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Abstract. Error metrics are useful for evaluating model per-
formance and have been used extensively in climate change
studies. Despite the abundance of error metrics in the liter-
ature, most studies use only one or two metrics. Since each
metric evaluates a specific aspect of the relationship between
the reference data and model data, restricting the comparison
to just one or two metrics limits the range of insights derived
from the analysis. This study proposes a new framework and
composite error metrics called Bergen metrics to summarize
the overall performance of climate models and to ease inter-
pretation of results from multiple error metrics. The frame-
work of Bergen metrics are based on the p norm, and the first
norm is selected to evaluate the climate models. The frame-
work includes the application of a non-parametric cluster-
ing technique to multiple error metrics to reduce the number
of error metrics with minimum information loss. An exam-
ple of Bergen metrics is provided through its application to
the large ensemble of regional climate simulations available
from the EURO-CORDEX initiative. This study calculates
38 different error metrics to assess the performance of 89 re-
gional climate simulations of precipitation and temperature
over Europe. The non-parametric clustering technique is ap-
plied to these 38 metrics to reduce the number of metrics to
be used in Bergen metrics for eight different sub-regions in
Europe. These provide useful information about the perfor-
mance of the error metrics in different regions. Results show
it is possible to observe contradictory behaviour among error
metrics when examining a single model. Therefore, the study
also underscores the significance of employing multiple er-
ror metrics depending on the specific use case to achieve a
thorough understanding of the model behaviour.

1 Introduction

Climate models are important tools for predicting and un-
derstanding climate change and climate processes (Kotlarski
et al., 2014; IPCC, 2021a, b; Mooney et al., 2022). In the
context of climate studies, climate model evaluation is es-
sential for identifying models that poorly simulate the cli-
mate system and for the ranking of climate models (Randall
et al., 2007; Flato et al., 2013). The main purpose of climate
model evaluation is twofold: firstly to ensure that the mod-
els are reproducing key aspects of the climate system and
secondly to understand the limitations of climate projections
from the models. This ensures proper interpretation and ap-
plication of climate models and any climate projections pro-
duced by them. The performance of climate models is quanti-
fied by different error metrics such as root mean square error
and bias, which assess the agreement between the climate
model data and reference data (e.g. gridded observational
products, station data, reanalyses, or satellite observations).
As the number of climate models has increased, the study of
error metrics has become increasingly important. There are
several error metrics available to evaluate the performance of
climate models (Jackson et al., 2019), and the selection of
an appropriate metric remains a topic of debate in the liter-
ature. For instance, Willmott and Matsuura (2005) advocate
for mean absolute error (MAE) over root mean squared er-
ror (RMSE), as the latter is not an effective indicator of aver-
age model performance. In contrast, Chai and Draxler (2014)
contend that RMSE is superior to MAE when errors follow a
Gaussian distribution.
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Different error metrics are available in the literature, and
each has a specific framework according to its purpose (Rupp
et al., 2013; Pachepsky et al., 2016; Baker and Taylor, 2016;
Collier et al., 2018; Jackson et al., 2019). For example, root
mean square error compares the amplitude difference be-
tween modelled and reference data, while the correlation co-
efficient compares the phase difference between modelled
and reference data. Depending on the specific error, the er-
ror metrics can be categorized into different classes; the most
popular classes are accuracy, precision, and association. Ac-
curacy measures the degree of similarity between climate
model data and reference data. An extremely high accuracy
indicates that the model has less error magnitude of any type
and testing the model with other error metrics adds little
value (Liemohn et al., 2021). However, if a model has moder-
ate to low accuracy, testing the model with other metrics can
reveal other similarities and dissimilarities between model
data and reference data. Root mean square error and mean
square error are the most used accuracy metrics to evalu-
ate climate models (Watt-Meyer et al., 2021; Wehner et al.,
2021; He et al., 2021), even though the metrics cannot reveal
whether the model is under- or over-predicting the observa-
tions. Precision metrics quantify the degree of similarity in
the spread of the data. A robust and commonly used met-
ric for assessing the precision of model data is the ratio of
or difference in standard deviation between modelled data
and reference data (van Noije et al., 2021; Wood et al., 2021;
Wehner et al., 2021). Finally, association metrics measure the
degree of the phase difference between modelled data and
observed data. Phase difference is important in climate stud-
ies as it affects the initiation and termination time of a season
of climate variables. One metric that is extensively used to
measure the association is the correlation coefficient (Richter
et al., 2022; Bellomo et al., 2021; Yang et al., 2021). Liemohn
et al. (2021) have described various other major categories of
metrics, and they suggest that assessment of models should
not be restricted to one or two error metrics. Interested read-
ers can follow the citations to read in detail about the dis-
cussed metrics.

In addition to this, researchers have employed various
characteristics of climatic parameters as measures to assess
and compare climate models with observed datasets. Met-
rics encompassing the frequency of days with precipitation
over 1 mm and over 15 mm, the 90 % quantile of the fre-
quency distribution, and the maximum number of consec-
utive dry days, along with parameters such as daily mean,
daily maximum, daily minimum, yearly maximum, length of
the frost-free period, growing degree days (> 5 °C), cooling
degree days (> 22 °C), heating degree days (< 15.5 °C), days
with RR (> 99th percentile of daily amounts for all days),
ratio of spatial variability, pattern correlation, ratio of inter-
annual variability, temporal correlation of interannual vari-
ability, number of summer days, number of frost days, con-
secutive dry days, and ratio of yearly amplitudes, have been
utilized for the validation of Euro-CORDEX data (Kotlarski

et al., 2014; Giot et al., 2016; Smiatek et al., 2016; Torma,
2019; Vautard et al., 2021). Other studies have employed the
empirical orthogonal functions (Benestad et al., 2023), struc-
tural similarity index metric (Wang and Bovik, 2002), frac-
tions skill score (Roberts and Lean, 2008), spatial pattern
efficiency metric (Dembélé et al., 2020), spatial efficiency
metric (Demirel et al., 2018; Ahmed et al., 2019), and prob-
ability distribution function (Perkins et al., 2007; Boberg et
al., 2009, 2010; Masanganise et al., 2014) to evaluate climate
models.

