CARRM,
but the magnitude is amplified along the terrain in CARRM.

Regarding the spatial distribution, the two segments be-
fore mid-century show contrasting changes across differ-
ent regions in CARRM; precipitation in the Sierra Nevada
is weaker compared to the baseline period (particularly up
to 3 mm d−1 fewer during 2044–2094), while the western
Northwest Coast Range experiences an increase in precip-
itation (up to 2–3 mm d−1). In addition, the Transverse–
Peninsular ranges in southern California exhibit drier condi-
tions than the baseline during 2029–2034, while they receive
more rainfall than the baseline during 2044–2049. By the end
of the century, under this scenario, the majority of California
may experience a significant increase in precipitation, except
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Figure 7. The 5-year seasonal average and standard deviation of daily (a) maximum, (b) mean, and (c) minimum T2m during four simulation
segments. SCREAMv0 CARRM (1° E3SMv1) is denoted by dark (light) blue histograms. Each segment shows winter (December–January–
February, DJF), spring (March–April–May, MAM), summer (June–July–August, JJA), and autumn (September–October–November, SON)
in order. PRISM (yellow histograms) from 1984 to 2020 water years is shown in the leftmost column for a baseline comparison with the
2015–2020 simulation period.

for the southern Sierra Nevada and the southernmost desert
of California. Compared to the baseline period, annual total
precipitation is projected to increase by 30 % in the northern,
eastern, and southern ranges (Fig. A10). Some areas in the
Great Basin Desert are projected to received more than 50 %
of the annual total precipitation. The Central Valley is ex-
pected to increase by 0 %–24 % in the total annual precipita-
tion. In contrast, the signals of Transverse–Peninsular ranges,
Great Basin Desert, and Mojave Desert are very weak in 1°
E3SMv1.

Note that the 5-year average hardly reflects the ENSO sig-
nal. For example, the 2029–2034 segment contains an ex-
tremely strong El Niño year followed by a strong 3-year La
Niña event, and thus, its overall impact on California precipi-
tation may largely cancel out. However, we did not see a sig-
nificant modulation of the ENSO signal on precipitation even
upon examining monthly precipitation. Towards the end of
the century, heavy precipitation events occur at least once per
year (not shown). We note that the spatial pattern of ENSO
in the E3SMv1 historical ensemble is not sufficient along the
North American coast (Golaz et al., 2019). In CESMv1-LE, a
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Figure 8. Daily maximum 2 m temperature statistics for different seasons and different segments in (a) Sacramento (yellow), (b) San Fran-
cisco (green), (c) Tahoe City (blue), and (d) Death Valley (red). Each box gives the minimum, lower quartile, median, upper quartile and
maximum, with a sample size of ∼ 450 (5 years× 3 months× 30 d). The order of seasons in each segment is winter, spring, summer, and
autumn. The light color of each pair of boxes indicates 1° E3SMv1, and the dark color indicates SCREAMv0 CARRM. The in situ GHCN
observations (darker color) and the observation-based gridded product PRISM (lighter color) from 1989 to 2020 water years are shown in
the leftmost column for a baseline comparison with the 2015–2020 simulation period.

Figure 9. Same as Fig. 8 but for daily minimum 2 m temperatures.
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Figure 10. Same as Fig. 6 but for winter precipitation.

high correlation between ENSO and the Pacific–North Amer-
ican pattern/east Pacific pattern was identified, but it was also
noted that considerable variability remains within the midlat-
itude dynamics that cannot be attributed to ENSO influences
alone (O’Brien and Deser, 2023). This suggests a notable
chance of failed hydroclimate responses in the western US
to ENSO events in the fully coupled ensemble. As the pre-
scribed SSTs in CARRM were derived from fully coupled
E3SMv1 projections, some of the effects of air–sea inter-
actions have been included, whereas the interactions at fine
scale are not represented here.

As the baseline 5 years of CARRM future projections
are not hindcasts (i.e., the forcing data are not from re-
analysis/observations), they are not suitable for comparison
with individual extreme events in observations as was done
in Huang et al. (2020) and Rhoades et al. (2023). Bogen-
schutz et al. (2024) simulated and evaluated representative
AR events using SCREAMv0 CARRM under the hindcast
framework. The model performance and sensitivities of the
RRM configurations are discussed in detail in that work.

