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Abstract. Chemical transport models (CTMs) are widely
used for air pollution modeling, which suffer from significant
biases due to uncertainties in simplified parameterization,
meteorological fields, and emission inventories. Accurate di-
agnosis of simulation biases is critical for the improvement
of models, interpretation of results, and management of air
quality, especially for the simulation of fine particulate mat-
ter (PM2.5). In this study, an efficient method with high speed
and a low computational resource requirement based on the
tree-based machine learning (ML) method, the light gradi-
ent boosting machine (LightGBM), was designed to diag-
nose CTM simulation biases. The drivers of the Community
Multiscale Air Quality (CMAQ) model biases are compared
to observations obtained by simulating PM2.5 concentrations
from the perspectives of meteorology, chemical composition,
and emission sources. The source-oriented CMAQ was used
to diagnose the influences of different emission sources on
PM2.5 biases. The model can capture the complex relation-
ship between input variables and simulation bias well; mete-
orology, PM2.5 components, and source sectors can partially
explain the simulation bias. The CMAQ model underesti-
mates PM2.5 by −19.25 to −2.66 µgm−3 in 2019, especially
in winter and spring and during high-PM2.5 events. Sec-
ondary organic components showed the largest contribution
to the PM2.5 simulation bias for different regions and seasons

(13.8 %–22.6 %) of all components. Relative humidity, cloud
cover, and soil surface moisture were the main meteorolog-
ical factors contributing to PM2.5 bias in the North China
Plain, Pearl River Delta, and northwestern China, respec-
tively. Primary and secondary inorganic components from
residential sources showed the two largest contributions to
this bias (12.05 % and 12.78 %), implying large uncertainties
in this sector. The ML-based methods provide valuable com-
plements to traditional-mechanism-based methods for model
improvement, with high efficiency and low reliance on prior
information.

1 Introduction

Fine particulate matter (PM2.5) is a complex mixture of pri-
mary particulate matter (PPM) and secondary inorganic and
organic components (SIAs/SOAs), with adverse effects on
public health and ecosystems. Ambient levels of PM2.5 are
influenced by meteorological conditions, emissions from dif-
ferent sources, and atmospheric chemical processes (World
Health Organization, 2021; Xiao et al., 2022; Yang et al.,
2016; J. Liu et al., 2021b; Zhai et al., 2019). China has expe-
rienced severe PM2.5 pollution over the past 2 decades (Bai
et al., 2022; F. Liang et al., 2020). For effective air quality
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management, accurate PM2.5 modeling is essential. Chemi-
cal transport models (CTMs), like the Community Multiscale
Air Quality (CMAQ) model, have been widely developed
and applied to PM2.5 simulations through the atmospheric
processes of dispersion and deposition, as well as chemi-
cal reactions (Qiao et al., 2018; Wang et al., 2021; Hu et
al., 2017a). Application of CTM simulations is often lim-
ited by the biases due to uncertainties in simplified param-
eterization, meteorological prediction, emission inventories,
and initial and boundary conditions (Binkowski and Roselle,
2003; Hu et al., 2014, 2016; Wang et al., 2023a, 2021). Thus,
it is essential to diagnose the specific sources of simulation
biases according to specific model applications, including
grid resolution, parameterization, mechanisms, meteorologi-
cal inputs, and emission inventories.

Traditional bias diagnosis approaches for CTMs usually
rely on empirical and prior assumptions with extensive sen-
sitivity testing and high demands on computational resources
such as Monte Carlo methods or Latin hypercube sampling
(Beekmann and Derognat, 2003; Hanna et al., 2005; Alek-
sankina et al., 2019). Recently, machine learning (ML) meth-
ods, such as random forest and eXtreme Gradient Boosting
(XGBoost), have been widely used in environmental science
research due to their simple structure, high speed, and ability
to deal with non-linear relationships (Liu et al., 2022). Many
studies used ML to predict air pollutant concentrations like
those of PM2.5 and ozone (Wei et al., 2021a; Sun et al., 2021;
Zhu et al., 2022; Bai et al., 2022), improve the accuracy of
CTM simulations (Wang et al., 2023a; Wei et al., 2020), and
explain the prediction results using interpretable ML tech-
niques (Hou et al., 2022; Li et al., 2023; Stirnberg et al.,
2021). To date, few studies have used ML to diagnose the
simulation bias of CTMs. One study showed the potential of
machine learning in explaining the simulation bias of ozone
(Ye et al., 2022). However, as it is a complex multi-phase
mixture, it is still challenging to diagnose biases in PM2.5
simulations using ML methods (Liu and Xing, 2022). More-
over, given the significant impact of emissions, it is instruc-
tive to diagnose CTM biases of PM2.5 based on a source ap-
portionment perspective.

