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Abstract. Pharmaceuticals and household chemicals are nei-
ther fully consumed nor fully metabolized when routinely
used by humans, thereby resulting in the emission of residues
down household drains and into wastewater collection sys-
tems. Since treatment systems cannot entirely remove these
substances from wastewaters, the contaminants from many
households connected to sewer systems are continually re-
leased into surface waters. Furthermore, diffuse contributions
of wastewaters from populations that are not connected to
treatment systems can directly (i.e., through surface runoff)
or indirectly (i.e., through soils and groundwater) contribute
to contaminant concentrations in rivers and lakes. The un-
planned and unmonitored release of such contaminants can
pose important risks to aquatic ecosystems and ultimately hu-
man health. In this work, the contaminant fate model Hydro-
FATE is presented, which is designed to estimate the surface-
water concentrations of domestically used substances for vir-
tually any river in the world. The emission of compounds is
calculated based on per capita consumption rates and pop-
ulation density. A global database of wastewater treatment
plants is used to separate the effluent pathways from popu-
lations into treated and untreated and to incorporate the con-
taminant pathways into the river network. The transport in
the river system is simulated while accounting for processes
of environmental decay in streams and in lakes. To serve as a
preliminary performance evaluation and proof of concept of
the model, the antibiotic sulfamethoxazole (SMX) was cho-
sen, due to its widespread use and the availability of input
and validation data. The comparison of modelled concentra-
tions against a compilation of reported SMX measurements
in surface waters revealed reasonable results despite inher-

ent model uncertainties. A total of 409 000 km of rivers were
predicted to have SMX concentrations that exceed environ-
mental risk thresholds. Given the high spatial resolution of
predictions, HydroFATE is particularly useful as a screening
tool to identify areas of potentially elevated contaminant ex-
posure and to guide where local monitoring and mitigation
strategies should be prioritized.

1 Introduction

Contaminants of emerging concern (CECs) are deemed to
be an important source of risk due to their potential ad-
verse environmental impacts in the global water system
(Gavrilescu et al., 2015; Noguera-Oviedo and Aga, 2016).
For instance, pharmaceutically active compounds such as
analgesics, antibiotics, estrogens, and antiepileptics, which
are in widespread use globally, are not fully metabolized
by the human body; thus, after their excretion and subse-
quent delivery into the wastewater collection and treatment
system, they may ultimately reach the aquatic environment
(Aydin et al., 2019; Kümmerer, 2009; Palli et al., 2019; Pa-
trolecco et al., 2018; Praveena et al., 2018). The ongoing
release of these compounds and other household chemicals
through wastewater discharges often has unknown or poorly
understood effects on the environment and human health. Im-
portantly, most wastewater treatment plants (WWTPs) are
not specifically designed to remove these contaminants be-
fore discharging effluents into receiving waterbodies, such
as rivers, lakes, or oceans (Rizzo et al., 2019). As such,
wastewaters that are collected from domestic sources and de-
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livered via sewer systems to a WWTP may be only partially
– or not at all – treated for such substances, thereby caus-
ing the WWTP to serve as a concentrated point source of
contamination of CECs into aquatic ecosystems (Daughton
and Ternes, 1999; Petrie et al., 2015; Meyer et al., 2019).
In addition to these point sources, diffuse sources of con-
taminants from populations who are not connected to the
sewage system can add to the pollution of waterbodies (Lap-
worth et al., 2012). Risks associated with these contami-
nants are further exacerbated due to the limited monitoring
of their presence in wastewaters and receiving waterbodies
into which they are discharged and incomplete assessment
of their impacts downstream. In turn, this lack of informa-
tion leads to poor regulatory oversight to safeguard the health
of aquatic ecosystems and that of populations that rely on
them as a source of water (Daughton, 2014). Moreover, ro-
bust estimates of current and future changes in water quality
are needed to achieve sustainable management of water re-
sources to ensure clean and accessible water for all, as pro-
moted by Sustainable Development Goal (SDG) 6 (Strokal
et al., 2019; Tang et al., 2019; van Vliet et al., 2019).

When measurements of waterborne contaminants are un-
available or insufficient to make informed decisions regard-
ing water pollution arising from CECs, simulation models
can be used instead to represent the hydrodynamic and water
quality conditions of the waterbody. Contaminant fate mod-
els (CFMs), also known as environmental exposure models
or georeferenced river models, focus on instream processes
such as transport and degradation after the compounds’ re-
lease from point and non-point sources. CFMs are specif-
ically designed to predict realistic distributions of contam-
inants in a river catchment (Aldekoa et al., 2016). Exam-
ples of models operating at regional to global scales in-
clude GREAT-ER (Aldekoa et al., 2013; Feijtel et al., 1997),
LF2000-WQX (Johnson et al., 2007), GIS-ROUT (Wang et
al., 2000), PhATE (Anderson et al., 2004), Mike 11 (Havnø et
al., 1995), WorldQual (Voß et al., 2012), ePiE (Oldenkamp et
al., 2018), and GWAVA (Johnson et al., 2013). These models
require information about the hydrological characteristics of
the catchment, consumption rates of the chemical substances,
and fate parameters that describe their instream decay. These
requirements can limit the performance of the models in re-
gions where this information is unreliable or scarce (Grill et
al., 2016).