There are several composite error metrics that use the
modified framework of other metrics to compute the error
magnitude. A widely used example of this is the Taylor di-
agram (Taylor, 2001), which incorporates correlation, root
mean square deviation, and ratio of standard deviation. A
distinguishing feature of the Taylor diagram is its ability to
graphically evaluate the model performance. Another popu-
lar example is the Nash–Sutcliffe efficiency (NSE; Nash and
Sutcliffe, 1970), which is a normalized form of the mean
squared error to evaluate and predict the model streamflow
data. Later, it was observed that NSE can be decomposed
into three components which are the functions of correlation,
bias, and standard deviation (Murphy, 1988; Wȩglarczyk,
1998). Other similar scores include the Kling–Gupta (K–G)
efficiency (Gupta et al., 2009), which is a function of three
components: ratio of model mean to observed mean, the ratio
of model standard deviation to observed standard deviation,
and correlation coefficient. The study of Gupta et al. (2009)
argued the NSE, which has a bias component normalized by
the standard deviation of the reference data, will have a low
weight on the bias component if the reference data have high
variability. The modified Kling–Gupta efficiency developed
by Kling et al. (2012) involves the ratio of covariance instead
of the ratio of standard deviation.

Both K–G efficiency and modified K–G efficiency use Eu-
clidean distance as a basis to calculate the error magnitude of
the model, and the study argued that instead of finding a cor-
rected NSE criterion, the whole problem can be viewed from
the multi-objective perspective where the three error com-
ponents can be used as separate criteria to be optimized. It
identifies the best models by calculating the Euclidean dis-
tance from the ideal point and then finding the model with
the shortest distance. The ideal value of an error metric is ob-
tained when the model exactly simulates the observed data.
The Euclidean distance is also used by Hu et al. (2019) to
develop the distance between indices of simulation and ob-
servation (DISO) metric that incorporates correlation coeffi-
cient, absolute error, and root mean squared error. The study
of Hu et al. (2019) also argues that accuracy (root mean
square error), bias (absolute error), and association (corre-
lation coefficient) are the three major error classes based on
which a model should be assessed, and evaluating a model
using a single error metric may lead to ill-informed results.
The study pointed out a few limitations of the Taylor diagram
such as quantification of error magnitude and low sensitivity
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to small error differences by the diagram. In a comparative
study, Kalmár et al. (2021) found no substantial difference
between the DISO index and the Taylor diagram. However,
based on quantification of error magnitude, the DISO index
can be helpful.

The Euclidean distance framework has found increasing
use in various fields, serving as an error function or metric
in applications like model evaluation, parameter optimiza-
tion, and classification problems. In essence, it calculates
the straight-line distance between two points in the space,
known as Euclidean distance. The Euclidean distance is es-
sentially the second norm of a vector. Equation (1) represents
the generalized form of the p norm in an n-dimensional vec-
tor space, where xi is the vector. When p is set to 2, it trans-
forms into the Euclidean norm.

In the context of time series data, if the vector (xi) rep-
resents the difference between observed data (ui) and model
data (vi), i.e. xi = ui − vi , then d is termed the Euclidean
distance metric. Here, i represents the time series data. It
is important to note that root mean squared error and mean
squared error are different variants of the Euclidean distance
metric.

Furthermore, if the vector represents the difference be-
tween error metrics (correlation coefficient [u1], absolute er-
ror [u2], and root mean squared error [u3]) and their ideal
values (v1:3), then d is referred to as the DISO index. In
summary, the Euclidean distance framework offers a versa-
tile approach applicable to various scenarios, providing valu-
able insights through different metrics and indices. A disad-
vantage of the Euclidean distance is that it suffers the curse
of dimensionality (Mirkes et al., 2020; Weber et al., 1998);
i.e. Euclidean distance as a dissimilarity index becomes less
efficient as dimension increases. In this study, we assess the
effect of the norm order on the overall error. We use different
measures such as the contribution of outliers to the overall er-
ror, the difference between the maximum and minimum dis-
tances, and the average distances to compare different norms.

dn(u,v)= (
∑n

i=1
|xi(ui,vi)|

p)1/p (1)

This study has the following objectives:

i. evaluation of 89 CMIP5-driven regional climate simula-
tions from the Euro-CORDEX initiative using 38 error
metrics;

ii. clustering of error metrics to assess their performance;

iii. assessment and recommendation of different p norms
based on their performance;

iv. formulation of a composite metric using the optimal
norm.

2 Data and study area

We focus on Europe due to the widespread availability of
a large ensemble of high-resolution (0.11°) regional cli-
mate simulations. In this study, we use 89 regional climate
model (RCM) simulations from Euro-CORDEX to study the
behaviour of different error metrics. The Euro-CORDEX
dataset provides both precipitation and temperature data at
0.11° grid resolution. The monthly data from 1975 to 2005,
which are available in all the RCM simulations, have been
used to calculate the index. Table S1 in the Supplement pro-
vides an overview of the global climate models (GCMs)
downscaled by the different RCMs. Table S2 provides an
overview of the RCMs and assigns a number (Column 1) to
each RCM which is used to identify RCMs in plots that have
limited space for labels.

