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Abstract. Warm-sector heavy rainfall along the south China
coast poses significant forecasting challenges due to its local-
ized nature and prolonged duration. To improve the predic-
tion of such high-impact weather events, high-resolution nu-
merical weather prediction (NWP) models are increasingly
used to more accurately represent topographic effects. How-
ever, as these models’ grid spacing approaches the scale of
convective processes, they enter a “gray zone”, where the
models struggle to fully resolve the turbulent eddies within
the atmospheric boundary layer, necessitating partial param-
eterization. The appropriateness of applying convection pa-
rameterization (CP) schemes within this gray zone remains
controversial. To address this, scale-aware CP schemes have
been developed to improve the representation of convec-
tive transport. Among these, the multi-scale Kain–Fritsch
(MSKF) scheme enhances the traditional Kain–Fritsch (KF)
scheme, incorporating modifications that facilitate its effec-
tive application at spatial resolutions as high as 2 km. In re-
cent years, there has been an increase in the application of
machine learning (ML) models across various domains of at-
mospheric sciences, including efforts to replace conventional
physical parameterizations with ML models. This work in-
troduces a multi-output bidirectional long short-term mem-
ory (Bi-LSTM) model intended to replace the scale-aware
MSKF CP scheme. This multi-output Bi-LSTM model is
capable of simultaneously predicting the convection trigger
while also modeling the associated convective tendencies and

precipitation rates with a high performance. Data for training
and testing the model are generated using the Weather Re-
search and Forecast (WRF) model over south China at a hor-
izontal resolution of 5 km. Furthermore, this work evaluates
the performance of the WRF model coupled with the ML-
based CP scheme against simulations with the traditional
MSKF scheme. The results demonstrate that the Bi-LSTM
model can achieve high accuracy, indicating the promising
potential of ML models to substitute the MSKF scheme in
the gray zone.

1 Introduction

Warm-sector heavy rainfall often occurs in south China dur-
ing the pre-flood season, primarily influenced by the East
Asian summer monsoon (Ding, 2004). These rainfall events
are characterized by intense and localized precipitation over
a limited area. Despite their small scale, such unexpected
and extreme warm-sector rainfall can cause significant dam-
age, including flooding homes and vehicles, destroying crop
fields, and endangering lives, leading to economic losses
ranging from millions to even billions of dollars (Tao, 1981;
Zhao et al., 2007; Zhong et al., 2015). Accurately predicting
warm-sector heavy rainfall with numerical weather predic-
tion (NWP) models is challenging due to the complex in-
teraction of various factors, such as the low-level jet (LLJ),
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land–sea contrast, topography, and urban landscape (Zhong
and Chen, 2017; Luo et al., 2017; Jian et al., 2002; Di et al.,
2006; Xia and Zhao, 2009; Zhang and Ni, 2009). The com-
plex terrain and heterogeneous land surface of the south
China region are crucial in promoting active convection. Pre-
vious studies (Giorgi et al., 2016; Mishra et al., 2018; Schu-
macher et al., 2020; Onishi et al., 2023) have demonstrated
that a higher spatial resolution improves the performance of
convective rainfall forecasts by more accurately resolving to-
pographic features. Acknowledging the importance of res-
olution in forecasting severe convective weather, both the
Chinese government and the community increasingly sup-
port the development of high-resolution operational forecast
models specifically designed for warm-sector rainstorms and
sudden local rainstorms. In early 2017, the China Meteoro-
logical Administration (CMA) launched an initiative to de-
velop a comprehensive framework for evaluating the fore-
cast performance of all available models, including high-
resolution regional models, and advancing key technologies
for forecasting high-impact weather.

The increased computational resources have facilitated a
shift towards the implementation of regional NWP models
with increasingly finer grid spacings, typically within the
range of 1 to 10 km. However, when the model grid spac-
ing approaches the scale of convection, entering the so-called
“gray zone” (Wyngaard, 2004; Hong and Dudhia, 2012), cu-
mulus convection transitions from being completely unre-
solved to partially resolved. Theoretically, the accurate rep-
resentation of the smallest turbulent scales, achievable only
through direct numerical simulation (DNS) at resolutions
from millimeters to centimeters (Jeworrek et al., 2019), still
requires the use of the parameterization of turbulence or con-
vection in weather modeling. There is ongoing debate regard-
ing the efficacy of employing convection parameterization
(CP) within the gray zone. Several studies (Chan et al., 2013;
Johnson et al., 2013) have found that reducing horizontal grid
spacing to below 4 km while using the CP scheme does not
enhance and may even degrade precipitation forecast perfor-
mance. In contrast, other studies (Lean et al., 2008; Roberts
and Lean, 2008; Clark et al., 2012) showed that forecasts
with a horizontal grid spacing of 1 km, where convection is
explicitly resolved, yielded more accurate spatial represen-
tation of accumulated rainfall over 48 h compared to fore-
casts using 12 and 4 km grid spacings. This discrepancy in
research findings, with some indicating no benefit from finer
grid spacing and others suggesting improved forecast accu-
racy, seems to stem from the application of the CP at scales
beyond its originally intended operational range. Therefore,
it remains unclear if utilizing any CP schemes in the gray
zone is effective for predicting localized warm-sector heavy
rainfall.

