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Abstract. This study evaluates the impact of increasing
resolution on Arctic Ocean simulations using five pairs of
matched low- and high-resolution models within the OMIP-
2 (Ocean Model Intercomparison Project phase 2) frame-
work. The primary objective is to assess whether a higher
resolution can mitigate typical biases in low-resolution mod-
els and improve the representation of key climate-relevant
variables. We reveal that increasing the horizontal resolu-
tion contributes to a reduction in biases in mean tempera-
ture and salinity and improves the simulation of the Atlantic
water layer and its decadal warming events. A higher res-
olution also leads to better agreement with observed surface
mixed-layer depth, cold halocline base depth and Arctic gate-
way transports in the Fram and Davis straits. However, the
simulation of the mean state and temporal changes in Arc-

tic freshwater content does not show improvement with in-
creased resolution. Not all models achieve improvements for
all analyzed ocean variables when spatial resolution is in-
creased so it is crucial to recognize that model numerics
and parameterizations also play an important role in faith-
ful simulations. Overall, a higher resolution shows promise
in improving the simulation of key Arctic Ocean features
and processes, but efforts in model development are required
to achieve more accurate representations across all climate-
relevant variables.
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1 Introduction

The Arctic is undergoing the most drastic anthropogenic
changes on Earth, with the near-surface atmosphere warm-
ing 2 to 4 times faster than the global average (known as
Arctic atmosphere amplification; Holland and Bitz, 2003;
Serreze and Barry, 2011); the subsurface ocean warming 2
to 3 times faster than the global average (known as Arctic
Ocean amplification; Shu et al., 2022); and a significant re-
treat in sea ice extent, thickness and volume (Kwok, 2018;
Stroeve and Notz, 2018; Masson-Delmotte et al., 2021). The
Arctic Ocean is connected to the global ocean through a few
gateways (see Fig. 1). It receives ocean heat from the North
Atlantic and North Pacific oceans and exports freshwater to
the North Atlantic Ocean (Schauer et al., 2004; Beszczynska-
Moeller et al., 2012; de Steur et al., 2009; Ingvaldsen et al.,
2004; Smedsrud et al., 2013; Woodgate et al., 2006; Curry
et al., 2014). The ocean heat convergence into the Arctic
Ocean and the hydrological cycle are expected to continue in-
tensifying in a warming climate (Wang et al., 2023). Numer-
ical models play a crucial role in understanding the drivers
and consequences of these changes and predicting the future
evolution of the climate (Lique et al., 2016). However, the ac-
curacy of these models in representing the different compo-
nents of the Earth system and their interactions can influence
our understanding and prediction.

Past model intercomparison studies have revealed large bi-
ases and spreads among ocean general circulation models in
simulating the hydrography, stratification and gateway trans-
ports of the Arctic Ocean. In the Arctic Ocean Model In-
tercomparison Project (AOMIP), it was identified that a typ-
ical issue among regional and global ocean models driven
by prescribed atmospheric forcing was an overly thick and
deep Atlantic water layer in the Arctic Ocean (Holloway
et al., 2007; Karcher et al., 2007), with numerical mixing
suggested as the main cause (Holloway et al., 2007). In the
subsequent Coordinated Ocean-ice Reference Experiments
phase II project (CORE-II; Griffies et al., 2009), it was shown
that the global ocean general circulation models used in the
Coupled Model Intercomparison Project phase 5 (CMIPS)
still struggled with the same issue a decade later when they
were forced by prescribed atmospheric forcing (Ilicak et al.,
2016). Furthermore, forced simulations of global ocean mod-
els used in CMIP6 did not demonstrate significant improve-
ments in representing the Atlantic water layer in the Arctic
Ocean and exhibited large spreads in simulated basin mean
temperatures (Shu et al., 2023). The model spread (standard
deviation among models) of the Atlantic water layer temper-
ature reaches about 1°C, and the multi-model-mean thick-
ness of the Atlantic water layer exceeds twice the observed
value (Shu et al., 2023). The two generations of global ocean
models used in CMIP5 and CMIP6 also share other com-
mon issues, including salinity biases in the Arctic halocline;
overestimations of liquid freshwater content; and substantial
spreads in ocean volume, heat and freshwater transports in
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Figure 1. Schematic of pan-Arctic Ocean circulations. Blue arrows
denote the circulations of low-salinity water, and red arrows denote
the circulations of Atlantic water. The background gray color in the
ocean denotes bottom bathymetry. The four black lines denote the
Arctic gateways of the Bering Strait, Davis Strait, Fram Strait and
Barents Sea Opening. The dashed magenta lines indicate the loca-
tion of the transect shown in Fig. 6. LR and SAT denote Lomonosov
Ridge and St. Anna Trough, respectively.

Arctic gateways (Wang et al., 2016a; Ilicak et al., 2016; Shu
etal., 2023). The biases identified in forced ocean model sim-
ulations were inherited and sometimes exacerbated in cou-
pled climate models of both CMIP5 (Shu et al., 2018, 2019)
and CMIP6 (Zanowski et al., 2021; Khosravi et al., 2022;
S. Wang et al., 2022; Muilwijk et al., 2023; Heuzé et al.,
2023). It was found that ocean models usually perform bet-
ter in representing the temporal variability of Arctic gateway
transports compared to their mean states (Wang et al., 2016a;
Shu et al., 2023).

Higher model resolutions have been found to improve cer-
tain aspects of Arctic Ocean simulations. The narrowness
of the straits in the Canadian Arctic Archipelago makes it
challenging to adequately represent the throughflow with the
horizontal resolutions typically used in CMIP models. As a
result, there are significant model spreads within the ocean
models used in CMIPS and CMIP6 in simulating the volume
transport through the Davis Strait (Wang et al., 2016a; Shu
et al., 2023). The same issue is present even in ocean mod-
els dedicated to Arctic Ocean research (Jahn et al., 2012;
Aksenov et al., 2016). However, when the horizontal reso-
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lution is increased to approximately 4 km, a forced global
ocean model simulation can more accurately reproduce the
Canadian Arctic Archipelago throughflow (Wekerle et al.,
2013). A low resolution was identified as one of the primary
causes of the underestimation of Atlantic Ocean heat trans-
port to the Arctic Ocean in coupled climate models (Doc-
quier et al., 2019). By utilizing variable resolutions that re-
solve mesoscale eddies regionally (approximately 1km in
the Fram Strait) in a forced global ocean model, the trans-
port of Atlantic water through the Fram Strait can be rea-
sonably reproduced (Wekerle et al., 2017). Furthermore, the
model bias of an overly thick Atlantic water layer in the Arc-
tic Ocean, persistently present in previous CMIP ocean mod-
els, can be reduced by employing a model horizontal resolu-
tion of around 4 km (Wang et al., 2018).

Within the framework of the Ocean Model Intercompar-
ison Project phase 2 (OMIP-2, Griffies et al., 2016), Chas-
signet et al. (2020) investigated the impact of horizontal res-
olution on global climate-relevant variables in four pairs of
matched low- and high-resolution ocean—sea-ice simulations.
They found that typical biases in low-resolution simulations,
such as those related to the position, strength and variabil-
ity of western boundary currents, equatorial currents and
the Antarctic Circumpolar Current (identified in previous re-
search by Tsujino et al., 2020), can be significantly improved
in high-resolution models. However, the improvements in
temperature and salinity vary among different model pairs,
and increasing the model resolution (from approximately 1°
to about 0.1°) does not consistently lead to bias reduction in
all regions for all models (Chassignet et al., 2020). It was also
found that increasing the resolution does not consistently im-
prove sea ice concentration and thickness across all the mod-
els (Chassignet et al., 2020). In a more recent study focusing
on the simulated mixed-layer depth (MLD) in these models,
it was shown that increasing the resolution can help reduce
MLD biases in deep-water formation regions, particularly in
the Northern Hemisphere (Treguier et al., 2023). Neither of
these high-resolution studies performed within the OMIP-2
framework specifically focused on the Arctic Ocean.

In this paper, we conducted an assessment of Arctic Ocean
simulations using five pairs of matched low- and high-
resolution global ocean—sea-ice models. These simulations
were driven by the JRA55-do atmospheric state and runoff
data set (Tsujino et al., 2018) following the OMIP-2 proto-
col (Griffies et al., 2016). Unlike previous global model in-
tercomparisons for Arctic Ocean simulations (Wang et al.,
20164, b; Ilicak et al., 2016; Shu et al., 2023), which fo-
cused on evaluating low-resolution models that are ocean—
sea-ice components of CMIP5 or CMIP6 models, the model
pairs used in our study allowed us to specifically investigate
the impact of model resolution. The low-resolution cases (1
to 1/4°) resemble present CMIP6 configurations, while the
high-resolution cases (1/10° or better) resemble what fu-
ture CMIP ensemble configurations will be. We evaluated the
forced ocean—sea-ice model simulations concerning Arctic
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Ocean hydrography, the Atlantic water layer, stratification,
freshwater content and gateway transports.

The paper is structured as follows. In Sect. 2, we pro-
vide a brief description of the models used in this study.
Section 3 is dedicated to evaluating the Arctic Ocean sim-
ulations and conducting comparisons between models and
among model pairs. Finally, we discuss and summarize the
results in Sects. 4 and 5.

2 Description of the model pairs

The models used in this study were forced by version 1.4.0
of the JRAS5-do atmospheric forcing data set (Tsujino et al.,
2018), covering the period from 1958 to 2018. The OMIP
protocol requires the carrying out of simulations with a long
spin-up by repeating the forcing for at least five consecutive
cycles (Griffies et al., 2016). However, due to the significant
computational resources required for high-resolution simu-
lations, previous high-resolution studies within the OMIP-
2 framework, such as those of Chassignet et al. (2020) and
Treguier et al. (2023), only considered the first cycle and
acknowledged that the deep ocean was still far from quasi-
equilibrium. In line with these studies, we analyze the Arc-
tic Ocean simulations in the first cycle of the OMIP-2 ex-
periments, making it easier for model groups to participate.
Model configurations, including resolutions and parameteri-
zations, were determined by each model group based on their
individual development practices. In this paper, the model re-
sults are based on monthly model outputs. Table 1 summa-
rizes the five model pairs used in this study, and their corre-
sponding horizontal resolutions are illustrated in Fig. 2.
ACCESS-MOM is the ocean and sea ice component of
the Australian Community Climate and Earth System Sim-
ulator (ACCESS). It is based on MOMS5.1 (Griffies, 2012) at
0.25 and 0.1° nominal horizontal grid spacing in the two con-
figurations. These employ tripolar grids, and the mean reso-
lutions in the Arctic Ocean are 9 and 3.6 km, respectively
(Fig. 2). The vertical coordinate is z*, with 50 and 75 lev-
els, respectively. The configurations are described in detail in
Kiss et al. (2020), with some updates described in the supple-
mentary material of Solodoch et al. (2022). In both configu-
rations, vertical mixing is parameterized using the K-profile
parameterization (KPP; Large et al., 1994), and a parame-
terization of submesoscale eddy effects in the surface mixed
layer (FFH; Fox-Kemper et al., 2008, 2011) is employed. In
addition, the Simmons et al. (2004) bottom-enhanced inter-
nal tidal mixing and Lee et al. (2006) barotropic tidal mixing
are included in both configurations. There is a spatially uni-
form background vertical diffusivity of 107®m?s~! at 0.1°
resolution but none at 0.25°. The Redi (1982) diffusion and
Gent and McWilliams (GM; Gent and McWilliams, 1990)
parameterization are used to represent the isoneutral diffu-
sion and thickness diffusivity due to unresolved eddies at
0.25°, but neither are used at 0.1°. The sea ice component
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Table 1. Model parameters for the low- and high-resolution configurations.