For reference data, both precipitation and temperature data
are obtained from the E-OBS dataset. The study utilized the
0.25° grid resolution dataset to meet the specific require-
ments of the project. However, users can choose datasets of
different resolutions based on their study needs for climate
model validation. To facilitate the comparison of model data
with the reference data, all datasets need to be on a com-
mon grid. In this study, we remapped the RCM data onto the
coarser 0.25° grid of E-OBS.

The study uses the eight sub-regions of Europe defined by
Christensen and Christensen (2007) – British Isles, Iberian
Peninsula, France, mid-Europe, Scandinavia, Alps, Mediter-
ranean, and Eastern Europe – to conduct analysis in more
homogeneous areas.

3 Methodology

This section outlines the framework for clustering error met-
rics and provides a brief overview of their characteristics.
Additionally, the section describes the proposed metric’s
framework.

3.1 Error metrics

Error metrics play a crucial role in climate change studies,
serving as essential tools to quantify the disparities between
modelled and reference data over time series. Each error met-
ric is designed to capture specific aspects of the relation-
ship between model data and reference data, as discussed
in the Introduction section. To gain insight into the perfor-
mance of error metrics, we have analysed Euro-CORDEX
precipitation data and examined the differences in ranking
of 89 GCM-driven regional climate simulations using 38 er-
ror metrics. The list of error metrics is provided in Table S3,
and the details of all 38 error metrics have been provided
in Jackson et al. (2019). All 89 models are ranked based on
their performance using the 38 error metrics. The average
(rM,mean; Eq. 2) and maximum (rM,max; Eq. 3) rank differ-
ences are then calculated at each grid point. The former is
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Figure 1. Box plot of average rank difference (first column, a, c)
and maximum rank difference (second column, b, d) for precipita-
tion (Pr; first row, a, b) and temperature (T ; second row, c, d) over
all the grid points in European region.

the mean of all the pairwise rank differences, while the latter
is the maximum of all the pairwise rank differences. These
calculations allow us to understand the performance of dif-
ferent error metrics and the extent of the disparity in ranking
of the climate models.

rM,mean = µg
(
RM,k −RM,i

)
(2)

rM,max =max
g
(RM,k −MM,i) (3)

RM,k and RM,i are the rank assigned to model M by the kth
and ith error metrics, respectively. We have provided Table 1
as an example for better understanding the notations. If there
are three climate models (M1, M2, and M3) as shown in Ta-
ble 1, all the models have been assigned a number (first col-
umn), and the order must not change throughout the study.
RM,k and RM,i for model M1 are 2 and 3, respectively. k
varies from 1 to NE−1, and i varies from k+1 to NE, where
NE is the total number of error metrics. The difference in
ranking is calculated for all possible combinations of error
metrics. µg() and maxg() are the mean and maximum oper-
ator, respectively, which is applied across all the grid points
(g:1,2, ..,gd), and gd is the total number of grid points, which
is 11 370 in this study. Figure 1 demonstrates that different
error metrics used to assess climate models result in signifi-
cantly different ranking orders. The average of rM,mean across
all the grid point varies from 16 to 26, whereas the average of
rM,max varies from 40 to 70. The results indicate significant
differences in the ranking of the climate models by different
error metrics. The disparity in ranking order may be due to
the distinctive error targeted by each metric, as discussed in
the Introduction section.

This study assumes that all the errors are important and
that it may be necessary to evaluate model performance us-

ing multiple metrics. To achieve independence among the
metrics, the study has attempted to cluster the error met-
rics based on model performance. This classification would
enable different clusters to have unique characteristics, and
metrics within the same cluster would produce similar re-
sults, whereas those from different clusters would yield dif-
ferent ranking orders. In summary, the study proposes that
using multiple error metrics and clustering them based on
performance could improve the understanding and compre-
hensiveness of climate model analysis.

3.2 Clustering of error metrics

The aim of clustering error metrics is to group a set of met-
rics based on their similarities such that the metrics within
the same cluster generate similar rankings of climate models
compared to those in different clusters. This study clusters
the error metrics using a non-parametric clustering approach
inspired by the Chinese restaurant process (CRP; Pitman,
1995). This approach was chosen based on its performance
compared to the k-means clustering approach (see Text S1 in
the Supplement) and its simpler framework. The algorithm
follows two fundamental principles: (i) the first error metric
(E1) forms the first cluster (C1), and (ii) the ith error metric
(Ei) is assigned to a cluster which has the maximum of all
the mean absolute error (uj ) values greater than a particular
threshold value (th). The clustering algorithm is presented in
Algorithm 1.

Similar to the rank difference explained in the previous
section, the MAE (ROi,ROk) between the ranking order pro-
duced by two error metrics is computed. RO is the ranking
order, and it can be calculated by assigning the climate mod-
els to a number. For example, the ranking order (ROi) by ith
error metric and the ranking order (ROk) by kth error metric
are [3, 1, 2] and [2, 3, 1], respectively, in Table 1. The MAE
values are calculated for all possible combinations of error
metrics in a particular cluster, and the maximum of the MAE
values is used to compare it to the threshold value. The exer-
cise is repeated for all the clusters (NC) available at that time.
The number of clusters (NC) and the number of error metrics
in each cluster (NCE) are updated for each iteration (i), and
if the criteria are not satisfied, then a new cluster is formed
using that error metric. The whole exercise is repeated till all
the error metrics (NE) get assigned to a cluster.

