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Abstract. We present the process of and difficulties in ac-
quiring the proper boundary conditions (BCs) for the state-
of-the-art large-eddy simulation (LES)-based PALM model
system. We use the mesoscale Weather Research and Fore-
casting (WRF) model as a source of inputs for the PALM
preprocessor and investigate the influence of the mesoscale
model on the performance of the PALM model. A total of
16 different WRF configurations were used as a proxy for a
multi-model ensemble. We developed a technique for select-
ing suitable sets of BCs, performed PALM model simulations
driven by these BCs, and investigated the consequences of
selecting a sub-optimal WRF configuration. The procedure
was tested for four episodes in different seasons of the year
2019, during which WRF and PALM outputs were evalu-
ated against the atmospheric radiosounding observations. We
show that the PALM model outputs are heavily dependent on
the imposed BCs and have different responses at different
times of the day and in different seasons. We demonstrate
that the main driver of errors is the mesoscale model and
that the PALM model is capable of attenuating but not fully
correcting them. The PALM model attenuates the impact of
errors in BCs in wind speed, while for the air temperature,
PALM shows variable behavior with respect to driving con-
ditions. This study stresses the importance of high-quality
driving BCs and the complexity of the process of their con-
struction and selection.

1 Introduction

Interest in studying the urban atmosphere and climate has
been present since the last century, and according to Mills
(2014) it started with the work of Howard (1818). Due to
the increasing number of city inhabitants and their impact
on urban climate (Oke et al., 2017) and many other (sci-
entific and commercial) relevant factors (Souch and Grim-
mond, 2006), this field of study will remain a key focus for
researchers in the future. Characteristics of urban areas and
climate (e.g., urban heat islands (UHIs), altered winds, and
air quality) have been explored by many scientists (e.g., Arn-
field, 2003; Mirzaei, 2015; Oke et al., 2017; Masson et al.,
2020). Even though many challenges have been encountered
while researching urban areas (e.g., Arnfield, 2003; Blocken,
2018; Kubilay et al., 2020), there are several methods used
for studying them (e.g., Blocken, 2015; Toparlar et al., 2017),
among which computational fluid dynamics (CFD) models
are one.

A particular asset of the CFD method is that it allows
for detailed physics-based analysis of the urban climate and
urban physical phenomena (Kubilay et al., 2020), i.e., for
scales below 2 km (Blocken, 2018). CFD models are ver-
satile and appropriate for studying flow around buildings,
pedestrian wind, vegetation-cover-related topics, etc. (e.g.,
Toparlar et al., 2017; Blocken, 2018). While using CFD mod-
els for numerical simulations, one needs to consider which
turbulence model to use. According to Blocken (2018) and
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Kubilay et al. (2020), CFD models mostly rely on Reynolds-
averaged Navier–Stokes (RANS) or large-eddy simulation
(LES) turbulence models, whose qualities and weaknesses
have been the topic of many studies (see, e.g., Hanjalic, 2005;
Blocken, 2015, 2018; Maronga et al., 2019). In recent years,
despite their higher computational cost, LES models have be-
come popular among researchers and modelers due to their
higher accuracy and ability to thoroughly capture the physi-
cal processes within the urban atmosphere.

Currently, the scientific literature uses two major open nu-
merical models based on LES with advanced urban param-
eterizations that allow scientists to study urban areas at a
very high resolution: uDALES (Suter et al., 2022) and the
PALM model system, originally known as the Parallelized
Large-eddy Simulation Model (Maronga et al., 2020). To-
day, PALM solely refers to the model name because it has
been extended with a RANS core (Maronga et al., 2020).
In general, the PALM model has been the subject of many
studies conducted for different purposes (e.g., Letzel et al.,
2008; Resler et al., 2017; Heldens et al., 2020; Fröhlich
and Matzarakis, 2020; Gehrke et al., 2021; Pfafferott et al.,
2021). Despite the advantages and the level of detail it pro-
vides, there are still many limitations to it, some of which are
mentioned in the earlier studies, but not in all of its compo-
nents and applications. One segment, which to the best of our
knowledge has not been thoroughly investigated, is related to
the issue of choosing the most suitable time-dependent me-
teorological boundary conditions for running a given PALM
simulation.

While being capable of utilizing the standard cyclic
boundary conditions (Maronga et al., 2015, 2020) and apply-
ing them to homogeneous and idealized setups (e.g., Grone-
meier et al., 2017, 2021; Resler et al., 2017; Kurppa et al.,
2018; Řezníček et al., 2023), PALM offers a so-called one-
way offline nesting system, which enables it to take meteoro-
logical conditions from the mesoscale meteorological mod-
els and employ them throughout the entire PALM simulation
(Kadasch et al., 2021). The application of such a system is
most significant in the case of studying the atmosphere of a
real, complex, and densely built urban environment. Further-
more, the utilization of boundary conditions that are as good
and as realistic as possible during the PALM simulations is of
high importance, especially in model validation studies and
comparisons with observations, in which we strive to elimi-
nate other possible sources of errors beyond the model for-
mulation and implementation (see, e.g., Resler et al., 2021).
A natural consequence of the impact of the boundary (and
initial) conditions on the microscale simulation is the fact
that any validation involves the full coupling of the driving
mesoscale model (e.g., WRF, the Icosahedral Nonhydrostatic
Weather and Climate Model (ICON; Zängl et al., 2015), or
the Consortium for Small-scale Modeling (COSMO) and ac-
cordingly their driving data) and the high-resolution model,
i.e., PALM. While providing the driving data to the mi-
croscale model, the errors and uncertainties coming from the

mesoscale model are introduced, and their magnitude or ori-
gin is not always known. Therefore, without separating the
errors that arise from the mesoscale and microscale mod-
els, one could be deceived into placing the responsibility on
an erroneous representation of some microscale model pro-
cesses, while the true origin of the errors might come from
the mesoscale model and driving fields it provides. Hence,
further development of the microscale model (e.g., PALM)
could target the wrong part or process and consequently in-
troduce overcorrecting model adjustments, in the end obtain-
ing better results for the wrong reason.

Up to now, several mesoscale model outputs have been
used as drivers for the PALM model simulations, namely,
the Consortium for Small-scale Modeling (COSMO; Baldauf
et al., 2011), the Meteorological Cooperation on Operational
Numerical Weather Prediction (MetCoOp) Ensemble Predic-
tion System (MEPS; Bengtsson et al., 2017; Müller et al.,
2017), ALARO and/or AROME (Termonia et al., 2018), and
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2019), three of which (COSMO, MEPS, and
ALARO and/or AROME) are not publicly available. A de-
scription of the processing tools for initial and boundary
condition (IBC) creation made for the COSMO model can
be found in Kadasch et al. (2021) and Kurppa et al. (2020)
for the MEPS modeling system. Furthermore, the ALARO
and/or AROME has been used for PALM initialization in a
case study done by Zuvela-Aloise et al. (2022). On the other
hand, given the fact that the WRF model is publicly avail-
able and widely used among researchers, several different
preprocessors have been developed, including the WRF in-
terface, which is part of the PALM distribution (Resler et al.,
2021, and most recently by Vogel et al., 2022). Since this
work covers the topic of finding the optimal choice of WRF-
modeled BCs, we only considered the studies which em-
ployed WRF boundary conditions and looked through their
respective choices of WRF model setups (see, e.g., Resler
et al., 2017; Belda et al., 2021; Resler et al., 2021; Vogel et
al., 2022). Each of these studies has implemented a particu-
lar WRF model setup which differs in the parameterization
bundle, horizontal and vertical resolutions, initialization data
used (the Global Forecast System (GFS) or the European
Centre for Medium-Range Weather Forecasts (ECMWF) at-
mospheric reanalysis of the global climate (ERA5); Hers-
bach et al., 2020), etc. When it comes to the simulation pe-
riods looked at in the available studies, a validation study by
Resler et al. (2017) and a sensitivity study by Belda et al.
(2021) considered the heatwave episode which occurred dur-
ing July 2015 , while Resler et al. (2021) selected several
different episodes: two heatwave episodes during July 2018
and three episodes during November and December of the
same year.

Studies like Belda et al. (2021) and Resler et al. (2021)
highlight the need for having as accurate as possible ini-
tialization data for driving the PALM model in validation
studies. Radović et al. (2022) showed that the PALM model
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results coincide with and closely follow WRF model out-
puts by comparing modeled vertical profiles with one another
and testing their accuracy with the radiosounding data. Fur-
thermore, by performing the standard statistical analysis, the
same study stressed that different PALM model simulations
show a different quality of outputs for different variables
(e.g., potential temperature, wind speed). Moreover, Vogel
et al. (2022) say that the accuracy of the PALM model output
depends on the WRF model setup.