Water pollution caused by CECs is an issue of global con-
cern, and water quality assessments must therefore be spa-
tially consistent and comparable across the world to be able
to identify locations of high contaminant concentration and
regional trends in water pollution over time at a global scale.
One of the challenges for global contaminant fate modelling
is the lack of spatial consistency in datasets for model in-
puts, especially in regions where data are insufficient to sup-
port detailed assessments (Kroeze et al., 2016; Strokal et al.,
2019; Tang et al., 2019). For this reason, only a few global-
scale CFMs exist, and those that do are typically limited to

certain substances and relatively coarse spatial resolutions.
For example, GLOBAL-FATE (Font et al., 2019), which
was created as an open-source down-the-drain model that in-
cludes lake and reservoir modules as well as wastewater input
information at a global scale, operates at a 7 km spatial grid.
The Global TCS model (van Wijnen et al., 2018) was created
to simulate the transport of the antibacterial agent triclosan in
global rivers at a 0.5° spatial resolution (i.e., corresponding
to approximately 55 km grid cells at the Equator).

To our knowledge, all currently existing global CFMs that
require the quantification of the load of wastewater into the
river system use population density and national sanitation
statistics as proxies to derive the necessary input data (e.g.,
Beusen et al., 2015; Font et al., 2019; Hofstra et al., 2013;
Mayorga et al., 2010; Strokal et al., 2019; Van Drecht et al.,
2009; van Puijenbroek et al., 2019; Williams et al., 2012).
More specifically, calculations are based on the fraction of
the population connected to sewage systems per country. The
main source of these statistics is the World Health Orga-
nization and the United Nation Children’s Fund (WHO/U-
NICEF) Joint Monitoring Program (JMP) for Water Sup-
ply, Sanitation and Hygiene (WASH), which provides regu-
lar global reports on drinking-water and sanitation coverage
for tracking progress toward SDG 6 (WHO and UNICEF,
2021). This dataset allows for differentiation of wastewater
treatment services between countries and over time, but it
does not account for spatial variability inside national bound-
aries, except for an assumed correlation with population den-
sity. Herrera (2019) also points out several discrepancies be-
tween national-level data and JMP-WASH data. In addition,
the dataset does not contain specific locations of wastewater
discharge, which can have important implications with re-
spect to the distribution of contaminants in the river system.

Another important limitation of existing global water qual-
ity models is that they do not account for diffuse sources of
pollution arising from populations who are not connected to
WWTPs or for the natural attenuation of contaminants that
occurs along their pathway from a source in the landscape
through the soil or subsurface before reaching a waterbody.
The contribution of diffuse pollution can be substantial as re-
vealed by the high aquatic concentrations of pharmaceuticals
that have been measured in countries with low rates of sani-
tation (Hanna et al., 2020; K’Oreje et al., 2012; Khan et al.,
2013).

Grill et al. (2016, 2018) introduced a regional CFM that
estimates the emission of household contaminants and their
subsequent transport in river networks at high spatial reso-
lution (river network derived from 500 m grid cells). In this
model, transport in the river system is simulated using the
global river routing model HydroROUT (Lehner and Grill,
2013). It has been applied and evaluated with respect to its
ability to model the fate of several pharmaceuticals in the
Saint Lawrence River basin in Canada (Grill et al., 2016),
the pharmaceutical diclofenac in India (Shakya, 2017), and
human hormones in China (Grill et al., 2018). These assess-
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ments included not only WWTPs as point sources but also
accounted for diffuse sources of contamination from popu-
lations not served by WWTPs while accounting for natural
attenuation.

In the present work, the CFM by Grill et al. (2016, 2018)
is fully developed to operate at a global scale in order to
(1) serve as a large-scale screening tool for assessing CECs
from domestic sources, especially as a precursor for potential
risk assessments; (2) predict critical locations in river net-
works of potentially high aquatic contaminations; and (3) in-
form the development and implementation of guidelines, reg-
ulations, and mitigation strategies that aim to limit chem-
ical pollution and safeguard human and ecosystem health.
The model enhancement and expansion are performed by in-
tegrating a global WWTP database (HydroWASTE; Ehalt
Macedo et al., 2022) and by distinguishing the pathways
of contaminants from their population source to the river
network depending on whether they are treated (i.e., either
in centralized WWTPs or in decentralized facilities) or un-
treated (i.e., either from urban or rural diffuse sources). The
capability of this global model, hereafter called HydroFATE,
is then evaluated by applying it to estimate the global distri-
bution of the antibiotic sulfamethoxazole (SMX) in the river
network and by comparing the resulting predictions of en-
vironmental concentrations to field measurements reported
in the literature. SMX was selected for this proof-of-concept
case study due to the abundance of SMX field measurements
in surface waters reported globally and the broader availabil-
ity of model input parameters in the literature compared to
many other CECs.

Given the broad goals, the main focus of the model de-
velopment presented herein is to predict spatial variations in
contaminant exposure and to achieve a level of model perfor-
mance where estimates of concentrations in the river network
are mostly within an order of magnitude of reported field
measurements, which is generally considered adequate for
these types of screening models (Johnson et al., 2008; Old-
enkamp et al., 2018). HydroFATE, with its inherent global
applicability due to its reliance on pre-existing data in addi-
tion to its high spatial resolution, aims to provide a tool for
scientists, practitioners, and regulators to advance and focus
their work, especially in regions where data are lacking.

