
Geosci. Model Dev., 17, 3025–3040, 2024
https://doi.org/10.5194/gmd-17-3025-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

The 4DEnVar-based weakly coupled land data
assimilation system for E3SM version 2
Pengfei Shi1, L. Ruby Leung1, Bin Wang2, Kai Zhang1, Samson M. Hagos1, and Shixuan Zhang1

1Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence: Pengfei Shi (pengfei.shi@pnnl.gov) and L. Ruby Leung (ruby.leung@pnnl.gov)

Received: 17 June 2023 – Discussion started: 1 August 2023
Revised: 17 February 2024 – Accepted: 26 February 2024 – Published: 16 April 2024

Abstract. A new weakly coupled land data assimilation
(WCLDA) system based on the four-dimensional ensemble
variational (4DEnVar) method is developed and applied to
the fully coupled Energy Exascale Earth System Model ver-
sion 2 (E3SMv2). The dimension-reduced projection four-
dimensional variational (DRP-4DVar) method is employed
to implement 4DVar using the ensemble technique instead
of the adjoint technique. With an interest in providing ini-
tial conditions for decadal climate predictions, monthly mean
anomalies of soil moisture and temperature from the Global
Land Data Assimilation System (GLDAS) reanalysis from
1980 to 2016 are assimilated into the land component of
E3SMv2 within the coupled modeling framework with a 1-
month assimilation window. The coupled assimilation ex-
periment is evaluated using multiple metrics, including the
cost function, assimilation efficiency index, correlation, root-
mean-square error (RMSE), and bias, and compared with
a control simulation without land data assimilation. The
WCLDA system yields improved simulation of soil moisture
and temperature compared with the control simulation, with
improvements found throughout the soil layers and in many
regions of the global land. In terms of both soil moisture
and temperature, the assimilation experiment outperforms
the control simulation with reduced RMSE and higher tem-
poral correlation in many regions, especially in South Amer-
ica, central Africa, Australia, and large parts of Eurasia. Fur-
thermore, significant improvements are also found in repro-
ducing the time evolution of the 2012 US Midwest drought,
highlighting the crucial role of land surface in drought life-
cycle. The WCLDA system is intended to be a foundational

resource for research to investigate land-derived climate pre-
dictability.

1 Introduction

The intrinsic chaos of the atmosphere limits traditional
weather forecasting to roughly 2 weeks (Simmons and
Hollingsworth, 2002). The feasibility of atmospheric pre-
dictability beyond 2 weeks lies in the interactions of the at-
mosphere with slowly varying components of the Earth sys-
tem, such as the ocean or land surface or from predictable
external forcings (Guo et al., 2012). Climate prediction can
therefore be conceptually divided into both an initial value
and a forced boundary value problem (Collins and Allen,
2002; Conil et al., 2007). One of the biggest technical chal-
lenges for improving the quality of climate predictions is the
initialization of coupled models from observations (Taylor et
al., 2012).

Much work has been devoted to initializing climate system
models for practicable decadal climate predictions (DCPs).
These models couple various components, such as models
of the atmosphere, ocean, sea ice, land, and rivers. Due to
their complexity, coupled models are often more suscepti-
ble to initial conditions (ICs) than their individual model
components, underscoring the importance of data assimila-
tion (DA) (Sakaguchi et al., 2012). The application of DA
methods is essential to incorporate reanalysis data into the
components of coupled model and produce the optimal ICs
to improve DCPs. The initialization for DCPs uses both un-
coupled DA and coupled data assimilation (CDA) methods.
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Uncoupled DA performs DA under the framework of an indi-
vidual component model (e.g., standalone land surface model
forced by atmospheric observations or reanalysis data rather
than coupled with an atmospheric model), and then the un-
coupled DA analyses from different individual components
are combined to form the ICs of a coupled model (Zhang et
al., 2020). For example, most existing reanalysis data were
produced using uncoupled DA approaches, and these reanal-
ysis datasets are then directly used to initialize DCPs in some
studies (Du et al., 2012; Bellucci et al., 2013). However, such
uncoupled DA often exhibits poor consistency among the ICs
of different component models, and eventually produces low
prediction skills (Balmaseda et al., 2009; Boer et al., 2016;
Ardilouze et al., 2017).

To obtain balanced multi-component ICs in coupled mod-
els, recent studies focus on the development of CDA methods
under the coupled modeling framework (Penny and Hamill,
2017; He et al., 2020a). The purpose of CDA is to pro-
duce balanced and coherent ICs for all components within
the climate system by incorporating reanalysis information
from one or more components in the coupled model, pro-
viding great potential for improving seamless climate pre-
dictions (Dee et al., 2014). Some studies underscore the su-
perior advantages of CDA over traditional uncoupled DA
methods (Lea et al., 2015; Zhang et al., 2005). CDA meth-
ods are categorized into two main types: weakly coupled
data assimilation (WCDA) and strongly coupled data assim-
ilation (SCDA). WCDA assimilates the observations or ex-
isting reanalysis into the respective component of the cou-
pled model and then transfers reanalysis information to the
other components through the coupled model integration (He
et al., 2020b; Zhang et al., 2020). Considering that sequen-
tial DA encompasses both the analysis and the forecast steps,
WCDA allows no direct influence of reanalysis information
from a single component to other components in the analysis
step as the cross-component background error covariances
are not used, but coupling in the forecast step allows interac-
tions across different components during the model integra-
tion (Browne et al., 2019) and propagates reanalysis informa-
tion to other components. In contrast, SCDA utilizes cross-
component background error covariances to directly assimi-
late reanalysis information from one component into all com-
ponents, treating the entire Earth system model as one unified
system (Penny et al., 2019). Furthermore, similar to WCDA,
SCDA also allows coupling in the forecast step to propagate
reanalysis information from one component to the other com-
ponents (Yoshida and Kalnay, 2018). Several studies indi-
cate that SCDA typically exhibits more pronounced improve-
ments in assimilation performance relative to WCDA (Smith
et al., 2015; Sluka et al., 2016). However, the application of
SCDA poses substantial technical challenges, particularly in
the establishment of effective cross-component background
error covariances. Consequently, the majority of contempo-
rary CDA systems still utilize the WCDA framework.