Driven by these statements and bearing in mind that these
studies utilized different WRF model configurations for driv-
ing their PALM model simulations, we designed and per-
formed an experiment in which both different WRF config-
urations and different weather conditions were considered.
As the main weather situations, we selected two events with
high impact on urban environments, namely, a heatwave in
July 2019 and a bad air quality episode in February 2019.
To also include non-extreme weather situations, we selected
two additional episodes during April and October with calm
and stable weather. The WRF model was run in 16 differ-
ent configurations, producing an ensemble of 16 mesoscale
simulations for each of the aforementioned weather situa-
tions. Our domain of interest is in the southeastern part of
the city of Prague, Czech Republic, with its center in the
vicinity of the Libuš meteorological station (LIBU; WMO
ID 11520). This is a realistic urban area chosen to coincide
with the aforementioned sounding station, enabling us to ex-
ecute a comparison of the sounding profiles that is as realistic
as possible. We performed 14 PALM model simulations with
identical model setups while only changing the IBC, i.e., the
WRF ensemble member driving the PALM simulation. The
main advantage of using a lower-resolution model as bound-
ary conditions (compared to, e.g., measured values) is the
fact that it provides a physically consistent set of variables
covering arbitrary locations. On the other hand, raw model
outputs are inherently imperfect, and an analysis can be used
in their place, trading some physical consistency for better
agreement with observations. Individual bias correction for
different variables causes the same effect. Therefore we used
raw WRF outputs in our study.

The main aim of this study is to provide insight into some
parts of the complexity in choosing the optimal setup of BCs
for the PALM simulations for a particular domain and a par-
ticular simulation period and to show that many parameters
must be taken into consideration during the process. First,
we only focus on extreme weather situations (a heatwave and
adverse air quality) that are the most relevant to the applica-
tions of street-scale modeling in urban planning. As a further
matter, we try to recognize and separate the errors coming
from the imposed BCs and the ones that originated from the
microscale model. However, to keep this study concise and
to the point, we omit other important factors which LESs are
sensitive to, such as the simulation spin-up time, domain size,
or grid box size (for some examples of studies dealing with
sensitivity to domain parameters, see Ramponi and Blocken,

2012; Ai and Mak, 2014; Crank et al., 2018; Abu-Zidan et
al., 2021; Ovchinnikov et al., 2022; Lamaakel et al., 2023).
It can be expected that the larger the domain size, the less
influence there is on the nested model simulation and the dif-
ferences between specific model settings so that there is a
more relative impact with larger domains. However, proper
evaluation of all possible influences is beyond the scope of
this study and will be continued in further research.

This paper is structured as follows. Firstly, the choice of
simulation periods is explained (Sect. 2.1). Secondly, the
PALM model configuration is described in Sect. 2.2. The
WRF model configuration, the ensemble members, and the
selection strategy is presented in Sect. 2.3 and 2.4, followed
by the result-processing description (Sect. 2.5). The results
are described in Sect. 3. Lastly, in Sect. 4, the discussion and
future aspects are presented, followed by the study limita-
tions in Sect. 5 and conclusions in Sect. 6.

2 Methodology

2.1 Simulation periods

This experiment encompasses four different 72 h episodes
in February, July, April, and October of 2019. Furthermore,
only anticyclonic weather types are taken into considera-
tion, since according to Zahradníček et al. (2022), these types
were the most frequent ones that occurred in the Czech Re-
public during the 1961–2020 period. Additionally, specific
weather events we take an interest in, i.e., bad air qual-
ity periods, heatwaves, and stable and calm weather, coin-
cide with and are a consequence of these weather systems.
For instance, during winter (December, January, and Febru-
ary), they are characterized by clear and bright skies, with
light wind speeds or no winds at all. These conditions, espe-
cially during the evening and nighttime, often lead to the oc-
currence of temperature inversion, a condition favorable for
trapping the pollutants from vehicles, heating, etc., creating
bad air quality conditions within urban environments. Tem-
perature inversion events are the strongest during winter but
can be observed during the other three seasons as well. To
give an example, the aforementioned phenomenon and bad
air quality conditions within urban environments are used
as an episode in a validation study by Resler et al. (2021).
Similarly, in summer (June, July, August), when the sky is
clear, the sun warms up the ground continuously, bringing
hot and dry weather, which oftentimes, during anticyclonic
conditions, leads to the creation of a weather event known
as a heatwave (see, e.g., Belda et al., 2021; Resler et al.,
2021). Besides the intolerable temperatures that heatwaves
bring to city inhabitants, the occurrence of increased ground-
level ozone concentrations in urban areas is another reper-
cussion of this event (see, e.g., Resler et al., 2021). Thereby,
we take an interest in these two extreme weather phenomena
for several reasons. Firstly, both have serious implications for
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city dwellers’ health and well-being. Secondly, heatwaves
and bad air quality conditions are the two most important
hazards for the city of Prague. And lastly, they are important
for the PALM model’s future validation (see, e.g., Resler et
al., 2017, 2021). Nonetheless, to broaden the study and to
see if the model behaves consistently throughout the year,
we included two other seasons (spring and autumn) without
unique weather events. Hence, two more episodes have been
selected, one in April and another in October. The choices of
the simulation periods in 2019 are as follows: 15–17 Febru-
ary (e1), 16–18 April (e2), 24–26 July (e3), and 20–22 Oc-
tober (e4). For detailed information about the meteorological
conditions during the selected episodes, see Table 1.

2.2 PALM model configuration

2.2.1 Model description and configuration

Simulations were done by the PALM model (Maronga et
al., 2020). The PALM model is based on the large-eddy
simulation (LES) approach, and it solves non-hydrostatic,
filtered, Boussinesq-approximated, incompressible Navier–
Stokes equations. We selected the following configura-
tion of the individual processes in the PALM model for
our simulations. The subgrid stress tensor is modeled by
the Deardorff (1980) 1.5-order closure involving Moeng
and Wyngaard (1988) and Saiki et al. (2000) modifica-
tions. Pressure is calculated by a Poisson equation solved
with the multi-grid scheme (description, e.g., in Maronga
et al., 2020). For spatial and temporal discretizations, the
upwind-biased fifth-order differencing scheme (Wicker and
Skamarock, 2002) and the third-order Runge–Kutta time-
stepping scheme (Williamson, 1980) are employed, respec-
tively. This core system is complemented by the so-called
PALM for urban application modules (PALM4U) specifi-
cally developed for studying the urban boundary layer and
application to concrete problems, i.e., city planning, urban
climate studies, etc. (Maronga et al., 2020). They include,
e.g., a land surface model (LSM; Gehrke et al., 2021), a
building surface model (BSM; Resler et al., 2017; Maronga
et al., 2020), a radiative transfer model and plant canopy
model (RTM and PCM; Krč et al., 2021), a human biome-
teorology module (BIO; Fröhlich and Matzarakis, 2020), on-
line nesting (Hellsten et al., 2021), and mesoscale nesting
(MESO; Kadasch et al., 2021). The modules employed in
this experiment are LSM, BSM, RTM, BIO, and MESO.

For the purposes of the experiment, 14 simulations were
conducted, and the length of each simulation episode was
72 h. Moreover, to adjust the temperatures of the individual
elements of soil, building walls and roofs, and pavement lay-
ers, which are initialized from the coarse mesoscale simu-
lation and prescribed by PALM configuration, our setup in-
cluded a PALM-provided spin-up simulation for a period of
24 h. During the spin-up simulation, only simplified energy-
related processes are simulated, while the dynamic part of the

model’s code is switched off (see details in Maronga et al.,
2020). It allows the simulation to start with the temperature
of surfaces and material below the surfaces partly adjusted to
microscale conditions. These adjustments are not perfect due
to the simplified nature and limited time of the spin-up run.
For this reason, the results of the first hours of the actual sim-
ulation need to be interpreted with care, mainly in the case of
near-surface processes, while in the case of profiles, the pos-
sible influence is minor.

2.2.2 Input data and domain configuration

To solve the energy-balance equations and radiation inter-
actions, BSM, LSM, and RTM require the use of detailed
and precise input parameters describing the surface mate-
rials, such as albedo, emissivity, roughness length, thermal
conductivity, thermal capacity, and the capacity and thermal
conductivity of the skin layer. Urban and land surfaces as
well as subsurface materials become very heterogeneous in a
real urban environment when a very fine spatial resolution is
used. For this study, three different data sources were used as
input: (i) the Copernicus Land Monitoring Service’s Urban
Atlas 2018, (ii) the OpenData platform of the Prague Munic-
ipality (digital elevation model, building heights, etc.), and
(iii) OpenStreet Maps as a source of building locations out-
side of the city of Prague. All datasets were processed to the
static driver, an input file needed for the PALM model ini-
tialization (see PALM Input Data Standard – PIDS in PALM
model documentation).

The domain used in this experiment is located in the south-
eastern part of Prague (see Fig. 1). In the central, northern,
and northwestern parts, the simulated domain is made up of
diverse types of areas and includes all the typical objects that
characterize an urban area (e.g., continuous and dense urban
areas, transit roads, green urban areas, water bodies; Fig. 1).
The northeastern part contains large green urban areas (code
1410 in Fig. 1). Moreover, the eastern and southern parts are
made up of arable land. The Vltava River crosses the domain
in the south–north direction in the western part. Such a land
cover formation in the domain covers a diverse set of areas,
chosen to challenge the model performance across the men-
tioned composition. Elevation in the domain varies between
171 and 381 m, and the mean elevation is 275 m. The high-
est hills are located in the southern parts of the domain. The
Vltava River has formed a deep valley in the western part;
one small valley is located in the center of the domain and a
second larger one in the northern part, both of them forested.
Slopes close to the valleys are steep and change continuously
to a plateau (see Appendix F). In the horizontal direction, the
domain has a dimension of 8×8 km with 10 m horizontal res-
olution. Vertically, it extends up to the height of 2830 m dis-
tributed on 162 vertical levels, and 10 m resolution is applied
until 350 m height is reached, after which a stretching factor
of 1.08 is implemented with a maximum stretching length of
20 m.
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Table 1. Meteorological conditions during the selected simulation episodes.