Model Horizontal grid Vertical grid Parameterizations Sea surface

in mixed layer salinity restoring™
ACCESS-MOM 1/4° tripolar 50 z* levels KPP, FFH 33 m per 300d
low resolution (Arctic 9 km) top layer: 2.3 m (As limited to 0.5 in flux calculation)
ACCESS-MOM 1/10° tripolar 75 z* levels KPP, FFH 33 m per 300d
high resolution (Arctic 3.6 km) top layer: 1.1 m (As limited to 0.5 in flux calculation)
AWI-FESOM 1° in most areas 47 z levels KPP 50m per 300d
low resolution (Arctic 24 km) top layer: Sm (50 m per 900 d in Arctic)
AWI-FESOM 1° in most areas 47 z levels KPP 50m per 300d
high resolution (Arctic 4.5 km) top layer: 5m (50 m per 900d in Arctic)
CMCC-NEMO 1° tripolar 50 z levels TKE 100myr—!
low resolution (Arctic 51 km) top layer: 1 m (no restoring under ice)
CMCC-NEMO 1/16° tripolar 98 z levels TKE 50m yr71
high resolution (Arctic 3.2 km) top layer: 1 m (no restoring under ice)
FSU-HYCOM 0.72° tripolar 41 hybrid layers KPP 30m per 60d
low resolution (Arctic 32 km)
FSU-HYCOM 1/12° tripolar 36 hybrid layers KPP 30m per 60d
high resolution (Arctic 3.6 km)
IAP-LICOM 1° tripolar 30 n levels Canuto scheme 50 m per 4 years
low resolution (Arctic 72 km) top layer: 10 m (50 m per 30d under ice)
IAP-LICOM 1/10° tripolar 55 n levels Canuto scheme 50 m per 4 years
high resolution (Arctic 6.8 km) top layer: 5m (50 m per 30d under ice)

* Unit is practical salinity unit meter per second (psums™— b,

of ACCESS-MOM is CICES.1.2 (Hunke et al., 2015), with
five thickness categories.

AWI-FESOM, the Finite element/volumE Sea ice—Ocean
Model version 2 (Danilov et al., 2017), is a global
unstructured-grid ocean general circulation model and serves
as the ocean and sea ice component of the Alfred Wegener
Institute Climate Model (AWI-CM) (Sidorenko et al., 2019;
Streffing et al., 2022). The model resolution is 1° in most
global ocean areas and is refined to 24 km north of 45° N.
The two configurations differ only in the horizontal resolu-
tion in the Arctic Ocean, with grid spacings of 24 and 4.5 km,
respectively. Both configurations employ 47 z levels. Ver-
tical mixing is parameterized using the KPP scheme, with
background diffusivity of 4 x 107®m2s~! in the Arctic re-
gion. Redi diffusion and the GM parameterization are em-
ployed but are deactivated in regions where the horizontal
grid spacing is less than half the first baroclinic Rossby radius
of deformation. The Redi diffusivity and GM coefficient are
scaled with grid spacing in the horizontal and vary vertically
based on the squared buoyancy frequency (Ferreira et al.,
2005; Danabasoglu and Marshall, 2007). The sea ice com-
ponent of AWI-FESOM is FESIM2 (Danilov et al., 2015).

CMCC-NEMO, the Nucleus for the European Mod-
elling of the Ocean (NEMO) version 3.6 (Madec and the
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NEMO team, 2016), serves as the ocean and sea ice com-
ponent of the CMCC climate model (CMCC-CM) (Cherchi
et al., 2019). It employs tripolar grids with nominal horizon-
tal resolutions of 1 and 1/16° for the two configurations.
The corresponding mean resolutions are 51 and 3.2km in
the Arctic Ocean. The model utilizes 50 and 98 z levels
in the two configurations, respectively. Vertical mixing co-
efficients are calculated using the turbulent kinetic energy
(TKE) parameterization introduced by Blanke and Delecluse
(1993), which incorporates the effects of Langmuir cells
and surface wave breaking (Madec and the NEMO team,
2016). The background vertical diffusivity is 1 x 107> and
1.2 x 107> m? s~ ! in the low- and high-resolution configura-
tions, respectively. In the low-resolution configuration, Redi
and GM diffusivity coefficients are scaled with grid spac-
ing, while the high-resolution configuration employs bihar-
monic viscosity and diffusion for lateral mixing, with coef-
ficients varying as the cube of the grid size (Iovino et al.,
2023). The low-resolution configuration employed CICE4
(Hunke and Lipscomb, 2010) as its sea ice component, while
the high-resolution configuration employed LIM2 (Timmer-
mann et al., 2005).

FSU-HYCOM, a global version of the HYbrid Coordi-
nate Ocean Model (HYCOM) (Chassignet et al., 2003), em-

https://doi.org/10.5194/gmd-17-347-2024
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Figure 2. Model horizontal grid spacing (in kilometers) in five pairs of models: ACCESS-MOM, AWI-FESOM, CMCC-NEMO, FSU-
HYCOM and IAP-LICOM. The black contours indicate the area that is used to calculate the averaged grid size for the Arctic Ocean (denoted

under each panel and shown in Table 1).

ploys tripolar grids with horizontal resolutions of 0.72 and
1/12° for two configurations, corresponding to mean reso-
lutions of 32 and 3.6km in the Arctic Ocean. The model
employs 41 and 36 hybrid coordinate layers in the low-
and high-horizontal-resolution configurations, respectively.
Vertical mixing is parameterized using the KPP scheme,
with background diffusivity of 3 x 107> m?s~!. In the low-
resolution configuration, interface height smoothing, equiva-
lent to the GM diffusion, is achieved using a biharmonic op-
erator with a mixing coefficient determined by the grid spac-
ing multiplied by a velocity scale of 0.02ms™!, except in the
North Pacific and North Atlantic, where a Laplacian operator
with a velocity scale of 0.01 ms~! is employed. In the high-
resolution configuration, interface height smoothing utilizes
a biharmonic operator with a velocity scale of 0.015ms™!.
The sea ice component of FSU-HYCOM is CICE4 (Hunke
and Lipscomb, 2010).

IAP-LICOM, the LASG/IAP Climate system Ocean
Model (LICOM) version 3 (Li et al., 2020b; Lin et al., 2020),
is the ocean and sea ice component of the Flexible Global
Ocean—Atmosphere—Land System model (FGOALS) and the
Chinese Academy of Sciences Earth System Model (CAS-
ESM) (Li et al., 2020a; Bao et al., 2013). It employs tripolar
grids with nominal horizontal resolutions of approximately 1
and 1/10° for two configurations, resulting in mean resolu-
tions of 72 and 6.8 km in the Arctic Ocean. The model adopts
the n vertical coordinate (Mesinger and Janjic, 1985), utiliz-

https://doi.org/10.5194/gmd-17-347-2024

ing 30 and 55 levels in the respective configurations. Mixing
is parameterized using the scheme proposed by Canuto et al.
(2002), with background diffusivity of 2 x 107°m?s~!. In
addition, the St Laurent et al. (2002) tidal-mixing scheme is
employed. In the low-resolution configuration, isoneutral dif-
fusion and GM parameterization are employed, with diffusiv-
ity coefficients scaled vertically based on the squared buoy-
ancy frequency (Ferreira et al., 2005). The sea ice component
of IAP-LICOM is CICE4 (Hunke and Lipscomb, 2010). The
high-resolution IAP-LICOM solely incorporates the thermo-
dynamic part of CICE4, lacking its sea ice dynamics.

Sea ice properties are not a focus of this paper. Arctic and
Antarctic sea ice concentrations and thicknesses in March
and September have been discussed in the same model pairs
(Chassignet et al., 2020) and/or in the corresponding model
description papers cited above. To summarize previous find-
ings briefly, March Arctic sea ice concentration fields are
similar among the models at all resolutions, and September
Arctic sea ice concentration fields are more sensitive to mod-
els than to spatial resolutions. Sea ice thicknesses differ con-
siderably among the models in all seasons. Overall, increas-
ing the resolution did not remarkably improve sea ice in these
simulations.

In this study, the Arctic Ocean is defined as the Arctic area
enclosed by the Fram Strait, the Barents Sea Opening, the
Bering Strait and the northern boundary of Canadian Arctic
Archipelago, and the Eurasian Basin and Amerasian Basin

Geosci. Model Dev., 17, 347-379, 2024
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are defined as the deep Arctic Ocean areas with bottom to-
pography deeper than 500 m, separated by the Lomonosov
Ridge.

3 Results
3.1 Mean hydrography
3.1.1 Temperature

We utilize the PHC3.0 hydrography climatology (Steele
et al., 2001) to assess the basin mean temperature and salin-
ity. According to the PHC3.0 climatology, the warm Atlantic
water layer (warmer than 0 °C) is situated beneath the cold
surface water, spanning a depth range of approximately 150—
800m (Fig. 3). The maximum temperature is located in the
depth range of approximately 200—400 and 400—-600 m in the
Eurasian and Amerasian basins, respectively. Since PHC3.0
primarily relies on observations from the 1970s to the 2000s,
we compare the model results averaged over the period from
1971 to 2000 to assess their agreement with PHC3.0.