In this study, we use the light gradient boosting machine
(LightGBM) model, an efficient ensemble ML approach, to
diagnose the drivers of CMAQ biases in simulating PM2.5
concentrations. A source-oriented version of CMAQ is used
to track sectoral source contributions to PM2.5. Model biases
are diagnosed by observations from multiple perspectives,
including meteorology, chemical components, and emission
sources.

2 Materials and methods

2.1 Surface PM2.5 observations

This study specifically targets the year of 2019 due to
the extensive availability of observational data, the relia-
bility of emission inventories, and the absence of COVID-
19-related disruptions. Hourly PM2.5 observations for 2019
are taken from the China National Environmental Moni-
toring Centre (CNEMC; http://www.cnemc.cn/, last access:
23 April 2024). The daily observation data < 0.1 % quan-
tile and > 99.9 % quantile, data showing PM2.5 exceeding
PM10, and days with fewer than 20 valid hourly records are
excluded. For observation sites located on the same CMAQ
simulation grid (36km×36km), their average PM2.5 concen-
trations were calculated to be compared with CMAQ simu-
lation. Approximately 350 000 observations, which met the
quality control criteria, were selected from the entire time
series data points collected from various monitoring sta-
tions. The distribution of (about 1200) observation sites is
shown in Fig. S1 in the Supplement. The stations are un-
evenly distributed, with dense stations in eastern populated
areas and sparse stations in western regions of Xinjiang
and Tibet. Analysis has been carried out in several haze-
polluted regions and the whole country (Fig. S1), including
the Beijing–Tianjin–Hebei region (BTH), the Yangtze River
Delta (YRD), the Pearl River Delta (PRD), the Sichuan Basin
(SCB), and the region of northwestern China (NWCHN).

2.2 CMAQ simulation

The CMAQ simulation (36km× 36km) was carried out to
simulate PM2.5 components in mainland China and sur-
rounding regions in 2019. The list of PM2.5 components
simulated by CMAQ is shown in Table S1 in the Supple-
ment. The Weather Research and Forecasting Model (WRF
v4.2) was used to generate meteorological fields, driven by
the National Centers for Environmental Prediction (NCEP)
Final (FNL) Operational Model Global Tropospheric Anal-
ysis dataset (http://rda.ucar.edu/datasets/ds083.2/, last ac-
cess: 23 April 2024) (NCEP, 2000). Several meteorologi-
cal factors (Table S1) that are highly relevant to aerosol
concentrations are selected for ML model building (Xiao
et al., 2021; Z. Y. Chen et al., 2020; Meng et al., 2019).
CMAQ v5.0.2 with a modified SAPRC-11 photochemical
mechanism and an AERO6 aerosol module was applied to
aerosol simulations (Carter and Heo, 2013; Ying et al., 2015;
Binkowski and Roselle, 2003). The Multi-resolution Emis-
sion Inventory for China (MEIC) was used as a source of
anthropogenic emissions (http://meicmodel.org/, last access:
23 April 2024), and the Model of Emissions of Gases and
Aerosols from Nature (MEGAN) v2.1 was used to generate
biogenic emissions (Guenther et al., 2012, 2006). The Fire
INventory from the National Center for Atmospheric Re-
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search (FINN) based on satellite data was used to generate
open burning emissions (Wiedinmyer et al., 2011).