Episode e1 e2 e3 e4

Simulation dates 15–17 February 16–18 April 24–26 July 20–22 October

Weather type Anticyclonic Eastern anticyclonic Anticyclonic, eastern anticyclonic Southern anticyclonic

Minimum temperature − 2.4 °C 1.3 °C 15.9 °C 7.6 °C

Maximum temperature 14.0 °C 19.0 °C 38.5 °C 16.5 °C

Cloudiness
Clear sky or Occasional

Clear sky Cloudy with fog
passing clouds scattered clouds

Precipitation No No No
Sleet on 22 October 2019
during morning hours

Overall interquartile range
1.0 m s−1 2.1 m s−1 0.8 m s−1 0.6 m s−1

of the 10 m wind speed

Mean wind speed (10 m) 1.9 m s−1 2.0 m s−1 1.4 m s−1 0.9 m s−1

Overall interquartile range
4.4 m s−1 4.5 m s−1 2.5 m s−1 3.4 m s−1

of the 3000 m wind speed

Mean wind speed (3000 m) 6.9 m s−1 5.3 m s−1 7.2 m s−1 8.0 m s−1

Figure 1. The location of the modeled domain in Europe (top left) and in the Czech Republic (bottom left). The WRF model’s outer and
inner domains are depicted at the top-left part of the figure with green and pink colors, respectively. The map of the domain within the city
of Prague with the Libuš station (WMO ID 11520) location is presented on the right part of the figure. Land cover categories shown on the
right are represented using the Urban Atlas 2018 geodatabase with respective codes described in Urban Atlas (2018).
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2.2.3 Initial and boundary conditions

The dynamic driver input file is used to supply the IBC for the
PALM model. It consists of initial information for the entire
domain and dynamic information about the time-dependent
conditions at the boundaries. The 3D fields of the potential
temperature, velocity components (u, v, w), and water vapor
mixing ratio originated, e.g., from the WRF model are hori-
zontally and vertically interpolated to the PALM model grid.
Since the PALM model represents terrain in a higher resolu-
tion in comparison to the WRF model, the vertical interpo-
lation process incorporates stretching such that the bottom-
level fields follow the fine terrain while avoiding vertical dis-
tortion at the high levels.

The processing of WRF data starts with the coordinate
system transformation between the WRF model projection
(Lambert conformal conic with custom parameters) and the
PALM grid projection (UTM) and bilinear horizontal inter-
polation of the 2D and 3D WRF fields while keeping the
WRF vertical structure.

In the next step, the vertical interpolation of the 3D fields
together with terrain matching and vertical stretching is lin-
early performed for each PALM grid column on the pressure
coordinates, where the shifted pressure p̃W

ln
of WRF level n

is calculated as

p̃W
ln
=

{(
pW

ln
−pt

)
pP

s−pt
pW

s −pt
+pt, if pW

ln
> pt

pW
ln

, if pW
ln
≤ pt,

where pW
ln

is the original WRF level n pressure, pW
s is the

WRF surface pressure, pP
s is the pressure corresponding to

the PALM terrain, and pt is the transition-level pressure (the
upper stretching limit) that is taken from the average pressure
2000 m above the domain base. The boundary conditions are
then taken from the interpolated 3D fields.

Finally, in order to ensure mass balancing on the bound-
aries, the total volumetric flow rate residue (inflow minus
outflow) is calculated for each time step. This residue, di-
vided by the total area of all five boundaries, is then sub-
tracted from the inflow wind speed (which is positive on the
inflow and negative on the outflow) such that the total flow
rate residue of the updated wind field becomes 0. With the
constant-density Boussinesq approximation used in PALM,
balancing volume also balances mass.

Along with the atmospheric fields, the soil moisture and
temperature and a time series of large-scale surface forcing of
surface pressure are taken from WRF and provided to PALM.
The data from WRF retain the original temporal resolution
of 1 h as PALM performs temporal interpolation internally.
Further guidance on data transformation and dynamic driver
creation is available in Resler et al. (2021) and PIDS. The ra-
diation variables, i.e., the downwelling shortwave (SW) and
longwave (LW) radiative fluxes, were taken from the WRF
model auxiliary outputs, which had an increased temporal
resolution of 10 min.

In addition, one physical phenomenon not resolved by the
mesoscale model is turbulence; thus it must be generated at
inflow boundaries artificially. This process is managed by the
PALM synthetic turbulence generator based on digital filter-
ing of pseudo-random numbers (STG; Xie and Castro, 2008).
Turbulence perturbations are forced into velocity compo-
nents in the parent domain’s lateral boundaries at every time
step according to prescribed values of the Reynolds stress
tensor components and integral length scales. Their values
are parameterized in PALM using empirical similarity theory
profiles. All dynamic drivers used for this study were gener-
ated from the inner domain of the WRF model (Sect. 2.3).

2.3 WRF model configuration

The WRF mesoscale model (Skamarock et al., 2019) in ver-
sion 4.4 was used to drive the PALM model through the
PALM’s mesoscale nesting system. The model was run on
two nested domains at horizontal resolutions of 9 and 3 km.
The extent of the domains is 225× 180 and 187× 121 grid
cells for the outer and inner domains, respectively, with 49
vertical levels. For its initialization, ERA5 reanalysis was
used. For the purposes of the experiment, an ensemble of 16
members was designed, with members differing in three fac-
tors (physics parameterizations) in which we expect an im-
pact on the urban simulation. This design is “balanced” sim-
ilarly to the statistical analysis of variance; i.e., every com-
bination of factors is equally represented. Thus we have the
following:

– two versions of the surface layer scheme (the MM5
Similarity Scheme (Paulson, 1970), members 01–08, vs.
the Revised MM5 Scheme (Jiménez et al., 2012), mem-
bers 09–16);

– two versions of planetary boundary layer (PBL) pa-
rameterization (Yonsei University (YSU) PBL scheme
(Hong et al., 2006), members 01–04 and 09–13, vs.
the BouLac scheme (Bougeault and Lacarrère, 1989),
members 05–08 and 13–16);

– four versions of urban parameterization (no urban pa-
rameterization, a single-layer urban canopy model –
SLUCM (Chen et al., 2011), building environment pa-
rameterization – BEP (Martilli et al., 2002), and BEP in
combination with a building energy model (BEP+BEM;
Salamanca and Martilli, 2010)). This factor rolls the
fastest; i.e., there is no urban parameterization in mem-
bers 01, 05, 09, 13, etc.

Other parameterizations were in accordance with their com-
mon and widely used settings; e.g., NOAH LSM (Tewari et
al., 2004) was used for all members. The Thompson scheme
(Thompson et al., 2008) was used for microphysics for all
ensemble members except member 12 which required the
WRF single-moment five-class scheme (Hong et al., 2004)
due to compatibility issues. The WRF ensemble simulation
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was performed for four episodes, which amounts to 64 sim-
ulations all together. This design enables us to capture the
eventual systematic effects of distinct parameterizations, and
it serves as a proxy for a multi-model ensemble of numerical
weather prediction (NWP) models thanks to its variability in
model setup. For a summary of the experiment design, see
Table A1.

2.4 BC selection workflow

Running a 72 h simulation of PALM driven by each of
the WRF ensemble members (i.e., 64 PALM model high-
resolution runs) would be computationally expensive. There-
fore a strategy of preselecting WRF ensemble members was
developed to keep the computational costs low while sat-
isfactorily sampling the variability. We classified the WRF
simulations according to their performance in the represen-
tation of potential temperature and wind speed, evaluated
against soundings taken at the Libuš meteorological station
(WMO ID 11520) every day at 00:00, 06:00, and 12:00 UTC.
The mentioned variables, i.e., potential temperature and wind
speed, were chosen due to the fact that they are directly rel-
evant for the PALM model’s validation and are responsible
for the development of atmospheric processes. The evalua-
tion was based on the root mean square error (RMSE) and
correlation coefficient (r; Appendix C; see Resler et al., 2021
and Radović et al., 2022). Two WRF ensemble members with
the best and worst performance (closest to and farthest from
the observations) were then preselected for the PALM runs.
The performance, however, differs between variables (a sim-
ilar issue was observed in Vogel et al., 2022, and Radović et
al., 2022); i.e., the best statistical values that some members
showed for potential temperature were not the best for the
same member in the case of wind speed. Keeping this behav-
ior in mind, the members with the lowest and highest RMSE
values for temperature and another with the same characteris-
tics but based on the wind speed were selected, and the strat-
egy was repeated for every one of the four selected periods.
If two model members have similar RMSE values, the corre-
lation coefficient may serve as a supporting statistical metric.
The preselected configurations (coded by member numbers)
are summarized in Table B1. Some configurations have mul-
tiple occurrences.

To support this method of selection, a series of descriptive
statistics were computed to assess the effects of factors rep-
resented by the PBL, surface layer, and urban physics. No
systematic superiority of one parameterization over another
was detected. The effects that were observed were the fol-
lowing:

– for the October episode, the BouLac PBL outperforms
the Yonsei PBL

– for the February episode, the SLUCM is systematically
the worst urban parameterization.