In the Eurasian Basin, four out of five low-resolution mod-
els (except for AWI-FESOM) underestimate the maximum
temperature of the Atlantic water layer and overestimate the
temperature below the Atlantic water layer (Fig. 3, upper
panels). The warm biases extend to at least 2500 m depth in
these models. Three high-resolution configurations (namely
ACCESS-MOM, CMCC-NEMO and FSU-HYCOM) exhibit
notable improvements with higher maximum temperatures
compared to their low-resolution counterparts. The warm bi-
ases in the deeper ocean are also reduced in two models
(ACCESS-MOM and CMCC-NEMO). Both configurations
of AWI-FESOM faithfully represent the temperature in the
Eurasian Basin, with warm bias in the 500-1500 m depth
range and lower in its high-resolution configuration.

In the Amerasian Basin, the simulated maximum tem-
perature aligns more closely with observations as the hori-
zontal resolution increases (particularly in ACCESS-MOM,
CMCC-NEMO and FSU-HYCOM; Fig. 3, lower panels).
However, in two of these models (CMCC-NEMO and FSU-
HYCOM), the high-resolution configuration exhibits larger
warm biases below 600m depth compared to the low-
resolution configuration. In AWI-FESOM, with higher reso-
lution, the warm bias below 600 m depth is reduced, although
a slight cold bias emerges at the depth of maximum tem-
perature. Considering temperature in the upper 3500 m depth
range, the root-mean-square error (RMSE, displayed in each
panel of Fig. 3) indicates that increasing the resolution effec-
tively reduces the overall model biases (evident in four out of
five models).

The temperature maps at a depth of 400 m provide insight
into the spatial distribution of the warm Atlantic water in the
deep basin of the Arctic (Fig. 4). Observational climatology
shows that the warm Atlantic water enters the Arctic basin
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through the Fram Strait and circulates in a cyclonic direc-
tion within the basin (Fig. 4k). However, four low-resolution
models (except for AWI-FESOM) exhibit lower tempera-
tures north of Svalbard compared to the observational cli-
matology, indicating a deficiency in the inflow of warm At-
lantic water through the Fram Strait in these models. Addi-
tionally, these four models show a prominent cold bias in the
eastern Eurasian Basin, with three of them even displaying
negative values (Fig. 4a, ¢, d). The maps of Atlantic water
core temperature (AWCT), representing the maximum tem-
perature throughout the water column in areas with bottom
topography deeper than 150 m, demonstrate the absence of
warm Atlantic water in the eastern Eurasian Basin and its
downstream region in these models (Fig. 5a, c, d). This cold
bias can be traced back to the Barents Sea branch of the At-
lantic water inflow, where the temperature is much colder in
these three models compared to in other models and their
high-resolution counterparts. Hence, the cold biases in the
deep basin of the Arctic can be attributed to both insufficient
inflow of warm water through the Fram Strait and excessive
discharge of cold water from the St. Anna Trough, consis-
tently with findings from previous model intercomparison
studies (Ilicak et al., 2016; Shu et al., 2019). In the high-
resolution configurations, both issues are mitigated, resulting
in a significant reduction in the cold bias in the deep basin
(Fig. 51, h, 1).

Both the temperature at 400m depth and the AWCT
demonstrate that, in the high-resolution configurations of
AWI-FESOM and FSU-HYCOM, the Atlantic water extends
along the continental slope all the way to the Laptev Sea,
with a portion of it recirculating along the Lomonosov Ridge
(Figs. 4g, 1 and 5g, 1), which is consistent with observations
(Woodgate et al., 2001; Richards et al., 2022). Similar im-
provement in simulating the spatial pattern of the warm At-
lantic water is not seen in other models. The high-resolution
configurations of ACCESS-MOM and CMCC-NEMO ex-
hibit a broad Atlantic water flow from the Fram Strait into
the Eurasian Basin instead of a distinct inflow branch along
the continental slope (Figs. 4f, h and 5f, h).

Overall, the RMSE for the AWCT (displayed in each panel
of Fig. 5) suggests that increasing resolution improves the
representation of the Arctic Atlantic water layer (in four out
of five models). AWI-FESOM exhibits the smallest RMSE
in both versions. However, its high-resolution version shows
a slightly larger RMSE than the low-resolution version, pri-
marily due to a relatively small cold bias in the Amerasian
Basin in its high-resolution version (Fig. 5b, g).

Fig. 6 depicts the vertical transect of temperature across
the Arctic Ocean. According to the PHC3.0 climatology, the
warm Atlantic water layer exhibits a deepening upper bound-
ary (0°C isotherm) from the Eurasian Basin to the Am-
erasian Basin (Fig. 6k). It also indicates that the intermediate
and deep layers (located below the lower 0 °C isotherm) are
warmer in the Amerasian Basin compared to in the Eurasian
Basin. The cold deep water in the Eurasian Basin, mainly
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sustained by dense shelf waters and entrained ambient wa-
ters when they sink on the continental slope, can only over-
flow to the Amerasian Basin through the central part of
the Lomonosov Ridge (Rudels and Quadfasel, 1991; Jones
et al., 1995). Among the low-resolution models, only one
model (AWI-FESOM) successfully simulates a warm At-
lantic water layer with a depth range and temperature mag-
nitude similar to the observations (Fig. 6b). Encouragingly,
three models (ACCESS-MOM, CMCC-NEMO and FSU-
HYCOM) demonstrate the ability to simulate the Atlantic
water layer more accurately when their resolutions are in-
creased despite some biases in layer thickness (i.e., too thin
in ACCESS-MOM and too thick in CMCC-NEMO and FSU-
HYCOM) (Fig. 6f, h, i). However, the high-resolution IAP-
LICOM exhibits an excessively thick Atlantic water layer in
the Eurasian Basin (Fig. 6j). Additionally, its Atlantic water
layer is split into two cells due to a cold tongue recirculating
along the Lomonosov Ridge (Fig. 4j). The degradation of the
IAP-LICOM simulation at high resolution is likely due to the
misrepresentation of sea ice and, thus, unrealistic surface mo-
mentum and buoyancy fluxes, resulting from the absence of
sea ice dynamics in the model (Chassignet et al., 2020). All
the models successfully reproduce the temperature contrast
in the deep ocean between the two basins (Fig. 6). Below
1000 m depth in the Amerasian Basin, the high-resolution

https://doi.org/10.5194/gmd-17-347-2024

FSU-HYCOM exhibits a notable warm bias that is absent in
its low-resolution counterpart (Fig. 61). This bias is likely due
to the lower vertical resolution in the high-resolution config-
uration of FSU-HYCOM than in its low-resolution configu-
ration (Table 1).

3.1.2 Salinity

Figure 7 illustrates the simulated salinity profiles in the two
basins, and the corresponding salinity biases are shown in
Fig. S1 in the Supplement. All the models tend to exhibit a
negative salinity bias in the halocline below the surface layer.
This bias is likely caused by excessive vertical mixing in the
models, which reduces salinity in the halocline and increases
it near the surface (Wang et al., 2018). To mitigate the issue
of large drift in ocean salinity and circulation, global models
typically restore sea surface salinity to climatology (Griffies
et al., 2009). The restoring can dampen the increase in sur-
face salinity induced by vertical mixing. As a result of sea
surface salinity restoring and vertical mixing, the mean salin-
ity is underestimated, as is evident from the overestimation
of liquid freshwater content (see Sect. 3.4). This issue was
previously investigated in the CORE-II Arctic Ocean study
(Wang et al., 2016a), and it appears that the state-of-the-art
ocean models in OMIP-2 still encounter the same challenge
as the CORE-II models.

Geosci. Model Dev., 17, 347-379, 2024
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It is encouraging to observe that the high-resolution con-
figurations exhibit smaller salinity biases in the halocline in
all models except for IAP-LICOM, primarily in the Eurasian
Basin (Figs. 7 and S1). Previous studies have suggested that
an inadequate treatment of brine rejection could lead to static
instability and excessive vertical mixing over a wide depth
range, resulting in a negative salinity anomaly in the halo-
cline and a positive salinity anomaly at the surface (Nguyen
et al., 2009). However, our findings indicate that increasing
model resolution can reduce the negative salinity bias in the
halocline, suggesting that at least part of this bias is unre-
lated to the treatment of brine rejection in the models as
none of the models analyzed in this study employed brine
rejection parameterization for the Arctic Ocean. On the other
hand, salinity biases at the ocean surface are amplified in
two high-resolution models (CMCC-NEMO and ACCESS-
MOM, Fig. 7a, c, h), which could be attributed to the lim-
ited sea surface salinity restoration in these models (Table 1).
IAP-LICOM displays larger salinity biases throughout the
ocean column in its high-resolution configuration compared
to its low-resolution configuration (Fig. 7e, j).

Similarly to the spatial pattern of temperature (Fig. 4k),
the spatial pattern of salinity at 400 m depth illustrates the
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cyclonic circulation of the Atlantic water along the continen-
tal slope (Fig. 8k). The Canada Basin displays the lowest
salinity at this depth, reflecting the deepening of the isoha-
line due to Ekman convergence induced by the Beaufort High
sea level pressure (Proshutinsky et al., 2002, 2009; Wang
and Danilov, 2022; Timmermans and Toole, 2023). Most of
the model simulations are able to capture the basic salin-
ity contrast between the Eurasian Basin and the Amerasian
Basin (Fig. 8). The low-resolution configuration of FSU-
HYCOM exhibits relatively large negative biases in salin-
ity throughout the deep basin at 400 m depth (Fig. 8d). It
fails to simulate the Atlantic water boundary current enter-
ing the basin through the Fram Strait, which carries warm,
saline Atlantic water in reality. However, its high-resolution
configuration shows an improved representation of the At-
lantic water inflow and, consequently, a better representa-
tion of salinity in the Eurasian Basin (Fig. 8i). Neverthe-
less, its salinity in the Canada Basin remains biased low.
The high-resolution configurations of ACCESS-MOM and
CMCC-NEMO also demonstrate better simulation of salin-
ity in the Eurasian Basin compared to their low-resolution
counterparts, but their salinity in the Canada Basin is still
biased low (Fig. 8f, h), similarly to the high-resolution FSU-
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HYCOM. In AWI-FESOM, the cyclonic circulation of the
Atlantic water is better simulated with a higher resolution
(Fig. 8b, g). Some of the Atlantic water directly penetrates
towards the North Pole and Amerasian Basin in its low-
resolution configuration, and this issue is resolved in the
high-resolution configuration. As the vertical resolution is
the same in both AWI-FESOM configurations, the improved
model performance can be attributed to higher horizontal res-
olution. The salinity bias in IAP-LICOM is more pronounced
in its high-resolution configuration for both basins (Fig. 8e,
), likely due to the impact of misrepresented sea ice cover,
as mentioned above.

The RMSE of the salinity at 400 m depth (displayed in
each panel of Fig. 8) indicates that the overall salinity biases
in the Atlantic water layer are notably reduced in three out of
five high-resolution models. However, for the overall salinity
biases in the upper 700 m depth range, there is no consistent
improvement with increasing resolution in the models, as in-
dicated by the RMSE displayed in each panel of Fig. 7.

