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Abstract. Data assimilation is an essential approach to im-
prove the predictions of land surface models. Due to the char-
acteristics of single-column models, assimilation of land sur-
face information has mostly focused on improving the as-
similation of single-point variables. However, land surface
variables affect short-term climate more through large-scale
anomalous forcing, so it is indispensable to pay attention to
the accuracy of the anomalous spatial structure of land sur-
face variables. In this study, a land surface image assimila-
tion system capable of optimizing the spatial structure of the
background field is constructed by introducing the curvelet
analysis method and taking the similarity of image structure
as a weak constraint. The fifth-generation ECMWF Reanal-
ysis – Land (ERA5-Land) soil moisture reanalysis data are
used as ideal observation for the preliminary effectiveness
validation of the image assimilation system. The results show
that the new image assimilation system is able to absorb the
spatial-structure information of the observed data well and
has a remarkable ability to adjust the spatial structure of soil
moisture in the land model. The spatial correlation coeffi-
cient between the model surface soil moisture and observa-
tion increased from 0.39 to about 0.67 after assimilation. By
assimilating the surface soil moisture data and combining
these with the model physical processes, the image assimila-
tion system can also gradually improve the spatial structure
of soil moisture content at a depth of 7–28 cm, with the spa-
tial correlation coefficient between the model soil moisture
and observation increased from 0.35 to about 0.57. The fore-

cast results show that the positive assimilation effect could be
maintained for more than 30 d. The results of this study ad-
equately demonstrate the application potential of image as-
similation system in short-term climate prediction.

1 Introduction

Soil moisture not only affects surface processes such as dust
(Lei et al., 2005), but also progressively influences climate
change by altering surface albedo, heat capacity, and sensi-
ble heat and latent heat transported to the atmosphere (Lin
et al., 2001; Li et al., 2019; Zhou et al., 2020a). Soil mois-
ture changes slowly relative to the atmospheric variables; that
is, the soil moisture has long-term memory. The initial soil
moisture anomaly in the sub-seasonal to seasonal forecast-
ing system can be transferred into the forecast, and thus it
is an important source of sub-seasonal climate predictabil-
ity (Koster et al., 2020). Accurate initial land surface con-
ditions can remarkably improve the accuracy of climate and
hydrological projections in short-term climate prediction, es-
pecially in fully coupled numerical models (Zhan and Lin,
2011; Wang and Cui, 2018; Zheng et al., 2018; Crow et al.,
2020; Reichle et al., 2021; Cui and Wang, 2022).

Based on the comprehensive consideration of observation
and model errors, the land surface data assimilation method
effectively integrates the model background field and vari-
ous types of observational data with different spatio-temporal
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distributions and error characteristics so as to obtain the op-
timal initial conditions of soil moisture (X. Li et al., 2020;
Naz et al., 2020). Research on land surface data assimilation
methods has gained the attention of meteorologists around
the world. Initially, the European Centre for Medium-Range
Weather Forecasts (ECMWF) used the nudging method to
adjust land surface variables based on the relationship be-
tween the forecast errors of atmospheric variables (e.g., spe-
cific humidity at near-surface level) and soil moisture er-
rors (Douville et al., 2000). In order to make the assimi-
lated analysis fields better coordinated with other variables
of the model, Mahfouf (1991) proposed the optimal inter-
polation (OI) scheme to assimilate near-surface temperature
and humidity observations. The four-dimensional variational
data assimilation (VDA) method has also been applied in the
study of land surface data assimilation (Reichle et al., 2001).
However, for complex land surface models with strong non-
linearity, it is difficult to compile adjoint models (Dunne and
Entekhabi, 2005). Therefore, VDA is barely used in land sur-
face assimilation. Kalman-filter-like assimilation with no ad-
joint models is more widely used for land surface data assim-
ilation (Tian et al., 2008; Jin and Li, 2009; Jia et al., 2010; Shi
et al., 2011; Muñoz-Sabater et al., 2019; Tangdamrongsub et
al., 2020).

Soil moisture assimilation has been conducted at differ-
ent spatial scales using a range of methods such as VDA
and Kalman filtering (Gruber et al., 2018; De Santis et al.,
2021; Muñoz-Sabater et al., 2019). Stable assimilation also
remarkably improves soil moisture prediction (Khaki et al.,
2020). However, in order to accommodate the features of
the single-column land surface model, the current land sur-
face assimilation system is a single-column assimilation sys-
tem, which neglects the spatial continuity of soil variables.
On the timescale of short-term climate change, soil mois-
ture is commonly responsible for abnormal changes in short-
term climate through long-term and large-scale anomalous
forcing (Lin et al., 2008; Zhong et al., 2020; Dirmeyer et
al., 2021). The significant influence of soil moisture on lo-
cal precipitation has been extensively studied, revealing re-
gional variations in its underlying mechanisms (Douville et
al., 2001; Cioni and Hohenegger, 2017). Additionally, soil
moisture can also trigger atmospheric teleconnection wave
trains or induce large-scale circulation anomalies through
impacting surface energy balance, which subsequently man-
ifest as non-local and large-scale climate effects (Gao et al.,
2020). Therefore, improving the accuracy of the anomalous
spatial structure of land surface variables, which serve as the
lower boundary conditions of numerical models, will help to
better predict short-term climate change caused by soil mois-
ture anomalies.

Ideally, a single-column assimilation system would also
be able to reproduce the correct spatial-structure features of
soil moisture anomalies if the assimilation can obtain the
closest result to the true value at each column. Due to the
non-uniform spatial distribution of precipitation, as well as

the heterogeneous spatial distribution of soil properties, land
cover types and topographic elevations, there are significant
variations in the spatial distribution of soil moisture (Tian et
al., 2021). The estimation of soil moisture by the land surface
model is adversely impacted by the uncertainties in atmo-
spheric forcing, model dynamics and parameterization, lead-
ing to significant spatial variations in the accuracy of sim-
ulated surface variables (Li, 2014; P. Li et al., 2020). Fur-
thermore, there are regional differences in the accuracy of
the estimation of the observation error and the background
error resulting from the single-column assimilation, which
ultimately contribute to the discontinuity of the abnormal
spatial structure in the analyzed soil moisture field. The es-
timation of single-point observation error and background
error through statistical methods is characterized by signif-
icant uncertainty, while point-by-point assimilation methods
have limitations in capturing spatial information from neigh-
boring pixels. In addition, the bias correction is commonly
employed to rectify the discrepancy between model simula-
tions and observations prior to assimilation. The prevailing
assimilation system primarily addresses the bias by incorpo-
rating scale adjustments into the model simulation based on
observed data. The spatial distribution structure information,
however, is compromised as a result of rescaling (Zhou et
al., 2019). Zhou et al. (2020b) also pointed out that most cur-
rent soil moisture assimilation methods eliminate the system-
atic biases between the observation and simulation by apply-
ing pixel-by-pixel scale transformation. This treatment dis-
cards the crucial spatial information contained in the obser-
vation and affects the application of soil moisture in numer-
ical weather prediction, flood forecasting and drought moni-
toring. Therefore, while data assimilation improves the accu-
racy of single-point soil variables, appropriately adjusting the
spatial structure of soil analysis variables is a critical devel-
opment direction for land surface assimilation systems. The
uneven spatial distribution of precipitation and the heteroge-
neousness of soil properties, land cover types and topogra-
phy result in significant spatial variations in the character-
istics of soil moisture (Tian et al., 2021). The effectiveness
of estimating soil moisture using observational data is lim-
ited due to significant spatial heterogeneity. Therefore, a lot
of studies strive to incorporate spatial-structure information
from soil moisture observation into land data assimilation to
enhance the accuracy of spatial patterns of soil moisture to
the greatest extent possible (Pauwels et al., 2001; Han et al.,
2012; Zhou et al., 2019). Enhancing soil moisture levels is of
utmost importance; however, it is equally crucial to acquire
more precise comprehension of the spatial distribution of soil
moisture for effective management strategies, particularly in
key regions like the Tibetan Plateau where land–air interac-
tions are significant and there are large spatial variations in
soil moisture.