The threshold value is defined as the qth percentile of a
column matrix D, where D is the collection of MAE values
for all possible combinations of error metrics at all the grid
points in a region. In this study, q has been assigned the value
of 10 and the sensitivity of q is discussed in the Results sec-
tion.

3.3 Proposed metric – the Bergen metrics

The clustering of error metrics guarantees that metrics in dif-
ferent groups produce distinct ranking orders, implying that
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Table 1. Example of ranking order.

Number Climate Ranking order (RO) Ranking order (RO)
model by ith error metric (Ei ) by kth error metric (Ek)

1 M1 3 2
2 M2 1 3
3 M3 2 1

Algorithm 1 Algorithm of the non-parametric clustering for
classifying the error metrics.

each group targets different errors. One of the objectives of
this study is to integrate different errors and create a com-
posite error to obtain a single value. One potential solution
is to use the Euclidean distance approach with different er-
ror metrics as different dimensions in the Euclidean space.
To illustrate this, we employed three widely used error met-
rics: normalized root mean square error (RMSE), standard
deviation ratio (SD), and correlation coefficient. In the Eu-
clidean space, an ideal model that predicts the climate vari-
able as accurately as the observed data would have values of
1, 1, and 0 for correlation coefficient, standard deviation ra-
tio, and normalized RMSE, respectively. The coordinates of
an ideal model in the Euclidean space would be (1, 1, 0), as
represented by the red point in Fig. 2a. Since different mod-
els have unique coordinates based on the three metrics, these
coordinates serve as possible solutions to determine the best
model. If a decision is required, one approach could be to
calculate the Euclidean distance from the ideal point to all
points and select the point with the shortest distance (Eq. 4).
The model that is closest to the ideal point, indicated by the
optimal point in Fig. 2b, can be considered the best model.

EDMetric=√
(1− correlation coefficient)2+ (1− standard deviation ratio)2

+(0−RMSE)2
(4)

The Euclidian distance has several benefits that make it a
popular metric, primarily its simplistic framework. However,
it also has some drawbacks. The Euclidian distance, also

known as L2 norm, is less effective in higher-dimensional
spaces, which can lead to instability when additional error
metrics are added (Weber et al., 1998; Aggarwal et al., 2001).
To mitigate this issue, recent research has focused on the use
of L1 norms, such as relative mean absolute error and mean
absolute scaled error, which have become more popular than
L2 norms like mean squared error. This approach reduces the
impact of outliers in the data (Armstrong and Collopy, 1992;
Hyndman and Koehler, 2006). Reich et al. (2016) found that
relative MAE, based on an L1 norm, is advantageous in as-
sessing prediction models. This study proposes a new set of
metrics called the Bergen metrics (BMs), which is a general-
ized p-norm framework to evaluate climate models.

A case study has been conducted to understand the impact
of different p norms on the ranking order of climate models.
For this, five error metrics – RMSE, bias, correlation coef-
ficient, standard deviation ratio, and mean ratio – have been
considered (Eq. 5), and the error metrics are normalized us-
ing model data. A flowchart has been provided to illustrate
the various steps involved in calculating the Bergen metrics
(Fig. 3). It is important to note that Eq. (5) serves as an il-
lustration of Bergen metrics, and users have the flexibility
to include or remove metrics according to their preference.
The study includes 89 RCM simulations for precipitation,
and Fig. 4a shows the ranking of these models for different
p norms. The lines corresponding to each model give infor-
mation about the model’s ranking in different norms. The re-
sults demonstrate that climate models are highly sensitive to
p norms. Significant change in ranking order is observed for
the first four norms. Figure 5 shows the percentage contri-
bution of outliers to the total error magnitude for models that
have outliers. A median absolute deviation technique (MAD)
is used to identify outliers among the error metrics. Some of
the models have only one outlier (plots with a single solid
line in Fig. 5), and other models have two outliers (plots
with both solid and dotted lines in Fig. 5). The percentage
contribution of outliers increases as the p norm increases,
consistent with previous literature (Armstrong and Collopy,
1992; Hyndman and Koehler, 2006). The study has used two
parameters to indicate the capability of each norm to differ-
entiate between climate models – mean pairwise difference
in the BM and the difference between the maximum and min-
imum values of the BM. Figure 4b shows that both parame-
ters decrease as the p norm increases, indicating less differ-
entiability. The results suggest that the first norm (p = 1) is
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Figure 2. Example for three-dimensional (a) ideal point and (b) solution space of correlation coefficient (x axis), standard deviation (y axis),
and normalized RMSE (z axis).

Figure 3. The flowchart for the calculation of Bergen metric.

the optimal norm to use as a metric in this study and will be
utilized in the following analyses.

BergenMetric(BM)=

p

√√√√ (0−RMSE)p + (0− bias)p
+ (1− standard deviation)p
+(1− correlation coefficient)p + (1−mean ratio)p

(5)

4 Results

4.1 Regional clustering of error metrics

The study considers 38 error metrics (Table S3) which can
take both positive and negative values as input. Similar to the
models, the error metrics have been assigned a number (col-
umn 1, Table S3), and the error metrics have been labelled as
those numbers in some figures.

The clustering technique described in the methodology
section can be applied to individual grid points, but for the

sake of simplicity, we use a single cluster for all grid points
within each of these regions defined by Christensen and
Christensen (2007). The methodology is modified slightly to
enable regional clustering. At a grid point scale, the maxi-
mum value of mean absolute error (uj ) is used as a proxy for
that specific error metric at a grid point. For regional clus-
tering, the maximum MAE values are computed for all grid
points within the region, and the average of those values is
used as a proxy for that region and error metric. This value
is then compared with a threshold to determine whether the
error metric belongs to a certain cluster or if it should be as-
signed to a new cluster. The clustering algorithm is executed
for multiple thresholds.