Despite some improvements in representing salinity in
high-resolution models, as described above, it is important to
acknowledge that the salinity biases in most of these mod-
els (particularly in the halocline and/or surface layer) still
exceed the magnitudes of salinity changes observed over
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decades, as shown in Fig. 9. In several models with sig-
nificant salinity biases (up to approximately 1 psu), these
biases escalate to high levels within the first few years of
the model simulations. In certain cases, such as the low-
resolution FSU-HYCOM model, the fresh biases persist and
extend downwards throughout the entire simulation period
(Fig. 9d, n). Background vertical diffusivity employed in
models can significantly influence the vertical distribution
of salinity and the stratification in the Arctic Ocean (Zhang
and Steele, 2007). The underlying cause for the larger fresh
biases in the halocline of FSU-HYCOM compared to AWI-
FESOM could partially be attributed to the background dif-
fusivity within the KPP mixing scheme. In FSU-HYCOM,
the background diffusivity is 3 x 107> m?s~!, which is ap-
proximately 1 order of magnitude higher than that of AWI-
FESOM (4 x 107®m?2s~!). However, in the case of IAP-
LICOM, which has a relatively small background diffusiv-
ity of 2 x 10~ m? s~1, the fresh biases remain substantial
(Fig. 9e, j, o, t). Therefore, it is evident that other factors,
such as explicit mixing from applied parameterizations and
spurious numerical mixing, also contribute to the salinity bi-
ases.

Geosci. Model Dev., 17, 347-379, 2024
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3.2 Warming events in Atlantic water layer

Observations have revealed several warming events in the
Arctic Atlantic water layer, which are associated with
strengthened ocean heat influxes through the Fram Strait.
These events occurred in the 1990s and the 2010s (Steele
and Boyd, 1998; Gerdes et al., 2003; Karcher et al., 2012;
Polyakov et al., 2012, 2020; Wang et al., 2020b). The abnor-
mally high North Atlantic Oscillation in the 1990s strength-
ened the Atlantic water boundary current in the Nordic Seas
and increased the inflow through the Fram Strait (Dickson
et al., 2000). Simultaneously, the positive Arctic Oscillation
strengthened the cyclonic circulation within the Arctic Ocean
and facilitated the influx of Atlantic water from the Fram
Strait (Wang et al., 2023). During the 2010s, both the warm-
ing and intensification of the inflow in the Fram Strait due
to Arctic sea ice decline, which maintained the strength of
the cyclonic Greenland Sea gyre circulation by reducing sea
ice freshwater export through the Fram Strait, contributed to
the warming of the Atlantic water layer in the Arctic basin
(Wang et al., 2020b). The observed ocean warming not only
manifests changes in the coupled air—ice—sea system but also
influences the marine ecosystem in the region. Hence, it is
important to assess whether the OMIP-2 models, driven by
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the same atmospheric forcing, are capable of reasonably re-
producing the warming events.

Figure 10 presents the depth—time plot of basin mean tem-
perature in the Eurasian and Amerasian basins. In the low-
resolution models, AWI-FESOM successfully reproduces the
warming events in the Eurasian Basin (Fig. 10b). ACCESS-
MOM and CMCC-NEMO exhibit signals of these warming
events in their low-resolution configurations but with lower
magnitudes (Fig. 10a, c). This is consistent with their cold
bias in simulated mean temperature (Figs. 4 and 5). The
1990s warming is absent in the low-resolution FSU-HYCOM
and TAP-LICOM (Fig. 10d, e). Among the high-resolution
models, with the exception of IAP-LICOM, all are capable
of reproducing the two warming events in the Eurasian Basin
(Fig. 10f=j). The thickening trend of the warm Atlantic water
layer (indicated by the deepening trend of the lower bound-
ary of the warm Atlantic water layer) remain large in four of
the high-resolution models (Fig. 10f—j).

The warming in the Eurasian Basin propagates into the
Amerasian Basin with a time lag of a few years (Steele and
Boyd, 1998; Polyakov et al., 2012). Since most of the low-
resolution models fail to accurately reproduce the two warm-
ing events in the Eurasian Basin, they do not exhibit both
warming events in the Amerasian Basin (Fig. 10k, m—o). In
contrast, all the high-resolution configurations, except for

https://doi.org/10.5194/gmd-17-347-2024
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IAP-LICOM, can simulate the warming events in the Am-
erasian Basin, with a time lag of about 4 years compared to
the Eurasian Basin (Fig. 10p-s).

Hydrography observations in the Arctic Ocean are rela-
tively sparse in time and space, leading to large uncertainty in
gridded temperature data based on these observations. With
this limitation in mind, we utilize the gridded AWCT aver-
aged over two periods (1981-1995 and 2006-2017), avail-
able from Polyakov et al. (2020), to evaluate the simulated
AWCT changes in the models. Figure 11 presents the differ-
ence in AWCT between these two periods for both the obser-
vation and the model simulations. The observations indicate
a clear increase in AWCT in most areas of the Arctic basin
(Fig. 11k). Inconsistently, four out of the five low-resolution
models simulate a reduction in AWCT in a large part of the
Arctic basin. Averaged over the Arctic deep basin, the obser-
vation indicates an increase of 0.3 °C in the AWCT between
the two considered periods, while two of the low-resolution
models (CMCC-NEMO and FSU-HYCOM) simulated a re-
duction in the AWCT (Fig. 11c, d).

The high-resolution FSU-HYCOM demonstrates an in-
crease in the AWCT between the two periods across the
basin and, thus, an evident improvement (Fig. 11i). The
high-resolution CMCC-NEMO also better represents the
AWCT change in the Amerasian Basin compared to its
low-resolution counterpart, although it exhibits an erroneous
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cooling anomaly in the Eurasian Basin (Fig. 11h), potentially
attributed to the excessively strong warming in the 1990s
simulated by high-resolution CMCC-NEMO (Fig. 10h). Nei-
ther ACCESS-MOM nor IAP-LICOM show noticeable im-
provement in simulating the rise of AWCT in the Amerasian
Basin in their high-resolution configurations (Fig. 11f, j).
These models seem to struggle with advecting the signal
of Atlantic water warming into the Amerasian Basin, which
could be explained by the presence of a too-large and too-
strong anticyclonic Beaufort Gyre, indicated by the excess
freshwater content (see Sect. 3.4). This is linked to the fact
that the upper-ocean circulation has a strong imprint on the
Atlantic water layer circulation (Lique et al., 2015; Hinrichs
et al., 2021; Wang et al., 2023). In all the high-resolution
models, the AWCT difference between the two periods aver-
aged over the Arctic deep basin is positive. However, three
of these models tend to overestimate this difference in com-
parison with the available observational estimate.

3.3 Mixed-layer depth and cold halocline base depth

The winter mixed-layer depth (MLD) in the Barents Sea
is deeper than in the Arctic deep basin (Peralta-Ferriz and
Woodgate, 2015), reflecting the strong heat loss from the
warm Atlantic water to the atmosphere in the Barents Sea
(Schauer et al., 1997; Smedsrud et al., 2013; Shu et al., 2021).
In the Arctic deep basin, the MLD remains relatively shallow
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even during winter due to the presence of low-salinity water
at the surface. The winter MLD is not only a climate-relevant
variable but also an important factor that regulates summer
primary production in the Arctic (Popova et al., 2010). Be-
tween the surface mixed-layer and the Atlantic water layer
lies the Arctic halocline, which acts as an insulating layer,
inhibiting the transfer of heat from the Atlantic water layer
to the cold mixed layer and sea ice. An uplift of the boundary
between the halocline and Atlantic water layer, accompanied
by a weakening of the halocline stratification and warming of
the Atlantic water layer, was observed in the eastern Eurasian
Basin in the 2010s (Polyakov et al., 2017, 2020). This phe-
nomenon, known as Arctic Atlantification (Polyakov et al.,
2017), is primarily driven by the decline in Arctic sea ice
(Wang et al., 2020b). In the following, we will evaluate the
simulations of the MLD and halocline base depth in the mod-
els.

3.3.1 Winter MLD
When determining the MLD in the Arctic Ocean based on
observations, MLD is defined as the depth at which potential

density exceeds the density of the shallowest measurement
(considered to be the best estimate for surface density) by
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0.1kgm™> (Peralta-Ferriz and Woodgate, 2015). Note that
observational profiles with a shallowest measurement deeper
than 10 m are typically excluded from consideration because
MLDs shallower than 10 m may occur during certain seasons
and in some regions of the Arctic Ocean (Peralta-Ferriz and
Woodgate, 2015). We follow this MLD definition and com-
pute the MLD referenced to surface density using monthly
mean temperature and salinity from the models while noting
the cautionary remarks in Treguier et al. (2023) about how
MLD calculated from monthly mean data will differ from
higher-frequency data.

Figure 12 depicts the MLD in winter (November to May)
during the period 1979-2012 for each model, along with
the observational estimates (averaged over six Arctic re-
gions, shown as circles; Peralta-Ferriz and Woodgate, 2015).
The observational estimates indicate that the winter MLD is
approximately 30 m in the southern Beaufort Sea, Canada
Basin and Chukchi Sea; approximately 50 m in the Makarov
Basin; around 70 m in the Eurasian Basin; and roughly 170 m
in the Barents Sea. Three models (ACCESS-MOM, AWI-
FESOM and IAP-LICOM) can reproduce the contrast be-
tween the deep MLD in the Barents Sea and the shal-
low MLD in the Arctic deep basin in both configurations
(Fig. 12a, b, e, f, g, j). Increasing horizontal resolution leads
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to a reduction in MLD of 10-20m in most of the Arctic
deep-basin area in these models. Mesoscale eddies have an
effect on restratifying the mixed layer, thereby reducing the
MLD (Treguier et al., 2023). The resolutions used in the
high-resolution OMIP-2 configurations (3—6 km, Fig. 2) are
only eddy-permitting in the Arctic deep basin (Wang et al.,
2020a). The comparison in Fig. 12 indicates that the high-
resolution configurations may capture some of the eddy ef-
fects, although eddies are not fully resolved yet. They slightly
underestimate the observations in the Eurasian Basin by
about 20 m. However, as the MLD computed from monthly
temperature and salinity tends to be shallower than that com-
puted from snapshot profiles due to the nonlinearity of the
MLD (Treguier et al., 2023), we cannot conclude that these
high-resolution configurations have a worse MLD than the
low-resolution ones.