To enhance prediction accuracy in the gray zone, re-
searchers have developed scale-aware CP schemes. These
schemes dynamically parameterize convective processes
based on the horizontal grid spacing, thus facilitating seam-

less transitions between different spatial scales. A pivotal
study by Jeworrek et al. (2019) demonstrated that two spe-
cific scale-aware CP schemes, Grell–Freitas (Grell and Fre-
itas, 2014) and multi-scale Kain–Fritsch (MSKF) (Zheng
et al., 2016), surpassed conventional CP schemes in pre-
dicting both the timing and intensity of precipitation over
the Southern Great Plains of the United States. Addition-
ally, Ou et al. (2020) showed that the MSKF scheme outper-
formed other CP schemes, including the Grell 3D ensemble
(Grell and Dévényi, 2002) and the new simplified Arakawa–
Schubert (Han and Pan, 2011), in precipitation simulation.
This was evidenced by its lower root mean squared error
(RMSE) values when compared against in situ observations
and satellite data. Despite the increasing adoption of these
scale-aware schemes due to their superior performance, it
is crucial to acknowledge that their efficacy also relies on
various empirical parameters (Villalba-Pradas and Tapiador,
2022). Therefore, developing specialized CP schemes for the
gray zone in NWP models continues to be a significant chal-
lenge.

In recent years, an increasing number of studies have in-
vestigated the use of machine learning (ML) models as al-
ternatives to conventional physics-based CP schemes. These
ML-based schemes have demonstrated the potential for ef-
ficacy across various horizontal resolutions, benefiting from
being trained on data from simulations that operate at vary-
ing grid resolutions (Yuval and O’Gorman, 2020). Unlike
conventional CP schemes, which often rely on assumptions
such as convective quasi-equilibrium (Arakawa, 2004), ML-
based parameterization schemes do not require such assump-
tions. Notably, random forests (RFs) and fully connected
(FC) neural networks (NNs) have become predominant ML
models for CP schemes in previous studies. RFs offer the ad-
vantages of inherently enforcing physical constraints, such
as energy conservation and non-negative surface precipita-
tion, essential for maintaining stable simulations. O’Gorman
and Dwyer (2018) demonstrated RFs’ capability to emulate
moist convection in an aquaplanet general circulation model
(GCM), maintaining stability and effectively reproducing
key climate statistics. Furthermore, Yuval and O’Gorman
(2020) employed the coarse-grained output from a high-
resolution three-dimensional (3D) GCM model, simulated on
an idealized equatorial beta plane, to train the RF parameter-
ization. They showed that the RF parameterization is capa-
ble of reproducing the climate of the high-resolution simu-
lation at coarser resolutions. However, FC NNs offer several
advantages over RFs, such as the potential for higher accu-
racy and lower memory requirements. Krasnopolsky et al.
(2013) introduced a stochastic CP scheme using an ensem-
ble of three-layer NNs, trained with data generated by a
cloud-resolving model (CRM) during the TOGA COARE1

1TOGA COARE is an acronym for Tropical Ocean Global At-
mospheres/Coupled Ocean Atmosphere Response Experiment. It is
an international research program that investigates the interaction or

Geosci. Model Dev., 17, 3667–3685, 2024 https://doi.org/10.5194/gmd-17-3667-2024



X. Zhong et al.: ML MSKF 3669

experiment, demonstrating its capacity for generating rea-
sonable decadal climate simulations across a broader tropi-
cal Pacific region when incorporated into the National Center
of Atmospheric Research (NCAR) Community Atmospheric
Model (CAM). Similarly, Gentine et al. (2018) leveraged
deep NN (DNN) trained on data from idealized and aqua-
planet simulations performed using the Super-Parameterized
Community Atmosphere Model (SPCAM). The DNN pre-
dicts temperature and moisture tendencies due to convection
and clouds, as well as the cloud liquid and ice water contents.
Additionally, Rasp et al. (2018) successfully implemented an
NN-based parameterization in a global GCM on an aqua-
planet, conducting stable prognostic simulations over mul-
tiple years that accurately reproduced the climatology of SP-
CAM and capturing crucial aspects of variability, including
extreme precipitation and realistic tropical waves. However,
Rasp (2020) also found that minor changes to the configura-
tion rapidly led to simulation instabilities, underscoring the
need to address the robustness of NN parameterizations in
GCMs. Yuval et al. (2021) developed a FC NN that predicts
subgrid fluxes instead of tendencies, incorporating physical
constraints from coarse-grained high-resolution atmospheric
simulation in an idealized domain. Brenowitz and Brether-
ton (2018, 2019) proposed a novel loss function designed
to minimize accumulated prediction error over multiple time
steps to enhance long-term stability and accuracy, by exclud-
ing upper atmospheric humidity and temperature from the
input. Nonetheless, the approach of removing certain vari-
ables from the input is relatively rudimentary, demanding ad-
ditional research to enhance the stability of NN-based param-
eterizations when integrated into the model.