2 Data

2.1 River and lake network

The various raster and vector layers representing the river
network and catchment boundaries in HydroFATE were ob-
tained from the global hydrographic database HydroSHEDS
(Lehner et al., 2008), which was derived from digital el-
evation data provided by NASA’s Shuttle Radar Topogra-
phy Mission (SRTM) at 90 m (3 arcsec) resolution. For the
present study, we used a derivative of this database in vec-

tor format, termed RiverATLAS (Linke et al., 2019), which
was extracted at 500 m (15 arcsec) grid cell resolution and
represents all rivers and streams where the average discharge
exceeds 100 L s−1 or the upstream catchment area exceeds
10 km2, or both. The resulting global river network com-
prises 8 477 883 individual river reaches with an average
length of 4.2 km, representing a total of 35.8× 106 km of
rivers. Each river reach has an associated contributing catch-
ment with an average area of 15.7 km2.

Every river reach in RiverATLAS is provided with a series
of precalculated hydro-environmental characteristics. From
this database, we used the long-term (i.e., 1971 to 2000) av-
erage naturalized river discharge in our study. The discharge
estimates were derived from the global hydrological model
WaterGAP version 2.2 (Müller Schmied et al., 2014), which
were downscaled from their original resolution of 0.5° grid
cells to the RiverATLAS resolution of 500 m using geostatis-
tical techniques (Lehner and Grill, 2013). In addition to an-
nual average discharge estimates, minimum discharges (i.e.,
the lowest monthly flow value within an average year) were
also used for assessments under low-flow conditions.

To account for lake processes, a global database called Hy-
droLAKES was used that provides the shoreline polygons of
1.4 million lakes with a surface area of at least 10 ha (Mes-
sager et al., 2016). All lakes in HydroLAKES are associated
with RiverATLAS via their lake pour points.

2.2 WWTP information

HydroFATE incorporates the locations and characteristics of
wastewater treatment plants (WWTPs) as provided by the
HydroWASTE database (Ehalt Macedo et al., 2022). This
database contains information on 58 502 WWTPs and pro-
vides details for each on the actual location of the plant,
the estimated outfall location, and attributes that are rele-
vant for the purposes of this study (including population
served, treated-wastewater discharge, and level of treatment,
i.e., primary treatment, such as solids removal through me-
chanical cleaning and sedimentation; secondary treatment,
which includes biological processes; and advanced (tertiary
or higher) treatment through extra filtration or chemical treat-
ment). HydroWASTE was developed by combining regional
and national WWTP datasets and adding auxiliary infor-
mation, including Open Street Map data, global population
data, and the high-resolution river network from RiverAT-
LAS which was used to georeference WWTP outfall loca-
tions.

With respect to its implementation in HydroFATE, of the
58 502 WWTPs in the database, the following were ex-
cluded (note that some records fall into more than one cat-
egory): (1) 1682 WWTPs that were labelled as closed, non-
operational, decommissioned, projected, proposed, or under
construction; (2) 379 WWTPs that have their outfall loca-
tion outside of any catchment that is associated with the
river network of RiverATLAS (e.g., small islands); (3) 199
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WWTPs that serve a population of zero according to records;
and (4) 9521 WWTPs that have their outfall location within
10 km from the ocean coast. The latter category was excluded
to avoid overestimation of contaminant loads in coastal rivers
as, given the locational uncertainties in HydroWASTE of up
to 10 km (Ehalt Macedo et al., 2022), effluents from WWTPs
with estimated outfall locations near the coast might, in real-
ity, discharge directly into the ocean. Of the remaining 47 547
WWTPs, some share their original location inside the same
500 m pixel (i.e., the resolution of the HydroFATE model)
and thus were aggregated to the final number of 46 270 point
sources of wastewater discharge into the global river net-
work.

To account for small or decentralized wastewater treat-
ment systems (DWTSs) not included in the HydroWASTE
database, such as septic tanks, HydroFATE uses country-
level statistics provided by the JMP-WASH program (WHO
and UNICEF, 2021). For the purposes of our study, sanita-
tion data for each country were acquired for the year 2015,
and the information termed “Proportion of population using
improved sanitation facilities (wastewater treated)” was se-
lected.

2.3 Population and urban area grids

Global gridded population distributions of the year 2015
were provided by the WorldPop dataset (WorldPop and
CIESIN, 2018), which was produced using a combination
of census, geospatial, and remotely sensed data in a spa-
tial modelling framework (Tatem, 2017). The WorldPop data
were disaggregated from their original spatial resolution
of 1 km to the same resolution as the HydroFATE model
(500 m) to allow for spatially consistent calculations.

Information on the location of global urban areas is deter-
mined in HydroFATE according to the Global Human Settle-
ment (GHS) database (Pesaresi and Freire, 2016) for the year
2015. The global information provided by GHS was used to
calculate the attribute “urban extent” in RiverATLAS, and it
is based on fine-scale satellite imagery, census data, and vol-
unteered geographic information. GHS data were disaggre-
gated from their original spatial resolution of 1 km to 500 m.

3 Methodology

The regional CFM previously developed by Grill et al. (2016,
2018) simulates both the emission of household contami-
nants and their subsequent transport towards and within the
river system. Building on this earlier work, we here enhance
and then expand this CFM, termed HydroFATE, to the global
scale. Figure 1 provides a conceptual representation of the
HydroFATE model. Contaminant emissions are determined
based on population distribution, per capita consumption of
the modelled substance, human metabolism, and wastewater
treatment removal, or natural attenuation, depending on the

pathway from the source to the waterbody. Emissions from
populations served by a WWTP or by smaller and decentral-
ized wastewater treatment systems (DWTSs) are reduced in
proportion to the treatment efficiency, which is based on the
level of treatment, i.e., primary, secondary, or advanced (ter-
tiary or higher), that is provided by the WWTP. Emissions
arising from populations that are not served by any type of
wastewater treatment system are attenuated by a direct dis-
charge coefficient (ddc) depending on the distance from the
river network and whether the emission is located in a rural
or urban area (Grill et al., 2018). The combined loads from
all pathways of contaminants inside the catchment bound-
aries of an individual river reach are aggregated as the total
local contaminant load of the reach. HydroFATE then em-
ploys the generic river routing model HydroROUT (Grill et
al., 2014, 2019; Lehner and Grill, 2013) to simulate the trans-
port of the chemical substance in the river system, accumu-
lating the contaminant load downstream and accounting for
instream decay and removal in lakes. Finally, the predicted
environmental concentration (PEC) for every river reach is
calculated by dividing the sum of the local total contaminant
load plus the incoming load from upstream reaches by the
long-term river discharge of the reach.