The other two models (CMCC-NEMO and FSU-
HYCOM) simulate too-deep MLDs in both the Eurasian
and Amerasian basins in their low-resolution configurations
(Fig. 12c, d). This overestimation can be attributed to stratifi-
cation biases in the upper ocean within these models. Specif-
ically, they demonstrate either positive salinity biases at the
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on models, and (f)—(j) and (p)—(t) are for the high-resolution models.

surface (see Fig. 9c) or negative salinity biases in the sub-
surface (see Fig. 9d, m, n). Such salinity biases lead to re-
duced stratification, consequently promoting the formation
of deeper mixed layers during wintertime. Our finding is con-
sistent with previous research, which highlighted the domi-
nating impact of the simulated salinity profile and, conse-
quently, density stratification on the models’ performances
in simulating winter MLD (Allende et al., 2023). In the high-
resolution configurations of these two models, there is a par-
tial improvement in the MLD estimation within certain re-
gions of the Arctic deep basin (Fig. 12h, i). However, this
improvement does not correspond to a reduction in salinity
biases. For example, the significant fresh bias observed in
the subsurface of the Amerasian Basin in the low-resolution
CMCC-NEMO model is replaced by a positive salinity bias
at the surface in its high-resolution counterpart (Fig. 9m, 1).
The salinity biases in different depth ranges are altered in
such a manner that the overall upper-ocean stratification in
the Amerasian Basin is enhanced, resulting in a shallower
MLD than in the low-resolution configuration (Fig. 12h).
Similarly, the decrease in the MLD in the high-resolution
FSU-HYCOM model (Fig. 12i) can be partially explained

Geosci. Model Dev., 17, 347-379, 2024
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Figure 10. Depth—time plot of basin mean potential temperature of the (upper two rows) Eurasian Basin and (lower two rows) Amerasian
Basin; (a)—(e) and (k)—(o) are for the low-resolution models, and (f)—(j) and (p)—(t) are for the high-resolution models.

by the amplified fresh bias at the surface (comparing Fig. 9i,
s with d, n).

Additionally, we computed the MLD in March using the
density threshold of 0.03kgm™ and made the comparison
with the MIMOC MLD data set (Schmidtko et al., 2013),
which also used this threshold. This comparison yields simi-
lar findings to those described above (Fig. S3).

3.3.2 Cold halocline base depth

The cold halocline base depth is defined as the depth of
the 0°C isotherm between the halocline and the Atlantic
water layer (Polyakov et al., 2020). It deepens from the
Eurasian Basin toward the Canada Basin (Fig. 13k). In the
low-resolution ACCESS-MOM, CMCC-NEMO and FSU-
HYCOM models, in which there is no Atlantic water warmer
than 0°C in some areas of the Arctic deep basin (Figs. 5
and S2), the cold halocline base depth cannot be defined
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(Fig. 13a, c, d). With the improved representation of ocean
temperature in the high-resolution configurations of these
models, the cold halocline base depths show a spatial pat-
tern similar to the observations, although there is a deep bias
in the Amerasian Basin (Fig. 13f, h, i). Both configurations
of the AWI-FESOM model reasonably reproduce the spa-
tial pattern and magnitudes of the cold halocline base depth
(Fig. 13b, g).

Observations have shown a shoaling of the cold halo-
cline base depth in most of the Arctic deep basin during
the period 20062017 compared to 1981-1995 (Fig. 14k;
Polyakov et al., 2020). However, the three models that show
improvement in simulating the mean state of the cold halo-
cline base depth with higher resolution (ACCESS-MOM,
CMCC-NEMO and FSU-HYCOM) do not reproduce the
observed shoaling in the Eurasian Basin or Canada Basin
(Fig. 14f, h, i). Both configurations of the AWI-FESOM
model simulate an uplift of the cold halocline base depth

https://doi.org/10.5194/gmd-17-347-2024
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Figure 11. Difference in the Atlantic water core temperature (AWCT) between 2006-2017 and 1981-1995 in the models (a—j) and observa-
tions (k) (Polyakov et al., 2020). The AWCT in these two periods is shown in Figs. 5 and S2, respectively. The mean values averaged over
the Arctic deep basin (region with bottom topography deeper than 500 m) are displayed in each respective panel.
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Figure 12. Mixed-layer depth (MLD) in the cold season (November to May) averaged over 1979-2012. The observational estimates for six
regions are shown as filled circles (Peralta-Ferriz and Woodgate, 2015). The color bar scaling is nonuniform.
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Figure 13. Cold halocline base depth averaged over 2006—2017 in low-resolution (a—e) and high-resolution (f—j) models. We first calculated
the cold halocline base depth in the deep-basin area (where the ocean bottom is deeper than 500 m) using monthly temperature and then
averaged it over the considered period. If the depth cannot be found (because of the absence of Arctic Atlantic water warmer than 0 °C),
this record was not taken into account during the average. A missing value indicates that the depth was not found throughout the considered
period. The observational estimate is shown in (k) (Polyakov et al., 2020).

in the Eurasian Basin, with magnitudes similar to the ob-
servations (Fig. 14b, g). However, its high-resolution con-
figuration exhibits a large overestimation of the uplift in the
Canada Basin (Fig. 14g). The overestimation of the uplift
in the Canada Basin is mainly due to the deep bias in the
cold halocline base depth in the earlier period (1981-1995,
Fig. S4) since the model reproduces the cold halocline base
depth well in the recent period (2006-2017, Fig. 13g). The
anomaly of the cold halocline base depth in the Amerasian
Basin in IAP-LICOM is not consistent with the observations
(Fig. 14j).

All the high-resolution models that can simulate the warm-
ing of the Atlantic water layer in the 2010s show an uplift of
the cold halocline base depth in the Eurasian Basin within
that decade (four out of five models, Fig. 10f—i). Thus, these
models are able to reproduce the fact that the warm Atlantic
water layer has become closer to the surface in the progres-
sion of Arctic Atlantification in the 2010s. However, in the
high-resolution CMCC-NEMO, for the two periods that we
compare here, the cold halocline base depth in the Eurasian
Basin in 2006-2017 is slightly deeper than in 1981-1995
(Fig. 14h), contradicting the observations (Fig. 14k). The rea-
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son is that its cold halocline base depth is too shallow in the
1990s, associated with an overestimated warming event in
that period (Fig. 10h).

3.4 Liquid freshwater content

The Arctic Ocean plays a crucial role in the hydrological
cycle of the Northern Hemisphere (Carmack et al., 2016).
It receives freshwater from various sources, including river
runoff, net precipitation and low-salinity Pacific Water, while
exporting freshwater to the subpolar North Atlantic. The
Beaufort High, characterized by high sea level pressure,
causes the freshwater in the Arctic to accumulate predomi-
nantly in the Canada Basin (McPhee et al., 2009; Proshutin-
sky et al., 2009, 2019; Timmermans and Marshall, 2020;
Wang and Danilov, 2022). Due to the prevailing anticyclonic
wind patterns over the Canada Basin and the decline in Arctic
sea ice, the Arctic Ocean has been experiencing an increase
in liquid freshwater content since the mid-1990s (Proshutin-
sky et al., 2019; Wang and Danilov, 2022). Observations
have revealed that the amount of liquid freshwater in the
Arctic basin in the mid-2010s was approximately 11 000 km?

https://doi.org/10.5194/gmd-17-347-2024
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Figure 14. Change in the cold halocline base depth between the period 2006-2017 and the period 1981-1995 in low-resolution (a—e) and
high-resolution (f=j) models. The observational estimate (Polyakov et al., 2020) is shown in (k). A negative value indicates an uplift of the
cold halocline base depth. The color in the Amerasian Basin in (j) is dark red.

more than in the mid-1990s (Rabe et al., 2014; Wang et al.,
2019). The excess freshwater in the Arctic, when released
into the convective regions of the North Atlantic, could im-
pact deep-water formation and large-scale circulation (Aa-
gaard et al., 1985; Goosse et al., 1997; Arzel et al., 2008).
Therefore, assessing the Arctic freshwater content is impor-
tant for understanding climate variability and change.

The freshwater content of the water column, referred to
as the freshwater column in short (measured in meters), is
defined as follows:

0
FWC = /(Sref —8)/Srerdz, (D
H

where S represents salinity, Sier is the reference salinity, and
H is the depth at which the salinity equals the reference
salinity. This quantifies the amount of pure water that needs
to be removed from a column to change the mean salinity
to the reference salinity. In this study, a reference salinity
of Ser = 34.8 psu, considered to be the mean salinity of the
Arctic Ocean (Aagaard and Carmack, 1989), is used, consis-
tently with previous studies (e.g., Serreze et al., 2006; Jahn
et al., 2012; Haine et al., 2015; Wang et al., 2016a, 2023; Shu
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et al., 2023). The volumetric freshwater content is obtained
by integrating the freshwater column over an area.

First, we evaluate the mean state of the simulated fresh-
water column (Fig. 15). The models generally capture
the basic spatial pattern of the freshwater column, with
higher values in the Canada Basin and lower values in the
Eurasian Basin. However, there are notable differences in
the spatial distribution and magnitudes of the freshwater col-
umn among the models. Two of the low-resolution mod-
els (CMCC-NEMO and FSU-HYCOM) tend to significantly
overestimate the freshwater column in the Amerasian Basin
(Fig. 15¢, d), while one of them (AWI-FESOM) underesti-
mates the freshwater column in the northwestern Amerasian
Basin (Fig. 15b).

In the high-resolution models, ACCESS-MOM shows a
stronger overestimation of the freshwater column in the
Amerasian Basin compared to its low-resolution counter-
part (Fig. 15a, f). AWI-FESOM remains largely similar be-
tween the two configurations (Fig. 15b, g), while CMCC-
NEMO underestimates the freshwater column in the high-
resolution configuration, contrarily to its overestimation in
the low-resolution configuration (Fig. 15¢, h). FSU-HYCOM
displays an excessive concentration of freshwater in the
southern Beaufort Sea in its high-resolution configuration

Geosci. Model Dev., 17, 347-379, 2024
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Figure 15. Liquid freshwater column (in meters) averaged over 1971-2000 in (a—e) low-resolution and (f—j) high-resolution models. The

estimate based on PHC3.0 (Steele et al., 2001) is shown in (k).

(Fig. 151), and IAP-LICOM fails to reproduce a realistic
gyre shape in the Amerasian Basin’s freshwater distribution
(Fig. 15j). With the increase in model resolution, the consis-
tency of the simulated freshwater column among the models
is not clearly improved.

As the freshwater column plays a crucial role in determin-
ing the sea surface height and the surface geostrophic current
in the Arctic basin (Armitage et al., 2017; Wang, 2021), the
above results imply a large spread in the simulated ocean sur-
face circulation among both low- and high-resolution mod-
els, as indicated by the spatial pattern of sea surface height
(Fig. S5). With the increase in model resolution, the RMSE
of Arctic sea surface height decreases in three models while
increasing in two others.