Since no single effect captured the differences in perfor-
mance, we preferred the selection method described above.

2.5 PALM model near-surface output processing

The PALM model near-surface output methodology process-
ing is applied to two fundamental meteorological variables:
air temperature at 2 m and wind speed at 10 m. In addi-
tion, the aforementioned processing is applied to three ad-
ditional variables: mean radiant temperature (MRT), phys-
iological equivalent temperature (PET), and the Universal
Thermal Climate Index (UTCI). The mean radiant temper-
ature (MRT), according to Krč et al. (2021), is defined as
“the temperature of an imaginary object for which that ob-
ject would be in radiative equilibrium with its surroundings,
which means that the absorbed irradiance would be equal
to the emitted radiant exitance”. The physiological equiva-
lent temperature (PET) is defined by Höppe (1999) as “the
air temperature at which, in a typical indoor setting, the
heat balance of the human body (work metabolism 80 W of
light activity, added to basic metabolism; heat resistance of
clothing 0.9 clo) is maintained with core and skin temper-
atures equal to those under the conditions being assessed”.
Finally, as stated by Jendritzky et al. (2012), the Universal
Thermal Climate Index (UTCI) is “the isothermal air tem-
perature of the reference condition that would elicit in the
same dynamic response (strain) of the physiological model”.
The MRT is evaluated as a variable affecting human energy
balance and thermal comfort; it is also used for the calcula-
tion of other thermal indices. The biometeorological indices
UTCI and PET are more practical than air temperature for
human-related analysis, helping to understand weather con-
ditions’ impact on individual health and society. In addition,
they are used for decision-making in various public sectors,
urban planning, etc.

The processing of PALM’s near-surface outputs is done as
follows. First, the selection of the averaging periods is made
to distinguish between parts of the day influenced by the so-
lar input. Hence, four different times of the day are consid-
ered, i.e., morning (1 h before sunrise), solar noon (30 min
before to 30 min after solar noon, referred to as noon in the
figures), daytime (between sunrise and sunset), and nighttime
(between sunset and sunrise). The selected hours are adjusted
according to the season for which the simulation was per-
formed and are displayed in the coordinated universal time
(UTC) time standard. Regarding the simulation results, only
the differences between the PALM members driven by the
WRF members with the lowest (the best) and highest (the
worst) RMSE values are shown. The basic statistics obtained
for both WRF and PALM model outputs are shown in Ap-
pendix E. Each table demonstrates the spatial minimum, av-
erage, and maximum of 72 h averages for each variable, pe-
riod, and selected member. It must be noted that the PALM
model 2 m air potential temperature values used for calcula-
tion and shown in the following figures is estimated from the
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logarithmic interpolation due to the fact that the first prog-
nostic grid point is placed at a height of 5 m (see PALM
model documentation). The same principle for a horizontal
component of the wind speed at 10 m is used, while the ver-
tical component is calculated accurately for each grid point
in the modeled domain. The WRF model air temperature
and wind speed outputs used for the near-surface compari-
son are taken from the lowest level available in the model.
The lowest-level WRF model outputs are used since they are
utilized for the PALM model IBC creation.

3 Results

3.1 Vertical structure

In this section, we compare the potential temperature and
wind speed vertical structure for both WRF and PALM mod-
els with radiosoundings. WRF vertical profiles are taken
from the grid box closest to the Libuš station, while PALM
vertical profiles are averaged over a 10× 10 grid box area
around the center of the domain. The PALM profiles are spa-
tially averaged due to the fact that the WRF grid cell is sig-
nificantly larger than the PALM grid cell. Comparison of the
vertical profiles is performed at the times of radiosounding
collection (00:00, 06:00, and 12:00 UTC).

Before diving into a detailed analysis of individual
episodes, we present an overall view of the simulations in
terms of errors with respect to the soundings. The input
data for RMSE values were taken from the 10 min averaged
PALM model files with no additional temporal averaging em-
ployed before their calculation. The PALM and WRF model
RMSE values used for scatterplots are summarized RMSE
values, and they include the information about the vertical
profiles for the 72 h simulation period (each day at 00:00,
00:06, and 12:00) for the first 300 m of the atmosphere and
are summarized in Fig. 2.

Every point representing a simulation is marked as the best
or worst according to the WRF ensemble member selection
in Table B1. Since member 12 is the worst in both criteria
for e2 and member 14 is the worst in both criteria for e3, we
obtain 4+ 3+ 3+ 4= 14 simulations with 9 sounding times
per simulation, resulting in 126 points or 63 pairs of best and
worst points. Moreover, the criteria used for selection are dis-
tinguished by color, and all the best and worst pairs are con-
nected. Thus we can identify the improvement/deterioration
in the RMSE when going from WRF to PALM (distance to
the dashed diagonal line) and the improvement/deterioration
when changing the parameterization of WRF (the connected
point). Since the majority of the points lie under the diago-
nal, we can argue that the detailed modeling of PALM mostly
brings an improvement in the vertical profile covering the
first 300 m of the atmosphere. The positive effect is more ev-
ident in cases where the error in the WRF simulation is large.
It is also seen that the effect of selecting a less appropriate pa-

rameterization in WRF can have a large impact on the error.
Nevertheless, a corrective behavior of the PALM simulation
is evident even in these cases. On the other hand, if the error
in the WRF simulation is relatively small, we cannot claim
a systematic improvement in the vertical profile, brought on
by the PALM simulation. Summary statistics for all members
were also incorporated as Taylor diagrams. They show that
most of the intra-ensemble variability comes from the driv-
ing WRF, while the PALM simulations deviate only slightly
(see Fig. S37 in the Supplement).

Next, we analyze the simulations in more detail for the
two distinct seasons. The PALM model statistical metrics
are calculated with respect to radiosoundings for the atmo-
spheric layer of up to 3000 m a.s.l. (Appendix D). In the win-
ter episode, during the night and morning, potential tempera-
ture vertical profiles from the PALM simulations do not devi-
ate from the WRF-modeled profiles but are slightly warmer
or colder than WRF profiles in the lower layers (Fig. S02a,
c–d, f–g, and i). During the midday sounding hour, the
PALM profiles follow the WRF profiles closely in both lower
and higher atmospheric layers (Figs. S01–S02beh). In some
cases, PALM simulations show added value over their driv-
ing conditions from WRF and are thus closer to the observa-
tions (e.g., Fig. S02c–d). Overall, the shape of the WRF po-
tential temperature profile is captured by the PALM model.
The atmospheric stability and instability are represented well
by PALM. The PALM wind speed vertical profiles, in gen-
eral, follow the WRF-modeled vertical profiles (Figs. S03–
S04) but in some cases can deviate from them in the layers
near the surface during morning and midnight hours (e.g.,
Fig. S04c–d and i). On the other hand, during the 12:00 UTC
times, the agreement between PALM and WRF is much
larger in the layers close to the surface. Altogether, com-
pared to the potential temperature, wind speed vertical pro-
files show larger discrepancies between WRF and PALM.
The differences between the best (03) and the worst (02)
WRF ensemble members’ potential temperature vertical pro-
files are the most pronounced during the 12:00 UTC sound-
ing hours (Fig. S02beh). On the other hand, the differences
between the best (16) and the worst (10) WRF members’
wind speed vertical profiles are more pronounced across all
sounding times (Fig. S04). The statistical analysis for the
profile up to 3000 m a.s.l. shows that the PALM simulations
with respect to the WRF model potential temperature have a
lower RMSE in the case of member 03 and a higher RMSE
for the rest of the members. In the case of the wind speed, the
PALM model RMSE values are higher than all of their cor-
responding WRF ensemble members’ (Tables C1 and D1).

In the summer episode, potential temperature vertical pro-
files from the PALM model are consistent with the respec-
tive WRF profiles and show the highest consistency during
12:00 UTC (see Figs. S09–S10beh). As in e1, the PALM
model shows the added value over the WRF driving condi-
tions, which is seen for member 12 (Fig. S10h–i). The shape
of the PALM profiles follows the WRF profiles, but smaller
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Figure 2. Scatterplots of PALM and WRF simulation RMSE values for potential temperature (a) and wind speed (b) vertical profiles for the
first 300 m of the atmosphere and all preselected WRF model ensemble members, as well as for all PALM model simulations performed.

discrepancies can be seen in the lower atmospheric layers.
The atmospheric stability and instability are captured well
by the PALM model during all but one sounding time (see
Fig. S10g). Similarly to the wind speed profiles in e1, in this
episode, the PALM profiles generally stay consistent with
the WRF profiles, but the largest discrepancies can be seen
during the nighttime sounding hours (Fig. S12cfi). The dif-
ferences between the best (01) and worst (12) WRF simula-
tions are not pronounced in the potential temperature profiles
(Fig. S06). In the case of the WRF wind speed profiles, the
differences between the best (07) and the worst (12) mem-
bers are more noticeable (Fig. S08). The RMSE values cal-
culated for the PALM potential temperature profiles for e3
are lower in comparison to their WRF member pairs’ RMSE
values. On the other hand, for the same episode, the RMSE
calculated for the wind speed profiles is higher for the PALM
members (Tables C3 and D3).