The 5th, 10th, and 20th percentiles are selected as poten-
tial thresholds to cluster the error metrics. However, users
can select any number of thresholds for the sensitivity anal-
ysis. The clustering algorithm is allowed to run for all the
thresholds to determine the optimal threshold. The efficiency
of each cluster for a given threshold is represented by the
mean of MAE over all the clusters. Another criterion used
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Figure 4. (a) The change in the ranking of the climate models with different norm order (p) and (b) the change in the difference between the
maximum and minimum distances and the average distances with different norm order.

Figure 5. The percentage contribution of outliers to the total error magnitude as a function of norm order. The solid and dotted lines represent
different types of outliers.

to determine the threshold is the number of clusters corre-
sponding to each threshold. An increase in the percentile (q)
is expected to increase the MAE as the magnitude of thresh-
old increases. Similarly, the number of clusters are expected
to decrease as q increases as it can allow more error metrics
into a cluster due to higher threshold magnitude. From Fig. 6,
we conclude that the results are according to our expecta-
tions. It is found that increasing the percentile resulted in an
increase in MAE and a decrease in the number of clusters.
The 10th percentile is selected as the threshold to cluster the

error metrics for both temperature and precipitation, as it has
a smaller number of clusters compared to the 5th percentile
and less MAE compared to the 20th percentile.

4.2 Results of clustering

4.2.1 Precipitation

For the British Isles region, the classification of 38 error met-
rics resulted in 15 clusters, with eight error metrics being
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Figure 6. The variation in MAE (first box) and number of clusters (second box) corresponding to the 5th, 10th, and 20th percentiles for
precipitation (pr) and temperature (tas) for all the eight regions.

single-point clusters due to their unique behaviour (Fig. 7).
These eight metrics are d [2], (MB) R [17], MdE [19], MEE
[21], MV [22], r2 [31], SGA [35], and R (Spearman) [36].
The threshold for precipitation data is 6.35, indicating that all
eight error metrics produced MAE values greater than 6.35
compared to the remaining 30 error metrics. RMSE [32] and
its variants such as normalized RMSE by IQR [25], mean
[26], and range [27] are assigned to the same cluster as ED
[7], IRMSE [9], MAE [13], MAPD [15], MASE [16], and
MSE [23]. The reason could be theL-norm framework which
is used by most of the error metrics in this cluster. D1 [3], d1
[4], and d (Mod.) [5], which share a similar framework, are
also assigned to a single cluster. Error metrics that evaluate
the phase difference between observed and modelled data,
including ACC [1], R (Pearson) [30], SC [34], and M [38],
are assigned to a single cluster. H10 (MAHE) [8] and MALE
[14] share the same cluster as both metrics consider the dif-
ference in logarithm of the model and observed data to com-
pute the error. Similarly, MdAE [18] and MdSE [20] are as-
signed to a single cluster, as both metrics use the median of
the difference between observed and modelled data. How-
ever, MdE [19] is assigned to a different cluster as it only
considers the difference between observed and modelled data
without bringing them to the positive domain. NED [24] and
SA [33] are found to be in the same cluster, as both met-
rics are linearly associated while evaluating the model, even
though their underlying frameworks are somewhat different.

Although ED [7] and NED [24] follow the L2 norm, they
are not assigned to the same cluster. This can be attributed
to the normalization of observed and modelled data by their
respective means in NED, as the statistical parameters such
as mean are sensitive to outliers, which can result in changes
in ranking order.

The Iberian Peninsula region is found to have 17 clusters,
with 12 of them being single-point clusters (Fig. 8). Seven
of the eight error metrics that are single-point clusters in
the British Isles are also single-point clusters in the Iberian
Peninsula, except for r2 [31]. Five other error metrics – NED
[24], KGE (2009) [10], KGE (2012) [11], SA [33], and M
[38] – are also single-point clusters in the Iberian Peninsula
region. In the British Isles, KGE (2009) [10] and KGE (2012)
[11] are assigned to the same cluster. The KGE (2012) is dif-
ferent from KGE (2009) since it used the ratio of coefficient
of variation between modelled and observed data instead of
the ratio of standard deviation to avoid the cross-correlation
between bias and variability ratio. The coefficient of varia-
tion is the ratio between the standard deviation and the mean
of the data, which represents the extent of variability with re-
spect to the mean of the data. A biased dataset can produce a
significant change in the relative standard deviation, i.e. the
coefficient of variation. That is a possible reason why both
the metrics are in different clusters. r2 is assigned to the cor-
relation metrics cluster in this region. The remaining clusters
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Figure 7. Clustering of error metrics using precipitation (pr) data for the British Isles (BI) region. Each error metric can be identified by the
number using Table S3.

are almost identical to the clusters obtained for the British
Isles region.

As the results for the other six regions are similar to either
the British Isles or the Iberian Peninsula, we simply sum-
marize their results here and refer the reader to the Supple-
ment for further information. France (Fig. S2), mid-Europe
(Fig. S3), Scandinavia (Fig. S4), Alps (Fig. S5), Mediter-
ranean (Fig. S6), and Eastern Europe (Fig. S7) exhibit 15, 15,
16, 16, 17, and 14 clusters, respectively, with 8, 8, 10, 10, 12,
and 6 single-point clusters. France and mid-Europe have the
same clusters as the British Isles, and the Mediterranean has
the same clusters as the Iberian Peninsula. Scandinavia has
clusters similar to the British Isles, except that M [38] is a
single-point cluster and r2 [31] has been assigned to the cor-
relation metrics cluster in Scandinavia. The Alps also have
clusters similar to the British Isles, except that KGE (2009)
[10] and KGE (2012) [11] are single-point clusters. Eastern
Europe also has clusters similar to the British Isles, with the
exception that d [2], which is a single-point cluster in the
British Isles, forms a new cluster with M [38] in Eastern Eu-
rope.