Next, we will assess the model spread in the Arctic basin
freshwater content. Figure 16 presents the time series of
freshwater content in the Arctic basin and their anomalies
relative to the 1992-2008 mean. Consistently with the mean
state of the freshwater column shown in Fig. 15, the model
spread in simulating Arctic basin freshwater content remains
similar in the high-resolution configurations in relation to
the low-resolution configurations (Fig. 16a, c). In two low-
resolution models (CMCC-NEMO and FSU-HYCOM), the
freshwater content in the Arctic basin drifts upward over time
(Fig. 16a). The most significant drift occurs during the first
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10 years of the simulation, as also indicated in the time—
depth plot of salinity (Fig. 9). In the high-resolution FSU-
HYCOM model, the upward drift of total freshwater con-
tent is reduced (Fig. 16a, c), mainly attributed to the lower
freshwater column outside the Beaufort Sea (Fig. 15d, 1). The
high-resolution CMCC-NEMO model simulates a downward
drift in freshwater content during the first 40 years (Fig. 16¢),
which is associated with the evolution of positive salinity
bias in the upper Amerasian Basin in terms of both magni-
tude and vertical extent (Fig. 9r). The high-resolution IAP-
LICOM model, unlike its low-resolution counterpart, ex-
hibits a strong upward drift (Fig. 16a, c).

Lastly, we will assess the simulation of temporal changes
in the Arctic freshwater content. Except for [AP-LCOM,
all models consistently simulate an increase in Arctic basin
freshwater content during the observational period (Fig. 16b,
d). In the low-resolution configurations, the simulated in-
crease in freshwater content from the mid-1990s to the mid-
2010s falls mostly within the uncertainty range of observa-
tional estimates (Fig. 16b). However, in the high-resolution
configurations, the model—observation misfit becomes more
pronounced in most models (Fig. 16d). The high-resolution
CMCC-NEMO model shows a persistent increase in fresh-
water content from the mid-1990s until the end of the sim-
ulation, contrarily to observations indicating a leveling off
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Figure 16. (a) Time series of liquid freshwater content (FWC) in the Arctic basin in the low-resolution models. (b) The same as (a) but for
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(Wang et al., 2019) is shown in (b) and (d).

in the mid-2010s (Wang et al., 2019). In contrast to high-
resolution CMCC-NEMO, both high-resolution ACCESS-
MOM and IAP-LICOM models simulate a declining trend
starting from the early 2010s, which differs from the ob-
served leveling off in the mid-2010s. Only AWI-FESOM
and FSU-HYCOM reproduce the leveling off of freshwa-
ter content in the mid-2010s in the high-resolution models.
FSU-HYCOM performs the best in simulating the temporal
changes in freshwater content, as both of its configurations
produce freshwater content anomalies that fall within the ob-
servational uncertainty range.

Several factors can influence Arctic freshwater content,
such as winds, sea ice effects on momentum transfer, and
the surface geostrophic currents which influence the circu-
lation pathway and residence time of freshwater in the Arc-
tic Ocean (Wang et al., 2021). The two models that show
the greatest deterioration in simulating freshwater content
changes in their high-resolution configurations compared
to their low-resolution configurations, ACCESS-MOM and
CMCC-NEMO, exhibit the largest biases in surface salinity
among the models (Fig. 7). ACCESS-MOM has limited sea
surface salinity restoring, and it is switched off under sea ice
in CMCC-NEMO. These findings suggest that model resolu-
tion is not the dominant factor influencing the model’s per-
formance in simulating the mean state of freshwater spatial
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distribution and the temporal changes in Arctic freshwater
content. The models tend to need sea surface salinity restor-
ing to climatology to avoid large salinity biases at the surface.

3.5 Gateway transports

Arctic climate is strongly influenced by inflows from the
Atlantic and Pacific oceans. As mentioned in Sect. 3.4, the
transport of ocean heat from lower latitudes significantly af-
fects the temperature of the Arctic Ocean (Polyakov et al.,
2020; Shu et al., 2022), the extent of Arctic sea ice in the
cold season (Woodgate et al., 2010; Arthun et al., 2012, 2019;
Shu et al., 2021; Yamagami et al., 2022; Pan et al., 2023)
and winter air temperature (Screen and Simmonds, 2010;
Arthun et al., 2017; Nummelin et al., 2017). The Arctic
Ocean also exports freshwater to the subpolar North Atlantic,
with potential impacts on upper-ocean stratification, deep-
water formation, large-scale circulation and climate dynam-
ics (Aagaard et al., 1985; Goosse et al., 1997; Arzel et al.,
2008). Furthermore, the inflows and outflows through the
Arctic Ocean gateways play a crucial role in the transport
of nutrients and planktonic organisms (Walsh et al., 1989;
Hatuin et al., 2017; Basedow et al., 2018; Ingvaldsen et al.,
2021). Observations and model simulations consistently in-
dicate that ocean heat convergence to the Arctic Ocean and
the hydrological cycle in the Arctic region are intensifying
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under a warming climate (Wang et al., 2023). In this subsec-
tion, we will assess the models’ ability to simulate the mean
state and temporal changes in Arctic—Subarctic ocean trans-
ports through key gateways (the Bering Strait, Barents Sea
Opening, Fram Strait and Davis Strait; see Fig. 1).

The ocean volume (VT), heat (HT) and freshwater (FWT)
transports through a gateway transect are defined as follows:

VT = f / uydzde, @

HT = f/ PoCpUn (0 — Orer)dzde, (3)

FWT = // Un (Sret — S)/ Srerdzdl, “)

where u, represents the ocean velocity perpendicular to the
transect, 6 denotes potential temperature, G.¢f is the reference
temperature, S indicates salinity, S is the reference salinity,
Po corresponds to ocean density, ¢, represents the specific
heat capacity of seawater, and the integration is performed
over the height z from the ocean bottom to the surface and
over the distance ¢ along the transect. Ocean heat transports
are calculated relative to 6 = 0°C, and freshwater trans-
ports are calculated relative to Sy = 34.8 psu, which is an
estimate of the mean salinity of the Arctic Ocean (Aagaard
and Carmack, 1989).

Monthly velocity, temperature and salinity data are avail-
able from the model outputs and are used in the calculations
so eddy transports are largely neglected. It was suggested that
heat directly transported by eddies is small at the Fram Strait
(Kawasaki and Hasumi, 2016), while eddies can influence
the mean flow into the Arctic basin by altering the distribu-
tion of the Atlantic water current between the re-circulation
branch and the inflow branch (Wekerle et al., 2017; Hat-
termann et al., 2016). Additionally, it should be noted that
mooring instruments used for measuring ocean transports
have low spatial resolutions without covering whole gate-
way transects, and as a result, the uncertainties associated
with transport estimates are usually large (e.g., Beszczynska-
Moeller et al., 2011; Wang et al., 2023). Nonetheless, despite
these limitations, these estimates represent the most reliable
data currently available for evaluating models.

3.5.1 Bering Strait

The Bering Strait volume transport had a climatological
value of 0.8+0.2 Sv, but it increased to 1£0.1 Sv in the last 2
decades (Woodgate and Peralta-Ferriz, 2021). Both the ocean
heat and freshwater transports also increased during this pe-
riod, from 4 TW and 2400 4 300 km3 yr’1 in 1980-2000 to
6 TW and 3000280 km? yr~! in 2000-2020 (Woodgate and
Peralta-Ferriz, 2021; Wang et al., 2023). The low- and high-
resolution models exhibit similar spreads in the Bering Strait
volume, heat and freshwater transports (Fig. 17). Despite the
model spreads, the interannual variability of the Bering Strait
transports is highly consistent among the models regardless
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of model resolution (Fig. S6), as found in previous model
intercomparisons (Wang et al., 2016a; Shu et al., 2023).

It has been found that low-resolution ocean models strug-
gle to reproduce the observed upward trend in Bering Strait
volume transport (Shu et al., 2023). Increasing the resolution
does not improve this issue in any of the models analyzed in
our study (Fig. 17a, d). As these models employ various nu-
merical methods, resolutions, and parameterizations, but still
exhibit the same issue, it is likely that the problem originates
from the atmospheric reanalysis and runoff data (JRA55-do)
used to drive these models. The models are able to capture
the observed increase in heat transport over the past decade
(Fig. 17b, e), indicating that the warming of the Pacific Wa-
ter inflow contributes partially to the increase in ocean heat
transport (Woodgate and Peralta-Ferriz, 2021; Wang et al.,
2023). However, none of the models simulate the observed
increase in freshwater transport (Fig. 17c¢, f) because the rise
in freshwater transport is primarily driven by the increase in
volume transport (Woodgate and Peralta-Ferriz, 2021). Over-
all, for the Bering Strait, both the model spreads and the mod-
els’ abilities to simulate interannual variability and decadal
trends are not substantially influenced by model resolution.

3.5.2 Barents Sea Opening

The ocean volume transport through the Barents Sea Open-
ing did not show a statistically significant trend over the past
few decades, but the ocean heat transport exhibited an up-
ward trend (Skagseth et al., 2020). Based on mooring ob-
servations in the 1990s and 2000s, the climatology of ocean
volume transport is estimated to be between 2 and 2.3 Sv
(Smedsrud et al., 2010, 2013). The models tend to over-
estimate the volume transport in both their low-resolution
and high-resolution configurations (Fig. 18a, d). The low-
resolution CMCC-NEMO model stands out as an outlier,
with a volume transport nearly twice that of the observations,
while this bias is reduced in its high-resolution counterpart.
The heat transport in the Barents Sea Opening was approxi-
mately 70 TW in the 2000s (Smedsrud et al., 2013). Two low-
resolution models, FSU-HYCOM and IAP-LICOM, under-
estimate the heat transport, while their high-resolution coun-
terparts exhibit higher heat transport, becoming similar to
(IAP-LICOM) or even larger (FSU-HYCOM) than the ob-
servations (Fig. 18b, e). Although increasing the horizontal
resolution improves the ocean volume transport in CMCC-
NEMO, the high-resolution model still exhibits a positive
bias in heat transport, indicating the influence of warmer
ocean temperatures. Nevertheless, the model spreads in the
Barents Sea Opening volume and heat transports are slightly
reduced in the high-resolution models (Fig. 18a, b, d, e), sug-
gesting potential model improvements with increasing reso-
lution.