Recent research efforts have started to implement the CDA
system to initialize DCPs using a diverse range of DA tech-
niques from simple to complex. The simplest method is
nudging, which adjusts the model states towards the ob-
servations or existing reanalysis (Hoke and Anthes, 1976;
Zhang et al., 2020). Although the nudging method saves
time and is easy to implement, its application in CDA is
restricted primarily due to the limited types of observations
and the required interpolation of observations at every time
step of model integration (He et al., 2017). Previous stud-
ies have developed advanced CDA systems using variational
and filtering approaches, such as three-dimensional varia-
tional data assimilation (3DVar) (Fujii et al., 2009; Yao et
al., 2021), and ensemble-based techniques like the ensem-
ble Kalman filter (EnKF) (Zhang et al., 2007). The former
generally utilizes the stationary background error covariance
and assimilates observations sequentially (Lin et al., 2017).
In contrast, the latter uses the flow-dependent forecast error
covariance and recursively integrates observations into the
model (Lei and Hacker, 2015). Several studies also show
encouraging progress in constructing CDA systems using
the four-dimensional variational data assimilation (4DVar)
method (Smith et al., 2015; Fowler and Lawless, 2016). The
objective of 4DVar is to optimize four-dimensional model
states and provide a compatible temporal trajectory that
matches observational records across each assimilation win-
dow (Mochizuki et al., 2016). The 4DVar method is an ad-
vanced assimilation technique that exhibits superiority over
other assimilation techniques like nudging and 3DVar in mul-
tiple aspects. Initial shocks that influence prediction skills
can be significantly minimized by the 4DVar approach due
to the dynamical consistency between the model and ICs
(Sugiura et al., 2008). However, it is difficult to apply the
4DVar method for CDA systems in the fully coupled model
because of the challenge in adjoint integration of the cou-
pled model and its high computational cost in the analysis
step. Finally, to capitalize on the strengths of both ensem-
ble and variational techniques, recent studies focus on de-
veloping new hybrid data assimilation methods (Wang et al.,
2010; Buehner et al., 2018). The hybrid approach utilizes an
ensemble forecast to generate flow-dependent forecast error
covariances and presents a way to perform 4DVar optimiza-
tion without the need for tangent linear and adjoint models
(Lorenc et al., 2015). However, most studies on CDA have
focused on assimilating observations or reanalysis data of the
ocean, the atmosphere, and even sea ice (He et al., 2017; Li et
al., 2021; Kimmritz et al., 2018). There have been relatively
few instances of CDA studies assimilating land observations
or land reanalysis data.

In this study, we introduce the development of the four-
dimensional ensemble variational (4DEnVar)-based weakly
coupled land data assimilation (WCLDA) system for the
Energy Exascale Earth System Model version 2 (E3SMv2)
(Golaz et al., 2022). The 4DEnVar method in this WCLDA
system is the dimension-reduced projection 4DVar (DRP-
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4DVar; Wang et al., 2010) that utilizes the ensemble tech-
nique as an alternative to the adjoint technique for imple-
menting 4DVar. In this WCLDA system, monthly mean
anomalies of soil moisture and temperature from a global
land reanalysis product are assimilated into the land com-
ponent of a coupled climate model in the analysis step, and
subsequently during the forecast step the land reanalysis in-
formation incorporated into the ICs of the land component
is propagated to the other components (e.g., atmosphere and
ocean) through the fully coupled model integration and in-
fluences the ICs of all components for the next assimilation
window. The primary goal of the WCLDA system is intended
to be a foundational resource for exploring predictability of
the Earth system by the E3SM community, specifically fo-
cusing on understanding the sources of predictability pro-
vided by land versus ocean, with an initial focus on DCPs.
This WCLDA system also provides the groundwork for fu-
ture actionable predictions of Earth system variability using
E3SM.

The objective of this paper is to introduce the implemen-
tation of the 4DEnVar-based WCLDA system for the land
component of E3SMv2. In Sect. 2, we provide an overview
of the E3SMv2 model, describe the 4DEnVar methodology
in detail, and outline the framework of the 4DEnVar-based
WCLDA system. Preliminary evaluation of the WCLDA sys-
tem is presented in Sect. 3. Finally, conclusions are discussed
in Sect. 4.