With the continuous development of meteorological obser-
vation techniques, more and more meteorological informa-
tion can be displayed in the form of images with fine spatio-
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temporal resolutions, and their continuous dynamic changes
generally allow us to better understand the observed vari-
ables. However, the huge number of satellite observation im-
ages for the earth system are not sufficiently utilized in the
current data assimilation system (Vidard et al., 2008). Stroud
et al. (2009) developed several assimilation schemes that
combined the images obtained from the Sea-viewing Wide
Field-of-view Sensor with a two-dimensional sediment trans-
port model of Lake Michigan, which considerably improved
the predictions of sediment concentrations in southern Lake
Michigan. In order to quantitatively assimilate the structural
information contained in images or image sequences into
the numerical model, Le Dimet et al. (2015) extracted the
key structural observation information in the images using
curvelet transformation as the observation operator and im-
proved the prediction results of the shallow-water-equation
model through the VDA approach. Titaud et al. (2010) also
found that the direct VDA of image sequences is able to re-
construct initial vortices with highly correct positions, sizes
and profiles using the curvelet transform as the observation
operator. Currently, direct assimilation of image sequences
is primarily used to predict the evolution of geophysical flu-
ids. If the structural information in the observed images can
be introduced into the land surface data assimilation system
as observations, the accuracy of the spatio-temporal distribu-
tion structure of soil moisture in the model can be improved
in a targeted way. The purpose of this study is to construct
a land surface image assimilation system based on the theo-
retical frame of VDA so as to realize the direct adjustment
of the spatial structure of land surface variables and improve
the accuracy of the initial soil moisture values by integrat-
ing the observation information of image sequences and the
a priori knowledge from numerical models. In this study, an
attempt is made to test the effectiveness of the image assimi-
lation module in improving the spatial structure of soil mois-
ture at the land surface in a VDA framework, and the related
research methodology can be implemented in the alternative
assimilation framework as well.

The study area selected in this research is mainly East
Asia, encompassing the alpine regions of Siberia, the veg-
etative regions of eastern China, and the Tibetan Plateau and
desert regions of western China. The estimation of observa-
tion error and model error becomes more challenging in the
Tibetan Plateau region, particularly for single-point assimi-
lation. Including the plateau region can effectively showcase
the advantages of the image assimilation method. The paper
is organized as follows. Section 2 mainly introduces how to
select appropriate image observation operators and establish
an image assimilation system under the VDA framework.
Then, the error characteristics of the image observation op-
erators are systematically analyzed. The land surface model
and the observational data used in the assimilation system are
also briefly described in Sect. 2. Section 3 presents the ex-
perimental designs and analyzes the error characteristics of
background field and observation data in detail. The results

of the idealized experiments are shown in Sect. 4 to verify the
effectiveness of the image assimilation system in improving
the predictions of the land surface model. Section 5 gives the
summary and discussion.

2 Construction of image assimilation system

2.1 Land surface model

The Common Land Model (CoLM) developed by Dai et
al. (2003) was selected in this study. By considering biophys-
ical, biochemical, ecological and hydrological processes, this
model describes the transfer processes of energy, water and
carbon dioxide among soil, vegetation, snow cover and the
atmosphere well, allowing the simulation of soil temperature,
soil moisture, runoff, heat flux and other variables. In recent
years, CoLM has incorporated additional physical processes
such as glaciers, lakes, wetlands and dynamic vegetation. It
has also been successfully implemented in several global at-
mospheric models (Yuan and Liang, 2011; Ji et al., 2014;
Zhang et al., 2020; Yuan and Wei, 2022).

The surface spatial heterogeneity of CoLM is manifested
as a nested sub-grid hierarchy, with the grid units consist-
ing of multiple land units and plant function types (PFTs).
The bio-geophysical processes of CoLM are simulated on a
single soil–vegetation–snow column, and each sub-grid has
its own predictor variables. Grid-averaged atmospheric forc-
ing is used to force all sub-grid cells within a grid cell. The
model used in this study has a horizontal resolution of about
1.4°× 1.4°. There are 10 unevenly spaced soil layers and a
maximum of five snow layers in the vertical direction.

Soil moisture and its vertical transport are governed by in-
filtration, runoff, gradient diffusion, gravity and root extrac-
tion by canopy transpiration. Only the vertical transport of
soil water is considered in CoLM. The water in the soil will
percolate through the soil pores due to the combined effects
of gravity and capillary forces. According to the principle of
mass conservation, the vertical movement of soil water can
be mathematically described by the Richards equation.

∂θ

∂t
=−

∂q

∂z
−E−Rfm, (1)

where θ is the volumetric water content of the soil (unit:
m3 m−3), q the soil water flux calculated by the Darcy theo-
rem, E the rate of evaporation (unit: mm s−1), Rfm the rate
of thawing or freezing, and z the vertical distance from the
soil layer to the ground (q and z are downward positive).

Atmospheric forcing conditions provide constraints on
land surface models. The atmospheric forcing dataset used to
drive CoLM in this study includes the downward shortwave
solar radiation at the surface, downward longwave radiation,
near-surface air temperature, specific humidity, the precipita-
tion rate, surface atmospheric pressure, U -component wind
speed and V -component wind speed. It has a temporal reso-

https://doi.org/10.5194/gmd-17-3447-2024 Geosci. Model Dev., 17, 3447–3465, 2024



3450 W. Shen et al.: Development and preliminary validation of a land surface image assimilation system

lution of 3 h (at 00:00, 03:00, 06:00 UTC, etc.), and the spa-
tial resolution is T62 (about 1.875°) (Qian et al., 2006). The
forcing dataset was derived through combining observation-
based analyses of monthly precipitation and surface air tem-
perature with intramonthly variations from the National Cen-
ters for Environmental Prediction – National Center for At-
mospheric Research (NCEP-NCAR) reanalysis. To correct
the spurious long-term changes and biases in the NCEP-
NCAR reanalysis precipitation, surface air temperature and
solar radiation fields, Qian et al. (2006) combined the intra-
monthly variations from the NCEP-NCAR 6-hourly reanal-
ysis with monthly time series derived from station records
of temperature and precipitation. It is shown that the Com-
munity Land Model version 3 (CLM 3.0) reproduces many
aspects of the long-term mean, annual cycle, and interannual
and decadal variations when it was forced by this dataset.

In this study, CoLM is run in the offline mode, cyclicly
driven by the observation-based forcing data from 1948 to
2020 for 360 years. The water content of the deepest layer
changes extremely slowly over the last 50 years, and the
model can be considered to be in equilibrium.

2.2 Framework of image assimilation system based on
variational data assimilation

This study is based on the framework of three-dimensional
VDA (3D-VDA). The main principle of 3D-VDA is to sim-
plify data assimilation to a quadratic functional minimization
problem which characterizes the deviations between analy-
sis and observational fields as well as between analysis and
background fields.