The source apportionment method was used to quantify
the contributions of the industry, energy, residential, trans-
portation, agriculture, open burning, and biogenic sources
to PPM and SIA concentrations using a modified version
of CMAQ (Zhang et al., 2012; Ma et al., 2021; Qiao et al.,
2018). PPM from different source sectors is tracked by non-
reactive tracers (which account for 10−5 of the PPM emis-
sion rates), and source-specific PPM concentrations are then
calculated by multiplying the tracer by 105. The contribu-
tions of source sectors to SIAs are quantified using specific
reactive tagged tracers. Specifically, NOx , SO2, and NH3
from different sources were tracked separately through a se-
ries of chemical and physical processes involved in SIA for-
mation. The source of SOAs was not traced due to the com-
plex and currently imperfect mechanism of SOA formation
and the high uncertainties in the precursor VOC emissions
(J. Liu et al., 2021b; Hu et al., 2017b). Details on source ap-
portionment can be found in previous studies (Zhang et al.,
2012; Ma et al., 2021; Qiao et al., 2018; Ying et al., 2014).
The contributions of source sectors to SOAs were not tracked
due to insufficient knowledge of its precursors and incom-
plete formation mechanisms (Yang et al., 2019; Carlton et
al., 2007; Zhang et al., 2011).

2.3 Machine learning method

Tree-based ML models typically outperform deep learning
approaches in tabular data (e.g., air pollutant observation
datasets) and thus have been widely developed (Grinsztajn
et al., 2022). Wei et al. (2021a) compared several models
when reconstructing PM2.5 data records in China and found
that the tree model showed superior performance. The Light-
GBM model is an optimized gradient boosting decision tree
(GBDT) algorithm (Ke et al., 2017) and has shown accu-
rate performance in many fields (Wei et al., 2021b; Yan et
al., 2021; Sun et al., 2020; W. Liang et al., 2020). Com-
pared to XGBoost, a widely used GBDT, LightGBM uses
the histogram decision tree algorithm along with gradient-
based one-side sampling (GOSS), which saves memory and
computation time (Ke et al., 2017). Three tree-based models,
random forest, XGBoost, and LightGBM, were compared in
our previous study (Wang et al., 2023b). Using the same in-
put data and hyperparameters, LightGBM is as accurate as
XGBoost but faster and less susceptible to overfitting (the
difference in accuracy between training and testing). Never-
theless, multicollinearity between features such as pollutant
concentrations and meteorological factors can greatly affect
the performance of traditional linear models. When two in-
dependent variables are correlated, changes in one variable
are associated with changes in the other, making it difficult
for the model to independently estimate the relationship be-
tween each independent and dependent variable. However,
these collinearities do not affect the performance of tree-

based models like random forest and LightGBM because
they do not require the assumption of feature independence
(Belgiu and Drăguţ, 2016; Chen and Guestrin, 2016; Ke et
al., 2017). Therefore, the LightGBM model was used to diag-
nose PM2.5 simulation biases in this study. Two metrics were
calculated to evaluate model performance, including the co-
efficient of determination (R2) and the root mean square error
(RMSE) (Wei et al., 2020).

R2
= 1−

∑
i(yi − fi)

2∑
i(yi − ŷ)2 (1)

RMSE=

√
1
n

∑n

i=1
(yi − fi)

2 (2)

Cross-validation (five-fold) combined with the RMSE was
used to select hyperparameters. The dataset was randomly
divided into five parts; one was taken in turn as the test set,
and the rest were used for training, which was repeated five
times, and the average test RMSE was calculated by loop-
ing to increase model complexity, ending the loop, and re-
turning to the hyperparameters when the model test RMSE
does not decrease significantly (< 0.01) or the gap between
the training and test RMSE increases significantly (< 0.05).
The separate test sets (not involved in the training and CV
hyperparameter selection process) were chosen by randomly
sampling 20 % of the data from all stations in the region of
interest.

The target variable was defined as the difference be-
tween observed and simulated daily PM2.5 concentrations,
and the key contributors to the simulation bias were identified
through the relative importance (calculated by gain) of the in-
put features (Ye et al., 2022; Loyola-González et al., 2023).
Three categories of input variables were designed to sepa-
rately fit the simulation biases: meteorological factors, chem-
ical components, and emission sources. Meteorological fac-
tors, including wind speed, wind direction, temperature, hu-
midity, surface pressure, cloud fraction, and boundary layer
height, are used to investigate the impact of meteorology
on the CMAQ simulation biases. The components of PM2.5
are divided into SIAs (sulfate, nitrate, and ammonium), pri-
mary and secondary organic aerosols (POAs/SOAs), elemen-
tal carbon (EC), and other components. The contributions
to the simulation bias were quantified using seven sectoral
sources: industry, energy, residential sources, transportation,
agriculture, open burning, and biogenic emissions.