2 Methods

2.1 Model description

The model used in this study is a relatively new state-of-
the-art Earth system model known as Energy Exascale Earth
System Model version 2 (E3SMv2), supported by the U.S.
Department of Energy (DOE) to improve actionable Earth
system predictions and projections (Leung et al., 2020). The
atmospheric component is the E3SM Atmosphere Model ver-
sion 2 (EAMv2), which is built on the spectral-element atmo-
spheric dynamical core with 72 vertical levels (Dennis et al.,
2012; Taylor et al., 2020). At the standard resolution, EAMv2
is applied on a cubed sphere with a grid spacing of ∼ 100 km
for the dynamics. The ocean component is the Model for Pre-
diction Across Scales-Ocean (MPAS-O), which applies the
underlying spatial discretization to the primitive equations
with 60 layers using a z-star vertical coordinate (Petersen
et al., 2018; Reckinger et al., 2015). The sea ice component
is MPAS-SI, which uses the same Voronoi mesh as MPAS-
O, with mesh spacing varying between 60 km in the mid-
latitudes and 30 km at the Equator and poles (Golaz et al.,
2022). The land component is the E3SM Land Model version
2 (ELMv2), which is based on the Community Land Model
version 4.5 (CLM4.5) (Oleson et al., 2013). Simulations are
run in a satellite phenology mode with prescribed leaf area

index, and the prescribed vegetation distribution has been up-
dated for better consistency between land use and changes in
plant functional types described by Golaz et al. (2022). The
river transport component is the Model for Scale Adaptive
River Transport version 2 (MOSARTv2), which provides de-
tailed representation of riverine hydrologic variables (Li et
al., 2013). These five components exchange fluxes through
the top-level coupling driver version 7 (CPL7) (Craig et al.,
2012). Further details on the E3SMv2 model are described in
Golaz et al. (2022).

2.2 Datasets

Monthly mean soil moisture and soil temperature data in
a total of 10 soil layers are produced by the Global Land
Data Assimilation System (GLDAS; Rodell et al., 2004).
The GLDAS product generates optimal fields of land sur-
face states and fluxes in near-real time by forcing multi-
ple offline land surface models with observation-based data
fields. These reliable and high-resolution global land surface
datasets from GLDAS are extensively utilized in weather and
climate studies, hydrometeorological investigations, and wa-
ter cycle research (Chen et al., 2021; Zhang et al., 2018).
The GLDAS datasets have been available globally at high
spatial resolution since January 1979 and can be accessed
through the Goddard Earth Science Data and Information
Service Center. For more consistency with ELMv2, we uti-
lize GLDAS data produced by CLM. In contrast to decadal
timescales, data signals with temporal resolutions shorter
than 1 month can potentially introduce undesirable noise,
which can adversely affect DCPs when high temporal res-
olution data are assimilated into the ICs. Moreover, it is very
computationally demanding to assimilate complex actual ob-
servations in the initialization for DCPs that require long-
term DA cycles. Therefore, similar to most existing initial-
ization approaches for DCPs that assimilate reanalysis data,
this study describes the implementation of a data assimila-
tion approach for initializing DCPs by assimilating monthly
mean GLDAS data within the 1-month assimilation window.

Monthly mean surface soil moisture data from the Ad-
vanced Microwave Scanning Radiometer (AMSR) and land
surface temperature data from the Moderate Resolution
Imaging Spectrometer (MODIS) are utilized for validation.
(1) The AMSR data provide surface soil moisture estimations
by measuring the microwave emission from the Earth’s sur-
face (Njoku et al., 2003). The soil moisture data from AMSR
are widely used in scientific research to study surface water
cycles, drought conditions, and hydrologic modeling (Du et
al., 2019; McCabe et al., 2008). (2) MODIS is an essential in-
strument on board the Terra and Aqua satellite platforms (Re-
mer et al., 2005). The MODIS datasets provide comprehen-
sive global observations describing atmospheric, terrestrial,
and oceanic conditions, including land surface temperature,
vegetation indices, and cloud properties (Justice et al., 2002).
The MODIS products are extensively utilized for monitor-
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ing environmental changes and supporting climate change
research (Gao et al., 2015; Mertes et al., 2015).

Current initialization techniques are broadly classified into
two categories: full-field assimilation with reanalysis values,
and anomaly assimilation with reanalysis anomalies (Hu et
al., 2020; Polkova et al., 2019). The full-field assimilation
is commonly performed to reduce the influence of system-
atic model biases by replacing the initial model state with
the optimal available estimate of the reanalysis state (Volpi
et al., 2017). However, the model trajectory tends to drift
away from the observations and revert to the model’s inherent
preferred state because of model deficiencies (Smith et al.,
2013). This problem is partially addressed with the anomaly
assimilation by assimilating the reanalysis anomalies added
to the model climatology (Carrassi et al., 2014). In this study,
we conduct the anomaly assimilation for the WCLDA system
with bias correction applied to GLDAS data before assimila-
tion. For bias correction, the difference between GLDAS data
and its long-term average is calculated as anomalies and then
added to the simulated model climatology.

2.3 Data assimilation scheme

The 4DEnVar algorithm in this study is based on the DRP-
4DVar technique, which is an efficient pathway for applying
4DVar through using the ensemble method rather than the ad-
joint technique (Wang et al., 2010). The DRP-4DVar method
generates the optimal estimation in the sample space through
aligning the observations with ensemble samples along the
coupled model trajectory (Liu et al., 2011).