Assuming that x denotes the vector of analysis variables,
xb denotes the background field and xa denotes the analysis
field, then the variation in x with time can be expressed as{
x (t)=M(x (t0))+ η(t)

x (t0)= U
, (2)

where M denotes the numerical prediction model and t and
t0 represents the prediction time and start time of the model,
respectively. η(t) is the model error at moment t , U ∈ R de-
notes the initial conditions of the model and R represents the
space in which the state variables are located.

If a direct or indirect observation vector of length L is rep-
resented by yo

∈Q and the observation space is represented
by Q, then the relationship between observations and state
variables can be expressed as follows:

yo (t)=H (x (t))+E, (3)

whereH : R→Q is the observation operator that represents
a mapping from the model space to the observation space.
The observation operator is simplified to a simple interpo-
lation operator when yo and x are the same type of physical
variable. If the two have different physical properties, the ob-
servation operator is a mapping operator with some complex

structure that transforms the model space into the observation
space. E represents observation error. The goal of variational
assimilation is to determine the model state at time t0 so that
the sum of the deviation of the state variable from the back-
ground field and the deviation of the simulated observation
based on the model variable from the actual observation is
minimized under the premise of additional constraints; that
is, the goal is to find an analysis field xa(t0) which minimizes
the following quadratic objective function J :

J (x)=
1
2
[x− xb]

TB−1 [x− xb]

+
1
2
[H (x)− yo

]
T(O+F)−1

[H (x)− yo
], (4)

where B, O and F are the error covariance matrices of the
background field, observation data and observation operator,
respectively, which are known as prior information. B−1 val-
ues are the inverse of the background error covariance matrix
with order N ×N , and N is the freedom degree of the anal-
ysis field. (O+F)−1 is the inverse of the observation error
covariance matrix with order L×L.

During minimizing the above objective function, the opti-
mal analytical variable is x = xa when ∇xJ (xa)= 0. It rep-
resents the optimal estimate of the true atmospheric state un-
der given background fields and observations and their error
information.

Images are generally characterized by the features of ob-
servation variables, such as geometry and distribution. From
a “mathematical” point of view, images are usually consid-
ered to be real-valued functions of consecutive real variables,
so they can be processed using mathematical tools. In this
case, the “numerical image” is a discrete version of the final
processed mathematical image (Le Dimet et al., 2014).

The so-called image assimilation refers to the introduction
of a weak constraint on the similarity between the structure
of the observed and simulated images in VDA so that the
image observations are used together with the conventional
observations to compute the optimal analysis variables. Thus,
the cost function for 3D-VDA can be written in the following
form:

J (x)= JB+ JO+ JI

=
1
2
(xo− xb)

TB−1(xo− xb)︸ ︷︷ ︸
conventional cost of JB

+
1
2
(H(xo)− y

o)T(O +F)−1(H(xo)− yo)︸ ︷︷ ︸
conventional cost of JO

+
1
2
(HF→S(fo)−HR→S(xb))

T(HF→S(fo)−HR→S(xb))︸ ︷︷ ︸
image cost JI

, (5)

where JB and JO denote the background and observation
terms in the conventional cost function and JI represents the
added image observation term. In the image observation term
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f (t) ∈ F , f0 represents the frame-wise observation image of
the image dynamic observation system at moment t0, which
belongs to the image observation space F . s represents the
image space under the mathematical definition. The image
structure operator HF→s represents the mapping from the
image space to the structure-defined mathematical space, that
is, the structural information extracted from the image obser-
vations, which represents the multi-scale geometric features
of the image. The operator HR→s implies a mapping from
the space of state variables to the mathematical space where
the structure resides and represents obtaining the same type
of structural information from the background field output by
the model.

2.3 Curvelet multi-scale analysis method

From the above equations, it is clear that the image structure
operator is a key technique for the image assimilation system.
The important information in an image is mainly located in
the discontinuities of the image, which can be described by
the spectral space well, and thus the image can be quanti-
tatively described by the spectral transformation coefficients
of the image. The curvelet transform is a perfectly suitable
multi-scale transform analysis method, which not only is ca-
pable of time–frequency analysis, but also has strong direc-
tional selection and discrimination capabilities (Titaud et al.,
2010).

The curvelet transform takes the inner product of the basis
function and the signal to achieve a sparse representation of
the signal. In the two-dimensional space R2, the spatial vari-
able is denoted by x and the parent wave is denoted by ϕj (x).
Thus, the curve wave coefficient is the inner product of the
function f ∈ L2(R2) and the curve wave ϕj,l,k:

c (j, l,k) := 〈f,ϕj,l,k〉 =

∫
R2

f (x)ϕj,l,k(x)dx, (6)

where j , l and k are the scale, direction and position parame-
ters, respectively, and the biggest difference with other spec-
tral analysis methods is that the curvelet transform takes into
account the direction parameter. The curvelet coefficients are
anisotropic and can efficiently represent the image edges and
fully exploit the image features. The reconstruction equation
of the coefficients is

f =
∑
j,l,k

〈f,ϕj,l,k〉ϕj,l,k =
∑
j,l,k

c(j, l,k)ϕj,l,k. (7)

An important fact in the practical application of data assimi-
lation methods is the presence of observation errors, which in
this case is represented by the noise in the observed images.
In order to effectively remove the image noise and extract
the main structural features from the image, we can choose
the curvelet coefficients at different scales. A simple “hard-
threshold” approach can achieve this goal by setting the
curvelet coefficients below the threshold (represented by σ )

Figure 1. Soil moisture distributions (a) from the raw image and
(b, c) extracted by curvelet analysis under the thresholds of (b) 0.1
and (c) 0.5 on 1 May 2016 in western East Asia.

to zero. De-noising and key-feature selection can be achieved
by adjusting the threshold value.

Figure 1 gives the structural information of the soil mois-
ture image extracted by the curvelet analysis method under
different threshold conditions on 1 May 2016 in East Asia.
Figure 1a shows the spatial distribution of soil moisture sim-
ulated by CoLM; it can be seen that soil moisture is low
in northwest China and high in the south and east. When
the threshold is 0.1 (Fig. 1b), the reconstructed image repro-
duces the low-value areas of soil moisture in northwest China
and the high-value areas in eastern and southern China but
only represents the large-scale spatial-structure features of
the raw image. When the threshold value is increased to 0.5
(Fig. 1c), the reconstructed image is definitely close to the
original image, and the critical features of the reconstructed
image, such as the dry zone in Xinjiang–Mongolia and the
wet area in southeast China and Siberia, are basically consis-
tent with those of the original image. Only some small-scale
noise information, such as two dry zones located in northern
Tibet and a wet zone near 59° N in northeastern Lake Baikal,
has been filtered out. It is shown that the multi-scale struc-
tural information of the image could be efficiently extracted
by the curvelet analysis method, which provides a basis for
introducing the spatial-structure information of the observed
data into the assimilation.
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3 Experimental design and error analysis

3.1 Datasets

Taking the curvelet transform method as the image obser-
vation operator, we construct the land surface image assim-
ilation system based on Eq. (5). To demonstrate the assim-
ilation effect of the image assimilation system, the ideal-
ized data are used to examine the ability of the image as-
similation method in adjusting the spatial structure of the
land surface model variables. The soil moisture reanaly-
sis data of the fifth-generation ECMWF Reanalysis – Land
(ERA5-Land) are chosen as the ideal observation data in this
study; they have a horizontal resolution of 9 km and a tem-
poral resolution of 1 h. The H-TESSEL (Hydrology Tiled
ECMWF Scheme for Surface Exchanges over Land) land
surface model is used in ERA5-Land to output the soil vol-
umetric water content data at four depth layers (0–7, 7–28,
28–100 and 100–289 cm). ERA5-Land is more accurate for
all land use types with a series of improvements and recal-
culations based on ERA5. The calculations are made without
coupling the atmospheric and wave module of the ECMWF
Integrated Forecasting System (IFS), allowing for a faster up-
date frequency. The horizontal and temporal resolutions are
increased to 9 km and 1 h, respectively, and the stratification
of output soil volumetric water content is consistent with that
of ERA5 (Muñoz-Sabater et al., 2021).