The response of statewide-averaged precipitation to GHGs
is not as clear as T2m, which is not surprising (Fig. 11a). In
contrast to temperature, the parameterizations of precipita-

tion processes involve a higher number of assumptions and
exhibit increased inter-model variability. Additionally, pre-
cipitation displays greater spatial inhomogeneity, even in the
absence of topography. Note that we nudged temperature,
humidity, and horizontal winds in the coarse outer domain,
so temperature is directly constrained by the low-resolution
simulations, but precipitation can still be significantly differ-
ent with the constrained atmospheric conditions.

Unlike temperature, the statewide average precipitation is
consistently higher in CARRM compared to 1° E3SMv1.
This discrepancy of precipitation (especially in winter)
shows a non-stationary increase over time (Fig. 11a). This
exemplifies the model differences, as well as the potential is-
sues with the model physics, such as the wet bias seen in
the comparison with observations (Fig. 5). It is important
to note that SON precipitation decreases with time. This is
significant because despite the relatively modest contribu-
tion to annual precipitation, SON is historically the most ac-
tive period for wildfires in California; therefore, precipita-
tion is crucial during this season to dampen the worst im-
pacts (Swain, 2021). This is also consistent with recent ob-
servational evidence and multi-model analysis. For example,
Goss et al. (2020) showed that decreases in California SON
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precipitation over the past 40 years have led to increases in
fire weather indices, while Luković et al. (2021) provided ev-
idence of a significant decrease in November precipitation in
California, and the CESM large ensemble, CMIP5, and NA-
CORDEX all found that “shoulder season” precipitation is
likely to decrease by mid-century (Swain et al., 2018; Dong
et al., 2019; Mahoney et al., 2021).

Despite not receiving as much attention as winter precip-
itation for California, summer precipitation (JJA) also ap-
pears to increase towards the end of the century. We noticed
a few mesoscale-convective-system-like convective systems
that can originate locally or propagate into California from
the east during the summer, especially at the end of the
century (not shown). They are characterized by prominent
longwave radiative cooling which can rival the magnitude
of mesoscale convective systems and tropical cyclones. This
pattern is partially depicted in the 5-year-averaged JJA pre-
cipitation, especially over the Sierra Nevada (Fig. 12). Unlike
DJF, JJA precipitation at the end of the century does not ex-
hibit a distinct topographic precipitation signature along the
mountain range. Instead, it shows local extremes at a few
specific locations. The small area and significant gradient of
these precipitation hot spots may indicate a series of highly
intermittent but intense organized convective systems.

The primary source of summer precipitation in the South-
ern Desert is the southwest monsoon (Adams and Comrie,
1997; Prein et al., 2022). The monsoon contributes up to
45 % of the annual precipitation in the desert southwest (Hig-
gins et al., 1999) and can trigger severe weather events such
as lightning, thunderstorms, wildfires, and floods (Nauslar
et al., 2018; Griffiths et al., 2009). By the end of the century,
summer precipitation is generally projected to increase by
10 %–20 % for annual precipitation over most of the South-
ern Desert (Fig. A11). The notable increase in precipitation
over the Southern Desert may be associated with an amplified
temperature gradient and increased moisture transport from
the Gulf of California (Jana et al., 2018; Johnson and Del-
worth, 2023). In addition, since the monsoon season is char-
acterized by intense localized thunderstorm activity, accurate
monsoon simulations require models that capture the spatial
heterogeneity of temperature and precipitation. Specifically,
some thunderstorms are triggered by local temperature ex-
tremes near the surface in tandem with increased humidity
in the Southern Desert. The higher resolution provided by
RCMs has been found to impact the quantification of vari-
ous mechanisms of the North American monsoon warming
response (Meyer and Jin, 2016).

Given that precipitation in California is primarily influ-
enced by large-scale processes such as atmospheric rivers
and mid-latitude cyclones, the diurnal cycle is not as sig-
nificant a consideration as it is in the Central Great Plains.
However, as with other GCPMs, CARRM’s host model
SCREAMv0 captures diurnal cycles that are generally con-
sistent with observations (Caldwell et al., 2021). However,
we do recognize that studying the diurnal cycle of precipita-

tion in California during summertime monsoon events over
the Sierra Nevada and southeastern portion of the state could
warrant some investigation in the future.