DRP-4DVar is an economical approach that minimizes
the cost function of the standard 4DVar by using the en-
semble technique instead of the adjoint technique (Wang
et al., 2010). The background error covariance matrix B is
estimated using the pure ensemble covariance. The ensem-
ble members originate from historical or ensemble forecasts.
Considering the high computational cost of ensemble fore-
casts for the coupled model in our study, we utilize out-
puts from the pre-industrial control (PI-CTRL) experiment
of E3SMv2 to generate ensemble members. The instanta-
neous state at the beginning of each month and the corre-
sponding monthly mean state of this month from the 100-
year balanced PI-CTRL simulation are used as the samples
of initial condition (xi) and forecast samples (yi). The corre-
sponding perturbation samples are calculated as x′i = xi − x̄
and y′i = yi− ȳ, where x̄ and ȳ are the 100-year average val-
ues of xi and yi at the same month, respectively. Following
this,m pairs of perturbation samples (x′1, x

′

2, x
′

3, · · ·, x
′
m) and

(y′1, y
′

2, y
′

3, · · ·, y
′
m) are selected at each DA analysis step ac-

cording to the correlations between y′i and the observational
innovation y′obs = yobs− yb, ensuring that each y′ sample is
selected independently of the other samples in the ensemble.
In this study, m= 30. The estimation of the background er-
ror covariance matrix B is then represented by the formula
in Eq. (1) utilizing the selected x′ samples. We implement

both horizontal and vertical localizations to reduce sampling
errors due to the finite ensemble size and to alleviate the spu-
rious remote influence from distant grid points. Our approach
to horizontal localization is to apply a distance-dependent
weighting function to the background error covariance. The
vertical localization is employed to limit the influence of re-
analysis information on specific soil layers. Please refer to
Wang et al. (2018) for more detailed descriptions of the lo-
calization methodology in our study.

B= bbT

b = 1
√
m−1
× (x′1− x̄

′, x′2− x̄
′, x′3− x̄

′, · · ·, x′m− x̄
′)

x̄′ = 1
m
(x′1+ x

′

2+ x
′

3+ ·· ·+ x
′
m)

(1)

According to Wang et al. (2010), DRP-4DVar produces the
analysis increment (x′a) by minimizing the 4DVar cost func-
tion in the incremental form (Courtier et al., 1994).

{
J (x′a)=min

x′
J (x′)

J (x′)= 1
2 (x
′)TB−1x′+ 1

2 (ỹ
′
− ỹ′obs)

T(ỹ′− ỹ′obs)
(2)

Here x′ = x−xb represents the increment of model variables
relative to the background; ỹ′obs = r

−1y′obs = r
−1(yobs− yb)

denotes the weighted observational innovation for monthly
mean anomalies of soil moisture and temperature; R= rrT

is the observational error covariance matrix that is usually
diagonal; ỹ′ = r−1y′ = r−1(y− yb) is the weighted projec-
tion of the increment (x′) onto the observation space; and the
superscript T represents the transpose.

To simplify the calculation of the minimization, the in-
crement of model state variables x′ and the corresponding
weighted observation increment ỹ′ are projected onto the
dimension-reduced sample space through the following pro-
jection transformations:

{
x′ = Pxα
ỹ′ = Pyα

, (3)

where α is the m-dimension column vector containing the
weight coefficients (α1, α2, α3, · · ·, αm). Px and Py denote
the projection matrices that incorporate the initial condition
perturbations and the corresponding monthly mean samples
as follows:

{
Px = (x′1, x

′

2, x
′

3, · · ·, x
′
m)

Py = (ỹ′1, ỹ
′

2, ỹ
′

3, · · ·, ỹ
′
m)

, (4)

where ỹ′i = r
−1y′i (i = 1, 2, · · ·, m). The original 4DVar cost

function defined in Eq. (2) is then transformed into the fol-
lowing new cost function, and the analysis can be computed
in the sample space by minimizing this new cost function:
J̃ (αa)=min

α
J̃ (α)

J̃ (α)= 1
2α

TB−1
α α+ 1

2 (Pyα− ỹ
′

obs)
T(Pyα− ỹ′obs)

xa = xb+ x
′
a = xb+Pxαa

, (5)
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The solution to this minimization problem is formulated as
follows:

αa = (B−1
α +PT

yPy)−1PT
y ỹ
′

obs. (6)

In this study, the DRP-4DVar-based WCLDA system is used
to incorporate the land reanalysis data only. The optimal
analysis for the land state variables (xlnd

a ) is obtained by
adding the analysis increment (x′lnd

a ) to the background of
land ICs (xlnd

b ), as expressed in Eq. (7):

xlnd
a = x

lnd
b +x

′lnd
a = x

lnd
b +Px

(
B−1
α +PT

yPy

)−1
P T
y ỹ
′

obs, (7)

In the analysis step, only the land state variables are updated
to the optimal analysis (xlnd

a ). Subsequently, we proceed with
a 1-month freely coupled integration of the E3SMv2 model
during the forecast step. This integration is initialized from
the optimal land ICs (xlnd

a ) along with the background fields
as the ICs of other components (e.g., atmosphere and ocean).
Throughout this 1-month free integration, the interactions
among the model components indirectly enhance the back-
ground states of these components (e.g., atmosphere and
ocean) for the next assimilation window due to the more real-
istic land state variables. Moreover, this coupled integration
also contributes to the balance between the ICs of different
components.