The methodologies used to simulate the amount of con-
taminant emissions and the routing of contaminant loads
along rivers and through lakes were previously described at
the regional scale (Grill et al., 2016, 2018). While these basic
processes do not change when applied at the global scale, the
model was expanded in the present study by incorporating
novel global-scale input data. Furthermore, the model was
enhanced by introducing a spatially explicit differentiation of
various wastewater and contaminant pathways depending on
the access of global populations to wastewater treatment (see
dotted rectangle in Fig. 1). Within each pathway, contami-
nants are removed following different removal efficiencies
offered by treatment facilities or different levels of natural
attenuation in the soil and subsurface.

3.1 Determination of contaminant pathways

HydroFATE calculates contaminant emissions using
contaminant-specific information (i.e., the annual per capita
consumption and the excretion fraction) and the number of
people connected to the river system. This connection occurs
through different pathways depending on the sanitation
system at the location in question. Using the global WWTP
database HydroWASTE (Ehalt Macedo et al., 2022), a pop-
ulation grid, an urban extent grid, and additional sanitation
data, six types of contaminant pathways from populations
into the river network were determined and incorporated
into the HydroFATE model (see Fig. 1). These are point
sources of treated wastewater from populations connected to
WWTPs that provide (1) a primary level of treatment, (2) a
secondary level of treatment, or (3) an advanced (i.e., tertiary
or higher) level of treatment; (4) decentralized sources
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Figure 1. Conceptual representation of the contaminant fate model
HydroFATE. The abbreviations “1, 2, or 3+” refer to the level
of treatment of each WWTP as primary, secondary, or tertiary/ad-
vanced, respectively. The abbreviation “ddc” refers to the direct dis-
charge coefficient. The dotted rectangle highlights steps involving
contaminant pathways, i.e., processes developed or enhanced in the
present study. See text for details and model description. Modified
from Grill et al. (2018).

of treated wastewater from populations not connected to
a WWTP but served by DWTSs; (5) diffuse sources of
untreated wastewater from populations in urban areas; and
(6) diffuse sources in rural areas. The methods described in
more detail below assign a contaminant pathway for every
pixel in a global population grid. Figure 2 illustrates an
example of the resulting pathway allocation in comparison
to the population distribution at a metropolitan area and its
rural surroundings.

First, populations are allocated to individual WWTPs. Al-
though HydroWASTE provides details on the number of peo-
ple served by a WWTP, it does not specify the spatial dis-
tribution of the population served nor the service area asso-
ciated with it; that is, it does not provide explicit informa-
tion that is required to spatially allocate the populations that
are served versus those not served by WWTPs (top panel
of Fig. 2). The service area of a WWTP depends on sev-
eral local factors not easily obtainable at the global scale,

Figure 2. Example of the location of WWTPs and the popula-
tion distribution (a) and the modelled contaminant pathway allo-
cation (b) for the Atlanta metropolitan area in the United States.
The areas shaded in purple (b) show the estimated service areas
associated with individual WWTPs (black triangles). The popula-
tions residing in these areas are connected to the river network
as point sources based on the discharge locations of their respec-
tive WWTPs. The populations residing in the orange areas (b) are
identified as being associated with decentralized wastewater sys-
tems (DWTSs) and are connected to the river network as diffuse
but treated sources within the catchment of each river reach. The
populations residing in the areas represented by shades of green (b)
are associated with untreated wastewater contributions and are con-
nected to the river network as diffuse sources within the catchment
of each river reach.

such as decisions of the administrative unit responsible for
the facility and the distribution of underground pipes that
transfer the wastewater to the facility. Studies have presented
different approaches to associate the area contributing to a
WWTP. For instance, Keller et al. (2006) defined it as the
nearest upstream contiguous urban area from the WWTP dis-
charge point within 2 km, estimating the population served
by the WWTP based on the number of people in this con-
tributing area. However, the largest WWTP in their study
served only 32 000 people (expressed as population equiva-
lent), whereas HydroWASTE contains almost 5000 WWTPs
that serve more than 100 000 people. Kapo et al. (2017) and
Grill et al. (2018) associated the WWTP service area to an
administrative unit, but these studies were developed in coun-
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tries where the information on administrative units is widely
available (i.e., USA and China, respectively), which is not
typically the case at a global scale.

To allocate explicit spatial population distributions to in-
dividual WWTP locations in HydroFATE, we developed a
method that follows the approach of Shakya (2017). This ap-
proach assumes that a WWTP can serve populations both up-
stream and downstream as wastewater can be pumped and
directed in complex underground sewage systems. It also
assumes that the service area of a WWTP can exceed the
nearest contiguous urban area, with larger WWTPs typi-
cally serving larger distances and populations. Shakya (2017)
tested different buffer sizes (i.e., from 5 to 30 km at 5 km in-
crements) in India to determine the best-fit service area for
different WWTP sizes by comparing the population within
the buffer to the reported number of population served. Since
distribution and characteristics of WWTPs in different re-
gions of the world can vary substantially, we expanded upon
this approach by using an iterative process instead of pre-
defined buffer sizes.