3 Results and discussion

3.1 Observation and simulation of PM2.5

Figure 1a shows the time series of observed and simulated
daily surface PM2.5 concentrations in China as a whole and in
five specific regions (BTH, YRD, PRD, SCB, and NWCHN)
during 2019. Observed PM2.5 concentrations were the high-
est in the BTH region (51.172 µgm−3) and lowest in the
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PRD region (28.273 µgm−3). The CMAQ model underes-
timates PM2.5 concentrations of −8.59, −2.66, −6.21, and
−19.25 µgm−3 in the BTH, YRD, PRD, and NWCHN re-
gions, respectively (Fig. 1b). Moreover, the underestimation
occurred mainly in winter and spring (Fig. 1c) and during
high-PM2.5 events (Fig. 1d) (Hu et al., 2016; Huang et al.,
2017).

Table S2 in the Supplement shows the validation of
CMAQ simulations against observations in different regions.
Four indicators (mean normalized bias, MNB; mean normal-
ized error, MNE; mean fractional bias, MFB; mean fractional
error, MFE) were used to systematically evaluate the perfor-
mance of the CMAQ simulations. The PM2.5 simulations in
the BTH, YRD, and PRD regions were in better agreement
with observations, with average MNB of −0.08, −0.07, and
−0.08, respectively (within the standard of 0.66). The PM2.5
simulations in SCB and NWCHN regions show large biases
with MNB of 0.46 and −0.42, respectively. The differences
in CMAQ performance between regions can be attributed to
multiple factors, including emission inventories, dominant
mechanisms of PM2.5 generation, and topographic and mete-
orological conditions (Ma et al., 2021; Xue et al., 2019; Hu
et al., 2014).

Annual and monthly mean PM2.5 components (SIAs,
POAs, SOAs, EC, and other components) were calculated for
China as a whole and for five key regions (Fig. 2). PM2.5 and
its components show a similar spatial distribution, with high
concentrations occurring in the eastern regions (SCB, BTH,
and central YRD). SOAs showed high concentrations in sum-
mer over China (6.80 µgm−3), which could be related to en-
hanced solar radiation and atmospheric oxidation capacity in
summer (precursors of SOAs such as isoprene are highly de-
pendent on temperature and light) (Yang et al., 2019; S. Chen
et al., 2020; J. Liu et al., 2021b). Nitrate and POAs were the
dominant components in winter (10.14 and 9.11 µgm−3, re-
spectively). In the BTH and SCB regions, POAs account for
a higher proportion of total particles than nitrate in winter,
whereas nitrate has a higher proportion in the YRD region.
Nitrate showed higher concentrations than sulfate in most re-
gions and seasons due to the implementation of coal combus-
tion control policies (Shang et al., 2021; J. Liu et al., 2021b;
Xu et al., 2019).

The results of the PM2.5 sectoral source apportionment
(Figs. 3 and S2 in the Supplement) show that industries and
residential sources were the main contributors to daily PM2.5
concentrations for all regions and seasons, with seasonal
fractional contributions of 25.31 %–31.92 % and 11.13 %–
30.64 %, respectively. The seasonal average fractional con-
tributions from energy, transportation, and agricultural NH3
in China as a whole were 3.26 %–5.67 %, 6.82 %–11.26 %,
and 7.50 %–8.67 %, respectively. The contributions from
biogenic sources were negligible in all regions and sea-
sons (< 1 %). In contrast to the contributions from energy,
transportation, industrial, and agricultural sources, signifi-
cant seasonal variations occurred in emissions from residen-

tial sources in all five regions, with high contributions in
winter (17.60 %–30.90 %) and low contributions in summer
(5.53 %–16.46 %).