2.4 4DEnVar-based WCLDA system

The 4DEnVar-based WCLDA system is developed to assim-
ilate the monthly mean soil moisture and temperature data
from the GLDAS analysis dataset into the land component of
E3SMv2 using the DRP-4DVar method. Two sets of numer-
ical experiments are conducted to evaluate the performance
of land data assimilation in the WCLDA system. The con-
trol simulation (CTRL) is a 37-year freely coupled integra-
tion driven by observed external forcings (e.g., solar radia-
tion, greenhouse gas, and aerosol concentrations) from 1980
to 2016. In the freely coupled simulation, the various com-
ponents of the Earth system model, namely the atmosphere,
land, river, ocean, and sea ice, interact dynamically without
any constraints. The observed external forcing mainly acts on
the atmospheric component and then influences other com-
ponents (e.g., land surface, ocean, and sea ice) through their
coupling with the atmosphere. CTRL provides the bench-
mark for assessing the performance of the WCLDA system.
The assimilation experiment (Assim) is conducted from 1980
to 2016 based on the WCLDA system in which the GLDAS
data are assimilated into the land state variables from the 1st
to the 10th layer with a 1-month assimilation window un-
der the coupled modeling framework. The effectiveness of
the WCLDA system is evaluated through the comparison be-
tween Assim and CTRL. In both Assim and CTRL, the tran-
sient historical external forcings are prescribed following the
CMIP6 protocol (Eyring et al., 2016).

The flowchart of the 4DEnVar-based WCLDA system is
illustrated in Fig. 1. The DRP-4DVar method incorporates
three inputs: model background, observational innovation,
and 30 perturbation samples. First, the E3SMv2 model is
executed for 1 month, during which state variables such as
model background (xb), observational operator (H ), and ob-
servational background (yb) are stored. The model back-
ground (xb) denotes the monthly initial states before assim-
ilation, and the observational operator (H ) represents a 1-
month integration by the coupled model to generate monthly
mean model outputs (yb). Second, upon completion of the
1-month coupled run, the observational innovation (ỹ′obs) is
determined by calculating the differences in soil moisture
and temperature between the monthly mean GLDAS data
(yobs) and the model outputs (yb). From the 100-year sam-
ple database of the E3SMv2 PI-CTRL simulation, 30 sam-
ples of monthly mean perturbation (ỹ′) are chosen with the
highest absolute correlation with the observational innova-
tion. The corresponding 30 monthly IC samples (x′) are also
obtained. Finally, the analysis increment is generated in the
sample space, and the optimal analysis (xa) is calculated us-
ing the DRP-4DVar algorithm.

The schematic diagram in Fig. 2 outlines the assimilation
process of the 4DEnVar-based WCLDA system in E3SMv2.
The incorporation of GLDAS data into the E3SMv2 model
consists of the analysis step and the forecast step. In the anal-
ysis step, the differences between monthly mean GLDAS
data and model outputs are calculated and utilized to pro-
duce the optimal assimilation analysis at the beginning of a
1-month assimilation window. Subsequently, in the forecast
step, this optimal assimilation analysis is used as the land
ICs combined with the background ICs for other components
to conduct 1-month forecast using the E3SMv2 model. This
forecast generates the backgrounds of all model components
for the next assimilation window. As a result, the forecasted
backgrounds for all components are influenced by the land
reanalysis information incorporated into the ICs of the land
component. In general, when the coupled model is used in
the forecast step while the optimal assimilation analysis is
updated separately for the respective component, the assim-
ilation approach is identified as WCDA (Penny et al., 2019;
Zhang et al., 2020).

The detailed assimilation process mainly consists of three
steps within each 1-month assimilation window. (1) The
E3SMv2 model is initially executed for 1 month to gener-
ate the simulated monthly mean soil moisture and temper-
ature (ylnd

b ). (2) The observational innovation (y′obs) is ob-
tained through subtracting the model simulation (ylnd

b ) from
the monthly mean observation (ylnd

obs). This innovation is then
applied to formulate the optimal assimilation analysis of land
surface (xlnd

a ) at the beginning of the assimilation window
through the DRP-4DVar method. (3) The E3SMv2 model is
rewound to the start of the month and the second 1-month
model run is executed using the optimal ICs (xa) to gener-
ate the background for the next assimilation window. Due to
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Figure 1. Flowchart of the 4DEnVar-based WCLDA system in E3SMv2 based on the DRP-4DVar method.

Figure 2. Schematic flowchart of the 4DEnVar-based WCLDA system. The beginning of a month is at 00:00 UTC on the first day of the
month, and the end of the month is at 00:00 UTC on the first day of the next month. xb denotes the background vector including the
backgrounds of all E3SMv2 components (atmosphere (xatm

b ), ocean (xocn
b ), sea ice (xice

b ), river transport (xriver
b ) and land surface (xlnd

b )). xa

consists of the assimilation analysis of land surface (xlnd
a ) and the backgrounds of other components. ylnd

b represents the simulated monthly
mean soil temperature (T̄mb ) and moisture (M̄m

b ) by E3SMv2 using xb as the initial condition. ylnd
obs denotes the monthly mean GLDAS data

of soil temperature (T̄mobs) and moisture (M̄m
obs). y′obs denotes the observational innovation, which is the difference between the GLDAS data

(ylnd
obs) and the observational background (ylnd

b ).

multi-component interactions during the 1-month freely cou-
pled integration, the land reanalysis information can poten-
tially benefit other components (e.g., atmosphere and ocean)
in the coupled modeling framework (Li et al., 2021; Shi et
al., 2022). To assimilate the monthly mean GLDAS prod-
uct, fully coupled integration by the E3SMv2 model is per-
formed twice within each 1-month assimilation window: first
to generate the observational innovation by computing the
differences between the GLDAS data and model outputs for
analysis, and second to forecast the backgrounds of all com-
ponents for the next assimilation window. When the fully
coupled model is executed for the second 1-month run, the
land reanalysis information is transferred to the other compo-
nents through multi-component interactions. This approach

is similar to previous studies that employed the “two-step”
scheme in which the land model integration is performed
twice within the same month to assimilate the monthly Grav-
ity Recovery and Climate Experiment (GRACE)-based ter-
restrial water storage (TWS) observations (Houborg et al.,
2012; Girotto et al., 2016).