The final WWTP allocation method assigns populations
from the WorldPop population grid (WorldPop and CIESIN,
2018; see Sect. 2.3) to the point locations of WWTPs us-
ing a ranking system as described in detail in Appendix A.
The method considers the distance of each population pixel
from the WWTP, the size of the population served by the
WWTP, whether a population pixel is categorized as “ur-
ban” or not, and whether candidate pixels are clustered in
contiguous areas. The settings and thresholds applied in this
method were initially set to those reported by Shakya (2017)
and were then refined and finalized in a successive trial-and-
error approach in which intermediate results were mapped,
visually inspected for plausibility, and statistically tested to
verify whether they led to further improvements. The final
allocation procedure assigns population pixels to individual
WWTPs until the reported total of served population of each
WWTP is reached or until maximum distance thresholds are
exceeded. Once the allocation is completed, the contaminant
pathway from each allocated population pixel to the river
reach is defined by the WWTP discharge location and can
be separated into one of three treatment levels (primary, sec-
ondary, or tertiary/advanced) as specified in HydroWASTE
(purple colors in bottom panel of Fig. 2).

Besides explicit WWTP pathways, HydroFATE also ac-
counts for sources of potential contamination from decentral-
ized wastewater treatment systems (DWTSs) that are not in-
cluded in HydroWASTE, such as household septic tanks. To
this end, for every country, the difference was calculated be-
tween the aggregated population served by WWTPs accord-
ing to HydroWASTE and according to the global database on
sanitation JMP-WASH (WHO and UNICEF, 2021). If JMP-
WASH reported higher numbers of population served, this
difference was assigned successively to the pixels with high-
est population numbers within the respective country bor-
ders that have not been allocated to WWTPs. The wastewater

pathway type of these pixels thus defaults to that of DWTSs
(orange color in bottom panel of Fig. 2) and includes a spe-
cific removal efficiency. In the absence of explicit informa-
tion, it is assumed that after DWTS treatment the effluent
discharge directly enters the surface drainage system at the
pixel’s location within a catchment and then flows to the
catchment’s associated river reach.

Finally, all remaining population pixels that were not as-
signed in any of the previous steps were considered to be dif-
fuse wastewater sources and were classified as “untreated”
(green colors in bottom panel of Fig. 2). They were sepa-
rated between rural and urban using an urban area grid (see
Sect. 2.3). All population pixels classified as diffuse sources
thus have a defined contaminant pathway that goes from the
pixel’s location within a catchment to the catchment’s asso-
ciated river reach. The contaminant removal along this path-
way in soils and the subsurface is determined through distinct
urban vs. rural attenuation functions.

3.2 Incorporation of contaminant pathways into
HydroFATE

The results of the various population allocation steps de-
scribed above are used as inputs into the HydroFATE model.
The total input of contaminants from treated pathways
into each river reach is the sum of the contributions from
all WWTPs (i.e., point sources) releasing wastewater into
that reach and the contribution from populations served by
DWTS (i.e., decentralized sources):

Lt,r =

(
r∑
i

(
PWWTP,i ×

(
1−

eWWTP,j

100%

))
+

(
c∑
m

PDWTS,m×

(
1−

eDWTS

100%

)))
×Lcap, (1)

where Lt,r is the total load of the contaminant in river reach
r originating from treated pathways in the reach catchment
c contributing to r (g d−1); PWWTP,i is the population (per-
sons) served by each WWTP i connected to river reach
r; PDWTS,m is the population (persons) served by DWTS
from pixel m inside catchment c; Lcap is the per capita load
(excreted) of the contaminant (g cap−1 d−1); and eWWTP,j

and eDWTS are the removal efficiencies (%) of WWTPs and
DWTS, respectively, releasing wastewater into the reach at
treatment level j (primary, secondary, or advanced).

To estimate the diffuse contributions from populations in
urban and rural areas that are not served by wastewater treat-
ment systems, it is assumed that not all human releases of
untreated wastewater enter directly into surface waterbodies.
This is due to various processes of natural attenuation such
as absorption in soils or deposition in land surface depres-
sions (Lapworth et al., 2012). Unfortunately, the factors af-
fecting the natural attenuation and partial release of effluents
are currently not well understood. Therefore, a proxy vari-
able termed the direct discharge coefficient (ddc) is incorpo-
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rated into the model to represent the fraction (dimensionless)
of contaminant load from untreated pathways that reaches
a waterbody after processes of natural attenuation. For ex-
ample, for baseline model applications (see Sect. 4), the di-
rect discharge coefficient for urban populations was set to 0.8
and for rural populations to 0.5, respectively, following Grill
et al. (2018). The higher coefficient value for urban areas is
due to the presence of impervious surfaces leading to more
direct disposal of wastewater to nearby rivers and streams.
While these methods are simplistic in comparison to real soil
processes, no previous large-scale model considers untreated
pathways as sources of contaminants, which can be substan-
tial in regions with limited treatment infrastructure. The total
input of contaminants from untreated pathways to each river
reach is then calculated as

Lu,r =

((
c∑
m

Purb,m× ddcurb

)