As the secondary component makes up a large propor-
tion of the total PM2.5, the source sectors of SIAs were
analyzed for five regions (Fig. S2). High concentrations
of SIAs were found in winter (12.36–34.08 µgm−3), with
large contributions from industrial and agricultural sources
and transportation (31.49 %–36.41 %, 20.40 %–22.40 %, and
19.77 %–22.46 %). The low contribution of the residential
sector to secondary PM2.5 but the high contribution to total
PM2.5 indicates that most residential emission sources emit
PPM directly, with a small fraction of PPM coming from sec-
ondary generation. The contributions from biogenic and open
burning sectors to SIAs were relatively low in all regions and
seasons (< 10 %).

3.2 Drivers of PM2.5 simulation bias

The ML models were trained separately using information on
meteorology, PM2.5 components, and source sectors for dif-
ferent regions and seasons, and separate test sets were used
to evaluate the model performance (Fig. 4). All three feature
combinations can partially explain the simulation bias. The
mean test R2 values for meteorology, PM2.5 components, and
source sectors were 0.64, 0.52, and 0.50, respectively, and the
RMSEs were 17.41, 19.82, and 19.56 µgm−3, respectively.
The model performed better in summer than in winter. This
may be attributed to the high simulation biases in winter due
to severe PM2.5 pollution and complex causes, while PM2.5
pollution in summer is lighter with a lower CMAQ simula-
tion bias.

Using PM2.5 components as input features to fit the to-
tal simulation bias enables the identification of components
with a large simulation bias. Among the PM2.5 components
(Fig. S4 in the Supplement), SOAs showed the largest contri-
bution to the PM2.5 simulation bias for different regions and
seasons (13.8 %–22.6 %), which is consistent with previous
studies (J. Liu et al., 2021b; Yang et al., 2019; Fry et al.,
2014). The inorganic aerosols (e.g., sulfates) are produced
mainly by chemical pathways, while the SOAs are produced
by the condensation of numerous partially oxidized gases
and are therefore influenced by complex precursor concen-
trations and multi-stage oxidation processes. The incomplete
description of SOA formation pathways in CTMs (simpli-
fied SOA parameterization) leads to significant differences
between simulations and observations (Carlton et al., 2007;
Zhang et al., 2018; Yang et al., 2019). In addition, biogenic
emissions play an important role in SOA formation, with bio-
genic SOAs accounting for more than 70 % of the total SOAs
in China during summer (Hu et al., 2017b; Wu et al., 2020),
so the uncertainties in biogenic emissions can further con-
tribute to the uncertainties in SOA emissions. Nitrate showed
a large contribution to the PM2.5 simulation bias in winter in
the BTH region, which is consistent with a previous study
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Figure 1. (a) The time series of observed (black) and CMAQ-simulated (red) daily surface PM2.5 concentrations in China and five regions.
Mean concentrations of the observed and simulated PM2.5 and MNB are also shown in the inset. (b) Box plots of CMAQ-simulated biases
(simulated minus observed) for different regions. Crosses indicate average values and outliers are determined to be > 1.5 times the upper
quartile and < 1.5 times the lower quartile. (c) Same as in panel (b) but for four seasons. Spring, summer, autumn, and winter are defined as
March to May; June to August; September to November; and December, January, and February, respectively. (d) Same as in panel (b) but
for different PM2.5 concentration levels (L1: [0,35], L2: [35,75], L3: [75,115], L4: [115,150], and L5: [150,1000]).

(Liu and Xing, 2022). Nitrate contribution to the simulation
bias further implies the inaccuracy of nitrate simulations,
which can be related to the imperfect pathways of nitrate
production (e.g., non-homogeneous oxidation) in SAPRC-11
(that we used) and the uncertainties in nitrate precursor emis-
sion inventories in winter (Xu et al., 2019; Zhang et al., 2018;
Carter and Heo, 2013).

The contribution of meteorological factors to the simu-
lation bias varies across regions and seasons (Fig. 5). In
the BTH region, surface pressure and relative humidity con-
tribute the most to the simulation bias. In the PRD region,
relative humidity, cloud cover, and wind direction were the
main contributors during all four seasons.