2.5 Evaluation metrics

The reduction rate of the cost function is a significant metric
for verifying the effectiveness of the WCLDA system and
evaluating the extent of reanalysis information assimilated
by the coupled model, which is formulated as follows:
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
J1−J0
J0
× 100%

J0 =
1
2 (yobs− yb)

TR−1(yobs− yb)

J1 =
1
2 (yobs− ya)

TR−1(yobs− ya)

, (8)

where J0 and J1 denote the cost function before and after
assimilation, respectively; yobs represents the GLDAS data;
ya denotes the monthly mean analyses; yb is the observation
space background; and R is the observation error covariance
matrix. The observation error covariance matrix R can be de-
termined statistically by estimating the variance and covari-
ance of the GLDAS data. A negative value for this metric
indicates that reanalysis information has been correctly in-
corporated into the model variables.

Following Yin et al. (2014), the assimilation efficiency
(AE) index is defined to evaluate the efficiency of the
WCLDA system as follows:

AE=
RMSEAssim

RMSECTRL
− 1 . (9)

In this equation, RMSEAssim is the root-mean-square error
(RMSE) between the analysis value from Assim and the ref-
erence data, while RMSECTRL represents the RMSE between
CTRL and the reference data. Negative (positive) AE value
indicates improvements (degradations) by the assimilation.
In the following sections, we use the GLDAS data as the
main reference data to verify the correctness of the WCLDA
system, but some analyses are also performed using AMSR
surface soil moisture and MODIS land surface temperature
as the reference data.

3 Results

3.1 Evaluation of the cost function

Figure 3 displays the time series of the monthly reduction
rate of the cost function in the 4DEnVar-based WCLDA sys-
tem. In the first month, the reduction rate reaches approxi-
mately 26.06 % in Assim. Over the subsequent months, As-
sim maintains the average reduction rate of 7.73 % through-
out the entire 37-year period. Furthermore, negative reduc-
tion rates are observed in 98.65 % of the total months, indi-
cating the effectiveness of the WCLDA system. These results
suggest that the WCLDA system is correctly implemented,
with GLDAS data successfully assimilated into the coupled
model.

3.2 Evaluation of the AE index

The spatial pattern of the AE index for soil moisture at dif-
ferent depths is depicted in Fig. 4. The AE value exhibits
negative signal in most areas for a total of 10 soil layers, sug-
gesting the reduction in RMSE for soil moisture after assimi-
lation. Significant improvements appear over North America,

Figure 3. Time series of the reduction rate of the cost function from
1980 to 2016 in the 4DEnVar-based WCLDA system.

South America, southern Africa, Europe, and Asia. However,
assimilation performance is degraded in the northern part
of Russia and northern Africa. This is consistent with the
findings in other studies that assimilation updates in north-
ern Russia are limited due to the complexities of accurately
representing frozen ground and snow processes in high lati-
tudes (Edwards et al., 2007; Ireson et al., 2013). As surface
soil moisture is highly susceptible to atmospheric conditions,
assimilation performance of surface soil moisture is limited
by the accuracy of atmospheric forcing. Furthermore, some
degradations found in the deep layers could be attributed to
the substantial influence of various terrestrial factors, such as
subsurface runoff and interactions with groundwater, similar
to the findings in previous studies (Liu and Mishra, 2017;
Zeng and Decker, 2009).

Figure 5 shows the spatial distribution of the AE index for
soil temperature from the surface to deep layers. Most grid
cells from the 10 soil layers are dominated by negative AE
signals, indicating improved performance for soil tempera-
ture after assimilation. Moreover, the spatial patterns across
different soil layers are highly consistent with each other and
exhibit similar magnitudes in most areas. Notable improve-
ments are observed in central Europe, South America, east-
ern Russia, and large parts of Eurasia and North America. In
contrast, slight degradations appear over Southeast Asia and
along the northern fringes of Africa. This may be partly re-
lated to model uncertainties and possible atmospheric noise,
as shown by many past studies (Kwon et al., 2016; Lin et al.,
2020).

We further perform an analysis of the spatial pattern of the
AE index for surface soil moisture and land surface tempera-
ture between satellite data and model simulations (Fig. A1).
For surface soil moisture, the comparison with AMSR data
suggests that the majority of global regions exhibit reduced
RMSE after assimilation. The reduction in RMSE is pro-
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Figure 4. Spatial distribution of the AE index for soil moisture from the surface to deep layers during the 1980–2016 period. The number at
the top center denotes the depth of each soil layer.