In summary, the highest consistency between the PALM
models’ vertical profiles and the corresponding WRF model
profiles is seen during 12:00 UTC, and this behavior is valid
for all simulation episodes. In general, the shape of the WRF
profile is followed by the PALM profile, and most of the dif-
ferences between the PALM and WRF vertical profiles are
seen in the layers near the surface. In certain cases, the PALM
model introduces an added value to driving WRF conditions
(see Fig. S10b and h–i). The wind speed vertical profile com-
parison is more chaotic, and depending on the simulation pe-
riod and the sounding time, the correspondence between the
PALM model and the WRF’s profiles can vary. In general, the
differences between them are the highest in the layers closest
to the surface, which is to be expected since the terrain repre-
sentation is different in these two models. This behavior has
already been seen in the work done by Resler et al. (2021).

The statistical analysis performed on the PALM vertical pro-
files showed that in the case of e1, e3, and e4, RMSE values
obtained for the wind speed are higher for PALM than for
WRF, while for e2, they are lower. The PALM RMSE values
for the potential temperature vertical profiles are lower than
the WRF RMSE values in the case of e2, e3, and e4, and for
the three (02, 10, 16) members they are higher for the PALM
model in e1. This analysis has a limiting factor which is re-
lated to having radiosounding observations only three times
per day, thus preventing us from performing more robust sta-
tistical and qualitative analysis.

One aspect exhibited by PALM and worth pointing out is
related to its ability and inability to capture nighttime atmo-
spheric stability. During the midnight sounding times, atmo-
spheric stability is periodically captured by the PALM model.
It can be seen that PALM, in some instances, does improve
the driving data and brings the profile closer to the observed
one by capturing nighttime stability (see Figs. S10i, S12f,
and S14if). Yet, this behavior is not consistent, and, for ex-
ample, in Figs. S06cf and 10cf we do not see such an effect;
i.e., the WRF model fails to capture the nighttime stability,
but PALM does not introduce any improvement in the driv-
ing profiles and fails to produce cooling. We attribute this
behavior to the PALM model’s dynamic core, but more ex-
periments are necessary to fully understand this issue.

3.2 Near-surface evaluation

The second set of results refers to the influence of the se-
lected pairs of BCs on temperature at 2 m and wind speed
at 10 m. For the July episode, MRT, PET, and UTCI indexes
were also computed. The figures depict the best and worst
difference for the two WRF members and the difference for

https://doi.org/10.5194/gmd-17-2901-2024 Geosci. Model Dev., 17, 2901–2927, 2024
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Table 2. February episode minimum (min), average (avg), and max-
imum (max) differences in air temperature for four different averag-
ing periods (morning, noon, daytime, and nighttime) between mem-
bers 03 and 02 for the WRF and PALM models. For PALM fields,
the differences in the air temperature at 2 m are taken from the 2D
10 min averaged files, while for WRF fields the air temperature from
the lowest model level was taken.

Air temperature
[K]

WRF PALM

min avg max min avg max

Morning −0.18 1.77 3.00 −3.97 0.08 3.29
Noon 1.29 2.14 2.67 −1.32 1.13 3.03
Daytime 1.02 1.89 2.41 −1.93 0.87 2.01
Nighttime −0.42 1.55 2.88 −4.24 0.04 2.80

the corresponding PALM members driven by them. For each
daytime period we display the WRF field and the correspond-
ing PALM field. The WRF model grid boxes, in which the
majority of land use is of an urban type, are outlined in black.
Conversely, the majority of the grid box area is not of an ur-
ban type, although some of it can be. Note that the PALM do-
main is represented by a red square in the WRF field, and the
figure thus illustrates the downscaling of a couple of WRF
grid points to a much higher resolution and, in particular, the
amplification or attenuation of BC differences by the down-
scaling process executed by PALM. In the text, the results for
February and July are presented. The results for the other two
episodes are deferred to the Supplement. The best and worst
classification is based on potential temperature.

In Fig. 3, differences in the air temperature between mem-
bers 03 and 02 for the February episode and four different
averaging periods (morning, noon, daytime, nighttime) are
presented. For all periods we can see a qualitative consis-
tency between the WRF grid point values and PALM fields.
The downscaling process done by PALM exhibits a distinct
suppressive behavior, which can be attributed to the fact that
both sets of BCs undergo the same local processes. On the
other hand, the added value brought by the LES model, in
particular by the high-resolution topography, surface repre-
sentation, and resolved turbulence, is clearly seen. The local
processes naturally enlarge the differences within the fields,
and these differences are often “transported” to different lo-
cations compared to the WRF field. Also, note the fringe-like
pattern in Fig. 3a, with both positive (0.5 to 2 K) and negative
(−0.5 to−2 K) differences appearing across the domain. The
same effect is seen in Fig. 3f, although it is less pronounced.
This may be attributed to different urban parameterizations
in the WRF members. In addition, rough transitions in the
driving fields may promote the generation of waves in the mi-
croscale model. The argumentation above is supported by the
descriptive statistics in Table 2, where we can see lower av-
erage differences in the PALM fields but mostly higher min-
imum and maximum differences.

Figure 3. Differences between 72 h averages of air temperature for
four selected periods (morning, noon, daytime, and nighttime) taken
from WRF and PALM model members 03 and 02 for the February
episode. The first column refers to the difference between the best
(03) and the worst (02) WRF model members selected based on the
potential temperature, and the second column refers to the differ-
ence between the PALM model members driven by the said WRF
model members. The PALM model simulation domain is depicted
with the red square. The WRF model grid boxes, in which the ma-
jority of land use is of an urban type, are outlined in black.
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Table 3. July episode minimum (min), average (avg), and maximum
(max) differences in air temperature for four different averaging pe-
riods (morning, noon, daytime, and nighttime) between members
01 and 12 for the WRF and PALM models.

Air temperature
[K]

WRF PALM

min avg max min avg max

Morning −1.69 −1.37 −0.99 −2.71 −0.59 1.98
Noon −1.52 −1.15 −0.57 −4.23 −0.48 2.15
Daytime −1.01 −0.74 −0.40 −1.26 −0.45 2.99
Nighttime −3.76 −2.46 −0.56 −3.58 −0.99 2.03

Differences in the air temperature for four different aver-
aging periods (morning, noon, daytime, and nighttime) dur-
ing the July simulation episode between members 01 and 12
for the WRF model and the PALM model are shown in Fig. 4.
The overall behavior of the downscaling process shows sim-
ilar effects to the February episode. This is also confirmed
by the values in Table 3. The influence of the orography and
land use on the differences is more evident compared to the
February episode. One noteworthy feature is that in the sum-
mer episode, the differences between the two WRF simula-
tions are on average more pronounced during the night, while
in February, nighttime differences are higher. Exploring this
behavior is beyond the scope of this paper; however, in terms
of the influence on the high-resolution simulation, PALM fol-
lows this behavior.

For both February and July episodes, it is clear that the dif-
ferences in the WRF fields are the largest in the urban area.
Since all four members share the YSU parameterization of
PBL, the differences have to be attributed to urban parame-
terization, which is 0 vs. BEM in the July episode and BEP
vs. UCM in the February episode (see Table A1). These dif-
ferences in the WRF fields thus propagate into the microscale
simulation.

For convenience, we provide a detailed view of one of the
maps together with the land use in Fig. 5. The PALM output
in Fig. 5b for the nighttime averaging period is taken from
the 07–12 pair chosen based on the statistical analysis of the
wind speed. This comparison shows that the differences be-
tween the two simulations at the local scale are driven mainly
by the difference in land use, and thus the full difference is a
composite of large-scale and local-scale forcings.

From the results of the two episodes, we can conclude
that the PALM differences are altogether analogous to the
WRF differences as seen for example in the case of e3 for
all averaging periods (Fig. 4). The same conclusion applies
for e1 in the case of noon and daytime averaging periods
(Fig. 3c–f). However, for the morning and nighttime period
for e1, PALM introduces negative differences, ranging from
0 to −1 K, which are especially visible during the morning
averaging time. For both presented episodes, PALM differ-
ences are on average lower and attenuated in comparison
to the corresponding WRF differences. Moreover, the aver-

Figure 4. Differences between 72 h averages of air temperature
for four selected periods (morning, noon, daytime, and nighttime)
taken from WRF and PALM model members 01 and 12 for the July
episode. The first column refers to the difference between the best
(01) and the worst (12) WRF model members selected based on the
potential temperature, and the second column refers to the differ-
ence between the PALM model members driven by the said WRF
model members. The PALM model simulation domain is depicted
with the red square. The WRF model grid boxes, in which the ma-
jority of land use is of an urban type, are outlined in black.
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Figure 5. Differences between 72 h averages of air temperature for the July nighttime period simulated by PALM model members 07 and
12 (b) and land use (a).

age differences for all averaging times are lower for PALM,
especially during the morning and the nighttime averaging
periods for e1 where they have values of 0.08 and 0.04 K,
respectively, which means that PALM, in general, does not
amplify the differences across the domain (see Tables 2–3).
With respect to the wind speed, the attenuation of the dif-
ferences is more pronounced, especially during the daytime
and noon averaging periods across all simulation episodes
(see, e.g., Figs. S19, S23, S27, S31). The PALM differences
are consistent with the given driving field, i.e., if one WRF
ensemble member is warmer or colder, the same member
will be warmer or colder in the PALM model as well. On
average, PALM tends to diminish the differences (Figs. 4f
and S21c–g), but it does take over and amplifies them on cer-
tain surfaces such as water bodies (see Fig. 1, surface code
5000), where a certain nonlinearity in the response exists,
and PALM creates its own structures (see also, e.g., Figs. 4d
and S25cdf).