Humidity positively or negatively influences PM2.5 con-
centrations through several mechanisms. By enhancing the

PM2.5 hygroscopic increase, promoting the secondary forma-
tion, and facilitating the gas-to-particle partitioning, high hu-
midity positively influences PM2.5 concentrations and con-
tributes significantly to haze pollution (Z. Y. Chen et al.,
2020; Cheng et al., 2015; Zhang et al., 2011). The contri-
bution of humidity to CMAQ simulation biases can be partly
attributed to the uncertainties in the WRF simulation. The
mean RMSE of relative humidity from WRF simulations
compared to observations was 20.38 % in this study (Ta-
ble S3 in the Supplement). In addition, imperfections in the
mechanism of humidity-promoted secondary particle forma-
tion (e.g., non-homogeneous catalysis of SOA) can also lead
to simulation biases (Zhang et al., 2011; J. Liu et al., 2021b).
Atmospheric pressure indirectly influences PM2.5 concen-
trations through other meteorological factors (e.g., humid-
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Figure 2. Annual mean concentration map (a–g) and monthly mean concentrations (h–m) of PM2.5 and its components (SIAs, POAs, SOAs,
EC, and other components) for China as a whole and five key regions in 2019. Dotted lines in (h–m) indicate PM2.5 observations.

Figure 3. Seasonal average fractional contributions of different sources to PM2.5 concentrations (black circle in relation to the right-hand
axis) in China as a whole and five key regions.

ity and wind). High-pressure systems are connected to sta-
tionary weather, which is unfavorable for PM2.5 dispersion.
On the other hand, low pressure is usually accompanied by
high humidity, influencing PM2.5 nucleation, condensation,
and coagulation and leading to increased PM2.5 concentra-
tions (Z. Y. Chen et al., 2020). Therefore, the influence of
atmospheric pressure on the CMAQ simulation biases in the
BTH region may be attributed to the uncertainties in the
meteorological field (Bei et al., 2017; Zhang et al., 2015).
The contribution of wind direction in the YRD region may
also be related to the uncertainties in the WRF simulation
(mean RMSE of 90.39°). Aerosols have feedback on mete-
orology (Qu et al., 2021). In addition to directly changing
the radiation received by the Earth through scattering and
absorbing (direct radiation effect), PM2.5 can also influence

radiation through aerosol–cloud interactions (indirect radia-
tion effect) (Zhao et al., 2017; Yang et al., 2016). Moreover,
PM2.5 can act as cloud condensation and nucleation sites,
contributing to clouds’ microphysical development and pre-
cipitation formation process (Wang et al., 2020). However,
the aerosol-to-meteorology feedback mechanism is missing
in the CMAQ used in this study. A previous study showed
the dominant role of cloud chemistry in aerosol–cloud inter-
actions in southern China (Zhao et al., 2017). Therefore, the
influence of cloud cover on simulation biases in YRD can be
attributed to the lack of an aerosol feedback mechanism.

In the NWCHN region, soil surface moisture and stomatal
conductance contributed significantly to the simulation bias.
These factors can be associated with ground-level sand rise
and dust emission (S. Liu et al., 2021). Underestimation of

Geosci. Model Dev., 17, 3617–3629, 2024 https://doi.org/10.5194/gmd-17-3617-2024



S. Wang et al.: Efficiently diagnosing the drivers of PM2.5 simulation bias in China 3623

Figure 4. Test results of CMAQ bias model training according to meteorology (a), PM2.5 components (b), and source sectors (c). RMSE
unit: µgm−3.

dust aerosol in NWCHN can be attributed to emission (both
natural and anthropogenic sources), and an accurate emission
inventory (empirical- or physical-based numerical models)
should be established in northwest China by detailed activ-
ity data and emission factors (Hu et al., 2016; J. Liu et al.,
2021a). In addition, the parameterization and mechanism for
dust aerosol simulation in CMAQ should be further exam-
ined and improved.