3.2.3 SWE

In the Sierra Nevada, SWE is typically thickest during the
spring season (March–April–May) (Fig. 13). SWE serves as
a compelling indicator that highlights the benefit of high res-
olution, as 1° E3SMv1 fails to represent SWE in the Sierra.
This is particularly evident in the California average SWE
(Fig. 11). Furthermore, SWE is expected to be one of the
variables most significantly impacted by GHG forcing. Cal-
ifornia is projected to be essentially devoid of snow by the
end of the century (Fig. 11), except for scattered areas in
the central Sierra Nevada (Fig. 13). Note that unlike precip-
itation, which showed minimal changes until the end of the
century, SWE exhibits a clear decline by mid-century. A lo-
cal warming of 6 °C can greatly affect the majority of SWE
in the Sierra Nevada (Bales et al., 2015), so it is not sur-
prising that such a pronounced decline in SWE would occur
due to temperature changes (Figs. 7, 9, 10). The response
of snow sensitivity to warming in the Sierra Nevada is con-
sistent with recent works (Berg et al., 2016; Rhoades et al.,
2017, 2018a; Sun et al., 2019; Siirila-Woodburn et al., 2021).
They found that under the impacts of climate change, Cali-
fornia and the western US will experience significant reduc-
tions in SWE, including reduced winter snowfall and earlier
spring snowmelt.

Given that SWE contributes approximately three-quarters
of the annual freshwater supply for the western United States
(Palmer, 1988; Cayan, 1996; Bales et al., 2011), the retreat
of SWE by mid-century will have significant implications for
water management throughout California. Consequently, this
will impact agriculture yields and energy supplies (Rhoades
et al., 2017; Belmecheri et al., 2015). Additionally, the short-
ening of the snow season and early snowmelt are closely
linked to fire activity, as this would lead to drier soils and
vegetation and thus will increase the wildfire frequency and
extend the fire seasons (Westerling et al., 2006; Holden et al.,
2018). Last, the complete recession of SWE is anticipated
to have a substantial impact on California’s ski industry.
The start of a typical ski season requires snow depths above
2–4 ft (0.6–1.2 m) (with a corresponding SWE threshold of
∼ 0.2 m) (Hayhoe et al., 2004; Hill et al., 2019), despite the
fact that the snow-to-liquid ratio can vary substantially from
season to season and across mountain regions, especially in
maritime vs. continental mountain ranges.

To further investigate the response of SWE at different lat-
itudes in the Sierra Nevada and to demonstrate the added
value of CARRM in simulating SWE, we selected the fol-
lowing four specific locations: Adin Mtn, Truckee, Tahoe
City, and Leavitt Lake. The elevations recorded in SNO-
TEL are 1886.7, 1983.9, 2071.7, 2927.3 m, respectively. We
compare their climate statistics using monthly mean SWE
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Figure 11. Same as Fig. 7 but for (a) precipitation and (b) SWE. The observation-based gridded products used for comparison are PRISM (a)
and UA-SWE (b).

(Fig. 14; a sample size of 15 (5 years× 3 months) per box)
because we did not output daily SWE for the re-run of
E3SMv1. Figure 14a–d also show the monthly mean statis-
tics for the in situ SNOTEL observation and the observation-
based gridded product UA-SWE from 1989 to 2020 water
years. In addition, Fig. 14e shows the daily mean annual cy-
cle of SWE simulated by CARRM. The observed annual cy-
cle of SWE, the associated daily maximum/minimum T2m,
and precipitation during water years 1989–2020 are shown
in Fig. 15.

First, it is reconfirmed that 1° E3SMv1 has essentially no
ability to simulate SWE, as depicted by the light blue box
in Fig. 14a–d, where SWE simulated by E3SMv1 is consis-
tently close to zero. Second, CARRM has biases relative to
the in situ SNOTEL observation and the observation-based
gridded product UA-SWE. Note that UA-SWE also has a
dry bias (0–0.5 m) relative to SNOTEL (Figs. 14a–d, 15g, h).
Interestingly, while the CARRM-simulated statewide mean
SWE is significantly higher than UA-SWE (Fig. 5d, f), SWE
at Adin Mtn has a dry bias relative to UA-SWE (Fig. 14a).
Compared to SNOTEL, CARRM has a lower SWE for all
stations except for Tahoe City, which has a higher SWE.
The SWE bias in CARRM may be related to temperature
and precipitation biases. Finally, as expected, the distribu-
tion and variability in the SWE is influenced by elevation.
Leavitt Lake, characterized by the highest elevation, has the

largest observed SWE. CARRM predicts that Leavitt Lake
will still have 0.5 m winter SWE and 0.7 m spring SWE by
mid-century (Fig. 14d). The snowmelt response is fastest in
the spring, as shown in the observations (Fig. 15g, h) and
the CARRM simulations (Fig. 14e). The rate of snowmelt is
proportional to the SWE of each station. Snowpack retreat by
the end of the century is significant at all four sites examined
in the CARRM simulations.