To provide a summary of the PALM model’s sensitivity to
the BCs, an additional analysis was performed in which the
spatially averaged 1 h average differences in air temperature
and wind speed were analyzed between all the PALM out-
puts. The analysis is presented for e1 and e3 in Figs. 6–7,
respectively, while the rest of the analysis is included in the
Supplement as Figs. S35–S36.

As for the time period of the PALM differences them-
selves (b, d, f, h in Figs. 3–4), a time pattern may occur. In
the case of e1 (Fig. 6), the average differences show a di-
urnal cycle. This pattern is more prominent in the case of
air temperature (Fig. 6a) where differences start to increase

around 06:00 UTC until approximately 14:00 UTC. On the
other hand, the average differences calculated for the wind
speed are low most of the time and start increasing only at the
end of the second day of the simulation. This diurnal pattern
is present for e3 as well, with slightly larger magnitudes of
differences than in e1 (Fig. 7). The average differences have
a shorter period of increase lasting from 17:00–00:00 UTC
for both air temperature and wind speed (Fig. 7).

It is apparent from Figs. 6–7 that during certain hours, dif-
ferences between two PALM simulations driven by a differ-
ent set of BCs are relatively small. This further means that
the effect of the BCs is not large during this time and that the
local processes resolved by the high-resolution PALM model
are able to suppress their influence.

3.3 Influence of the BCs on the biometeorological
indexes during e3

The PALM model has been proven to be of service for urban
planning and the UHI mitigation strategies (e.g., Belda et al.,
2021), and it is for example applied in the works of Geletič et
al. (2022, 2023) for heat stress mitigation strategies. One of
the major conclusions of Belda et al. (2021) was that PALM
can show opposite sensitivity between physical and biophys-
ical temperature indicators. The differences in the UTCI in-
dex obtained from the PALM model members for e3 (Fig. 8)
show a consistent response in temperature and UTCI. The
strongest minimum average difference has the 01–12 pair for
the nighttime averaging period (−4.6 K), and the strongest
differences are present near the northern and western bound-
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Figure 6. Spatially averaged 1 h average differences in air temperature (a) and wind speed (b) calculated for all the combinations taken from
the PALM model outputs for e1. On the x axis, the averaging hours in UTC along with the simulation dates are presented, and on the y axis
are the ID numbers of the PALM model differences.

Figure 7. Spatially averaged 1 h average differences in air temperature (a) and wind speed (b) calculated for all the combinations taken from
the PALM model outputs for e3. On the x axis, the averaging hours in UTC along with the simulation dates are presented, and on the y axis
are the ID numbers of the PALM model differences.

aries of the simulation domain. The highest maximum aver-
age difference for the noon averaging period is 1.5 K. The
average difference for all four periods is around −0.5 K. The
07–12 pair shows similar behavior for the nighttime (−4.1 K)
but with more significant effects of elevation differences pre-
dominantly visible close to deep valleys (see Appendix F).
The highest maximum average difference was found for the
morning averaging period (1.8 K). The average differences
obtained for UTCI do not differ much from the averaged val-
ues obtained for the air temperature (Tables 3 and E5); this
behavior is valid for both pairs (see Table 4).

Table 4. July episode minimum (min), average (avg), and maxi-
mum (max) differences in UTCI for four different averaging peri-
ods (morning, noon, daytime, and nighttime) between members 01
and 12 and members 07 and 12 for the PALM model.

UTCI
[K]

PALM 01–12 PALM 07–12

min avg max min avg max

Morning −2.60 −0.45 1.36 −2.48 −0.58 1.76
Noon −2.76 −0.46 1.54 −1.91 −0.31 1.69
Daytime −2.20 −0.50 0.37 −1.54 −0.46 0.85
Nighttime −4.58 −0.68 0.65 −4.08 −0.78 1.51
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Figure 8. Differences between 72 h averages of UTCI for four se-
lected periods (morning, noon, daytime, and nighttime) taken from
the PALM model simulations for the July episode. The first col-
umn refers to the difference between the best and the worst member
selected based on the potential temperature (01–12), and the sec-
ond column refers to the difference between the best and the worst
member selected based on the wind speed (07–12).

4 Discussion and future aspects

Resler et al. (2021) showed that in order for a PALM simu-
lation to be realistic, good quality of input data (static driver
data, mesoscale forcing, etc.) is necessary. Their study also
indicates that the errors occurring in the mesoscale model
propagate into the PALM simulation. Thus a question is
raised, namely, to what extent the driving conditions could
be the main cause of potential errors and inconsistencies in
the PALM model outputs.

Our validation of the vertical profiles confirms the impor-
tance of the driving conditions. For potential temperature,
PALM profiles have, in general, a lower RMSE than the driv-
ing WRF ensemble members (e1 – member 03, e2, e3) or a
similar RMSE (e1 – WRF member 02, e4); see Appendix D.
On the other hand, the PALM RMSE values obtained for
wind speed are higher (e1, e2 – WRF member 09, e3, e4)
or similar (e2 – member 14).

Among the members of the ensemble of 16 different WRF
model realizations differing in urban parameterization, PBL
parameterization, and surface layer parameterization (Ta-
ble A1), no specific setting can be marked as uniformly bet-
ter than the rest, not even for any specific season. From a
theoretical standpoint, all combinations are acceptable. If we
base the comparison on the statistical metrics for one variable
(e.g., potential temperature or wind speed), the results are not
consistent across seasons. For a specific season, the selec-
tion of the best and worst ensemble member gives different
results when based on potential temperature or wind speed.
Some degree of inferiority is seen in member 14 (BouLac
PBL, UCM urban par.) though, which in three out of the eight
cases has the worst RMSE value, namely, for seasons e2 and
e4 in potential temperature and in season e2 in wind speed
(Table B1). In e2 it has the highest RMSE for both variables.
Therefore, in order to determine whether the WRF model or a
specific WRF model realization performs better or worse for
a certain season and a certain variable, and whether it shows
any kind of long-term consistency in general, an exhaustive
long-term analysis has to be performed in advance.

The study of Belda et al. (2021) tested the sensitivity of
the PALM model to potential erroneous material parameter
settings in which they showed that the PALM model temper-
ature shows the highest sensitivity of±0.18 K to the setup of
certain building and material parameters (e.g., albedo, emis-
sivity). Compared to the mentioned study, the variability in
response to near-surface temperature introduced by different
driving conditions shown in this study is much higher than
the variability coming from the surface parameters (±3 K),
thus proving the PALM model’s high sensitivity to BCs.
However, tiles over dense urban areas appear less affected
than tiles with natural surfaces, likely due to the added “forc-
ing” of the urban surfaces, which can override the difference
in the boundary conditions.

The WRF model used in this study is not able to ex-
plicitly resolve the large eddies that have a strong impact
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on the atmospheric flows, momentum, heat, and air pol-
lution transport in the boundary layer, while on the other
hand, the PALM model can. But, despite the assets of the
PALM model, its results are largely dependent on the qual-
ity of the mesoscale WRF simulation. This is a principle
usually known as “garbage in, garbage out” in many fields,
such as limited-area regional modeling, in which the regional
models cannot correct large-scale errors imposed from the
lower-resolution driving models (e.g., Giorgi, 2019). An in-
tegral future perspective of this work is related to the cou-
pling of the PALM model with more mesoscale models,
namely, ICON, the ALADIN model, etc., and validating
the mesoscale–microscale model couple against the obser-
vational data. Such experiments would help in the practical
applications of mesoscale–microscale nested models. In sit-
uations when multiple mesoscale models are available for
driving the microscale LES model, the information about the
quality of their outputs would help to minimize uncertainty
coming from the BCs, especially in the case of validation
studies.

5 Study limitations

The work presented here, the PALM model configuration,
and input data used have certain limitations, which are listed
in the following paragraphs:

– The PALM model simulations are conducted only for
specific 72 h periods. The main reason is that PALM
simulations are computationally expensive. These 72 h
periods, even though conducted for four episodes
throughout the year, might not be sufficient to assess
the full influence of the WRF model boundary condi-
tions on the PALM model response and its results.

– Due to the prevailing anticyclonic weather type typical
of the city of Prague and the Czech Republic in general,
this study is limited to the aforementioned weather type.
The sensitivity of the microscale model to the poten-
tial erroneous representation of synoptic-scale forcings,
broader atmospheric conditions, mesoscale circulations,
or rapidly moving weather systems such as fronts in the
NWP model WRF has not been assessed.

– The resolution used for the simulations is 10 m, and no
nested domain in higher resolution (e.g., 2 m) is uti-
lized. Such choice of resolution can potentially mask
certain phenomena and thus influence the assessment of
the influence of the boundary conditions on the PALM
outputs. Moreover, one cannot see how the higher-
resolution domain would behave with respect to the
driving conditions or if it would modify the driving
fields in any aspect.