The interannual variability of ocean volume and heat
transports is consistent among the models and is not strongly
influenced by model resolution (Fig. S7). A synthesis of
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models and observations suggests an increase in heat trans-
port of approximately 8 TW from 1980-2000 to 2000-2020
(Wang et al., 2023). The models simulate a consistent trend,
with an increase close to this value.

The Atlantic water inflow in the Barents Sea Opening is
saltier than the average salinity of the Arctic Ocean, making
it a freshwater sink for the Arctic Ocean. The net freshwa-
ter transport in the Barents Sea Opening is a small, negative
value, estimated to be around —100km?> yr~! (Serreze et al.,
2006). In both the low-resolution and high-resolution mod-
els, there are two models that simulate excessively large neg-
ative values (Fig. 18c, f). IAP-LICOM exhibits the largest bi-
ases in both groups. As it does not have outlier volume trans-
ports, the biases in freshwater transport are primarily due to
its positive salinity biases in the inflow. The interannual vari-
ability of freshwater transport is not consistent among the
low-resolution models but improves in the high-resolution
models (Fig. S7).

3.5.3 Fram Strait

The climatological net volume transport through the Fram
Strait is estimated to be —2 +2.7 Sv (Schauer et al., 2008).
Among the low-resolution configurations, two models (AWI-
FESOM and FSU-HYCOM) exhibit a good representation
of the mean volume transport, while four of the high-
resolution configurations perform well, except for CMCC-
NEMO (Fig. 19a, d). The mean heat transport through the
Fram Strait was approximately 30 TW in the period 1980—
2000 and increased to about 40 TW in 2000-2020 (Wang
et al.,, 2023). Three of the low-resolution configurations
(CMCC-NEMO, FSU-HYCOM and IAP-LICOM) show in-
sufficient heat transport (Fig. 19b), which contributes to their
strong cold biases in the Atlantic water layer (Figs. 4 and
5). In all the models, the heat transport increases with res-
olution (Fig. 19b, e), with the weakest increase observed in
AWI-FESOM, possibly due to there being the same model
resolution outside the Arctic Ocean in both configurations.
Two models (CMCC-NEMO and FSU-HYCOM) exhibit ex-
cessively high heat transport in their high-resolution config-
urations, contributing to the excessively warm Atlantic water
layer in these models (Fig. 6h, i). The climatological fresh-
water transport in the Fram Strait is approximately —2700 £
530 km? yr’1 (Serreze et al., 2006). Two low-resolution
models (CMCC-NEMO and ACCESS-MOM) either signif-
icantly underestimate or overestimate the freshwater trans-
port in the Fram Strait (Fig. 19¢). The model spread in the
Fram Strait freshwater transport is considerably reduced in
the high-resolution models (Fig. 19f).

Most of the low-resolution models tend to exhibit weak
interannual variability in the Fram Strait heat and freshwa-
ter transports (Figs. 19 and S8). With the exception of IAP-
LICOM, all the high-resolution models simulate an increase
in heat transport in the early 1990s and the first 2 decades
of the 21st century, consistently with the changes suggested
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by observations and previous model studies (Polyakov et al.,
2013; Wang et al., 2020b). On the contrary, these decadal
changes in ocean heat transports are not captured by three of
the low-resolution models. Observations indicate an increase
in freshwater export in 2010-2013 compared to the 2000s,
as manifested by strengthened currents and lower salinity
(de Steur et al., 2018). All the high-resolution models sim-
ulate an increase in freshwater export over this period, with
two models (AWI-FESOM and FSU-HYCOM) even captur-
ing a magnitude similar to the observed increase (Fig. 19f).
In contrast, all the low-resolution models exhibit either an
overestimation or underestimation of the magnitude of this
freshwater transport change (Fig. 19¢). Therefore, the sim-
ulated variability of ocean heat and freshwater transports in
the Fram Strait is notably improved with increasing resolu-
tion.

3.5.4 Davis Strait

The volume transport in the Davis Strait was estimated
to be —2.6+1 Sv in 1987-1990 (Cuny et al., 2005) and
—1.64+0.5 Svin 2004-2010 (Curry et al., 2014). Among the
low-resolution models, IAP-LICOM exhibits a low volume
export without clear interannual variability (Fig. 20a) due
to the closure of the western straits in the Canadian Arctic
Archipelago (Fig. 2e). The low-resolution ACCESS-MOM
model shows unrealistically positive volume transport (in-
flow to the Arctic) in some years. In both low-resolution IAP-
LICOM and ACCESS-MOM models, the biases in volume
transport in the Davis Strait are anticorrelated with the bi-
ases in the Fram Strait (Figs. 19a and 20a) because the Arc-
tic export is distributed between these two gateways (Wang
et al., 2023). The low-resolution CMCC-NEMO model ex-
hibits excessively high volume export, nearly double the ob-
served values. The model spread in the mean volume trans-
port is significantly reduced in the high-resolution models
(Fig. 20d). The climatological heat and freshwater trans-
ports in Davis Strait are estimated to be 18+ 17TW and
—3200 4 320km?> yr~!, respectively, based on observations
at the end of the 1980s (Cuny et al., 2005). Similarly to the
biases in volume transport, the heat and freshwater transports
in the Davis Strait are either too low or too high in the three
aforementioned low-resolution models (Fig. 20b, c). Increas-
ing resolution reduces the model spread and brings the results
closer to the observations for both heat and freshwater trans-
ports (Fig. 20e, f). It is important to acknowledge that the
observation of the Davis Strait heat transport has a very lim-
ited time span and is accompanied by substantial uncertainty.
However, irrespective of this limitation, a decrease in model
spread suggests improvements in high-resolution models.
Increasing resolution clearly improves the intermodel con-
sistency in the simulated interannual variability of ocean vol-
ume and freshwater transports in the Davis Strait, but this is
not the case for heat transport (Fig. S9). This indicates that
the models exhibit less agreement in simulating the advec-
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Figure 19. The same as Fig. 17 but for the Fram Strait (FS). The observational estimates are taken from Schauer et al. (2004) and Kar-
pouzoglou et al. (2022).
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Figure 20. The same as Fig. 17 but for the Davis Strait (DS). The observational estimates are taken from Cuny et al. (2005) and Curry et al.
(2014).
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tion of water of Atlantic origin from the Irminger Sea to
Baffin Bay. The high-resolution models consistently simu-
late a reduction in the Davis Strait volume and freshwater
exports in the early 1990s and an increase in the middle
to late 2010s. The former reduction is primarily due to the
positive Arctic Oscillation, which shifted more Arctic ex-
port to the Fram Strait, while the latter increase is mainly
attributed to the drop in dynamic sea level south of Green-
land (Q. Wang et al., 2022; Wang et al., 2023). The increase
in the Davis Strait freshwater export from 2010 to 2017 ex-
ceeded 1500 km® yr—!, as suggested in a previous modeling
study (Q. Wang et al., 2022). This magnitude of increase is
quantitatively reproduced in all the high-resolution models
except for CMCC-NEMO, which simulates a too-large in-
crease.

4 Discussion
4.1 Model spin-up and integration length

There is no consensus about how to initialize sea ice mod-
els at the beginning of simulations in the OMIP-2 protocol,
and practically different modeling groups used different data
sets of temperature and salinity climatology to initialize their
ocean models (Chassignet et al., 2020). As shown in Fig. 9, in
models with large salinity biases relative to climatology, their
salinity drifts away from initial conditions quickly within the
first few model years. The time series of freshwater content
further demonstrate that (i) the model spread is relatively
small in the first year, and (ii) it increases quickly with time
within the first few years (Fig. 16). This indicates that our
model intercomparison is not significantly influenced by dif-
ferences in model initial conditions. The depth—time plots of
basin temperature show that the temperature differences be-
tween models also stem mainly from model drift and not ini-
tial conditions (Fig. 10).

In this study, our primary focus was on the first cycle of the
OMIP-2 simulations due to limitations in model data avail-
ability. The simulated ocean, especially the deep ocean, does
not reach a quasi-equilibrium state within this integration
length. For one of the participating models, ACCESS-MOM,
we had access to data for a few cycles. We compared temper-
ature profiles for the last year (2018) of the first three simu-
lation cycles from this model (see Fig. S10). We found that,
in the low-resolution configuration, the vertical temperature
profiles continue to homogenize over time, whereas, in the
high-resolution configuration, temperature has a smaller drift
over time. This finding reinforces the advantages of utilizing
a high resolution.

4.2 Representativeness of analyzed models

Despite the fact that we have a relatively small group of
model pairs in this study, the models show the common is-
sues identified in previous model intercomparison studies,
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thus allowing us to investigate the impacts of model reso-
lutions on these issues. However, quantitatively, the multi-
model mean of these models may not be able to represent the
situation where all ocean models used in CMIP simulations
are considered. For example, there are models with overly
warm Barents—Kara seas and an overly warm Arctic basin, as
identified in previous CORE-II and CMIP model intercom-
parison studies (Ilicak et al., 2016; Shu et al., 2019), while
there are no models of this kind in our small model set.

The employed model resolutions are determined by each
modeling group according to their model development strat-
egy, experience and available computing resources and are
not specified in the OMIP-2 protocol. This is in line with how
CMIP models are developed. As a result, the model resolu-
tions differ notably in both the low- and high-resolution sets.
The comparison between the two model sets reflects possible
changes between models in the phase of CMIP6 and future
CMIP phases. Despite the variety in the resolutions between
the models, the improvements in simulating Arctic tempera-
ture and salinity by means of increased resolutions are con-
sistent among the models, except for one model that used a
sea ice model without dynamics in its high-resolution ver-
sion.

The low-resolution AWI-FESOM model exhibits more re-
alistic hydrography and stratification than some of the high-
resolution models. Therefore, in future ocean model develop-
ments for improving Arctic Ocean simulations, tuning model
parameterizations and/or some numerical aspects is just as
crucial as increasing model resolution. One of the possible
reasons that AWI-FESOM has relatively small temperature
biases in the Arctic basin could be that it reasonably sim-
ulates the temperature in the Barents—Kara seas (see more
discussions in Sect. 4.4).

4.3 Horizontal resolution versus vertical resolution

Two of the models included in this study allow us to clearly
distinguish the impacts of horizontal resolution from those
of vertical resolution. In FSU-HYCOM, the high-resolution
configuration has a coarser vertical resolution compared to
the low-resolution configuration. Therefore, the improved
simulation of Atlantic water layer temperature, halocline
salinity and some gateway transports in the high-resolution
FSU-HYCOM can be mainly attributed to increased horizon-
tal resolution.