Figure 5. The same as Fig. 4 but for soil temperature.

nounced in central North America, South America, southern
Africa, Australia, and Europe. However, in high-latitude ar-
eas, significant degradations are observed in northern Russia,
which may be related to model deficiencies in simulating the
complex frozen ground and snow processes (Edwards et al.,

2007; Ireson et al., 2013). Regarding land surface tempera-
ture, improved performances are evident over South Amer-
ica, Australia, southern Africa, and large parts of Eurasia
when compared to MODIS data. In contrast, some degrada-
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Figure 6. Differences between correlations of soil moisture in Assim and CTRL with the GLDAS data from the surface to deep layers for
the period of 1980–2016. The number at the top center denotes the depth of each soil layer.

Figure 7. The same as Fig. 6 but for soil temperature.

tions appear over parts of North America and central Asia,
which still require further improvement.

3.3 Evaluation of the correlation

Figure 6 displays the spatial patterns of the differences in
temporal correlations for soil moisture between Assim and
CTRL with GLDAS data across different soil layers. The ma-
jority of global regions in Assim exhibit higher correlations
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Figure 8. Vertical distributions of RMSE differences (Assim minus
CTRL) for (a) soil moisture and (b) soil temperature averaged over
the global land during the 1980–2016 period.

from the 1st to the 10th layer compared with CTRL, sug-
gesting the overall good performance of the WCLDA sys-
tem. Enhanced correlations in deep soil layers are more pro-
nounced than in shallow layers, which may be attributed to
the longer memory of soil processes in the deeper soil layers
(Wang et al., 2010). Improved correlations appear over North
America, central Europe, Asia, and parts of Africa. However,
some scattered areas show slight degradations, such as north-
ern South America, central Africa, and eastern Russia. Over-
all, Assim outperforms CTRL with higher correlation (Fig. 6)
and lower RMSE (Fig. 4) in many regions, such as Europe,
North America, southern South America, and South Asia.

The correlation differences in soil temperature between
Assim and CTRL from surface to deep layers are shown in
Fig. 7. Assim yields improved correlations from the 1st to
the 10th layer across the majority of global regions. Fur-
thermore, similar spatial patterns and magnitudes are ob-
served in the performance of different soil layers, implying
the significant heat transfer from the surface to deep zone

that constrains soil temperature across the soil column. No-
table improvements are located over South America, central
Africa, Australia, central Europe, and East Asia. Neverthe-
less, some degradations appear over North America, western
Europe, and northeastern China. Assim shows superior per-
formance over CTRL for soil temperature with higher cor-
relation (Fig. 7) and lower RMSE (Fig. 5) in many regions,
including South America, central Europe, Australia, and cen-
tral Africa.

3.4 RMSE and bias of the global mean soil moisture
and temperature

The vertical distributions of RMSE differences between As-
sim and CTRL for soil moisture and temperature are evalu-
ated in Fig. 8. Compared with CTRL, Assim shows notice-
able improvements with reduced RMSE for both soil mois-
ture and temperature in all 10 soil layers. For soil moisture,
the reduction in RMSE increases with depth from the upper
to deep soil layers, reaching its maximum at the 10th layer.
This could be attributed to the longer soil memory in deep
layers than shallow layers. For soil temperature, the reduc-
tion in RMSE exhibits similar magnitude from the surface
to deep soil layers, which may be explained by the signif-
icant heat transfer across different soil layers in regulating
soil temperature throughout the soil column.

Figure 9 shows the time evolutions of the vertically av-
eraged global mean soil moisture and temperature bias and
RMSE differences. For soil moisture bias (Fig. 9a), CTRL
exhibits dry biases during the first 20 years and wet biases
afterwards. In contrast, Assim shows smaller biases during
both periods by reducing the dry bias prior to ∼ 2000 and
the wet bias thereafter. Assim also exhibits reduced RMSE
(Fig. 9b) for soil moisture throughout the entire 37-year pe-
riod. For soil temperature bias (Fig. 9c), CTRL and As-
sim display comparable performances, possibly due to the
small magnitude of model deviation in soil temperature. The
RMSE differences (Fig. 9d) suggest that Assim decreases the
RMSE for soil temperature in the majority of months, with
74.10 % of the total months in Assim exhibiting lower RMSE
than CTRL. In summary, the superior performance for both
soil moisture and temperature in Assim demonstrates that
land reanalysis information has been effectively incorporated
into the model variables through the WCLDA system.

Noticeably, the simulated soil temperature and soil mois-
ture display similar long-term trends, with cold and dry bi-
ases before∼ 2000 and warm and wet biases afterwards. The
soil temperature biases may be related to the global surface
air temperature simulated in E3SMv2, which is notably too
cold compared to the observed record during the 1970s and
1980s while the model warms up quickly after ∼ year 2000
(see Fig. 23 of Golaz et al., 2022). The global surface air
temperature biases during the past decades in E3SMv1 and
v2 have been attributed to the strong aerosol forcing in the
model (Golaz et al., 2019, 2022). As the global mean precip-
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Figure 9. Time series of the vertically averaged global mean soil moisture and temperature bias (a, c) for Assim (red line) and CTRL (blue
line) and RMSE differences (b, d, green line) between Assim and CTRL from 1980 to 2016.

itation scales with the surface temperature at ∼ 2 % per de-
gree (Allen and Ingram, 2002), model biases in surface tem-
perature are reflected in biases in precipitation and hence soil
moisture, resulting in similar long-term trends between soil
temperature and soil moisture biases in the simulations.