Dry and wet days were separated to analyze the influence
of humidity on the simulation biases (Table S4 in the Supple-
ment). In most areas of China, CMAQ underestimates PM2.5
more severely on dry days than on wet days, with larger ab-
solute biases (−14.56, −7.09, −7.11, and −27.87 µgm−3 in
spring, summer, autumn, and winter, respectively). On dry
days, the BTH region showed severe underestimation in win-
ter (−22.86 µgm−3), while the PRD region showed large
simulation bias in spring (−21.55 µgm−3). Severe underes-
timation of PM2.5 was observed on both wet and dry days
in NWCHN. These underestimates of PM2.5 on dry days can
be related to the dry deposition process. Dry deposition is a
critical but highly uncertain sink for aerosols which depends
on the chemical and physical properties of aerosols and is in-
fluenced by land surface properties and meteorological con-
ditions (Shu et al., 2022). Different land-use types (e.g., veg-
etation, deserts, and snow) possess markedly different capac-

ities to capture particulate matter. The CMAQ model in this
study used the dry deposition scheme PR11 from Pleim and
Ran (2011). This study shows that the PR11 scheme underes-
timates PM2.5 concentrations in China. Recent studies in the
United States also showed an underestimation of PM10 con-
centrations (Shu et al., 2022). Therefore, it is necessary to
further develop and optimize the dry deposition scheme, es-
pecially for PM2.5. PM2.5 underestimation on wet days may
be attributed to the biases in wet deposition and secondary or-
ganic aerosol formation under high humidity conditions (Wu
et al., 2018; Ryu and Min, 2022; J. Liu et al., 2021b; Zhang
et al., 2011).

Source sector contributions of PPM and SIAs (obtained
from the source-oriented CMAQ) were used to build the
model and diagnose the influences of different emission
sources on PM2.5 simulation biases (Fig. 6). The PPM and
SIAs in residential emissions showed the largest contribu-
tion (12.05 % and 12.78 %) to the PM2.5 simulation bias.
The same conclusion was obtained when building a model
with total PM2.5 concentrations from different source sectors
(Table S5 in the Supplement). PM2.5 from residential emis-
sions is the main contributor to the CMAQ simulation bias,
accounting for 20.2 % of the total bias.

In China, the residential sector consumed fossil fuels (coal,
oil, and natural gas) and biofuels (wood and crop straw) with
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Figure 5. Contribution (%) of each meteorological factor to CMAQ simulation biases by region and season.

Figure 6. Contribution (%) of each source sector to CMAQ bi-
ases by region and season (res: residential, ene: energy, tra: trans-
portation, agr: agriculture, ind: industry, AEC: elemental carbon,
OTHER: other components).

low combustion efficiency for cooking and heating and emit-
ted large amounts of air pollutants (Li et al., 2017). How-
ever, due to the lack of reliable data (a locally accurate emis-
sion factor and fuel consumption data), the residential sector

has been recognized as a major uncertainty source in anthro-
pogenic emission inventories (X. Liu et al., 2021; Shen et
al., 2021), which is consistent with the results identified by a
machine learning model in this study. Therefore, developing
an accurate residential sector emission inventory is essential
for accurate PM2.5 modeling, which requires reliable data re-
garding fuel consumption and emission factors based on fuel
type, fuel characteristics, and combustion conditions (X. Liu
et al., 2021).

3.3 Comparisons and uncertainties

Huang et al. (2019) used a new reduced-form model coupled
with a higher-order decoupled direct method and a stochas-
tic response surface model to identify the sources of uncer-
tainty in CMAQ simulations. An analysis of the PRD region
in China in the spring of 2013 revealed a systematic under-
estimation of SOA and identified wind speed and primary
PM2.5 emissions as the key sources of uncertainties in PM2.5
simulations, which is consistent with the results identified us-
ing LightGBM in this study. Aleksankina et al. (2019) iden-
tified the PM2.5 simulation bias in Europe using optimized
Latin hypercube sampling and also demonstrated the impor-
tant impact of primary emissions on PM2.5 simulation uncer-
tainties. Liu and Xing (2022) used a fully connected neural
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network to identify PM2.5 simulation biases and found that
NO2 is the main contributor in BTH during heavy-pollution
events in the winter, which is consistent with the main contri-
bution of nitrate that we found in the BTH region (Fig. S4).