Previous studies have predominantly used FC NNs to emu-
late convection, while more advanced NN structures have the
potential to achieve higher accuracy. In a pioneering study,
Han et al. (2020) explored the use of a deep residual convo-
lutional NN (ResNet) (He et al., 2016) for the emulation of
convection and cloud parameterization in the SPCAM model
using a realistic configuration. They compared the perfor-
mance of ResNet with various NN architectures, including
a FC DNN, a DNN with skip connections, and a convolu-
tional NN (CNN) without skip connections. The results re-
vealed that ResNet and CNNs without skip connections out-
performed FC NNs and DNNs with skip connections in accu-
racy, with ResNet and CNNs without skip connections show-
ing comparable performance. This finding highlights the sig-
nificant role of convolutions in enhancing accuracy. Further-
more, Yao et al. (2023) evaluated multiple ML model struc-
tures for simulating atmospheric radiative transfer processes,
encompassing FC NNs, CNNs, bidirectional recurrent-based

coupling of the ocean and atmosphere in the western Pacific warm
pool region from November 1992 to February 1993, encompass-
ing 120 d of field experiments involving the deployment of oceano-
graphic ships, moorings, drifters, and Doppler radars (ship, land,
and air).

NNs (RNNs), transformer-based NNs (Vaswani et al., 2017),
and Fourier neural operators (FNOs; Li et al., 2020). Their re-
sults indicated that models capable of perceiving the global
context of the entire atmospheric column significantly out-
performed FC NNs and CNNs. Particularly, the bidirectional
long short-term memory (Bi-LSTM) achieved the highest
levels of accuracy. Similar to radiative transfer modeling,
Han et al. (2020) also emphasized the importance of ML
having a global perspective of the entire atmospheric column
for ML models in convection modeling. They demonstrated
that increasing the depths of CNNs from 4 to 22 layers sig-
nificantly improved model accuracy, a benefit primarily at-
tributed to the expansion of the receptive field in deeper CNN
layers. Therefore, ML models that integrate both global and
local perception capabilities are better suited for developing
ML-based CP schemes.

Previous research has mostly focused on replacing CP
schemes in GCM models with ML models for climate fore-
casting. The complexity of CP schemes in weather forecast-
ing models surpasses that in GCMs (Arakawa, 2004). Gen-
erally, CP schemes in GCMs, whether in explicit or im-
plicit form, assume that both the horizontal grid size and
the temporal intervals for physics implementation are signif-
icantly larger and longer compared to the grid size and dura-
tion of individual moist-convective elements. In contrast, CP
schemes in high-resolution models must account for depen-
dencies on both the model’s resolution and the time interval
for implementing the physics (Arakawa, 2004). The ultimate
goal is to develop ML models, based on data from super-
parameterization or cloud-resolving models, to replace con-
ventional CP schemes in weather forecasting models. This
replacement seeks to reduce uncertainties and improve the
efficacy of ML parameterizations. This study represents an
initial effort to employ a ML model as an alternative to con-
ventional CP schemes in weather forecasting models. For
our dataset, we used the Weather and Research Forecasting
(WRF) (Skamarock et al., 2021) model that covers the south
China region, incorporating the scale-aware MSKF scheme
employed as the CP scheme. The MSKF scheme, an im-
proved version of the Kain–Fritsch (KF) scheme (Kain and
Fritsch, 1990, 1993; Kain, 2004), aims to mitigate the overes-
timation of precipitation and address the premature convec-
tion trigger issue, particularly evident in overestimating pre-
cipitation during summer. To address these issues, the MSKF
incorporates a scale-dependent capability, such as modify-
ing the formulation of the convective adjustment timescale.
This vital parameter, which determines the intensity and du-
ration of convection, has been made dynamic and dependent
on grid resolution (Zhang et al., 2021b). Furthermore, we uti-
lize a Bi-LSTM model to emulate the convective processes
and couple it with the WRF model through the WRF–ML
coupler developed by Zhong et al. (2023a). The performance
of the ML-based CP scheme is evaluated in both offline and
online settings.
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The paper is structured as follows. Section 2 provides a
description of the WRF model for data generation, as well as
the input and output data of the ML model. In Sect. 3, the
original and the ML-based MSKF schemes are introduced.
The results for both offline and online testing of the ML-
based MSKF scheme are presented in Sect. 4. Finally, Sect. 5
presents the summary and conclusion.

2 Data

2.1 Data generation

The dataset was generated by running the WRF model ver-
sion 4.3 (Skamarock et al., 2021). The following subsections
provide a comprehensive explanation of the WRF model con-
figurations, as well as the input and output variables em-
ployed in the development of the ML-based CP scheme.

The WRF model is compiled using the GNU Fortran (gfor-
tran version 7.5.0) compiler with the dmpar option. The
WRF model is run using the domain configuration illus-
trated in Fig. 1. The WRF model is configured with a sin-
gle domain consisting of 44 000 grid points, with a hori-
zontal grid spacing of 5 km and dimensions of 220 × 200
grid points in the west–east and north–south directions. The
model consists of 45 vertical levels (i.e., 44 vertical layers),
with a model top at 50 hPa. Additionally, the WRF model is
configured with physics schemes, including a WSM 6-class
graupel scheme (Hong and Lim, 2006) for microphysics,
a Bougeault–Lacarrère (BouLac) scheme (Bougeault and
Lacarrère, 1989) for planetary boundary layer (PBL) mix-
ing, the Monin–Obukhov (Janjic) surface layer scheme (Jan-
jic, 1996), the Unified Noah model (Livneh et al., 2011) for
land surface, RRTMG for both shortwave and longwave ra-
diation (Iacono et al., 2008), and MSKF (Zheng et al., 2016)
for cumulus. The time step used for all WRF simulations is
set to 15 s.