3.5 The 2012 US Midwest drought

To further evaluate the performance of the WCLDA sys-
tem, we briefly investigate the impact of land data assimi-
lation on simulating the temporal evolution of the US Mid-
west drought in 2012. Time series of soil moisture percentiles
over the Midwest (36–50° N, 102–88° W) demonstrate sig-
nificant improvements by Assim in reproducing the time evo-
lution of agricultural drought in 2012 compared with CTRL
(Fig. 10). From ERA-Interim data, the agricultural drought
starts in August 2011, followed by a brief relief in early
spring of 2012, a peak in September 2012, and recovery by
January 2013. The drought developed rapidly between May
and July 2012 over a widespread area including the central
and midwestern US. This flash drought caused significant
agricultural damages and economic losses.

The free-running CTRL experiment fails to simulate the
temporal evolution of the 2012 Midwest drought, with a
correlation coefficient between CTRL and ERA-Interim of
only 0.27. The onset and peak of the drought are remark-
ably well captured by Assim, although the drought recovery
occurs 2 months later than observed. The correlation coef-
ficient of the Assim time series with ERA-Interim is 0.56,
which is statistically significant at the 95 % confidence level.
Our results highlight the importance of land surface states

Figure 10. Time series of soil moisture percentiles between May
2011 and April 2013 during the 2012 US Midwest drought. The
red line shows the observation, the blue line shows Assim, and the
orange line shows CTRL. The correlation coefficients of Assim and
CTRL with observations are also shown. The three vertical dashed
lines mark the timing of drought start, drought peak, and drought
end, respectively. The start of the agricultural drought is defined
as the month when soil moisture falls below the 20th percentile.
The soil moisture percentiles are averaged over the US Midwest
(36–50° N, 102–88° W). The observed soil moisture is derived from
ERA-Interim monthly soil moisture data.

for the drought lifecycle, with the potential to improve fu-
ture drought predictions through the implementation of the
WCLDA system.
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4 Conclusions

In this study, we developed the 4DEnVar-based WCLDA sys-
tem for the E3SMv2 model and evaluated the performance
of this WCLDA system. The DRP-4DVar method was em-
ployed for implementing 4DVar using the ensemble method
rather than the adjoint technique. Special attention is paid to
directly assimilating monthly mean land reanalysis data in
this system without interpolating to every time step. Within
each 1-month assimilation window, we assimilate land re-
analysis information into the coupled model without break-
ing the land–atmosphere interaction, which is important for
the WCLDA system to be used to understand the potential
sources of predictability provided by land.

Monthly mean anomalies of soil moisture and tempera-
ture from the GLDAS reanalysis are assimilated from 1980
to 2016 through the WCLDA system, and its performance
is evaluated using multiple metrics, including the cost func-
tion, AE index, correlation, RMSE, and bias. Compared with
CTRL, the cost function is reduced by Assim in most months,
suggesting that the GLDAS reanalysis data has been effec-
tively incorporated into the model. In terms of both soil
moisture and temperature, Assim outperforms CTRL with
lower RMSE and higher temporal correlation in many re-
gions, especially in South America, central Africa, Australia,
and large parts of Eurasia. For soil moisture bias, Assim fur-
ther decreases the dry bias during the first 20 years and the
wet bias thereafter. It is noteworthy that the subseasonal-to-
seasonal time evolution of soil moisture percentiles during
the 2012 US Midwest drought can be quite well captured in
Assim, underscoring the significant role of land surface states
in drought propagation.

Our current WCLDA system has some limitations and
requires future improvements. Future enhancements of our
WCLDA system will explore the assimilation of additional
land products, particularly those derived from satellite obser-
vations. The incorporation of such satellite-based datasets is
expected to further improve the performance of the WCLDA
system. It is possible that the influence of the WCLDA
system on atmospheric processes may be limited in some
domains due to uncertainties of the model parameteriza-
tions, particularly in representing land–atmosphere interac-
tions (Zhou et al., 2023). For example, in humid regions
where the evaporation process is predominantly energy lim-
ited, the assimilation of soil moisture tends to exert limited
influence. Instead, the assimilation of soil temperature may
yield more substantial improvements. This underscores the
importance of the unique characteristics and constraints pre-
sented by complicated regional conditions in the application
of assimilation processes. To this end, the application of the
WCLDA system would motivate future work to better un-
derstand the roles of the land surface in climate variability
and provide a foundational resource for future predictability
studies by the E3SM community.

Appendix A: Supporting information

Figure A1. Spatial distribution of the AE index for (a) surface soil
moisture and (b) land surface temperature during the 2003–2014 pe-
riod. The surface soil moisture and land surface temperature are de-
rived from monthly AMSR and MODIS satellite data, respectively.
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used in this study can be accessed on Zenodo at
https://doi.org/10.5281/zenodo.8194050 (Shi, 2023a). The GLDAS
monthly soil moisture and soil temperature data are available
online (https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS,
NASA Global Land Data Assimilation System, 2007). The
MODIS monthly land surface temperature data can be downloaded
from the website (https://doi.org/10.5067/4SI45J6G6BW5, GES
DISC Northern Eurasian Earth Science Partnership Initiative
Project, 2001). The AMSR monthly surface soil moisture data
are available from https://doi.org/10.11888/Soil.tpdc.270960
(Yao and Lu, 2020). The ERA-Interim monthly soil moisture
data are available at https://doi.org/10.5065/D6CR5RD9 (Eu-
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