Although we filtered the features according to their rel-
ative importance and prior knowledge, collinearity still ex-
ists among the input features. Multicollinearity among fea-
tures does not affect the performance of tree-based models
like random forest and LightGBM (Belgiu and Drăguţ, 2016;
Chen and Guestrin, 2016; Ke et al., 2017), but the contribu-
tion of a single feature might be slightly influenced by the
other features. Previous studies (Hou et al., 2022; Ye et al.,
2022) used ML to explain the causes of air pollution and
model bias, and although there was multicollinearity between
the input features they used, they got reliable conclusions,
showing the minimal impact of multicollinearity and the re-
liability of tree-based machine learning methods.

The main objective of this study is to diagnose the con-
tributors to CMAQ simulation biases using machine learning
rather than for prediction. Since meteorology or emissions
can only partially explain the simulation bias, a low R2 is
justified when fitting the model with only meteorology or
emission variables (Fig. 4). We designed a complementary
experiment to measure the impact of the model itself by com-
paring popular regression models (including multiple linear
regression, polynomial regression (second-degree), random
forest, XGBoost, and LightGBM) with the same features
(PM2.5 components). All models show similar performance
(Table S6 in the Supplement); for example, all models show
lower R2 in winter in the BTH region (0.16–0.4) and higher
R2 in the SCB region (0.7–0.8). This is also evidence that the
low R2 is more affected by the features than the model itself,
as the commonly used regression models can hardly obtain
high R2 with insufficient explanatory features (e.g., chemical
component features in winter in BTH). Nevertheless, Light-
GBM shows comparable accuracy to XGBoost but is faster
and shows smaller accuracy gaps between training and test-
ing data with less overfitting.

Previous pollution prediction studies based on tree models
usually added time-related features to describe the temporal
pattern of pollutant changes to further improve the predic-
tion ability; for example, Wei et al. (2021a) improved the
model performance by adding temporal features of the day
of year and Unix timestamps. However, the inclusion of tem-
poral features cannot provide any useful information about
contributors to simulation biases; instead, it is difficult to
attribute them to meteorological or emissions contributions.
Therefore, temporal features were not included in our model.
Nevertheless, the ML bias diagnosis model constructed in
this study is based entirely on local data. Some temporal and
regional processes influencing PM2.5 concentrations are not
considered in this study, such as vertical transport and long-
distance transport, which should be better diagnosed in future
work, and the main bias contributors identified by variable
importance are in good agreement with the current findings.

4 Conclusion

Based on artificial intelligence technology, this study sys-
tematically diagnoses the possible drivers of biases in PM2.5
simulations from the perspectives of meteorology, chemi-
cal components, and emission sources. The relative impor-
tance of multiple factors helps to understand the sources of
simulation bias and the deficiencies of the CMAQ mech-
anisms. SOA is the main contributor to simulation biases
among chemical components. PM2.5 is more underestimated
in dry weather. Among source sectors, residential sectors
contributed the most simulation bias for both PPM and SIAs.
These results provide valuable information for CMAQ model
improvement in terms of SOA and dust aerosol underestima-
tion, meteorological field uncertainties, imperfection of the
dry deposition scheme, and inaccurate residential emission
inventories. As efficient bias diagnosis methods, machine-
learning-based methods provide valuable complements to
traditional-mechanism-based methods. This approach also
greatly reduces the amount of prior information needed for
diagnosing simulation bias and efficiently identifies the im-
portant contributors, so it can be easily extended to other
CTMs and other pollutants.

Code and data availability. The data and code are publicly ac-
cessible at https://doi.org/10.5281/zenodo.10283739 (Wang et al.,
2023c). This includes the machine learning code for diagnosing
CMAQ simulation bias and the corresponding training dataset.
CMAQ is an open-source chemical transport model developed by
the US Environmental Protection Agency, which can be down-
loaded at https://doi.org/10.5281/zenodo.1079898 (US EPA Office
of Research and Development, 2014).

Supplement. The Supplement contains additional descriptions of
the study domain, WRF-CMAQ simulation performance, concen-
trations, and bias contribution of PM2.5 components and sectoral
sources. The supplement related to this article is available online
at: https://doi.org/10.5194/gmd-17-3617-2024-supplement.
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