The initial and boundary conditions for this work were
derived from the ERA5 reanalysis dataset, which was pro-
vided by the European Centre for Medium-range Weather
Forecast (ECMWF) (Hersbach et al., 2020). The ERA5 re-
analysis dataset used in this study has a horizontal resolu-
tion of 0.25° and consists of 29 pressure levels below 50 hPa.
To create a dataset for developing the ML model, the WRF
simulations were initialized at 12:00 UTC and conducted
nine times every 2 d, specifically from 20 May 2022 to 5 June
2022. Throughout the simulations, the MSKF scheme was
called every 5 model minutes, generating outputs at each
call. The simulations ran for 36 h each time, with the first
24 h used for training and the last 12 h for validation. There-
fore, the total number of training samples is 114 444 000
(114 444 000= 44 000×9×(24×60/5+1)), while the offline
validation set contains 57 024 000 (57 024 000= 44000×9×
12× 60/5) samples.

Figure 1. Digital evaluation data of the single WRF domain with a
horizontal resolution of 5°. The red lines are the province border-
lines, and the black lines are the city borderlines.

Furthermore, given the possible discrepancy between of-
fline performance, we conducted experiments that coupled
the ML-based MSKF scheme with the WRF model. This
coupling aims at evaluating the online efficacy of the ML-
based MSKF scheme by comparing it with the original WRF
simulations. These simulations were performed four times
every 2 d, with each simulation extending over a period
of 168 h (7 d). The initialization days spanned from 12 to
18 June 2022.

2.2 Input and output data

Table 1 presents a comprehensive list of the input and out-
put variables used in this study, consistent with those utilized
in the original MSKF scheme. There are 17 variables exclu-
sively used as input, while 9 variables serve as both input and
output. Specifically, the output variable raincv, representing
the time step precipitation due to convection, is calculated
through multiplying the precipitation rate by the model’s
time step. Among all the variables, five are two-dimensional
(2D) surface variables, while the remaining ones are 3D vari-
ables characterized by 44-layer vertical profiles. Moreover,
the ML model used in this study incorporates four derived
variables as input. These variables consist of a 2D Boolean
variable indicating convection triggering based on nca val-
ues, the pressure difference across adjacent vertical levels,
the saturated water vapor mixing ratio, and the relative hu-
midity. Furthermore, the output w0avg, which depends on
the vertical wind component (w) and input w0avg, is also
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Table 1. Definition of all the input and output variables, whether they are surface or 3D variables, and their corresponding units. There are
44 model layers.

Type Variable name Definition Type Unit

Input u meridional wind component 3D ms−1

v zonal wind component 3D ms−1

w vertical wind component 3D ms−1

t temperature 3D K
qv water vapor mixing ratio 3D kgkg−1

p pressure 3D Pa
th potential temperature 3D K
dz8w layer thickness 3D m
rho air density 3D kgm−3

pi Exner function, which is dimensionless pressure and can be defined as ( pp0
)Rd/cp

hfx upward heat flux at surface surface Wm−2

ust u∗ in similarity theory surface Wm−2

pblh planetary boundary layer height surface m

Derived input pdiff pressure difference between adjacent levels 3D Pa
qvsat saturated water vapor mixing ratio 3D kgkg−1

rh relative humidity 3D –
trigger boolean trigger indicating convection triggering surface –

Input and output rthcuten potential temperature tendency due to cumulus parameterization 3D Ks−1

rqvcuten water vapor mixing ratio tendency due to cumulus parameterization 3D kgkg−1 s−1

rqccuten cloud water mixing ratio tendency due to cumulus parameterization 3D kgkg−1 s−1

rqrcuten rainwater mixing ratio tendency due to cumulus parameterization 3D kgkg−1 s−1

rqicuten cloud ice mixing ratio tendency due to cumulus parameterization 3D kgkg−1 s−1

rqscuten snow mixing ratio tendency due to cumulus parameterization 3D kgkg−1 s−1

w0avg average vertical velocity 3D ms−1

nca counter of the cloud relaxation time 3D s
pratec precipitation rate due to cumulus parameterization surface mms−1

Output raincv precipitation due to cumulus parameterization surface mm

included as an input to the model. In total, the ML model
utilizes 27 input variables.

The variable nca represents the cloud relaxation time and
must be an integer multiple of the model time step. For all
WRF model simulations conducted in this study, a fixed
time step of 15 s is used. Thus, nca is expected to be ex-
actly divisible by 15. To eliminate dependence on the spe-
cific model time step, nca is divided by the model time step
before normalization is applied during model training. More-
over, within the MSKF scheme, nca plays a crucial role in
determining the triggering of convection. Convection is trig-
gered when nca is equal to or exceeds half of the model time
step.

To ensure consistency with the dimensions of the 3D vari-
ables, the surface variables are padded by duplicating the val-
ues of the surface layer for all layers before feeding them into
the model. Prior to utilizing the variables in the Bi-LSTM
model for training and validation, normalization is applied
to ensure uniformity in the magnitudes of all the variables.
Each variable is divided by the maximum absolute value in
the atmospheric column (for 3D variables) or at the surface
(for surface variables).

3 Method

This section describes the flowchart of the original MSKF
scheme for determining the convection trigger, ML model
structures and training, and evaluation methods.