4.2.2 Temperature

Compared to precipitation data, temperature data have a
lower number of clusters, which can be attributed to the
lower variability in temperature data. The clustering of er-
ror metrics for the British Isles is shown in Fig. 9. For the
British Isles, 12 clusters are identified, with five single-point
clusters, namely KGE (2009) [10], KGE (2012) [11], MV
[22], SGA [35], and R (Spearman) [36]. Similar to precipita-
tion clusters, several error metrics, including ED [7], IRMSE
[9], MAE [13], MAPD [15], MASE [16], MSE [23], NRMSE

(IQR) [25], NRMSE(mean) [26], NRMSE (range) [27], and
RMSE [32], are assigned to the same cluster.

The correlation metrics, such as ACC [1], r2 [31], SCO
[34], andR (Pearson) [36], belong to the same cluster. France
(Fig. S8) and mid-Europe (Fig. S9) have the same cluster as
the British Isles for temperature data. For the Iberian Penin-
sula (Fig. 10), 13 different clusters are identified, with seven
single-point clusters, including MdE [19] and MEE [21] in
addition to the five single-point clusters from the British
Isles. The remaining clusters are similar to those in the
British Isles. Mediterranean (Fig. S10) has the same cluster
as the Iberian Peninsula for temperature data, with 13 clusters
and seven single-point clusters. Scandinavia (Fig. S11) and
Eastern Europe (Fig. S12) have the same number of clusters,
i.e. 14 clusters. Scandinavia has eight single-point clusters,
whereas Eastern Europe has nine single-point clusters. The
Alps (Fig. S13) have 15 clusters, with 10 single-point clus-
ters.

4.3 Bergen metrics

A Bergen metric is computed for all eight regions using the
respective clusters for both precipitation and temperature. A
single metric is chosen from each cluster randomly; random
selection demonstrated no discernible impact on the ranking
(see Text S2). Although computed for all 89 regional climate
models, this paper focuses on discussing only one climate
model for both precipitation and temperature. The Climate
Limited-area Modelling (CLM) Community (CLMCom) re-
gional model from the ICHEC-EC-EARTH climate model
for r3i1p1 realization is discussed as it performed best at over
25 grid points in five regions and more than two grid points
in seven regions. For the temperature variable, the CLM-
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Figure 8. Clustering of error metrics using precipitation (pr) data for the Iberian Peninsula (IP) region. Each error metric can be identified
by the number using Table S3.

Figure 9. Clustering of error metrics using temperature (tas) data for the British Isles (BI) region. Each error metric can be identified by the
number using Table S3.

Com model from the CCCma-CanESM2 (Canadian Centre
for Climate Modelling and Analysis second generation Cana-
dian Earth System Model) model for r1i1p1 realization is dis-
cussed, as it performed best at over 25 grid points in seven
regions.

4.3.1 Precipitation

A Bergen metric (BM) is used to assess the performance of
the CLMCom model for precipitation in all eight different
regions. The BM in the British Isles region is a compos-
ite metric that takes into account 15 different error metrics,

i.e. ACC, D1, dr, H10 (MAHE), KGE (2009), MdAE, NED,
d , MB (R), MdE, MEE, MV, r2, SGA, and R (Spearman).
Figure 11 provides an overview of the spatial distribution of
the BM for all eight regions, while the spatial distribution of
each of these metrics is shown in Fig. 12 for the British Isles
region.

The magnitude of BM ranges from 0 to 13, with a score
of 0 indicating good performance by the model. Based on
the results, the CLMCom model performed well in the west-
ern part of the British Isles, as indicated by the BM. This is
a result of the good performance of most of the individual

Geosci. Model Dev., 17, 3321–3339, 2024 https://doi.org/10.5194/gmd-17-3321-2024



A. K. Samantaray et al.: Bergen metrics 3331

Figure 10. Clustering of error metrics using temperature (tas) data for the Iberian Peninsula (IP) region. Each error metric can be identified
by the number using Table S3.

metrics that comprise the Bergen metric. This is shown in
Fig. 12. There are some contradictory results from different
error metrics in the eastern region. While all 13 metrics indi-
cate good performance, MV, r2, and NED indicate very bad
performance by the model.

The use of individual error metrics can provide mean-
ingful insights into the performance of the model in differ-
ent regions. For example, metrics such as dr, MdAE, MdE,
and MEE indicate good performance in the southeastern re-
gion, while R (Spearman) indicates bad performance by the
CLMCom model, which implies that the phase difference is
significant between observed and modelled data in this re-
gion. It is worth noting that some metrics, such as r2 and
R (Spearman), may provide different results even though
they share a similar framework. R (Spearman) only tells
how well the modelled data follow the observed data, while
r2 indicates how well the data represent the line of best
fit (https://tinyurl.com/y52r3xed, last access: 16 April 2024;
https://tinyurl.com/yk2jmsxt, last access: 16 April 2024).
Overall, the use of multiple error metrics and the analysis
of individual metrics can provide a more comprehensive as-
sessment of the model’s performance, particularly in regions
where different metrics provide conflicting results.