We emphasize the substantial reduction in summer (June–
July–August) SWE projected at all locations and the com-
plete absence in some cases. This would have significant im-
plications for increased wildfire threats (i.e., more frequent
wildfires and a much longer wildfire season) (e.g., Wester-
ling et al., 2006; Holden et al., 2018).

3.2.4 Marine stratocumulus

Along the west coast of California, fog plays a crucial role
in maintaining the redwood ecosystem, helps to moderate
hot summer temperatures influenced by the coastal Mediter-
ranean climate, and increases humidity to help curb wild-
fire ignitions (Lewis, 2003; Johnstone and Dawson, 2010). A
major mechanism for the formation of coastal fog is strong
large-scale subsidence near the coast that pushes low-level
inversions near the surface that act to lower the base of
marine stratocumulus clouds (O’Brien et al., 2012; Koračin
et al., 2001). Note that while coastal fog lies within the
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Figure 12. Same as Fig. 6 but for summer precipitation.

3.25 km mesh, the California stratocumulus found upstream
over the ocean falls within the transition region. Neverthe-
less, SCREAM’s turbulence scheme (SHOC) is scale-aware
and should be able to properly parameterize the maritime low
clouds across resolutions (Bogenschutz et al., 2023b).

The lack of marine stratocumulus is a common issue in
low-resolution GCMs, adding to the uncertainty in the short-
wave cloud feedback. The improved marine stratocumulus is
a great achievement of the SCREAM global 3.25 km simula-
tions (Caldwell et al., 2021), which is partially due to higher
horizontal and vertical resolution (Lee et al., 2022; Bogen-
schutz et al., 2023a). In our CARRM baseline (2015–2020),
the shortwave cloud radiative forcing (SWCF= FSNTOA−
FSNTOAC, where FSNTOA is net solar flux at the top of the
atmosphere (TOA), FSNTOAC is clear-sky net solar flux at
TOA) is greatly improved over inland areas (Fig. A12). How-
ever, it is also worth noting that near the western edge of the
RRM domain (∼ 100 km), the SWCF of the RRM simulation
is stronger when compared to the CERES Energy Balanced
and Filled (EBAF) observation.

Given the unaffordable cost of GCPMs, CARRM provides
an excellent opportunity to explore the response of marine
stratocumulus near California to GHGs under a convection-

permitting scale (Fig. 16). The climate change signal of
SWCF simulated by 1° E3SMv1 is weak. However, the
SWCF simulated by CARRM is much stronger (more nega-
tive) and manifests a significant weakening over time, which
indicates a decrease in stratocumulus and strong positive
shortwave cloud feedback along the west coast of Califor-
nia. This suggests that under warming, the boundary layer
turbulence becomes more effective at entraining dry air from
above the cloud tops. Note that the Data Ocean in CARRM
uses 1° lat–long SSTs which cannot resolve the cold coastal
upwelling, partially hampering the ability to properly capture
the marine stratocumulus and coastal fog.

3.3 Atmospheric river trends over California

ARkStorm is considered a rare atmospheric river (AR) phe-
nomenon transpiring once every 500 to 1000 years (Porter
et al., 2011; Wing et al., 2016). ARkStorm is a hypotheti-
cal scenario that refers to a near-continuous series of strong
AR events capable of causing a massive flooding event sim-
ilar to the Great Flood of 1862 (Engstrom, 1996; Porter
et al., 2011). This storm series is estimated to have dumped
3000 mm of water on California in the 43 d from Decem-
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Figure 13. Same as Fig. 6 but for spring SWE.

ber 1861–January 1862, triggering devastating floods that
wreaked havoc across the state. A modern ARkStorm could
cause USD 725 billion to USD 1 trillion in damage. Since
ARs have been identified as a critical contributor to winter-
time precipitation in California but can also be quite haz-
ardous (Ralph et al., 2006; Swain et al., 2018; Huang and
Swain, 2022; Dettinger et al., 2011; Rhoades et al., 2021),
we are curious about assessing the changes in the ARkStorm
possibility in CARRM with warming. Here, we examine the
statewide 30 d precipitation and AR activity. As introduced
in Sect. 2, ARs were tracked using TempestExtremes (Ull-
rich and Zarzycki, 2017; Ullrich et al., 2021).