3.1 Description of the original MSKF module

The MSKF scheme is a scale-aware adaptation of the KF CP
scheme, initially developed by Kain and Fritsch (1990, 1993)
and further refined by Kain (2004). Figure 2 illustrates the
convection trigger process within the MSKF scheme. At
the beginning of each simulation step, the scheme evaluates
the variable nca to ascertain whether it equals or surpasses
a threshold, defined as half of the model’s time step (dt).
Should nca equal or exceed half of dt, there would be no
need to update convective tendencies or precipitation rates
due to ongoing convection. In contrast, an nca value below
this threshold triggers the MSKF scheme to employ a one-
dimensional cloud model. This model calculates a set of vari-
ables related to cloud characteristics to evaluate the poten-
tial of convection triggering. Essential variables include the
lifting condensation level (LCL), convective available poten-
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Figure 2. A flowchart outlining the convection trigger process in the original MSKF scheme.

tial energy (CAPE), cloud top and base heights, and entrain-
ment rates. The LCL is crucial for determining the emer-
gence of potential convective activities, with a lower LCL
favoring more intense convection. CAPE quantifies the buoy-
ant energy available to an air parcel for the formation of deep
convective clouds upon reaching its level of free convection
(LFC) above the LCL, with higher CAPE values signifying
greater potential for intense convection. The cloud base is
generally at the LCL, whereas the cloud top is defined at
the altitude where buoyancy becomes negligible. Meanwhile,
the vertical extent between the cloud base and top affect
the cloud’s growth and precipitation potential. The MSKF
scheme requires surpassing a specific CAPE threshold to

trigger convection. Furthermore, it assesses entrainment rates
to measure the impact of ambient air on the evolution of the
convective system. At grid points where convection is trig-
gered, the MSKF scheme calculates both convective tenden-
cies and precipitation rates; otherwise these values are set to
zero. However, the variable w0avg is consistently updated,
regardless of convection status. Active convection leads to a
decrement in nca by one model time step for each iteration
within the WRF model cycle.

3.2 Description of the ML-based MSKF scheme

In the original MSKF scheme, atmospheric columns are pro-
cessed sequentially, one at a time, until all horizontal grid
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Figure 3. The architecture of the multi-output Bi-LSTM model for combined classification and regression predictions.

points within the domain have been processed. In contrast,
the ML-based MSKF scheme processes data in batches, as
indicated by B in Fig. 3, consisting of 27 features across
44 vertical layers. As a result, the input data have a dimen-
sion of B× 27× 44. Before being fed into the ML model,
the input data undergo pre-processing through a module in-
corporating a one-dimensional (1D) convolutional layer. This
module expands the feature dimension from 27 to 64. The
following sections provide a comprehensive description of
the structures of the ML model.

3.2.1 ML model structure

Predicting whether convection is triggered as well as model-
ing convective tendencies and precipitation rates are two pri-
mary objectives of conventional CP schemes. Previous stud-
ies have applied ML models to address these objectives, with
some dedicated solely to the classification task of the convec-
tion trigger (Zhang et al., 2021a), while others have indepen-
dently pursued the regression of convective tendencies (Rasp
et al., 2018; Brenowitz and Bretherton, 2019; Wang et al.,
2022). However, regression-based models alone may result
in inconsistent convective tendencies, leading to conflicting
signals for triggering convection at specific grid points (see
Figs. A3 and A4 in Appendix A). In contrast, models that
focus exclusively on classification lack the capability to gen-
erate essential tendencies for an effective CP scheme. There-
fore, the development of a ML-based CP scheme necessi-
tates the integration of both a binary classification model
for the prediction of the convection trigger and a regression
model for convective tendencies. To address this, we pro-
pose a multi-output Bi-LSTM model capable of concurrently
conducting regression and classification predictions (Fig. 3).
Our proposed model consists of a shared Bi-LSTM layer
for learning features, a classification subnetwork, and a re-
gression subnetwork. The shared Bi-LSTM layer includes
three repeated Bi-LSTM blocks, with each block containing

a forward and a backward layer that have a feature dimen-
sion of 32. The classification subnetwork is composed of a
1× 1 1D convolutional layer, a FC layer, and a sigmoid ac-
tivation layer. The output of the sigmoid layer represents the
probability distribution of the convection trigger. The binary
cross-entropy loss function is employed as the cost function
for this classification task. Meanwhile, the regression sub-
network incorporates a FC layer to output precipitation rate,
nca, and convective tendencies. Finally, outputs from both
subnetworks are processed through a post-processing mod-
ule to ensure their physical consistency (see Figs. A5 and A6
in Appendix A), with further details provided in the subse-
quent subsection.

3.2.2 Post-processing module

The post-processing module is designed to ensure physical
consistency of all variables. To achieve this, the following
rules are applied: (1) at grid points where the input nca is
equal to or greater than half the value of dt, all other vari-
ables remain unchanged as they are still within the convec-
tion lifetime. (2) The output nca must be an integer. (3) At
grid points where convection is predicted to be inactive, all
corresponding output variables are set to zero by default. In
addition, the calculation of time step convective precipitation
(raincv) follows the methodology outlined in a previous sec-
tion, Sect. 2.2.