+

(
c∑
m

Prur,m× ddcrur×Fm

))
×Lcap, (2)

where Lu,r is the total load of the contaminant arriving at
reach r from all untreated pixels m inside the reach catch-
ment c (g d−1); Lcap is the per capita load (excreted) of the
contaminant (g cap−1 d−1); Purb,m and Prur,m are the total
count of population (persons) following the untreated path-
way from pixel m, in urban and rural areas, respectively; and
ddcurb and ddcrur (dimensionless) are the direct discharge
coefficients representing the proportion of contaminant load
from untreated pathways that are discharged into the river
reach r from urban and rural areas, respectively. Fm (dimen-
sionless) is a factor by which loads from rural populations
are additionally reduced based on an inverse distance rela-
tionship that accounts for limited connectivity in areas that
are further away from the river network, following the ap-
proach by Grill et al. (2018):

Fm =
(
Dm,r + 1

)−1
, (3)

where Fm (dimensionless) represents the fractional distance-
based contribution factor for pixel m; and Dm,r (kilometres)
is the Euclidean distance between pixel m and river reach
r . This equation delivers fractional contribution values be-
tween 0 and 1, with 1 for locations closest to the river, 0.5 at
a distance of 1 km, and continuously decreasing values as the
distance increases. In contrast to the original method used in
Grill et al. (2018), we refrained from normalizing the factor
(i.e., by constraining Fm to 0 at the furthest distance in each
reach catchment), considering that contaminant contributions
from any distance can reach the river system. Also, we used
Euclidean distances rather than distances along the surface
hydrological flow path (as proposed by Grill et al., 2018) as-
suming that contaminants can also travel through soils and
groundwater. We tested the sensitivity of the parameter set-
tings by doubling and halving both the distance value and

the exponent in Eq. (3), finding that the resulting uncertainty
ranges were below those of other model parameter settings.

3.3 River and lake routing

The mass transport in HydroFATE follows a “plug-flow” ap-
proach (Pistocchi et al., 2010). That is, a “plug” of substance
mass is accumulated downstream as the sum of the input
from the current and all upstream reaches flowing into the
current reach (Grill et al., 2018):

La,r =

(
Lt,r +Lu,r +

∑
n

Ln

)
× ds,r × dl,r , (4)

where La,r represents the total load of the contaminant accu-
mulated at the end of river reach r (g d−1), calculated as the
mass influx from treated pathways (Lt,r ) plus the mass influx
from untreated pathways (Lu,r ) plus the total load (after de-
cay) from those upstream reaches n (

∑
n

Ln) that directly dis-

charge into reach r , multiplied by the instream decay factor
ds,r (dimensionless) and the lake decay factor dl,r (dimen-
sionless) that apply at reach r . The instream degradation of
a chemical substance in the river body, if applicable, is ex-
pected to decrease at a rate proportional to its mass and is
calculated assuming first-order decay:

ds,r = e−ktr , (5)

where ds,r (dimensionless) is the instream decay factor for
reach r , tr is the time a plug of water needs to travel through
the river reach r (days), and k is a first-order decay constant
specific to the contaminant (d−1) which determines the rate
of environmental decay in the river (Grill et al., 2018). Note
that the inverse of k represents the half-life of the chemical
in the environment.

As an important partial contaminant sink, lakes were
integrated and modelled as “completely stirred reactors”
(CSTRs) (Anderson et al., 2004). The degradation of a chem-
ical substance in lakes within the river network is calculated
as follows:

dl,r =
Qr

Qr + (k×Vr)
, (6)

where dl,r (dimensionless) is the lake decay factor for reach
r; Qr is the river discharge (L d−1) at the river reach r; k

is the first-order decay constant specific to the contaminant
(d−1); and Vr is the combined volume (L) of all lakes along
river reach r . The locations and characteristics of lakes in
HydroFATE are derived from the global lake database Hy-
droLAKES (Messager et al., 2016). If there are no lakes in
the river reach, dl,r is equal to 1.

To calculate the predicted environmental concentration
(PECr ) of the contaminant at river reach r (ng L−1), the fi-
nal contaminant load (after any accumulation or removal) at
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reach r (La,r ; g d−1) is divided by the river discharge (Qr ;
L d−1) at the same location:

PECr =
La,r

Qr

×
109 ng

1 g
. (7)

4 Model application and performance evaluation:
concentration of sulfamethoxazole in the global river
network

To evaluate the global applicability and general performance
of the HydroFATE model, including the new distinction
into six contaminant pathways as described in Sect. 3.2,
the model was used in a proof-of-concept study to predict
the distribution of the antibiotic sulfamethoxazole (SMX)
in the global river network. SMX is considered a contam-
inant of emerging concern (Wilkinson et al., 2022), and it
was selected due to a relatively high level of data availabil-
ity, including global per capita consumption and metabolism
fraction, WWTP removal efficiency, instream decay con-
stants, and measured environmental concentrations (MECs)
reported for numerous rivers and streams around the world.
The PECs in surface waters were calculated based on long-
term naturalized discharge as provided for all river reaches in
the RiverATLAS database (Linke et al., 2019). The resulting
PECs were compared to MECs to evaluate the model’s pre-
dictive ability. Furthermore, PECs were also used to assess
the exposure associated with SMX based on a comparison
of PECs in surface waters relative to the reported predicted
no-effect concentration (PNEC), which is the concentration
threshold below which no adverse effects of exposure are ob-
served in laboratory-based toxicity tests (Archundia et al.,
2018; Hernando et al., 2006).

Finally, to further assess the model’s performance under
a range of alternative conditions, HydroFATE was run for
a total of four scenarios based on plausible ranges of con-
figuration settings and parameters extracted from literature
sources.