A more refined definition of the ARkStorm event in pre-
vious studies consists of two key aspects. First, it is de-
fined based on extreme events by calculating the return pe-
riod that depends on model performance rather than an abso-
lute threshold (Swain et al., 2018). Second, considering the
spatial heterogeneity across local sites, the focus is placed
more on the spatial distribution rather than a statewide av-
erage (Huang and Swain, 2022). Unfortunately, we are un-
able to follow the first step because the calculation of the
return period for such an extreme event requires a large sam-
ple size, while we only have a sample of 20 years. For ex-

ample, more than 1000 years of preindustrial (PI) control
simulations and 40 multi-year ensemble numbers of future
projections are typically needed. Instead, we adopted a sim-
ple approach in this work; the 30 d mean for the statewide
precipitation is used to assess the possibility of ARkStorm
events. The ARkStorm event is indicated by an estimated
threshold (14 mm d−1 statewide precipitation) based on most
ARkStorm studies. Since ARkStorm is too rare to capture
in a small sample size, one might suggest looking at 1–20-
year events instead. However, the CARRM simulations are
also inadequate to answer 1–20-year events, as samples up to
20 years do not yield reliable GEV parameter estimates. On
the other hand, hindcasts are useful to investigate whether
CARRM has the ability to capture extreme AR events by an
apples-to-apples comparison with observations, as demon-
strated in Bogenschutz et al. (2024).

The statewide 30 d average or cumulative precipitation ef-
fectively diminishes the heavy-tailed distribution observed
in daily or sub-daily precipitation over single sites. How-
ever, a noticeable increase in the median and upper quar-
tile of statewide 30 d precipitation is projected at the end of
the century (Fig. 17). Considering the wet bias of CARRM,
as shown in Figs. 17 and 5, the 14 mm d−1 statewide pre-
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Figure 14. Same as Fig. 8 but for monthly mean of SWE in (a) Adin Mtn, (b) Truckee, (c) Tahoe City, and (d) Leavitt Lake. (e) Daily mean
annual cycle at four stations. The shading shows the standard deviation of each segment.

cipitation may underestimate the intensity of ARkStorm
events. Nevertheless, it is evident that the possibility of
end-of-century ARkStorm events is significantly increased
in the realization inherited from 1° E3SMv1. More im-
portantly, although it is not currently practical to perform
multi-decadal and multi-ensemble simulations directly with
CARRM, Fig. 5 illustrates that CARRM provides a signifi-
cantly different change in probability over time for any given
extreme event reference than the low-resolution model.

Consistent with the significant increase in the statewide
precipitation projected at the end of the century (more than
30 % in winter and more than 70 % in summer; Fig. 17), we
also see evidence of increased AR contribution to California
precipitation (about 50 % in DJF; Fig. 18a). This is consis-
tent with the increase in AR strength represented by the shift
in the PDF of maximum IVT values over California toward
the tail (Fig. 18b), which is also evident in the spatial dis-
tribution of IVT (Fig. A13). However, there is no clear shift
in the PDFs of AR-related maximum IVT location or in the
number of AR-related IVT samples making landfall in Cali-
fornia (not shown). The low-level winds that shape AR lati-

tudinal variability are quite similar across the four segments
(Fig. A13).

As the climate warms, the PDF of the precipitable water
(increased by 36 %) shifts towards its tail, consistent with
higher extreme IVT under warming (Fig. 18c). The overall
PDF of 850 hPa zonal wind is projected to experience a small
leftward shift with minimal change in shape (Fig. 18d). Pre-
cipitable water is controlled by the Clausius–Clapeyron re-
lation, which imposes that a warmer atmosphere can contain
more water vapor. The slight leftward shift in the 850 hPa
zonal wind in the PDF indicates an overall weakening of the
westerlies, which may slightly reduce the frequency of AR
hitting California. The differences between 1° E3SMv1 and
CARRM are noted. CARRM produces a larger AR contribu-
tion to California precipitation, a stronger AR intensity, and
weaker westerlies.