3.2.3 Model training

As our model incorporates both classification and regression
tasks, we optimize its performance by minimizing a multi-
task loss function (Ren et al., 2016). The loss function is de-
fined as the sum of the binary cross-entropy loss for the con-
vection trigger and a weighted combination of the L1 loss
for all output variables from the regression subnetwork. The
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specific formulation of the loss function is as follows:

L=
1
Ncls

∑
i,j

Lcls(pi,j ,p
gt
i,j )+

∑
c

λc
1
Nreg

∑
i,j

p
gt
i,jL1c. (1)

Here, i and j denote the grid points in the domain and pi,j
represents the probability of convection being triggered. The
ground-truth label pgt

i,j takes a value of 1 if convection is
triggered and 0 otherwise. The classification loss, Lcls, is
calculated using the binary cross-entropy loss. For the re-
gression loss of different values of variable c, λc functions
as a weight that balances the output variables by consider-
ing their respective magnitudes. The term p

gt
i,jL1c indicates

that the L1 regression loss is activated only for triggered grid
points (pgt

i,j = 1) and is disabled otherwise (pgt
i,j = 0). Both

loss terms are normalized by Ncls and Nreg, which corre-
spond to the total number of grid points and the number of
triggered grid points, respectively.

The Adam optimizer (Kingma and Ba, 2014) is used with
an initial learning rate of 0.003 to update the parameters
of the model. Furthermore, the plateau scheduler is imple-
mented to decrease the learning rate by a factor of 0.5 when
the loss fails to decrease for 5 epochs. The model is trained
for 150 epochs using a batch size of 44 000.

3.3 Evaluation methods

The ML-based MSKF scheme is evaluated in both offline
and online settings. The offline performance of the ML-
based MSKF scheme is evaluated by comparing it against
the outputs of the original MSKF scheme using the valida-
tion dataset, including rthcuten, rqvcuten, rqccuten, rqrcuten,
nca, and pratec. The overall model performance metrics in-
clude the RMSE and correlation coefficient. The mean ab-
solute error (MAE) and mean bias error (MBE) per vertical
layer are calculated using the equations below:

MAEl =
1
N

N∑
i=1
|YML(i, l)−Y (i, l)|, (2)

MBEl =
1
N

N∑
i=1

YML(i, l)−Y (i, l), (3)

where Y (i, l) and YML(i, l) represent the outputs from the
original MSKF scheme and the ML-based MSKF scheme,
respectively. Here, i denotes the horizontal grid point of a
vertical profile, N is the number of the horizontal grid points
in the domain, and l represents the vertical layer index.

4 Results

4.1 Offline validation of the ML-based MSKF scheme

The offline validation was conducted using data that were not
used during the training process. Figure 4 compares the cloud

Figure 4. Comparison of the predicted (y axis) and true (x axis)
nca (a), pratec (b), rthcuten (c), rqvcuten (d), rqccuten (e), and rqr-
cuten (f) when using validation data in the offline setting. Colors
indicate the proportion of samples across the entire testing dataset,
with values on the color bar normalized through the application of
a base 10 logarithm.

relaxation time (nca), precipitation rate (pratec), and con-
vective tendencies predicted by the original MSKF scheme
and the ML-based MSKF scheme, respectively. To facilitate
the comparison, the units of precipitation rate and tempera-
ture tendencies were converted to mmd−1 and Kd−1 from
mms−1 and Ks−1, respectively, by applying a conversion
factor of 86 400 (24× 3600). Similarly, the water vapor mix-
ing ratio (rqvcuten), cloud water mixing ratio (rqccuten),
and rainwater mixing ratio (rqrcuten), due to convection,
were multiplied by 86 400 000 (24× 3600× 1000) to con-
vert the output variables listed in Table 1 from kgkg−1 s−1 to
gkg−1 d−1; the variable w0avg is excluded as it is calculated
using an equation with the ground truth as input in this offline
validation. Hence, evaluating w0avg in the offline evaluation
is unnecessary.

Among all variables illustrated in Fig. 4, the variable
nca exhibits a significantly higher RMSE of 4.32, with data
points widely dispersed across a wide range of values. This
suggests that accurately predicting convection poses a con-
siderable challenge. To eliminate the dependency on time
steps, nca is divided by the model’s time step of 15 s be-
fore proceeding with plotting and statistical evaluations. The
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Figure 5. Vertical profiles of the statistics in rthcuten (a), rqvcuten (b), rqccuten (c), and rqrcuten (d) using validation data in the offline
setting data using ML-based emulators. The solid and dashed lines show the MAE and MBE profiles, respectively, and the shaded area
indicates the 5th and 95th percentile of differences (prediction–target) at each layer.

precipitation rate demonstrates the highest correlation co-
efficient and minimal variability, as most data points clus-
ter closely around the 1 : 1 line. While temperature and
the four moisture tendencies exhibit some degree of vari-
ability, the majority of data points align closely with the
1 : 1 line. The correlation coefficient of convection trigger is
0.91 (not shown in Fig. 4). Overall, the ML-based MSKF
scheme shows a strong correlation with the original MSKF
scheme for all examined variables, with correlation coeffi-
cients consistently higher than 0.91. This indicates that the
ML-based MSKF scheme has the potential to replace the
original scheme.

To obtain a comprehensive understanding of the vertical
distribution of errors, Fig. 5 presents the vertical profiles of
error statistics associated with convective tendencies. The
solid and dashed lines in the figure represent the MAE and
MBE of tendencies at each vertical layer, respectively. Addi-
tionally, the shaded area corresponds to the 5th and 95th per-
centiles of differences between tendencies predicted by the
ML-based MSKF-predicted scheme and the original MSKF
scheme, respectively. The distribution of vertical errors in all
tendencies exhibits a notable uniformity, with higher vari-
ance observed within the pressure layers between 800 and
1000 hPa. These pressure layers correspond to the atmo-
spheric layer where convection occurs most frequently. Due
to the significantly lower cloud and rain content compared
to water vapor in the atmosphere, the error magnitudes for
rqccuten and rqrcuten are considerably lower than those ob-
served for rqvcuten.