4.1 Input data

4.1.1 SMX properties

Sulfamethoxazole (SMX) is a sulfonamide antibiotic, usually
sold in combination with trimethoprim. When consumed,
SMX is rapidly absorbed upon oral administration, with
metabolism mainly hepatic (Rudy and Senkowski, 1973).
Residues are mostly excreted in urine, and the proportion
of unchanged substance can be between 10 % and 30 %, de-
pending on urine pH (Straub, 2016). Based on a comprehen-
sive literature search, Straub (2016) found 36 publications
that reported 190 removal efficiencies of SMX in WWTPs,
with an average of 21 % removal, a median of 49 %, and an
interquartile range from 2 % to 73 %. Archundia et al. (2018)
compiled six different studies that measured environmental

decay in rivers, finding an average first-order decay constant
of 0.73 d−1, a median of 0.13 d−1, a minimum of 0.034 d−1,
and a maximum of 2.88 d−1.

For the main mode run in this study, the average excretion
fraction and the median values of wastewater removal effi-
ciency and instream decay constant were used (see Table 1,
baseline scenario). But we also explored the ranges of pos-
sible values and how they affect the model outputs (see Ta-
ble 1, alternative scenarios; for more details, see Sect. 4.2.1.
below). Since Straub (2016) does not provide specific re-
moval efficiencies for SMX for different treatment levels of
WWTPs, the same removal efficiency was assumed for pri-
mary, secondary, and advanced treatment levels.

4.1.2 SMX global consumption

Country-level averages of annual consumption per capita of
SMX were necessary to estimate emissions to the river net-
work. Klein et al. (2018) analyzed and estimated the con-
sumption of various antibiotics in the world based on the
IQVIA database, which reports annual sales for the period
of 2012 to 2015 for 91 countries. For our study, the annual
consumption of SMX for each country was assumed to be
the average between the four available years as provided by
Klein et al. (2018). For countries not included in the IQVIA
database, the consumption rate was extrapolated based on the
average per capita SMX use from the same income group
(World Bank, 2019) following the methodology described by
Klein et al. (2018).

4.1.3 Measured environmental concentrations (MECs)

To evaluate the predictive ability of HydroFATE, 227 data
points of MECs were compiled from literature sources (see
Fig. 3 for their location and see Sect. S1 in the Supple-
ment for literature sources). MECs are reported from ev-
ery continent except Oceania. The average of reported val-
ues is 390 ng L−1, the median is 28 ng L−1, the minimum
is 0.23 ng L−1, and the maximum is 21 000 ng L−1. In ad-
dition, 134 non-detects (i.e., concentrations reported were
lower than could be detected based on the analytical method
used to measure SMX in water samples) were compiled. In
order to be selected for inclusion as a MEC in the model
evaluation, the literature source must have reported the spe-
cific location (i.e., in the form of coordinates, river names, or
river intersections) of the measurements. In addition, we dis-
carded any MEC where the literature source explicitly men-
tioned that the dominant use of antibiotics in the catchment
feeding the river was associated with veterinary or indus-
trial activities, since the current version of HydroFATE is not
adapted to account for these sources. Most MECs reported
do not include corresponding comprehensive information on
the river characteristics, such as width or average discharge,
which would have helped to identify the precise location in
the river network, or on the conditions under which the mea-
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surement was taken, such as actual discharge amount or flow
season (i.e., low flow, average, or high flow). Therefore, the
actual location and amount of the reported MEC may not al-
ways accurately correspond to the referenced river network
location and/or the assumed flow conditions in HydroFATE.

4.1.4 Predicted no-effect concentration (PNEC)

Since reports of SMX detection in rivers and streams first
began to appear, its potential impact on the environment and
human health has been assessed in several ways. That is, for
exposure assessments, PNEC values often serve as thresh-
olds to evaluate the level of environmental exposure to con-
taminants (Hernando et al., 2006). There are two values of
PNEC for SMX published to date in literature. First, the
PNEC minimum inhibitory concentration (PNEC-MIC), for
which a value of 16 000 ng L−1 was estimated by Bengtsson-
Palme and Larsson (2016), is intended to be protective of an-
tibiotic resistance. Second, the PNEC environment (PNEC-
ENV), for which a value of 600 ng L−1 was estimated by
Ferrari et al. (2004), is based on ecotoxicology data and is
intended to protect aquatic function. For the purposes of the
present case study, the lower value of PNEC (600 ng L−1)
was selected to protect against any possible impact in the ex-
posure analysis.

4.2 Model application

4.2.1 Scenarios

A total of four main scenarios were created to portray plau-
sible settings of parameters and model configuration, as out-
lined in Table 1. Scenario 1 represents baseline conditions
using input parameters and model configurations that are ex-
pected to yield the most plausible predictions for average-
flow conditions based on reported values in literature as de-
scribed in Sect. 4.1.1 and in Grill et al. (2018) for the direct
discharge coefficients. Scenario 2 represents low-flow con-
ditions, but it otherwise maintains the same parameters and
configuration settings as Scenario 1. Scenarios 3 and 4 repre-
sent low-end and high-end settings yet still within plausible
ranges. That is, Scenario 3 (conservative case) uses param-
eter and configuration settings that represent minimum load
emissions and maximum removal efficiencies (including full
substance removal in lakes) to represent low-end contami-
nant concentrations in the river network, and vice versa for
Scenario 4. In the absence of relevant literature values, plau-
sible boundaries for the direct discharge coefficients of Sce-
narios 3 and 4 were set slightly above 0 (i.e., representing
complete decay along untreated pathways) and below 1 (i.e.,
representing no decay along untreated pathways). Additional
scenarios (see Table S2 in the Supplement) were designed
for the model performance evaluation to analyze the individ-
ual contributions of selected parameters and model configu-

rations on the output, including a worst-case scenario assum-
ing that no removal processes affect the contaminant load.