In our simulations, the large increase in total precipitation
in California by the end of the century is primarily due to
larger amounts of precipitation falling from stronger rather
than more frequent moisture surges hitting California, which
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Figure 15. Comparison of in situ SNOTEL observations (a, c, e, g) and 4 km observation-based gridded products (b, d, f, h). It shows the
daily mean annual cycle for (a–b) maximum T2m, (c–d) minimum T2m, (e–f) 7 d running average precipitation, and (g–h) SWE at Adin Mtn
(yellow), Truckee (green), Tahoe City (purple), and Leavitt Lake (dark red). In the right column, PRISM is used for T2m and precipitation,
and UA-SWE is used for SWE.
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Figure 16. Same as Fig. 6 but for summer shortwave cloud radiative forcing.

Figure 17. Same as Fig. 8 but for 30 d mean statewide precipitation. The observation-based gridded products used for comparison is PRISM
(gray). The red line indicates the threshold corresponding to the ARkStorm event.

is dominated by larger precipitable water under the signifi-
cant warming scenario.

4 Discussion and conclusions

This work marks the first time SCREAM has been used for
climate length simulations, which were only made possible
by leveraging RRM. Our RRM is centered on California and
includes parts of the West Coast at a resolution of 3.25 km
and 1° resolution covering the remainder of the globe. We
evaluated California’s future projections under the highest-
emission scenario by selecting four 5-year time periods.

To produce CARRM simulations in this study, we first
established a California-specific RRM framework. This in-
volved designing the new RRM grid and generating the nec-
essary model configurations. Thanks to the development ef-
forts and documentation provided by the E3SM RRM com-
munity, the tool chains and workflows for generating new
RRM grids are relatively mature. Then, we nudged CARRM
to the 1° E3SMv1 SSP5-8.5 scenario and generated future
projections for California.

Unlike our work, which was nudged from an E3SMv1
simulation, one may argue that it would be desirable to run
RRM freely with an active deep-convection scheme. This
would indeed avoid the necessary step of having to re-run
the E3SM model to generate the forcing at the timescales
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Figure 18. Statewide atmospheric river (referred to as AR)-related statistics. (a) Seasonal mean AR contribution to California for each season
in four segments. SCREAMv0 CARRM (1° E3SMv1) is denoted by dark (light) blue histograms. Each segment shows winter (DJF), spring
(MAM), summer (JJA), and autumn (SON) in order. PDFs of AR-related (b) maximum integrated vapor transport, (c) total precipitable
water, and (d) 850 hPa zonal wind in DJF. The range of PDF values for each variable is shown in bold.

needed. An advantage of RRM over regional climate models
lies in its seamless transition from typical GCM resolution
to the finest resolution. However, running RRM freely re-
quires a scale-aware deep-cumulus parameterization, which
is currently lacking in SCREAM for a proper handling of the
transition from 100 to 3.25 km. Hence, we adopted a nudging
strategy to force RRM with a low-resolution GCM.

There are several advantages of adopting nudging in our
work. By utilizing known boundary conditions (atmospheric
state, SST, and sea ice), we can pre-select years with ex-
treme phasing of climate modes of variability (e.g., ENSO)
as simulation segments, thereby expanding the range of sam-
pling. Furthermore, instead of strictly following a chrono-
logical order, we can simulate several segments simultane-
ously by nudging to the target state. This greatly reduces
simulation time, as well as wall-clock time (i.e., the ability
to run separate periods in parallel), and expedites data deliv-
ery and model validation. Finally, since we are nudging from
an E3SMv1 scientifically validated simulation, we are not
subjected to time-consuming and tedious tuning efforts that
would be required in a free-running simulation to ensure top-
of-atmosphere radiation balance and potential issues with a
drifting climate.

CARRM represents a very efficient configuration com-
pared to the global 3.25 km SCREAM (249 simulated days

per day compared to 4 to 5 simulation days per day, re-
spectively, with approximately one-third of the computa-
tional cores used) and serves as a powerful tool for studying
climate change and resilience in California. With its com-
plex topography and coastline, California is a microclimate-
rich region characterized by significant spatial heterogene-
ity. Therefore, high-resolution modeling becomes essential to
capture the complexities associated with California climate.
The convection-permitting scale has manifested great value
in accurately representing the highly volatile storm-induced
precipitation in winter. The Sierra Nevada snowpack, which
holds the lifeblood of California’s water resources, relies
heavily on high-resolution representation in climate mod-
els. Thus, California provides an excellent test bed for the
SCREAM RRM climate framework.