4.2 Prognostic validation

This subsection presents the performance of the ML-based
MSKF scheme in the online setting.

The ML-based MSKF scheme was integrated into the
WRF model as a substitute for the original MSKF scheme
to simulate convective processes. Utilizing the WRF–ML
coupler (Zhong et al., 2023a), this novel ML-based MSKF

scheme was seamlessly incorporated into the WRF frame-
work. A comparative analysis was conducted by initializing
both the modified WRF model, which incorporates the ML-
based scheme, and the original WRF model on 12, 14, 16,
and 18 June 2022 for simulations extending over 168 h. It is
worth mentioning that these simulations were performed in-
dependently of the training dataset, ensuring the evaluation
of the scheme’s generalization capability.

Figure 6 presents the averaged spatial forecasts for predic-
tions generated by the original WRF model. These forecast
results include the accumulations of both convective precipi-
tation (RAINC) and non-convective precipitation (RAINNC)
over a 12 h period, along with the 2 m temperature (T2M)
at 24, 72, 120, and 168 h. The figure also demonstrates the
mean absolute difference (MAD) between WRF simulations
coupled with the ML-based MSKF scheme and those utiliz-
ing the original MSKF scheme. Within the spatial forecasts,
red and blue patterns signify the magnitudes of the forecasted
values, whereas in the spatial differences, these colors denote
the positive and negative biases in the ML-based simulations,
respectively. Green patterns suggest minimal deviation from
the original WRF simulations. Furthermore, we calculate a
domain-averaged MAD to evaluate the overall performance
of the ML-based scheme in prognostic simulations. Gener-
ally, the differences are small, indicating good agreement be-
tween WRF simulations coupled with the ML-based MSKF
scheme and the original WRF simulations. Notably, the dif-
ferences do not increase with the progression of simulation
time, as evidenced by a comparable domain-averaged MAD
at 168 forecast hours compared to that at 24 forecast hours.
These findings suggest that the ML-based MSKF scheme
achieves stable prognostic simulations.

Figure 7 provides a comparative analysis of domain-
averaged time series forecasts from both the original WRF
simulations and WRF simulations coupled with the ML-
based MSKF scheme. This comparison includes 6 h accu-
mulations of RAINC and RAINNC, as well as T2M fore-
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Figure 6. Spatial map of the average WRF simulations using the original MSKF scheme (in the first, third, and fifth rows) along with the
average MAD between WRF simulations coupled with the ML-based MSKF scheme and WRF simulation with the original MSKF scheme
(in the second, fourth, and sixth rows). The simulations are shown for the 12 h accumulated convective precipitation (RAINC) in the first and
second rows, the 12 h accumulated non-convective precipitation (RAINNC) in the third and fourth rows, and the 2 m temperature (T2M) at
forecast lead times of 24 h (first column), 72 h (second column), 120 h (third column), and 168 h (fourth column).

casts. The results demonstrate that WRF simulations coupled
with the ML-based MSKF schemes are in close alignment
with the original WRF simulations, particularly when cap-
turing the diurnal variations in RAINC, RAINNC, and T2M.
Notably, the T2M forecasts demonstrate remarkable con-
sistency, underscoring the efficacy of the ML-based MSKF
scheme in maintaining the predictive accuracy of the origi-
nal scheme.

5 Conclusions

In this paper, we proposed a multi-output Bi-LSTM model to
develop a ML-based MSKF scheme for predicting the con-
vection trigger and reproducing the convective process in
the gray zone. The model is trained on data generated by
the WRF simulations at a spatial resolution of 5 km, cov-
ering the south China region. The output variables of the
ML-based MSKF scheme are identical to those of the origi-
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Figure 7. Comparison of domain-averaged forecasts derived from
the original WRF simulations (black lines) and WRF simulations
coupled with the ML-based MSKF scheme (light-green lines) of
6 h accumulated RAINC (a) and RAINNC (b), along with T2M (c).

nal MSKF scheme, encompassing the cloud relaxation time
(nca), precipitation rate (pratec), time step convective precip-
itation (raincv), and convective tendencies. This ML-based
scheme ensures physical consistency among all output vari-
ables by incorporating a post-processing module to refine the
output from the Bi-LSTM model. Offline validation demon-
strates the excellent performance of the ML-based MSKF
scheme. Furthermore, the ML-based MSKF scheme is cou-
pled with the WRF model using the WRF–ML coupler. The
WRF simulations coupled with the ML-based MSKF scheme
are compared against the WRF simulation with the original
MSKF scheme. Results shows that the ML-based scheme can
generate forecasts similar to the original ML scheme in on-
line settings, showing the potential substitution of the MSKF
scheme by ML models in the gray zone.

This study demonstrates the feasibility of employing ML
models as substitutes for the conventional CP scheme within

the high-resolution weather forecasting model. Future ef-
forts will focus on the development of ML models based on
data generated by super-parameterization or cloud-resolving
models to replace conventional CP schemes in weather fore-
casting models (see Appendix B). The objective of this sub-
stitution is to reduce uncertainties and improve the perfor-
mance of weather forecast models.