In AWI-FESOM, the vertical resolution remains the same
in both configurations. The reduced thickness of the Atlantic
water layer and the improved cyclonic circulation of the At-
lantic water in the deep basin in the high-resolution con-
figuration are therefore associated with increased horizontal
resolution. Among the five model pairs, AWI-FESOM ex-
hibits the smallest difference between the two configurations.
Firstly, its low-resolution configuration does not exhibit ex-
treme biases, leaving less room for improvement. Secondly,
the resolution outside the Arctic is the same in both AWI-
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FESOM configurations, indicating that the difference in sim-
ulation results is solely due to the local differences in model
configurations. In other models, the impacts of different res-
olutions outside the Arctic can propagate into the Arctic
Ocean through gateway transports, contributing to the Arc-
tic differences within the model pairs.

4.4 Processes related to temperature and salinity biases

Our model intercomparison offers some clues for model de-
velopers and users with regard to improving certain pro-
cesses in their models. For instance, the low-resolution
ACCESS-MOM model (with a horizontal resolution of about
9km, higher than in the other low-resolution models) ex-
hibits the highest net heat transport through the Fram Strait
among the low-resolution models, but it has a significant cold
bias in the Arctic basin. This suggests that the cold water
originating from the Barents Sea is the main cause of the
basin’s cold bias in this model. The other two low-resolution
models (CMCC-NEMO and FSU-HYCOM) with cold biases
in the Arctic basin also simulate excessively cold water in
the northeast Barents Sea. In the high-resolution configura-
tions of these models, the cold biases in the northeast Barents
Sea are largely eliminated. However, as the other two low-
resolution models (AWI-FESOM and IAP-LICOM) do not
exhibit significant cold biases in the northeast Barents Sea,
it is possible that a low resolution alone is not the primary
cause of the cold biases. Previous analyses of forced ocean—
ice models (Ilicak et al., 2016) and coupled climate mod-
els (Shu et al., 2019) have actually shown that some mod-
els could have too-warm water originating from the Barents
Sea. It was also found that the temperature biases in the Arc-
tic basin are significantly correlated with ocean temperature
and winter mixed-layer depth in the Barents—Kara seas (Shu
et al., 2019). Therefore, investigating the air-sea heat ex-
change and water mass transformation in the Barents—Kara
seas in models exhibiting strong cold or warm biases may
offer insights into effectively reducing Arctic Ocean tem-
perature biases in low-resolution models. The fact that in-
creasing resolution does help reduce cold biases in the north-
east Barents Sea in our analyzed models implies that some
resolution-dependent parameterizations or numerics in these
models may contribute to the biases.

In terms of the model representation of Arctic freshwater,
particularly regarding the spatial distribution and temporal
changes in freshwater content, notable improvement is not
observed with increasing resolution. Although salinity biases
in the halocline are reduced in some high-resolution configu-
rations, two models exhibit similar or even larger sea surface
salinity biases when their spatial resolution is improved. This
could potentially be attributed to weak or absent sea surface
salinity restoration. The strong dependence of simulated sea
surface salinity on numerical restoration indicates the general
need for improvements in the surface freshwater budget and
the processes influencing freshwater circulation and distribu-
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tion, such as the impact of sea ice on momentum transfer in
models. Reducing the overall biases in salinity, which remain
large in most of the high-resolution models, is crucial as the
surface geostrophic currents in the Arctic basin are directly
influenced by the spatial pattern of the freshwater column
(Armitage et al., 2017; Wang, 2021).

4.5 Comments on impacts of mesoscale eddies

Assessing mesoscale eddy activity in the high-resolution
simulations is beyond the scope of this paper. It is worth not-
ing that the high-resolution OMIP-2 models assessed in this
study only marginally permit mesoscale eddies in the Arc-
tic Ocean. The influence of eddies appears to be reflected
in the disparity in winter MLDs between two configurations
for some of the models. However, there is no conclusive ev-
idence suggesting that the major improvements in the high-
resolution models are attributable to simulated eddies in the
Arctic Ocean. In particular, the first baroclinic Rossby radius
in the Barents Sea is extremely small (approximately 2 km;
Nurser and Bacon, 2014), and these high-resolution models
cannot adequately resolve eddies in this region. Therefore,
the reduction in the large temperature bias in the northeast-
ern Barents Sea (and thus in the Arctic deep basin) in three of
the analyzed models cannot be attributed to resolved eddies
in the Barents Sea. Moreover, despite the fact that eddy trans-
port was proposed to be one of the key factors influencing the
amount of freshwater in the Beaufort Gyre (Manucharyan
and Spall, 2016; Meneghello et al., 2017), we did not ob-
serve notable improvements in the simulated mean state or
variability of the Arctic freshwater content in the investigated
high-resolution models.

Mesoscale eddies can influence the distribution of warm
Atlantic water between the inflow to the Arctic basin and the
recirculation branch in the Fram Strait (Hattermann et al.,
2016; Wekerle et al., 2017). Some permitted eddies in the
high-resolution models could contribute to the improvement
in ocean heat inflow in the Fram Strait in terms of mean state
and variability. However, it has been suggested that 1 km res-
olution is needed to simulate well the mesoscale eddies in
the Fram Strait and, thus, capture their effect (Wekerle et al.,
2017). Therefore, it is likely that other factors, such as the re-
duction in numerical mixing and the improved representation
of topographic steering of ocean currents at higher resolu-
tions, played a more important role in altering the distribution
of Atlantic water between its two branches and improving the
inflow in the Fram Strait.

5 Conclusions

This paper assesses Arctic Ocean simulations using five
pairs of matched low- and high-resolution models within the
CMIP6 OMIP-2 framework (Griffies et al., 2016). The pri-
mary objective is to investigate whether increasing resolu-
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tion can mitigate the typical model biases in low-resolution
models identified in previous studies, which have persisted
for more than 2 decades. The main findings are summarized
below.

1. The low-resolution models exhibit warm biases below
the core depth range of the Atlantic water layer, even
when cold biases are present in the Atlantic water layer.
This reflects the common issue of the Atlantic water
layer being excessively thick in low-resolution mod-
els. Additionally, the halocline and upper Atlantic wa-
ter layer exhibit fresh biases in low-resolution models.
These issues have been linked to spurious vertical mix-
ing (Holloway et al., 2007; Wang et al., 2016a). Increas-
ing resolution alleviates these issues in some model
pairs but not in all cases, implying that other factors,
such as differences in parameterizations and simulated
sea ice dynamics, could also influence the comparison.

2. An increase in horizontal resolution helps reduce bi-
ases in mean temperature and salinity in four of the
five models. By increasing resolution, the RMSE of
basin temperature in the upper 3500 m is reduced by
17 % and 33 % in the Eurasian Basin and Amerasian
Basin, respectively, when averaged over the five mod-
els. The multi-model-mean improvement in salinity is
less prominent, with a reduction in RMSE of 8 % in the
upper 700 m of the Amerasian Basin and no reduction
in Eurasian Basin.

3. Three of the low-resolution configurations display sig-
nificant cold biases in the Atlantic water layer, which
can be attributed to insufficient warm Atlantic water in-
flow in the Fram Strait and excessive cold water orig-
inating from the Barents Sea, similarly to what was
found in previous analyses of low-resolution models (Il-
icak et al., 2016; Shu et al., 2023). A higher resolution
reduces the temperature biases in all these models by
enhancing the Fram Strait heat import and reducing the
cold bias in the northeastern Barents Sea. By increasing
the resolution, the RMSE of temperature at 400 m depth
is reduced by 39 % when averaged over the five models.
The RMSE of salinity at 400 m depth is also reduced by
13 %.

4. Decadal warming events in the Atlantic water layer are
better simulated with a higher resolution. While only
one low-resolution model adequately reproduces the
warming of the Atlantic water layer in the 1990s and
2010s, four high-resolution models can do so. These
warming events arise from episodes of intensified heat
flux through the Fram Strait, which are more accu-
rately represented in high-resolution models. Observa-
tions show that the Atlantic water core temperature in-
creased by 0.3°C in the period of 2006-2017 com-
pared to the period of 1981-1995. On average, the five
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low-resolution models underestimated this warming by
58 %, while the five high-resolution models overesti-
mated this warming by a smaller percentage of 23 %.

5. High-resolution models exhibit shallower surface
MLDs, possibly reflecting the influence of permitted
but not well-resolved eddies in restratifying the mixed
layer. Two low-resolution models significantly overesti-
mate the MLD, but this bias is reduced in their high-
resolution counterparts in parts of the Arctic basin.
However, the reduction in the MLD bias is not accom-
panied by a reduction in salinity bias. Among the mod-
els capable of reasonably simulating the warm Atlantic
water layer (one low-resolution model and four high-
resolution models), the shoaling trend of the cold halo-
cline base depth in the eastern Eurasian Basin during the
2010s is captured. However, the high-resolution models
do not consistently simulate changes in the cold halo-
cline base depth on multi-decadal timescales.

6. Model performance in simulating the mean state of
freshwater spatial distribution and the temporal changes
in Arctic freshwater content does not improve with a
higher resolution. Although the bias in halocline salin-
ity is reduced in high-resolution models, the sea surface
salinity bias could worsen depending on the approach
used for sea surface salinity restoring. This factor ap-
pears to have a non-negligible impact on the model’s
representation of Arctic freshwater content and, thus, on
the simulated sea surface height.

7. An increase in horizontal resolution improves the sim-
ulation of Arctic gateway transports, primarily for the
Fram and Davis straits. For these two gateways, high-
resolution models exhibit reduced spreads in the trans-
ports, closer agreement with observations regarding the
mean states, and improved quantitative representation
of variability and changes. Models agree more on the
temporal variability than the mean state of the gateway
transports, as found in previous model intercomparison
studies (Wang et al., 2016a; Shu et al., 2023). Increas-
ing resolution does not resolve the challenge of simulat-
ing the observed increase in Pacific water inflow in the
2010s, suggesting that the origin of this issue may lie in
the common atmospheric and runoff forcing.

Overall, we found that increasing resolution has the poten-
tial to improve model representation of the Arctic Ocean, in-
cluding temperature and salinity in the Arctic basin, Atlantic
water layer, mixed-layer depth, cold halocline base depth,
and ocean transports through the Fram and Davis straits, al-
though not all models achieve improvements for all these
variables.

It is unlikely that most climate models participating in
near-future CMIP7 deck and scenario simulations will have
resolutions higher than those employed in the current high-
resolution OMIP-2 models. Therefore, our evaluation of the
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OMIP-2 models provides valuable and timely information
for groups preparing future CMIP simulations. In particular,
we suggest that some of the extreme model biases are not pri-
marily due to a low resolution alone, and investigating model
numerics and parameterizations could help improve the rep-
resentation of the Arctic Ocean in medium-resolution models
used in climate-scale simulations.
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