The soil volume water content reanalysis product V2.0,
generated by the land surface data assimilation system
CLDAS (China Meteorological Administration (CMA) Land
Data Assimilation System) of the National Meteorological
Information Center of the China Meteorological Administra-
tion, covers the Asian region (0–65° N, 60–160° E). The tem-
poral resolution is 1 h, and the spatial resolution is 0.0625°.
The vertical direction is divided into five layers: 0–5, 5–10,
10–40, 40–100 and 100–200 cm. The CLDAS product is pro-
duced using the near-real-time CLDAS atmospheric drive
product, which incorporates a larger number of ground sta-
tion observation data and a higher-quality background field
to drive various land surface models (such as CLM 3.5,
CoLM and Noah-MP). As a result, the dataset exhibits excel-
lent quality and offers high-spatio-temporal-resolution data
in the China region (Shi et al., 2011; Liu et al., 2011). The
CLDAS reanalysis data are therefore chosen as the indepen-
dent dataset, and an additional verification analysis of the as-
similation results based on the CLDAS data is conducted.

3.2 Ideal experimental design

As shown in Fig. 1a, the selected region for the experi-
ment (23–68° N, 73–117° W) covers most of the land area
of China, and the model spatial resolution is 1.4°× 1.4°. The
land–atmosphere coupling is the strongest in the western Ti-
betan Plateau, where soil moisture has a large impact on
climate change and is an essential precursor signal for the

summer precipitation forecasts in eastern China (Yuan et al.,
2021). The western arid zone has complex topography, with
strong spatial heterogeneity in soil moisture. In this region,
the surface energy and water vapor budgets also have a cru-
cial impact on the climate (Yang et al., 2022).

The assimilation is run from 1 May to 31 August 2016,
and the prediction is made from 1 to 30 September 2016.
Two sets of experiments are designed. The first sets of exper-
iments perform data assimilation (DA) four times a day with
an interval of 6 h (at 00:00, 06:00, 12:00 and 18:00 UTC), and
the soil moisture in the surface layer of 0–7 cm from ERA5-
Land is assimilated. The other group is the control (CTRL)
experiment, which has no observations assimilated.

Since it takes a period of time for the model to integrate to
adapt to the soil moisture after assimilation, the results of the
first 15 d of the experiment are discarded to ensure that the
model can reach a new hydrological equilibrium state, which
can make the evaluation of the assimilation effect more ob-
jective. The analysis in this study mainly focuses on the pe-
riod from 16 May to 30 September 2016. To highlight the
effect of image assimilation, the other observations are not
assimilated in this study; that is, JO is zero.

3.3 Analysis of error characteristics

From the cost function shown in Eq. (4), it can be seen that
the solution of the cost function also requires the estimation
of the background field error covariance and the observation
error in advance and the elimination of observation noise in
the image. To obtain more precise analysis results, we need
to accurately estimate the characteristics of various error co-
variances.

3.3.1 The covariance matrix of background field error

According to the characteristic of single-column models
whereby there is no correlation between the simulation errors
at different grid points, the covariance matrix of background
field error can be directly expressed as the variance of the
simulation error in the land surface model at each grid point.

The node depths of the top three soil layers in CoLM are
0.70, 2.79 and 6.22 cm, which are close to the first-layer
depth of the ideal observation data (0–7 cm). In this study,
the hourly soil moisture data of the top three layers output
by the land surface model from 2014 to 2015 are used as
the background field. The soil moisture reanalysis data of the
first ERA5-Land layer (0–7 cm) at the same time are interpo-
lated to the depth corresponding to the background field and
are then used as the ideal observation data. Based on the dif-
ference between the background field and observations, the
covariance matrices of background error are separately ob-
tained for the soil moisture of each of the top three layers.
The error covariance between different levels is not consid-
ered here.
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Figure 2. The spatial distributions of soil moisture simulation error
variance in the (a) first, (b) second and (c) third layers of the Com-
mon Land Model (CoLM) during the statistical period from 16 May
to 30 September 2016.

Figure 2 shows the distributions of background error co-
variance for the top three soil moisture layers. It can be seen
that the soil moisture in the top layer (Fig. 2a) is affected by
myriad factors, so its background error is larger than that of
the other two layers. The spatial characteristics of the back-
ground errors at different depths are similar, with relatively
small errors in Xinjiang, northern Tibet and Mongolia, which
may be related to the drought in this region. In contrast, in
humid areas such as Siberia, the soil moisture is affected by
additional factors, which causes relatively large simulation
errors.

3.3.2 Analysis of observation data error

In image assimilation, the observation noise can be ef-
ficiently eliminated by selecting an appropriate threshold
value. To further objectively determine the threshold, the soil
moisture of the ERA5-Land data at 100 instances is selected
as the original image. Different threshold values are chosen
for de-noising, and the reconstructed images with different
degrees of de-noising are then obtained by inverse curvelet
transformation. The threshold selection method is addition-
ally discussed based on the statistical characteristics of the
difference between reconstructed and original images.

Figure 3 shows the spatial distributions of the mean value
of 100 reconstructed fields and the mean value of recon-

structed errors, based on the raw soil moisture images ev-
ery 6 h (00:00, 06:00, 12:00 and 18:00 UTC) from 1 to
25 May 2016, with thresholds being 0.1 and 0.5 separately.
As can be seen from the original image (Fig. 3a), in terms
of large-scale structural features, soil moisture is relatively
low in the central part of the selected region (from Xinjiang
and northern Tibet to Mongolia), while it is relatively high in
the surroundings of low-value areas. High-value centers of
soil moisture are found in the southern Siberian Plain, east
of Lake Baikal, in eastern China, and south of the Tibetan
Plateau. When the threshold is 0.1, the average distribution
of the reconstructed field (Fig. 3b) reproduces the large-
scale characteristics of the original field, where the low soil
moisture is located in the middle and surrounded by high-
value centers. However, there are large errors between the
reconstructed field and the original field (Fig. 3c). In partic-
ular, the spatial distribution of errors is similar to that of the
large-scale original field, which indicates the loss of spatial-
structure information of the observations. When the thresh-
old increases to 0.5, the spatial correlation coefficient (SCC)
between the reconstructed field (Fig. 3d) and original field is
greater than 0.99, and the multi-scale features of the origi-
nal field are properly reflected. As can be seen from Fig. 3e,
the errors between the reconstructed and original fields are
basically within 0.02, and the error distribution presents no
obvious spatial-structure characteristics.

The image assimilation system finds the spatial structural
characteristics of assimilation according to the threshold val-
ues, and different thresholds could result in certain variations
in assimilated spatial structure. In order to clarify the spatial-
structure differences corresponding to different thresholds,
the spatial correlation method (Daley, 1991) is employed in
this study to elucidate the distinctive characteristics of spatial
structure corresponding to varying thresholds.