Appendix A: Comparison against classification only and
regression only models

Two separate Bi-LSTM models were trained with slight
modifications to the multi-output Bi-LSTM model illustrated
in Fig. 3. The first model aimed at predicting convection trig-
gers alone, termed the Bi-LSTM trigger, while the second
model aimed at predicting convective tendencies, termed the
Bi-LSTM tendency. In predicting the convection trigger, both
the Bi-LSTM trigger model and the multi-output Bi-LSTM
model demonstrated comparable accuracy, as observed in
Figs. A1 and A2. However, while the convection triggers pre-
dicted by the Bi-LSTM trigger model were indistinguishable
from those of the multi-output Bi-LSTM model, the former
failed to accurately predict the corresponding convective ten-
dencies. Consequently, it cannot serve as a replacement for
convection schemes within NWP models.

Figures A3 and A4 present snapshots of rthcuten and rqv-
cuten predicted by the Bi-LSTM tendency model. These fig-
ures reveal that the Bi-LSTM tendency model predicts non-
zero values across nearly the entire domain. Since the Bi-
LSTM tendency model exclusively focuses on predicting
convective tendencies, convection triggers are derived using
certain threshold values. The spatial distribution of these trig-
gers is notably influenced by the choice of threshold values,
and the patterns of convection triggers derived from rthcuten
and rqvcuten exhibit considerable discrepancies. This con-
firms that models based solely on regression yield incon-
sistent tendencies. In contrast, the multi-output Bi-LSTM
model does not encounter the aforementioned issues of the
Bi-LSTM tendency model and generates a more consis-
tent spatial pattern of rthcuten and rqvcuten (see Figs. A5
and A6).
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Figure A1. Snapshot example of convection trigger, with panel (a) showing the ground truth (GT) and panel (b) showing the difference
between convection trigger as predicted by the Bi-LSTM trigger model and ground truth values for the 25 h WRF simulation initialized at
12:00 UTC on 20 May 2021.

Figure A2. Snapshot example of convection trigger, with panel (a) showing the ground truth (GT) and panel (b) showing the difference
between convection trigger as predicted by the multi-output Bi-LSTM model and ground truth values for the 25 h WRF simulation initialized
at 12:00 UTC on 20 May 2021.
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Figure A3. Snapshot examples of rthcuten summed along the vertical direction, with panel (a) showing the GT values and panel (b) showing
the rthcuten predicted by the Bi-LSTM tendency model for the 25 h WRF simulation initialized at 12:00 UTC on 20 May 2021. Similarly,
snapshot examples of a trigger, with the GT shown in panel (c) and the predictions from the Bi-LSTM tendency model using varying threshold
values of rthcuten shown in panels (d), (e), and (f), respectively.
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Figure A4. Snapshot examples of rqvcuten summed along the vertical direction, with panel (a) showing the GT values and panel (b) showing
the rqvcuten predicted by the Bi-LSTM tendency model for the 25 h WRF simulation initialized at 12:00 UTC on 20 May 2021. Similarly,
snapshot examples of a trigger, with the GT shown in panel (c) and the predictions from the Bi-LSTM tendency model using varying threshold
values of rqvcuten shown in panels (d), (e), and (f), respectively.
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Figure A5. Snapshot examples of rthcuten summed along the vertical direction, with panel (a) showing the GT values and panel (b) showing
the rthcuten predicted by the multi-output Bi-LSTM model for the 25 h WRF simulation initialized at 12:00 UTC on 20 May 2021. Similarly,
snapshot examples of a trigger, with the GT shown in panel (c) and the predictions from the multi-output Bi-LSTM model using a threshold
value of 0 shown in panel (d).
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Figure A6. Snapshot examples of rqvcuten summed along the vertical direction, with panel (a) showing the GT values and panel (b) showing
the rqvcuten predicted by the multi-output Bi-LSTM model for the 25 h WRF simulation initialized at 12:00 UTC on 20 May 2021. Similarly,
snapshot examples of a trigger, with the GT shown in panel (c) and the predictions from the multi-output Bi-LSTM model using a threshold
value of 0 shown in panel (d).
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Appendix B: Significance of using ML-based
parameterization to replace super-parameterization and
cloud-resolving model

Khairoutdinov et al. (2009) employed large-eddy simulation
(LES) to model deep tropical convection over an area of ap-
proximately 205 km× 205 km, focusing particularly on mar-
itime regions. They conducted a benchmark simulation span-
ning 24 h, with a spatial resolution of 100 m and 256 verti-
cal levels. This benchmark simulation utilized 2048 proces-
sors and took approximately 6 d of wall-clock time to com-
plete. Additionally, we attempted a cloud-resolving simula-
tion, covering a 600 km× 500 km domain with a grid spac-
ing of 500 m (resulting in a grid of 1200× 1000 points) and
employing 45 vertical levels. The wall-clock time for this
simulation was approximately 40 times the forecast time
(dt= 2 s). For a single 36 h simulation, the computational
time is around 60 d, which far exceeds our current computa-
tional resources. Therefore, implementing machine-learning-
based parameterization would offer a significant advantage
in reducing computational costs when replacing the super-
parameterization scheme or cloud-resolving model.

Code and data availability. The source code for the WRF
model version 4.3 used in this study is available at
https://doi.org/10.5281/zenodo.11112400 (Zhong, 2021).
The source code and data used in this paper are available at
https://doi.org/10.5281/zenodo.10032404 (Zhong et al., 2023b).
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