– This study does not investigate the influence of initial
conditions separately but analyzes the joint effect of ini-

tial and boundary conditions. To separate the effect of
initial conditions, additional tests would be needed.

– The sensitivity tests on the domain size and the grid box
size have not been performed in this study.

– Due to the technical error during the process of static
driver generation, there is a mismatch between the re-
alistic terrain height and the terrain height used in the
simulations. Thus the simulation terrain height is shifted
down by 10 m with respect to sea level. To be sure
that this shift does not affect the results, the e1 simu-
lations were repeated. No substantial differences were
observed, qualitatively or quantitatively.

– For the purpose of this study, we only used a particu-
lar sample of the WRF model outputs, thus not utiliz-
ing the full ensemble of the produced outputs due to the
extremely high computational costs of the LES-based
PALM model simulations.

– The WRF model in version 4.4 utilized for this study
uses the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) dataset. However, Demuzere et al. (2023)
recently developed and implemented a hybrid 100 m
global land cover dataset for the WRF model based
on local climate zone classification (Stewart and Oke,
2012). Such advancement in the resolution of a land
cover can be important for urban modeling applica-
tions and can consequently change the behavior of the
initial and boundary conditions produced by the WRF
mesoscale model, further influencing the PALM model
outputs.

– This study is a case study performed for the city of
Prague, Czech Republic. In order to confirm the be-
havior and influence of the boundary conditions on the
PALM model simulations, more case studies are nec-
essary. Regardless, these results are applicable to the
PALM model performance with regard to the BCs in
general.

– Another limitation is related to the vertical profile
comparison with the radiosoundings. Namely, the ra-
diosoundings from the Libuš meteorological station are
assimilated into ERA5 data used for driving the WRF
model, thus influencing the comparison and introducing
the bias into the evaluation of the correctness of the en-
semble members. On the other hand, after many statis-
tical analyses were performed, no member significantly
outperforms the rest of the ensemble with respect to cor-
rectness or performance in relation to the radiosound-
ing data. Moreover, the majority of the mesoscale mod-
els that could be potentially used for the preparation
of the BCs for PALM have radiosoundings assimilated
directly or indirectly as the WRF model through the
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ERA5 or other types of driving data, making it a gen-
eral problem for these types of studies.

Considering all listed limitations, we recognize this study
to be reliable with plausible results. The plausibility of the
results is confirmed by the vertical comparison with the ra-
diosounding observations.

6 Conclusions

The objective of this study was to address the following top-
ics: (i) constructing a “perfect” set of BCs for the PALM
model, (ii) assessing the sensitivity of the PALM model to
the given BC set, and (iii) evaluating the performance of the
PALM model based on the given BC set:

i. The process of the construction of a perfect set of BCs
from the WRF model for the purpose of driving the
PALM model proved to be challenging. The evaluation
of WRF outputs against observations has confirmed that
the performance of any particular setting (e.g., param-
eterizations) differs among variables; often there is a
trade-off between performance in one variable against
another one, e.g., temperature and wind speed. Also, the
performance may change with the season.

ii. The differences between PALM simulations driven
by different BCs decrease and increase periodically
throughout the simulation time, and the time patterns
are different for different seasons. This behavior is, to
some extent, consistent between different pairs of the
PALM model outputs (driven by different BCs), and it
depends on the period of the day during the simulation
time.

iii. As a general rule, the PALM simulation conforms to the
given set of BCs and shows substantial consistency with
them. Thus the largest part of errors may indeed origi-
nate in the mesoscale model. The PALM model’s per-
formance, however, does not deteriorate when the given
BC set is farther from the real state of the atmosphere
(i.e., observations), and it does not lag when the BCs
are close to the observations. As seen from this experi-
ment, there is considerable potential for introducing er-
roneous information into PALM through the boundary
conditions.

In order to fully assess the influence of the boundary con-
ditions and PALM’s sensitivity to them, there is a need for
long-term simulations followed by statistical evaluation, for
different periods throughout the year. While being aware
of the departures from reality introduced by the BCs, we
may claim that PALM tends to attenuate the influence of
possibly misspecified boundary conditions, and its response
to differences in the boundary conditions is fairly robust.
Also, PALM has the capacity to better reflect the local pro-
cesses (e.g., surface interactions and generation of turbu-
lence), which is clearly an asset in the field of high-resolution
modeling of the urban areas. These facts support better confi-
dence in the results of PALM simulations performed with the
aim of comparing scenarios of urban development or mitiga-
tion strategies.
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Appendix A: Summary of the experiment design –
parameterizations in the WRF model ensemble members

Table A1. Summary of the experiment design – parameterizations in the WRF model ensemble members.

WRF member ID 01 02 03 04 05 06 07 08

Surface layer MM5 Sim. Sc. MM5 Sim. Sc. MM5 Sim. Sc. MM5 Sim. Sc. MM5 Sim. Sc. MM5 Sim. Sc. MM5 Sim. Sc. MM5 Sim. Sc.
PBL YSU YSU YSU YSU BouLac BouLac BouLac BouLac
Urban physics 0 UCM BEP BEM 0 UCM BEP BEM

WRF member ID 09 10 11 12 13 14 15 16

Surface layer Revised MM5 Revised MM5 Revised MM5 Revised MM5 Revised MM5 Revised MM5 Revised MM5 Revised MM5
PBL YSU YSU YSU YSU BouLac BouLac BouLac BouLac
Urban physics 0 UCM BEP BEM 0 UCM BEP BEM

Appendix B: The WRF ensemble member ID numbers
selected for each simulation episode

Table B1. The WRF ensemble member ID numbers selected for each simulation episode.

Episode
Potential temperature Wind speed

Lowest RMSE Highest RMSE Lowest RMSE Highest RMSE

e1 03 02 16 10
e2 05 14 09 14
e3 01 12 07 12
e4 05 14 07 01
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Appendix C: WRF ensemble statistical analysis of the
potential temperature and wind speed vertical profiles
up to the height of 3000 m a.s.l.: root mean square error
– RMSE, correlation coefficient – r

Table C1. February episode WRF ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height
of 3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

WRF member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

01 0.9421 1.5101 0.9865 0.8668
02 1.1481 1.7281 0.9821 0.8287
03 0.9264 1.4956 0.9869 0.8686
04 0.9277 1.5028 0.9868 0.8683
05 0.9469 1.4454 0.9861 0.8770
06 1.1392 1.6705 0.9817 0.8385
07 0.9725 1.4121 0.9852 0.8815
08 0.9598 1.4028 0.9856 0.8833
09 0.9605 1.5063 0.9857 0.8677
10 1.1433 1.7416 0.9812 0.8266
11 0.9549 1.4917 0.9859 0.8696
12 0.9655 1.5049 0.9855 0.8681
13 0.9740 1.4426 0.9851 0.8774
14 1.1398 1.6738 0.9807 0.8380
15 1.0139 1.4087 0.9838 0.8821
16 1.0014 1.3978 0.9842 0.8843

Table C2. April episode WRF ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height of
3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

WRF member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

01 0.7491 1.5977 0.9803 0.8600
02 0.8327 1.7523 0.9756 0.8401
03 0.7704 1.7329 0.9791 0.8399
04 0.7716 1.7143 0.9790 0.8425
05 0.7429 1.6980 0.9796 0.8560
06 0.8360 1.8872 0.9745 0.8169
07 0.7991 1.7210 0.9762 0.8609
08 0.7837 1.7148 0.9771 0.8614
09 0.7631 1.5920 0.9796 0.8612
10 0.8442 1.7602 0.9748 0.8381
11 0.7824 1.7225 0.9785 0.8421
12 0.7965 1.7217 0.9773 0.8451
13 0.7619 1.7084 0.9786 0.8547
14 0.8534 1.8970 0.9735 0.8154
15 0.7991 1.7216 0.9763 0.8599
16 0.7891 1.7146 0.9768 0.8605
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Table C3. July episode WRF ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height of
3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

WRF member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

01 0.7787 1.9274 0.9781 0.7863
02 0.8811 1.9461 0.9732 0.7882
03 0.8464 1.9318 0.9727 0.7850
04 0.9276 2.0069 0.9658 0.75787
05 0.8180 1.8098 0.9746 0.8132
06 0.9002 1.8483 0.9794 0.8069
07 0.8285 1.7491 0.9753 0.8266
08 0.8705 1.8002 0.9709 0.8164
09 0.7932 1.9413 0.9767 0.7822
10 0.8910 1.9600 0.9718 0.7824
11 0.8588 1.9408 0.9714 0.7815
12 0.9462 2.0057 0.9639 0.7579
13 0.8232 1.8222 0.9738 0.8095
14 0.9038 1.8667 0.9694 0.8005
15 0.8324 1.7741 0.9744 0.8193
16 0.8796 1.8117 0.9698 0.8121

Table C4. October episode WRF ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height
of 3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