Figure 13 shows a Bergen metric for the Iberian Penin-
sula applied to the CLMCom model, which is based on 17
error metrics obtained from each cluster. These metrics, in-
cluding ACC, D1, dr, H10 (MAHE), MdAE, d , KGE (2009),
KGE (2012), MB (R), MdE, MEE, MV, NED, SA, SGA, R
(Spearman), and M, are presented in Fig. 13. The results indi-
cate that the model performs relatively better in the northeast
and southeast regions compared to the western region (see
Fig. 11), possibly due to the influence of certain metrics such
as ACC, R (Spearman), MV, NED, and SA. Additionally,

while KGE (2009) and KGE (2012) exhibit similar spatial
error patterns, further analysis in the southern region reveals
the differences in the magnitude of error. Interestingly, de-
spite their similarity, KGE (2009) and KGE (2012) are clas-
sified into different clusters based on a threshold MAE of
5.41 used to determine cluster membership.

France (Fig. S14) and mid-Europe (Fig. S15) have the
same clusters as the British Isles, and therefore the same
error metrics used in the British Isles are used to calculate
the Bergen metric for France and mid-Europe. The Bergen
metric indicates an average performance of the model for
the entire study region of France (see Fig. 11). While r2

shows a very poor performance of the model for France, the
MEE metric shows a completely opposite trend, indicating a
very good performance of the model. Similar disagreement
between r2 and MEE is also observed in the British Isles.
On the other hand, SGA, which compares the shape of the
two signals, shows an average performance by the model. In
terms of the spatial distribution of error, the Bergen metric
shows lower error magnitudes for MEE in the southeast part
of the study region.

The Bergen metric is also used to assess the performance
of the CLMCom model for Scandinavia and the Alps using
16 error metrics from each cluster, including ACC, D1, dr,
H10 (MAHE), MdAE, NED, d, KGE (2009), KGE (2012),
MB (R), MdE, MEE, MV, SGA, R (Spearman), and M. The
spatial distribution of these metrics is presented in Fig. S16
(Scandinavia) and Fig. S17 (Alps).

Figures S16 and 11 suggest that the CLMCom model does
not perform well for Scandinavia. However, some error met-
rics, including dr, MdAE, MdE, and MEE, show good per-
formance in the southern part of the region. Although MdAE,
MdE, and MEE are assigned to different clusters, they exhibit
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Figure 11. Spatial distribution of Bergen metric using precipitation data for all the eight regions.

Figure 12. Spatial distribution of the error metrics used to compute the Bergen metric for precipitation and for the British Isles (BI) region.
The error metrics have been labelled by the abbreviation, and the corresponding error metrics can be identified from Table S3.

similar spatial distributions of error. It is worth noting that
despite the similarity, the three error metrics are in different
clusters due to their higher MAE between them. For the Alps,
the Bergen metric indicates a relatively good performance of
the CLMCom model. It can be observed in Fig. S17 that all
metrics except r2 show good performance for the model.

The Mediterranean has the same clusters as the Iberian
Peninsula, and the spatial distribution of each metric for the
Mediterranean is presented in Fig. S18. The Bergen metric
for the CLMCom model suggests an average performance
for the entire Mediterranean region. Some of the error met-
rics, such as KGE (2009), KGE (2012), dr, and MdAE, in-
dicate good model performance. However, metrics such as

SGA, SA, and NED show the relatively poor performance of
the model.

For Eastern Europe, the Bergen metric is computed using
14 error metrics from each cluster, as listed: ACC, d, D1, dr,
H10 (MAHE), KGE (2009), MdAE, NED, MB (R), MdE,
MEE, MV, SGA, and R (Spearman). The spatial distribution
of each metric is presented in Fig. S19. One notable obser-
vation from the figure is the difference between SGA and
MEE, which indicates that although the model data have a
low bias, the direction of error in the modelled data is com-
pletely different from that of the observed data. This insight
can be valuable in identifying areas where the model’s per-
formance can be improved.
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Figure 13. Spatial distribution of the error metrics used to compute the Bergen metric for precipitation and for the Iberian Peninsula (IP)
region. The error metrics have been labelled by the abbreviation, and the corresponding error metrics can be identified from Table S3.

4.3.2 Temperature

For temperature, we focus on the CLM Community (CLM-
Com) regional model driven by ICHEC-EC-EARTH to
demonstrate the application of Bergen metrics for temper-
ature. The spatial distribution of BM is shown in Fig. 14,
which indicates average performance by the model, except in
certain areas like the northern part of Scandinavia, the central
part of Eastern Europe, and the western part of the Iberian
Peninsula, where the performance is bad. The British Isles
(Fig. 15), France (Fig. S20), and mid-Europe (Fig. S21) re-
gions have 12 clusters, and 12 error metrics, including ACC,
d , dr, H10 (MAHE), MdAE, MdE, NED, KGE (2009), KGE
(2012), MV, SGA, and R (Spearman), which are used to
compute the Bergen metric for these regions.

The Scandinavia (Fig. S22) and Eastern Europe (Fig. S23)
regions have 14 clusters, and all the error metrics from the
British Isles, along with VE and SA, are used to compute
the Bergen metric for these regions. The Iberian Peninsula
(Fig. 16) and Mediterranean (Fig. S24) regions each have
13 clusters, and all the error metrics from the British Isles,
along with MEE, are used to compute the Bergen metric. The
Alps (Fig. S25) region has 15 clusters, with all the error met-
rics from Scandinavia, including MEE, used to compute the
Bergen metric. MdE and MEE consistently indicate very bad
model performance for all the regions, while the other met-
rics indicate relatively good performance. This suggests that
the mean and median of the modelled data tend to underes-
timate/overestimate the observed mean and median, respec-
tively. Histograms in Fig. 17 further investigate this, showing
that the error values for ACC are more evenly distributed in
the Iberian Peninsula region and close to its ideal point 1,

while the source errors for MdE and MEE are concentrated
between −0.5 to −1.5, resulting in most of the error values
being concentrated between 0.9 and 1 after normalization.
The source error represents the distance between the ideal
values and actual magnitude after normalization. Similar pat-
terns can be observed in the other regions for temperature.