The hourly soil moisture data from ERA5-Land from 1
to 30 May 2016 are selected for analysis. The threshold σ
means the modulus of the decomposition coefficient falls
within the first 100× σ % percentile. For instance, a value
of 0.5 indicates that the mode retains the top 50 % of the
decomposition coefficient. The original image can be recon-
structed by selecting different threshold ranges, namely (0,
0.01], (0.01, 0.03], (0.03, 0.05], (0.05, 0.1], (0.1, 0.2], (0.2,
0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8,
0.9] and (0.9, 1.0]. The correlation coefficient between each
grid point and its neighboring grid points can be obtained
based on the reconstructed time series of each grid point. The
spatial structural characteristics of different scales in the re-
constructed images can be quantitatively expressed by the av-
erage correlation coefficients corresponding to different grid
point distances.

The mean correlation coefficient corresponding to grid
point distance is illustrated in Fig. 4. As can be seen, the
variation characteristics of the inter-grid correlation coeffi-
cient of the original soil moisture are represented by the black
line with respect to the grid distance. The average correlation
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Figure 3. The spatial distributions of (a) original soil moisture, (b,
d) reconstructed soil moisture and (c, e) reconstruction errors under
the threshold values of 0.1 (b, c) and 0.5 (d, e) averaged from 1 to
25 May 2016.

coefficient can exceed 0.5 within a radius of 200 km while
staying above 0.4 within a radius of 300 km. The distance
corresponding to high correlation coefficients represents the
characteristics of consistent changes in soil moisture within
a similar range; that is, soil moisture has the characteristics
of spatial structure at the corresponding scale.

When the threshold value is 0.01, the average correlation
curve exhibits a similar change in the correlation coefficient
of the original variable, thereby indicating that the curvelet
coefficient corresponding to this threshold value effectively
reproduces the large-scale spatial structure. The spatial-
structure scale represented by the corresponding curvelet
transformation reconstruction results decreases as the thresh-
old value increases, leading to a rapid decrease in the corre-
lation coefficient with increasing distance. The curvelet re-

Figure 4. Variation curves of the average correlation coefficient be-
tween grid points with the distance in the reconstructed ERA5-Land
hourly soil moisture image of the study area from 1 to 30 May 2016,
which is reconstructed based on the curvelet coefficients of (a) dif-
ferent threshold intervals and (b) cumulative thresholds.

construction results with different threshold intervals rep-
resent the structural characteristics of different horizontal
scales, while the cumulative threshold can represent the spa-
tial structural characteristics of soil moisture variables repre-
sented by the selected threshold in the assimilation well. The
average correlation coefficient of the cumulative threshold is
depicted in Fig. 4b. As can be seen, the top 10 % of curvelet
coefficients can effectively replicate the spatial correlation
characteristics of soil moisture variables. The results also in-
dicate that the variations in threshold values have minimal
impact on the assimilated spatial structure when the thresh-
old value exceeds 0.1.

Naturally, a higher threshold can effectively capture more
spatial structural features of the observed variables, but the
presence of observation errors imposes limitations on its con-
tinuous increase. The observational error is typically char-
acterized by stochastic fluctuations. When the discrepancy
between the reconstructed results and the original variables
exhibits random variation characteristics, it can be inferred
that the observation information eliminated by the threshold
method primarily consists of observation errors.
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Figure 5. Probability density distributions of 100 reconstructed er-
rors under different thresholds. The dashed magenta line represents
standard normal distribution. The solid red, blue, black, green and
orange lines represent threshold values of 0.4, 0.5, 0.6, 0.7 and 0.8,
respectively.

To better clarify the statistical characteristics of the re-
construction errors under different thresholds, Fig. 5 shows
the probability density distribution curves of the reconstruc-
tion errors for 100 reconstructed fields at different thresh-
olds. For the error at the threshold of 0.5, the skewness co-
efficient of the probability density distribution curve is 0.00
and the kurtosis coefficient is 0.38, indicating the curve is
close to the standard normal distribution curve (the skewness
and kurtosis coefficients are all 0). With the gradual increase
in the threshold value, although the reconstruction error de-
creases, the residual error is mainly concentrated in the range
of smaller values, and the curve shows a “sharp-peak” dis-
tribution. Considering that the observation errors are mostly
random errors, it is reasonable to believe that the reconstruc-
tion errors at the threshold of 0.5 are mainly observation er-
rors, which also implies this threshold is good for the purpose
of de-noising the observation images.

3.4 The influence of image assimilation constraints

Two sets of ideal experiments are designed to validate the im-
pact of image assimilation and evaluate its superiority over
traditional single-column assimilation in adjusting the spa-
tial distribution structure of soil moisture. The ideal obser-
vational data for assimilation are the ERA5-Land reanalysis
soil moisture. The first set corresponds to the conventional
assimilation experiment, where J(x) = JB+ Jo, as described
by Eq. (5). Another set is the image assimilation experiment,
where Jo = 0 in Eq. (5), indicating that J(x) = JB+ JI.

The process of data assimilation entails leveraging the dis-
crepancy between the observed data and background field,
in conjunction with a priori knowledge of observation error
and background error, to derive an analysis field that closely
approximates the true value. The primary challenge in single-

Figure 6. Spatial distribution of observation errors.

column assimilation lies in acquiring precise prior informa-
tion regarding observation error. The spatial distribution of
observation error for a specific single-column assimilation
experiment is illustrated in Fig. 6. Considering the necessity
for an ideal experiment, it is assumed that the observation er-
ror outside the China region is negligible, while a significant
error is presumed within the China region so as to emphasize
the impact of observation error on assimilation results.

The spatial distributions of soil moisture for the ideal ob-
servation data and different experiments at 00:00 UTC on
1 May 2016 are given in Fig. 7. The spatial distribution of
surface soil moisture in ERA5-Land is illustrated in Fig. 7a.
The northern Siberian region of the selected area exhibits
a relatively high soil moisture content overall, with a ring-
shaped distinct wet zone in the northwest. The central region
stretching from Xinjiang to western Mongolia is a significant
arid area. However, the soil moisture in the Tianshan range is
wet. The soil moisture of the Tibetan Plateau region gradu-
ally decreases from west to east. The soil moisture in south-
ern Qinghai, Hunan and Jiangxi is characterized by a high
level of saturation, while Gansu, Ningxia and Hebei experi-
ence relatively arid soil conditions. Figure 7b is the distribu-
tion of soil moisture in the control experiment (background
field). It is evident that there are significant disparities in the
spatial distribution of soil moisture when compared with the
reanalysis data. In the control experiment, a dry region ex-
tends from west to east in the northern area of Lake Baikal,
while eastern Kazakhstan and central Mongolia also exhibit
arid conditions.
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Figure 7. Spatial distributions of surface soil moisture for
(a) ERA5-Land, (b) the control (CTRL) experiment, (c) the anal-
ysis field of the conventional assimilation experiment and (d) the
analysis field of image assimilation experiment at 00:00 UTC on
1 May 2016.

Figure 7c shows the results of the single-point assimilation
experiment. The observation error outside the China region
is relatively minimal, indicating a strong correspondence be-
tween the analysis field and the observation data, and the
overall distribution also exhibits a high degree of conformity
with the observation. The analysis field in the China region,
however, closely resembles the background field. Neverthe-
less, there is a significant disparity between the observed soil
moisture and that of the background field, indicating a lack
of adjustment based on observed information.

Figure 7d is the assimilation results of the image assimi-
lation ideal experiment. It is evident that image assimilation
effectively adjusts the distribution pattern of soil moisture.
The abovementioned characteristics of soil moisture in the
northwest region, the arid region of Xinjiang and Mongolia,
and the humid region of the Tianshan are all reflected well in
the analysis field.

4 Results

Figure 8 shows the variation in the cost function values with
the number of iterations when assimilating ERA5-Land sur-
face soil moisture using the image assimilation system at
00:00 UTC on 16 May 2016. The criterion of convergence is
that the gradient of the cost function values is less than 10−9.