By comparing to 4 km observation-based gridded products
and in situ observations, the baseline climate of CARRM
demonstrates the significant added value of the 3.25 km res-
olution for California. In particular, it accurately captures
high temperatures in the Central Valley and realistically de-
picts the spatial distribution of rainfall and snowpack in the
Sierra Nevada. In contrast, 1° E3SM essentially fails to rep-
resent these fine-scale features which are closely related to
topography. The response of marine stratocumulus along the
west coast can also be explored in CARRM, as improve-
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ments in resolution have been found to be important for ma-
rine stratocumulus clouds (Bogenschutz et al., 2023a; Lee
et al., 2022). In our simulations, coastal stratocumulus de-
crease significantly with warming towards the end of the cen-
tury, and the positive magnitude of the shortwave cloud feed-
back is likely moderately high when compared to the CMIP6
spectrum.

Under the SSP5-8.5 scenario, our CARRM simulations in-
dicate that daily maximum temperatures in the Central Valley
may increase from 36 °C in the current climate to 43.5 °C by
the end of century. A widespread warming of 6–10 °C is an-
ticipated across most of California. By the end of the cen-
tury, statewide 30 d average winter–spring precipitation in
California is projected to increase by 38 % compared to the
present day. This increase is primarily due to larger amounts
of precipitation falling from stronger rather than more fre-
quent moisture surges hitting California. This aligns with
the thermodynamic reaction to warming, resulting in an in-
creased amount of precipitable water. On the other hand, our
results suggest there could be a notable decrease in precip-
itation during the fall, which has consequences for fire sea-
son. In our simulation, California’s SWE was cut in half by
the 2050s and almost completely absent by the end of the
century. This is consistent with the significant reductions in
snowpack found in the recent downscaling studies over Cal-
ifornia and the western US (Berg et al., 2016; Rhoades et al.,
2017, 2018a; Sun et al., 2019; Siirila-Woodburn et al., 2021).
These projections hold critical implications for California’s
future water resources, agriculture, energy, natural disasters
(floods, droughts, and wildfires), public health, etc.

Due to the nudging strategy, CARRM’s mean temper-
ature is basically inherited from 1° E3SM. However, the
statewide average precipitation shows significant differences
between CARRM and 1° E3SM that increase over time
(i.e., non-stationarity issue, as discussed in Maraun et al.,
2010). Specifically, CARRM demonstrates superior profi-
ciency compared to 1° E3SM in accurately representing
snowpack. This is evident as the 1° E3SM model essentially
fails to capture snowfall in the Sierra Nevada region. This
suggests that 100 km may be sufficient if one is only con-
cerned with the warming response in a statewide average
context, but in terms of understanding changes at the regional
level, the high resolution provided by CARRM is essential;
in the latter case, it is a challenge to make valid projections
based on coarse-resolution models alone.

The observation-based gridded products and in situ obser-
vations reveal a small warm bias of daily minimum temper-
atures and a cold bias of daily maximum temperatures in
mountain regions in CARRM. As a comparison, Rhoades
et al. (2018b) found a systemic mountain cold bias from 55
to 7 km variable-resolution CESM simulations. Moreover,
a significant wet bias is found in CARRM. In particular,
CARRM amplifies the wet bias which is already present in
the 1° E3SM, which may suggest problems with the phys-
ical parameterization of SCREAM and the inadequacy of
3.25 km to fully resolve precipitation systems. For compar-
ison, 3 km WRF hindcasts in Huang et al. (2020) did not
show a wet bias, while 3 km RRM-E3SM in Rhoades et al.
(2023) and 3 km/800 m SCREAM CARRM hindcasts in Bo-
genschutz et al. (2024) found a wet bias especially in the
Sierra Nevada. Using the hindcast strategy based on the same
SCREAM–CARRM framework, the wet bias found in Bo-
genschutz et al. (2024) is much weaker than what we found
here, suggesting that most of the bias produced by CARRM
climate runs is likely due to the large-scale forcing rather
than biases in the physics. A further increase in grid resolu-
tion could help clarify the resolution issue, as computational
resources allow. It is also an open question as to whether a
deep convection scheme can still play a role in helping to
better represent the fraction of convection that is not fully
resolved, i.e., mitigating the overprediction of mass fluxes.