To illustrate inter-model variability, a random grid point
(50.125, 1.875) is selected. The Bergen metric is calculated
for both precipitation and temperature at this grid point, and
models are ranked based on the Bergen metric (Fig. 18). The
Bergen metric ranges from 2.29 to 11.39 for precipitation and
1.85 to 8.37 for temperature. Notably, with a Bergen metric
value of 2.29, ETH-COSMO (model 6) is identified as per-
forming well for precipitation. Similarly, with a Bergen met-
ric value of 2.29, GERICS-REMO2015 (model 16) is recog-
nized for its good performance in temperature. The proposed
metric offers a valuable tool for assessing the performance of
climate models.

5 Conclusions

A framework of new error metrics, known as Bergen met-
rics, has been introduced in this study to evaluate the ability
of climate models to simulate the observed climate through
comparison with a reference field. The proposed metric inte-
grates several error metrics, as described in the Results sec-
tion. To generate a single composite index, the methodology
uses a generalized p-norm framework to merge all the error
metrics. The research determines that the first norm is the
most effective norm to use in the analysis.

The study also shows that the number of error metrics used
in Bergen metrics can be reduced using a non-parametric
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Figure 14. Spatial distribution of Bergen metric using temperature data for all the eight regions.

Figure 15. Spatial distribution of the error metrics used to compute the Bergen metric for temperature and for the British Isles (BI) region.
The error metrics have been labelled by the abbreviation, and the corresponding error metrics can be identified from Table S3.

clustering technique. Although several clustering techniques
are already available in the literature, they come with certain
requirements. They require either the number of clusters be-
fore running the algorithm or information on the class label
of the feature vector. The adopted clustering technique tries
to identify the natural cluster present in the data. The mean
absolute error based on ranking order is used as a dissimi-
larity index to assign error metrics to different clusters. The
technique also has a threshold parameter: the 5th, 10th, and
20th percentiles are selected as candidates for the threshold
parameter, and the 10th percentile of the D matrix is adopted
as a threshold in this study. It is selected because an increase

in threshold (20th percentile) resulted in an increase in MAE
and a decrease in number of clusters, whereas a decrease in
threshold (5th percentile) resulted in a decrease in MAE and
an increase in the number of clusters; the study chose a mid-
dle ground. However, users can investigate different values
of q before choosing the threshold. The clustering technique
is compared with the k-means clustering approach, and it
is found that the non-parametric technique has lower MAE
compared to the k-means approach. The clustering is per-
formed for all the eight regions, and those are British Isles,
Iberian Peninsula, France, mid-Europe, Scandinavia, Alps,
Mediterranean, and Eastern Europe. For precipitation, 15, 17,
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Figure 16. Spatial distribution of the error metrics used to compute the Bergen metric for temperature and for the Iberian Peninsula (IP)
region. The error metrics have been labelled by the abbreviation, and the corresponding error metrics can be identified from Table S3.

Figure 17. Histogram plot of error and source error for MdE, MEE, and ACC for the Iberian Peninsula region (IP).

15, 15, 16, 15, 17, and 14 clusters are obtained for the eight
regions, respectively. For temperature, 12, 13, 12, 12, 14, 15,
13, and 14 clusters are obtained for the eight regions, respec-
tively.

A single error metric from each cluster can be chosen ran-
domly as a component to be used in the calculation of a
Bergen metric. We have shown that random selection does
not have any effect on the ranking order produced by a
Bergen metric. The Bergen metric which uses the L1 frame-
work is found to be less sensitive to outliers compared to the
other norms and more stable in higher-dimensional space.
Bergen metrics are multivariate error functions that can take

any number of error metrics of different variables, as shown
in the last section. It can be further modified for a weighting-
based metric that can allow the user to give more weigh-
tage to particular metrics depending on the requirement of
the study. While some metrics show good performance in
certain regions, others indicate poor performance. It is also
important to observe how a single metric can influence and
change the ranking of climate models. Bergen metrics pro-
vide a comprehensive evaluation of the model’s performance,
which is useful for identifying the strengths and weaknesses
of the model in different contexts. It is also crucial to un-
derscore that our proposed metric evaluates the magnitude
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Figure 18. The Bergen metric for precipitation (a) and tempera-
ture (b) for all 89 climate models, along with the ranking of each
model based on the Bergen metric for precipitation (c) and temper-
ature (d) at a grid point (50.125, 1.875).

differences between modelled and reference data, prioritiz-
ing this aspect over spatial and temporal patterns. The ap-
plication of this metric should be approached with careful
consideration.

Future research should address the sampling uncertainty
associated with Bergen metrics. Each data point in time se-
ries data has a certain contribution to the total error, and
if the contribution is not evenly distributed for all the data
points, the metric may give biased results. Also, each metric
has probabilistic uncertainty associated with it. For example,
RMSE works well when the errors are normally distributed,
but what if the errors are not normally distributed? A discus-
sion on uncertainty may yield useful information that will
be helpful in removing the bias from climate models in the
future.
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