Figure 8. Variation in the cost function value with the number of
iterations using the image assimilation system at 00:00 UTC on
16 May 2016.

It can be seen that the initial value of the cost function is
1121.0, which has been reduced to 863.1 by the second itera-
tion. The convergence speed of the cost function is relatively
fast, and it only needs 22 iterations, which also demonstrates
the validity and rationality of introducing the image operator
term into the cost function. The fast convergence speed of the
cost function caused by the constraint of the image operator
also indicates that the assimilation can effectively absorb the
spatial-structure information of the observation.

Figure 9 shows the 0–7 cm soil moisture distributions of
the observation, the analysis field from the image assimi-
lation system and the output from CoLM at 00:00 UTC on
16 May 2016. It can be seen that the surface soil moisture
of ideal observations (Fig. 9a) is drier across Mongolia and
Xinjiang but wetter in southern China. The observed soil
moisture is also relatively high in the vicinity of the Tian-
shan, the eastern part of the Tibetan Plateau and the south-
ern part of Lake Baikal, as well as in the eastern parts of
Henan Province and Inner Mongolia. However, the results
of the CTRL experiment (Fig. 9c) show a “high–low–high”
distribution from south to north, which is extremely differ-
ent from the spatial structure of the observation. It can be
seen from the spatial distribution of the analysis field that the
soil moisture structures are all remarkably improved at dif-
ferent scales (Fig. 9b). Regarding large-scale structure, the
structural wet bias from northwest China to Mongolia can
be thoroughly corrected, and the observed structural features
of low soil moisture from southern Qinghai to southeastern
China are nicely reproduced in the analysis field. In addition,
some relatively small-scale structures, such as the relatively
wet soil in the Tianshan region of Xinjiang, the central part of
Qinghai Province, and the northeastern part of Lake Baikal,
are also represented well in the analysis field.

Figure 10 shows the spatial distributions of soil moisture at
0–7 cm at 00:00 UTC on 1 September 2016 from the obser-
vation, DA experiment and CTRL experiment. It can be seen
from Fig. 10 that, after 4 consecutive months of cyclic as-
similation, the large-scale structure of surface soil moisture
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Figure 9. Spatial distributions of soil moisture at the depth of 0–
7 cm for (a) the observation, (b) the analysis field from the im-
age assimilation system and (c) the background field from CoLM
at 00:00 UTC on 16 May 2016.

in the analysis field is much closer to the observation than
that in the CTRL experiment. The improvement is mainly
concentrated in the dry zones across Xinjiang–Mongolia, as
well as the wet centers in the Tianshan and central-northern
Qinghai Province. The dry tongue from Ningxia Province to
Shanxi Province in China has also been reproduced in the
analysis field. In addition, the distribution structure of wet
areas in the region north of 60° N and east of 111° E has also
been thoroughly improved in the analysis field. Overall, the
structural characteristics of soil moisture at different scales
in the analysis field are in better agreement with the observa-
tions.

Moisture conditions of the underlying surface may have
some influence on short-term climate anomalies, but whether
the effect is significant mainly depends on the duration of the
underlying surface features. The surface soil moisture is con-
siderably affected by external high-frequency perturbations,
so the retained anomalous signals are susceptible to inter-
ference, making the anomalous signals difficult to maintain.
However, the deep-layer soil moisture has an excellent and
persistent ability to maintain the abnormally strong signals,
which may have a certain impact on the later climate anoma-
lies (Xu et al., 2021). Therefore, it is necessary to conduct
further analysis on soil moisture improvement at a deeper
level through the image assimilation system.

Figure 10. The soil moisture at 0–7 cm from (a) the observa-
tion, (b) the data assimilation (DA) experiment after 4 months of
continuous assimilation and (c) the control (CTRL) experiment at
00:00 UTC on 1 September 2016.

By assimilating the surface soil moisture through the im-
age assimilation system, the deep-layer soil moisture is si-
multaneously adjusted under the soil hydrodynamic and ther-
modynamic constraints of the land surface process model.
Figure 11 shows the spatial distributions of the ideal soil
moisture observation and the soil moisture predictions from
the DA and the CTRL experiments at the depth of 7–28 cm at
00:00 UTC on 1 September 2016 after the final assimilation.

It can be seen that the distribution pattern of deep-layer
soil moisture observation (Fig. 11a) is relatively consistent
with that of the surface-layer soil moisture. This essentially
shows that the region from Xinjiang to Mongolia is an arid
region, while the regions of relatively high soil moisture
are located in southern–southeastern China and the Siberian
Plain. The high-value centers for the surface and soil mois-
ture content at a depth of 7–28 cm are practically the same,
but overall, the soil moisture at a depth of 7–28 cm is wet-
ter than the surface. The analysis field of image assimilation
(Fig. 11b) shows drought in the southern part of Mongolia,
which is consistent with the observation. At the same time,
the high-value centers near Novosibirsk, the Tianshan and
the central part of Qinghai Province are also reproduced well.
This indicates that the image assimilation also has excellent
results in improving the spatial structure of soil moisture for
deeper layers.
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Figure 11. Same as Fig. 10 but for the soil moisture at the depth of
7–28 cm. The pentagram shows the station location for the single-
site analysis in Fig. 15.

Vertical motion of soil water is integrated over the layer
thickness, whereby the time rate of variation in water mass
must equal the net flow across the bounding interface plus
the rate of the internal source or sink. The terms of water
flow across the layer interfaces are linearly expanded us-
ing first-order Taylor expansion. Therefore, when the surface
data were assimilated, the net flow across the bounding inter-
face to deeper layers became more reasonable, corresponding
to surface variation. Of course, when it comes to the process
of permafrost and snow processes, such as soil freezing and
thawing in the Tibetan Plateau region, the variations in soil
moisture are much more complex, and the mechanism of data
assimilation acting on permafrost needs to be studied more
thoroughly in the future.

In order to further elucidate the vertical impact of data as-
similation, the vertical propagation characteristics of surface
assimilation influence are also examined based on actual ex-
periment results. The vertical–temporal profiles of soil mois-
ture for different underlying surface types selected in the Ti-
betan Plateau and plain areas are given in Fig. 12 so as to
elucidate the physical processes determining how the surface
soil moisture assimilation influences soil moisture at a depth
of 7–28 cm. The spatial locations of selected single points
are depicted in Fig. 12a. In order to emphasize the soil mois-
ture variation difference between plateau areas and plain ar-
eas, bare-soil points are situated in the eastern and western
regions of the plateau (represented by blue and black five-

pointed stars), while corn and needleleaf evergreen boreal
tree areas (represented by red and orange five-pointed stars)
are positioned within the plain area. Figure 12b–c illustrate
the difference in the soil moisture analysis field between the
DA experiment and CTRL experiment, as well as the tempo-
ral characteristics of soil moisture analysis field at different
depths of selected points in plateau areas. The vertical ordi-
nate denotes the position of the node depth for each soil layer
in CoLM. The most notable difference in the vertical varia-
tion in soil moisture among the two points on the plateau
is primarily attributed to the differences in both the mag-
nitude and the depth of this vertical change. In the western
plateau region, soil moisture at bare-soil points is generally
low, usually below 0.2 m3 m−3 (Fig. 12b). Additionally, the
surface undergoes significant temporal variations that may be
related to the prevalence of small-scale convective weather
systems in this plateau area. The vertical variation in bare-
soil moisture in the plateau region primarily occurs above
50 cm, while the soil moisture exhibits a consistent pattern
below 50 cm. The vertical variation in soil moisture is cor-
related with the intensity of the soil moisture anomaly. As
depicted in Fig. 12b and c, the vertical impact of minor per-
turbations in the bare-soil moisture within the plateau region
is negligible, primarily occurring above a depth of 3 cm. The
similarity between the two bare-soil points lies in the fact
that significant changes in soil moisture can rapidly impact
the top 10 cm of soil, resulting in similar characteristics ob-
served in the soil moisture above this depth. However, abnor-
mal soil moisture exhibits a noticeable time lag effect below
10 cm. The characteristics of assimilation influence exhibit
similarities with the features observed in vertical changes
in soil moisture. Assimilation significantly enhances surface
soil moisture around 10 July, and the increase in soil moisture
analysis within the plateau region can also rapidly impact the
10 cm depth of soil, with a maximum positive analysis in-
crement reaching 0.16 m3 m−3. The impact of assimilation
can affect soil moisture at a depth of approximately 10 cm
within 1 d, while it takes approximately 15 d for this analysis
to affect the 50 cm depth. However, the impact of the anal-
ysis increment can be sustained for over a month at depths
ranging from 20 to 50 cm.