Our endeavor demonstrates the engineering feasibility
and scientific validity of SCREAM RRM for conduct-
ing decades-long climate simulations in regions of in-
terest. SCREAM RRM represents an excellent bridge to
global convection-permitting simulations. The initial set of
CARRM simulations has been employed to investigate the
climate resilience of California’s energy infrastructure. We
anticipate further opportunities for application and itera-
tive enhancements, including refining resolution and model
physics. Given the significant benefits of high resolution, this
work provides guidance and encourages the replication of
SCREAM RRM in other parts of the globe.
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Appendix A

Figure A1. Multi-year precipitation of climatological mean (a, d, g), wettest 5-year mean (b, e, h), and driest 5-year mean (c, f, i) for
PRISM (a, b, c), unsplit Livneh (d, e, f) observation-based gridded products, and CARRM (g, h, i). The statewide average is shown in the
top-right corner. The analysis period of climatological mean is 1984–2020 for PRISM, 1915–2017 for Livneh, and 2015–2020 for CARRM.
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Figure A2. Comparison of 10-year return values for DJF daily precipitation extremes in (a) 1° E3SMv1, (b) SCREAMv0 CARRM, and (c) a
probabilistic gridded product (LULNUQ). All 20 years of the simulations are used in the generalized extreme value distribution parameter
estimates for E3SMv1 and CARRM. The 10-year return values for DJF in 2015 are shown for LULNUQ.
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Figure A3. Observation-based gridded products for baseline (2015–2020 water years) multi-year average maximum T2m from PRISM in
(a) DJF and (e) JJA, precipitation from PRISM in (b) DJF and (f) JJA, SWE from UA-SWE in (c) DJF and (g) MAM, and SWE from
WUS-SR in (d) DJF and (h) MAM.

Figure A4. Comparison of SWE from (a) UA-SWE and (b) WUS-SR.
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Figure A5. Baseline (2015–2020 water years) 1° multi-year total vertically integrated zonal (a, c, e) and meridional (b, d, f) water flux from
E3SMv1 (a, b), SCREAMv0 CARRM (c, d), and ERA5 observations (e, f).
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Figure A6. Baseline (2015–2020 water years) 1° multi-year 500 hPa geopotential height from E3SMv1 (a), SCREAMv0 CARRM (b), and
ERA5 observations (c).
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Figure A7. Similar to Fig. 6 but showing the differences in summer mean daily maximum T2m (°C) in (b, f) 2029–2034, (c, g) 2044–2049,
and (d, h) 2094–2099 water years compared to the (a, e) baseline in 1° E3SMv1 (a–d) and SCREAMv0 CARRM (e–h).

Figure A8. Same as Fig. 6 but for winter daily maximum T2m.
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Figure A9. Same as Fig. A7 but for winter daily maximum T2m.
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Figure A10. Similar to Fig. A7 but for winter precipitation (mm d−1) for the top and middle rows. In addition, the difference translated to
percent of annual total precipitation is shown in the bottom row.
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Figure A11. Same as Fig. A10 but for summer precipitation.
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Figure A12. Baseline (2015–2020 water years) 1° multi-year shortwave cloud radiative forcing (SWCF) from E3SMv1 (a), SCREAMv0
CARRM (b), and CERES EBAF observations (c).
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Figure A13. Similar to Fig. 6 but for total vertically integrated vapor transport (referred to as IVT) with 850 hPa horizontal wind vectors.

Code and data availability. The SCREAM California Convection-
Permitting Regionally Refined Model 0.0 version code, in ad-
dition to the model output and technical note, can be found
at https://doi.org/10.5281/zenodo.11088673 (Zhang and Bogen-
schutz, 2024). Specifically, the code used to generate the
boundary conditions can be found in Sect. 5 of the techni-
cal note. The SCREAM CARRM source code is also available
on GitHub at https://github.com/E3SM-Project/scream/compare/
bogensch/CA_32xRRM (last access: 30 August 2023) and also a
maintenance branch (CARRM-v0.0; https://github.com/jsbamboo/
scream/releases/tag/CARRM-v0.0, last access: 30 August 2023).
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