WRF member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

01 1.9236 3.5509 0.9520 0.6357
02 1.9918 3.4270 0.9472 0.6397
03 1.9649 3.5446 0.9505 0.6341
04 1.9805 3.4998 0.9490 0.6384
05 1.9025 2.6359 0.9539 0.6800
06 2.0551 2.6651 0.9442 0.6833
07 1.9465 2.5968 0.9517 0.6879
08 1.9288 2.6225 0.9521 0.6792
09 1.9414 3.5495 0.9509 0.6359
10 2.0195 3.4415 0.9456 0.6365
11 1.9779 3.5411 0.9496 0.6336
12 1.9769 3.3937 0.9479 0.6660
13 1.9217 2.6465 0.9527 0.6798
14 2.0790 2.6863 0.9427 0.6795
15 1.9608 2.6089 0.9506 0.6858
16 1.9467 2.6314 0.9508 0.6776
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Appendix D: PALM ensemble statistical analysis of the
potential temperature and wind speed vertical profiles
up to the height of 3000 m a.s.l.: root mean square error
– RMSE, correlation coefficient – r

Table D1. February episode PALM ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height
of 3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

PALM member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

02 1.2507 1.8075 0.9806 0.7419
03 0.9038 1.5673 0.9875 0.7967
10 1.2437 1.8216 0.9791 0.7282
16 1.0178 1.4682 0.9836 0.8202

Table D2. April episode PALM ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height of
3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

PALM member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

05 0.6743 1.6602 0.9815 0.8485
09 0.6961 1.5758 0.9810 0.8504
14 0.7869 1.8698 0.9752 0.8053

Table D3. July episode PALM ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height of
3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

PALM member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

01 0.7419 1.9506 0.9779 0.7932
07 0.7398 1.7897 0.9784 0.8294
12 0.8426 2.0521 0.9705 0.7697

Table D4. October episode PALM ensemble statistical analysis of the potential temperature and wind speed vertical profiles up to the height
of 3000 m a.s.l.: root mean square error – RMSE, correlation coefficient – r .

PALM member ID
RMSE r

Potential temperature [K] Wind speed [m s−1] Potential temperature Wind speed

01 1.8765 3.6162 0.9579 0.6469
05 1.8744 2.6507 0.9593 0.6898
07 1.9224 2.6195 0.9572 0.6957
14 1.9813 2.7447 0.9523 0.6777
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Appendix E: Minimum (min), average (avg), and
maximum (max) 72 h averaged differences for air
temperature and wind speed for the selected WRF and
PALM model outputs

Table E1. February episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for air temperature for the
selected WRF and PALM model outputs.

Air temperature [K]
WRF 16–10 PALM 16–10

min avg max min avg max

Morning 0.59 2.34 3.48 −4.38 0.20 3.82
Noon 1.66 2.74 3.36 −3.85 1.20 3.14
Daytime 1.50 2.38 2.87 −2.27 1.01 2.52
Nighttime 0.31 2.02 3.11 −4.66 0.04 2.98

Table E2. February episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for wind speed for the selected
WRF and PALM model outputs.

Wind speed [m s−1]
WRF 03–02 PALM 03–02 WRF 16–10 PALM 16–10

min avg max min avg max min avg max min avg max

Morning −2.89 −1.86 −0.94 −2.22 −0.16 1.15 −4.02 −2.86 −0.93 −2.48 −0.20 1.24
Noon −0.46 −0.05 0.60 −1.00 0.11 0.95 −2.29 −1.32 0.18 −1.18 −0.02 0.86
Daytime −1.17 −0.49 0.49 −0.92 −0.01 0.53 −2.82 −1.74 0.06 −1.49 −0.10 0.68
Nighttime −3.23 −1.90 −0.95 −1.98 −0.15 0.75 −4.27 −2.86 −1.11 −2.32 −0.26 0.57

Table E3. April episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for air temperature for the selected
WRF and PALM model outputs.

Air temperature [K]
WRF 05–14 PALM 05–14 WRF 09–14 PALM 09–14

min avg max min avg max min avg max min avg max

Morning −0.69 −0.21 0.27 −1.65 0.24 2.63 −0.22 −0.08 0.09 −2.27 −0.04 1.95
Noon 0.34 0.44 0.52 −0.78 0.20 6.81 0.14 0.21 0.29 −1.20 0.25 1.38
Daytime 0.18 0.22 0.28 −0.90 0.14 3.68 −0.01 0.03 0.12 −0.90 0.03 0.61
Nighttime −0.45 −0.28 −0.13 −2.33 0.02 2.30 −0.68 −0.26 −0.05 −2.41 −0.17 2.44

Table E4. April episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for wind speed for the selected WRF
and PALM model outputs.

Wind speed [m s−1]
WRF 05–14 PALM 05–14 WRF 09–14 PALM 09–14

min avg max min avg max min avg max min avg max

Morning −0.17 0.57 1.28 −1.78 0.02 1.22 −1.28 −0.69 −0.41 −0.65 0.10 1.24
Noon 0.08 0.46 0.67 −0.87 0.03 0.71 −0.30 −0.07 0.10 −0.54 0.27 1.08
Daytime 0.41 0.70 0.92 −0.69 −0.10 0.25 0.13 0.29 0.45 0.49 0.04 0.34
Nighttime 0.10 0.30 0.61 −1.19 −0.05 0.61 0.19 0.82 1.46 −1.18 0.00 0.70
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Table E5. July episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for air temperature for the selected
WRF and PALM model outputs.

Air temperature [K]
WRF 07–12 PALM 07–12

min avg max min avg max

Morning −2.18 −1.63 −1.07 −3.59 −0.75 2.33
Noon −0.43 −0.26 −0.05 −3.44 −0.38 2.70
Daytime −0.71 −0.45 −0.20 −2.32 −0.54 1.11
Nighttime −4.39 −2.60 −0.76 −4.49 −1.43 1.43

Table E6. July episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for wind speed for the selected WRF
and PALM model outputs.

Wind speed [m s−1]
WRF 01–12 PALM 01–12 WRF 07–12 PALM 07–12

min avg max min avg max min avg max min avg max

Morning −0.02 0.48 1.01 −0.93 −0.06 0.88 −0.89 −0.31 0.53 −1.14 −0.05 0.71
Noon −2.36 −1.97 −1.10 −1.11 −0.04 0.92 −1.98 −1.70 −1.01 −1.05 −0.03 0.91
Daytime −1.55 −1.22 −0.35 −0.43 0.04 1.22 −1.20 −0.87 −0.06 −0.67 −0.07 0.55
Nighttime −2.05 −1.09 −0.05 −1.50 −0.25 1.45 −1.64 −0.90 0.23 −1.72 −0.42 0.90

Table E7. July episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for MRT for the selected PALM
model outputs.

MRT [K]
PALM 01–12 PALM 07–12

min avg max min avg max

Morning −1.32 −0.55 0.10 −1.64 −0.71 0.11
Noon −1.75 −0.50 1.59 −1.72 −0.22 1.50
Daytime −1.31 −0.48 0.33 −1.13 −0.41 0.56
Nighttime −2.20 −0.99 0.07 −2.72 −1.27 −0.27

Table E8. July episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for PET for the selected PALM model
outputs.

PET [K]
PALM 01–12 PALM 07–12

min avg max min avg max

Morning −2.34 −0.54 0.85 −2.72 −0.74 1.06
Noon −6.22 −0.61 6.43 −5.41 −0.37 6.14
Daytime −3.92 −0.71 1.82 −2.68 −0.62 2.41
Nighttime −4.674 −0.90 −0.09 −4.36 −1.13 0.42
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Table E9. October episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for air temperature for the selected
WRF and PALM model outputs.

Air temperature [K]
WRF 05–14 PALM 05–14 WRF 07–01 PALM 07–01

min avg max min avg max min avg max min avg max

Morning −0.22 −0.03 0.16 −3.09 −0.70 0.82 0.88 2.07 2.80 −2.27 0.26 2.09
Noon −0.83 −0.55 −0.27 −1.39 −0.31 1.66 1.63 2.91 3.68 −1.08 1.28 3.08
Daytime −0.54 −0.34 −0.10 −0.87 −0.19 0.67 1.15 2.14 2.80 −0.34 0.89 2.01
Nighttime −0.95 −0.81 −0.67 −1.76 −0.39 0.82 0.63 1.54 2.22 −1.64 0.37 1.42

Table E10. October episode minimum (min), average (avg), and maximum (max) 72 h averaged differences for wind speed for the selected
WRF and PALM model outputs.

Wind speed [m s−1]
WRF 05–14 PALM 05–14 WRF 07–01 PALM 07–01

min avg max min avg max min avg max min avg max

Morning −0.21 0.43 0.70 −2.12 −0.16 0.91 −1.11 −0.44 0.44 −1.54 −0.03 1.44
Noon −0.40 −0.12 0.01 −0.80 −0.17 0.56 −0.19 0.01 0.27 −0.80 −0.11 0.38
Daytime −0.59 −0.49 −0.35 −0.54 −0.12 0.19 −0.02 0.22 0.43 −0.44 0.02 0.32
Nighttime −0.82 −0.62 −0.35 −1.16 −0.15 0.25 −1.20 −0.64 −0.24 −0.87 −0.03 0.45

Appendix F: Elevation map of the simulated domain

Figure F1. The location of the modeled domain in Europe (top left) and in the Czech Republic (bottom left) and the elevation map of the
domain within the city of Prague with the Libuš station (WMO ID 11520) location (right).
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Appendix G: Experiment workflow diagram

Figure G1. Experiment workflow diagram.
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