Figure 12d and e are similar to Fig. 12b and c, but they are
selected from the plain areas. It is evident that the vertical
variation characteristics of soil moisture differ significantly
among different vegetation types. The analysis increment
for corn is relatively minimal. Image assimilation leads to a
substantial increase in surface soil moisture around 10 July.
The maximum positive analysis increment can reach up to
0.12 m3 m−3, with a vertical change level reaching approxi-
mately 30 cm. The effect is gradually transmitted to a depth
of approximately 2 m over time, with a duration of about
1 month. In the case of needleleaf evergreen boreal trees,
the analysis increment is relatively small, and surface soil
moisture gradually increases from around July, with its in-
fluence extending to a depth of approximately 100 cm. Seen
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from the above analysis, it is evident that the assimilation of
surface soil moisture gradually impacts the deeper layers of
the model as integration progresses, with a lasting effect of
approximately 1 month. This phenomenon also serves as the
primary factor contributing to the simulation improvement of
soil moisture at a depth of 7–28 cm.

To quantitatively assess the effect of image assimilation
on improving the spatial structure of model soil moisture,
the SCCs between the ideal observation and model outputs
with and without assimilation are calculated and shown in
Fig. 13. It can be seen that the SCC of the DA experiment is
already much higher than that of the CTRL experiment af-
ter the first assimilation, with the SCC increased from 0.44
to 0.76. This proves that the image assimilation can quickly
and effectively adjust the spatial structure of soil moisture.
During the period of cyclic assimilation, the SCC can be
maintained above 0.6 with an average value of 0.67, which is
steadily higher than that of the CTRL experiment. This indi-
cates the image assimilation effectively improves the spatial
structure of soil moisture, making it more consistent with the
observation. The SCC of the DA experiment is also higher
than that of the CTRL experiment in the 1-month predic-
tion stage after 1 September, indicating that the optimization
of the soil moisture spatial structure by image assimilation
could have an obvious positive impact on the prediction in
the following month.

Soil moisture is relatively more stable at subsurface
depths. The SCC of subsurface soil moisture between the ob-
servation and CTRL experiment is 0.31 at the initial time,
which increases to 0.53 by introducing image assimilation.
After cyclic assimilation, the mean value of the SCC between
the observation and DA experiment increases from 0.41 to
0.57, which is higher than that between the observation and
the CTRL experiment throughout the entire assimilation pe-
riod. This indicates that by optimizing the spatial structure
of the soil moisture in the surface layer, the soil moisture
in the deeper layers is also favorably improved. In the pre-
diction stage, the SCCs between the DA experiment and the
observation are always higher than those between the obser-
vation and the CTRL experiment. The mean value reaches
0.63, suggesting that optimization of surface soil moisture
could lead to an excellent improvement in the prediction of
deep-layer soil moisture.

It is important to note that the SCC exhibits a clear tem-
poral variation, which does not necessarily imply a time-
varying assimilation effect. This can be attributed to the dom-
inant influence of precipitation on the changes in the SCC.
Hence, Fig. 13 also includes the hourly total precipitation
(represented by gray bars) in the model domain. The changes
in precipitation exhibit a strong correlation with the SCC.
From 16 May to 15 June, there is minimal precipitation, cor-
responding to sustained high SCCs of soil moisture (red line)
after assimilation. Subsequently, as precipitation increases,
the SCC gradually diminishes. From 15 August to 1 Septem-

ber, the SCC exhibits an inverse variation with decreasing
precipitation.

The overlapping region (22–50° N, 73–117° E) between
the CLDAS data and the model region is selected for anal-
ysis. The spatial correlation coefficients of soil moisture be-
fore and after assimilation compared to CLDAS data are also
computed, aiming to quantitatively assess the accuracy of the
adjustment in the soil moisture spatial distribution structure
by the image assimilation system. The image assimilation re-
sults in a notable increase in the spatial correlation coefficient
between CoLM soil moisture and the first-layer (0–5 cm) soil
moisture of CLDAS, as depicted in Fig. 14a. Throughout
the assimilation and prediction stages, this correlation coef-
ficient consistently surpasses that of the CTRL experiment,
with a maximum value of 0.79. Moreover, after assimilation,
there is an average increase in the spatial correlation coef-
ficient from 0.67 to 0.71. The image assimilation brings a
more significant increase in the spatial correlation coefficient
of soil moisture in the second layer (5–10 cm), as depicted in
Fig. 14b. The highest spatial correlation coefficient reaches
0.79, while the average value increases from 0.67 to 0.73.
The verification results of independent data further confirm
that the image assimilation system has a strong capability to
adjust the spatial structure of soil moisture, particularly in
relation to subsurface soil moisture.

In order to further show the variation characteristics of soil
moisture during assimilation, a single-point analysis is also
performed using the hourly soil moisture data from the obser-
vation and DA and CTRL experiments at a single station in
the Tianshan region of Xinjiang Province. From the hourly
variation in 0–7 cm soil moisture (Fig. 15a), it can be seen
that the observed soil moisture fluctuates around 0.40 while
the soil moisture of the CTRL experiment has an obvious
deviation from the observation, and they have different vari-
ation trends. However, the soil moisture slowly adjusts dur-
ing the image assimilation period and gradually approaches
the observation from mid-May to mid-June. By late June,
the surface soil moisture gradually increases to more than
0.33 m3 m−3, which is closer to the observation. During the
prediction period in September, the soil moisture in the DA
experiment is also closer to the observation than that in the
CTRL experiment.

From the hourly variations in soil moisture at 7–28 cm
(Fig. 15b), it can be seen that the observed soil moisture in
the deeper layer is more stable than that in the surface layer,
and the variation range is smaller, but the trend in the deeper
layer is approximately the same as that in the surface layer.
In late May, when the surface soil moisture becomes wetter,
the deep-layer soil moisture in the DA experiment gradually
responds, and its value gradually increases and approaches
the observed value. Both in the assimilation and the predic-
tion periods, the soil moisture in the DA experiment is closer
to the observation than in the CTRL experiment.

The improvement of soil moisture after image assimila-
tion is further evaluated based on the root-mean-square er-
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Figure 12. (a) The location of the designated grid. The soil moisture temporal variation in the difference between the DA experiment and
CTRL experiment (represented by shadow) and the soil moisture profiles (indicated by contours) under different land types: (b) bare soil
(black five-pointed star), (c) bare soil (blue five-pointed star), (d) corn (red five-pointed star) and (e) needleleaf evergreen boreal tree (orange
five-pointed star).

ror (RMSE). Figure 16 shows the hourly RMSE variations
in surface and subsurface soil moisture in the DA and CTRL
experiments. As can be seen, the RMSE of surface soil mois-
ture in the CTRL experiment is larger with a mean value of
0.16 m3 m−3, and the RMSE fluctuates considerably due to
the influence of additional factors. The RMSE is fundamen-
tally reduced by about 0.04 m3 m−3 after image assimilation,
which also indicates that the image assimilation not only op-
timizes the spatial distribution structure of soil moisture, but
also has a certain improvement effect on the soil moisture
values. In the prediction period, the surface layer is more
disturbed by atmospheric forcing, so the RMSE at the sur-
face layer gradually increases with time, but the RMSE of
the DA experiment is also consistently smaller than that of
the CTRL experiment.

The RMSEs of subsurface soil moisture in both experi-
ments are smaller than that of the surface soil moisture. Al-
though the initial error is larger, it gradually decreases with

time and shows a stable variation. The mean RMSE of the
subsurface soil moisture in the CTRL experiment is about
0.15 m3 m−3, while it reduces to 0.12 m3 m−3 after assimi-
lation. Similarly, the RMSEs of the DA experiment are con-
sistently lower than those of the CTRL experiment in both
cyclic assimilation and prediction periods.

5 Discussion and conclusions

The exchange of heat and water vapor between the land sur-
face and the atmosphere plays a crucial role in influencing
weather and climate change. The impact of soil moisture
on atmospheric changes is frequently manifested through
the persistent influence of large-scale soil moisture anoma-
lies. The construction of an assimilation system with im-
age assimilation capability is aimed at enhancing the spatial-
structure accuracy of soil moisture anomalies in the initial
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Figure 13. Hourly variations in the spatial correlation coefficient
of the surface (solid red and blue lines) and subsurface (solid black
and magenta lines) soil moisture between the observations and the
experiments with (solid red and black lines) and without (solid blue
and magenta lines) image assimilation, and the precipitation in the
forced data was indicated by gray shading. After the vertical dashed
line, it is the prediction period.

Figure 14. The spatial correlation coefficients of the CLDAS prod-
ucts for the CTRL experiment (solid red line) and image assimila-
tion experiment (solid blue line) for the (a) first layer (0–5 cm) and
(b) second layer (5–10 cm) from 16 May to 30 September 2016.

field of land surface models. The system is primarily based
on the three-dimensional variational data assimilation frame-
work, employing the curvelet transformation method with
multi-scale transformation capability and anisotropic basis
function as the observation operator. By incorporating image
structural similarity as a weak constraint in the cost function,
the spatial structure of soil moisture in the initial conditions

Figure 15. Hourly variations in the (a) 0–7 cm and (b) 7–28 cm
soil moisture in the observation (solid black lines), DA experiment
(solid red lines) and CTRL experiment (solid blue lines) at a single
station in the Tianshan region of Xinjiang Province from 16 May
to 30 September 2016. The prediction period is after the vertical
dashed line.

Figure 16. Hourly variations in the soil moisture RMSEs for the DA
(solid red and black lines) and CTRL experiments (solid gray and
blue lines) at the surface (solid blue and red lines) and subsurface
layers (solid black and gray lines) in the study area.

is effectively adjusted to align with the structural characteris-
tics of the observed soil moisture image, thereby enhancing
the accuracy of soil moisture simulation.

The performance of the image assimilation system is sys-
tematically validated by conducting ideal experiments, with
the ERA5-Land reanalysis data as ideal observations, and the
CLDAS reanalysis product is incorporated for independent
verification. The findings demonstrate that the assimilation
of surface soil moisture observation images effectively and
reasonably enhances the spatial structure of the soil mois-
ture analysis field. The spatial correlation coefficient between
the analysis and ERA-Land reanalysis data increases signif-
icantly from 0.39 to 0.67, while the root-mean-square error
decreases notably from 0.16 to 0.12 m3 m−3. With the im-
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provement of surface soil moisture, the spatial pattern of sub-
surface soil moisture is further optimized under the reason-
able constraints of model dynamics and thermal processes.
There is an increase (from 0.35 to 0.57) in the spatial cor-
relation coefficient between the soil moisture at a depth of
7–28 cm and the ERA-Land data. The root-mean-square er-
ror decreases from 0.15 to 0.13 m3 m−3.

The verification results based on independent CLDAS data
consistently demonstrate a higher spatial correlation coeffi-
cient between CoLM surface (0–5 cm) soil moisture in the
assimilation experiment and the CTRL experiment, with a
maximum correlation coefficient of 0.79 throughout both as-
similation and prediction stages. The average spatial correla-
tion coefficient for surface soil moisture increases from 0.67
to 0.71 after image assimilation, while for subsurface (5–
10 cm) soil moisture, it steadily rises from 0.67 to 0.73 on
average. These quantitative evaluation outcomes fully vali-
date the practical applicability of the new image assimilation
method.

The image assimilation system developed by this study
could effectively optimize the spatial structure of soil vari-
ables in the background by incorporating constraint condi-
tions of the observed spatial structures. The method demon-
strates excellent applicability to various soil variables, effec-
tively mitigating the negative impact of strong spatial het-
erogeneity of soil on data assimilation. The key challenge in
image assimilation lies in obtaining accurate spatial-structure
observations of soil variables. The data of ground automatic
stations with high spatio-temporal resolution established in
China, along with satellite observation data that can over-
come natural constraints and achieve large-scale uniform ob-
servation in various terrains, are capable of providing obser-
vational images depicting the spatial structure of land surface
variables for image assimilation. The effective assimilation
of the spatial structural characteristics of those high-density
meteorological observation data will be the primary focus of
our subsequent research. However, how to establish the di-
rect spatial-structure relationship between satellite-observed
brightness temperature data and soil variables and how to re-
pair these non-uniform data into uniformly distributed data
are key technical problems that need to be solved in the fu-
ture.

Additionally, it should be noted that the image assimila-
tion method and the prevailing single-point land assimilation
method in current practice are not mutually exclusive. The
single-point land assimilation method is more suitable for as-
similating sparse observation data in key areas. However, if
the image assimilation method is used to optimize the fine
structure of soil moisture in specific areas, the threshold σ
mentioned above needs to be further increased, but this ap-
proach is susceptible to introducing additional observational
errors. Therefore, by integrating the capacity of the image as-
similation method in adjusting the large-scale spatial struc-
ture of soil variables and the capability of the single-point
land assimilation method in finely optimizing soil variables

in crucial regions, as well as by leveraging the advantages
offered by diverse types of meteorological observation data,
we can attain more refined initial conditions for land models,
which constitutes the primary objective of our subsequent re-
search.

Code and data availability. The code of the Common Land Model
(CoLM) version 2014 was obtained from http://globalchange.bnu.
edu.cn/research/models (Ji et al., 2014). The atmospheric forc-
ings and CoLM raw data for making land surface data are also
available at http://globalchange.bnu.edu.cn/research/models (Qian
et al., 2005). The ECMWF ERA5-Land hourly data from 1981
to present (Muñoz-Sabater et al., 2019) were acquired from the
Copernicus Climate Change Service (C3S) Climate Data Store
(https://doi.org/10.24381/cds.e2161bac, Muñoz Sabater, 2019). The
code of the Common Land Model (CoLM) version 2014 and the
source code of the new image data assimilation system, as well
as the data process software codes and the model outputs’ data,
have been uploaded to Zenodo repositories, which are available at
https://doi.org/10.5281/zenodo.10068298 (Shen, 2023).
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