4.2.2 Exposure assessment

The ratio of PEC to PNEC was used as an indicator to desig-
nate levels of SMX in the global river network that can lead
to environmental health concerns. For that purpose, risk quo-
tients, RQr,S (dimensionless), were calculated for every river
reach r and every scenario configuration S using the value
of PNEC for SMX of 600 ng L−1 and the calculated PECr,S

(ng L−1) at every reach r for the respective scenario S:

RQr,S =
PECr,S

PNEC
. (8)

In instances where the risk quotient is greater than or equal to
1 (RQr,S ≥ 1), it is assumed that this exposure level can cause
negative environmental impacts (Archundia et al., 2018; Her-
nando et al., 2006).

4.2.3 Performance evaluation

The performance of the model was evaluated by compar-
ing reported MECs of SMX (see Sect. 4.1.3) and PECs cal-
culated using HydroFATE at the coinciding river reaches.
The goodness-of-fit indicators used to quantify model per-
formance included the normalized root mean square er-
ror (NRMSE), the percentage of bias (PBIAS), the Nash–
Sutcliffe efficiency coefficient (NSE; Nash and Sutcliffe,
1970), and the Kling–Gupta efficiency coefficient (KGE;
Gupta et al., 2009). In addition to the 227 MECs, 134 mea-
surements were classified as “not detected” or “not quanti-
fied”. To evaluate these cases, PECs at the same locations
were verified to determine if they were correctly predicted to
be below the detection or quantification limit (LOD or LOQ,
respectively), depending on detection limits reported in the
respective studies. Besides the baseline calculations of Sce-
nario 1, Scenarios 3 and 4 were evaluated as they benchmark
plausible low-end and high-end variations of parameter and
configuration settings, and Scenarios 5–7 (including 14 sub-
scenarios; see Sect. S2 in the Supplement) were developed
to specifically test the uncertainty ranges introduced by indi-
vidual parameter and configuration settings.

4.3 Case study results

4.3.1 Global emission of SMX to rivers

The global consumption of SMX from the world’s popu-
lation is estimated at 2.6× 106 kg yr−1. From these, 2.4×
106 kg yr−1 are consumed by populations with emission
pathways that can potentially reach the river and lake sys-
tem (including processes of metabolism, excretion, treat-
ment, and/or natural attenuation), while the remaining 0.2×
106 kg yr−1 are consumed by populations with direct emis-
sion pathways to the ocean. For the baseline scenario (Ta-
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Table 1. Scenarios designed to represent plausible parameter and model configuration settings to simulate the global distribution of SMX in
rivers. Excretion fraction is the fraction of the consumed amount of SMX that is excreted after metabolism. Wastewater treatment removal
efficiency is the percentage of SMX that is removed in treatment facilities (WWTPs or DWTSs). For other parameter and configuration
settings, see the main text.

Parameter settings Configuration settings

Scenario Excretion Wastewater treatment Direct discharge coefficient Instream decay Lake removal Discharge

fraction removal efficiency (%) Urban ddcurb Rural ddcrur constant k (d−1) condition

1 Baseline, average flow 0.2 49 0.8 0.5 0.13 CSTR removal Average flow
2 Baseline, low flow 0.2 49 0.8 0.5 0.13 CSTR removal Low flow
3 Low-end case, average flow 0.1 73 0.2 0.2 2.88 Full removal Average flow
4 High-end case, low flow 0.3 2 0.9 0.9 0.03 No removal Low flow

ble 1), a total of 220 000 kg yr−1 of SMX (9 % of global
consumption) is estimated to reach rivers and lakes (Ta-
ble 2). From this, 38 % is from pathways with some form of
wastewater treatment (WWTP or DWTS) versus 62 % from
untreated pathways. The results show that although most of
the consumption occurs among rural populations without ac-
cess to treatment (i.e., 44 % of total consumption), natural
attenuation, as simulated in this study, has a high poten-
tial to remove the substance in rural areas before it reaches
the rivers (i.e., resulting in only 26 % of total emission to
rivers and lakes). Populations in urban areas without ac-
cess to wastewater facilities were modelled to have simi-
lar emissions as populations with access to treatment (i.e.,
36 % versus 38 % of total emissions, respectively). The pro-
cesses simulated in this study that are responsible for remov-
ing portions of the substance along its way from the con-
sumer to the final destination at the ocean or an inland sink
are, in order of quantity removed, metabolism (80 % of to-
tal consumption is removed), natural attenuation in rural ar-
eas (6.5 %), wastewater treatment in WWTPs and DWTS
(3.6 %), instream decay (3.5 %), lake removal (1.7 %), and
natural attenuation in urban areas (0.7 %). The total SMX
reaching the ocean or an inland sink through rivers amounts
to 94 100 kg yr−1 (4.0 % of global consumption).

Table 2 shows the 20 countries that are estimated
to have the largest emissions of SMX. India accounts
for the highest national emission to rivers and lakes
(32 300 kg yr−1), despite its lower-than-average per capita
consumption (801 µgd−1). This is due to a combination of
large populations and a lack of access to wastewater treat-
ment in urban areas. South Africa shows the highest per
capita consumption (6220 µgd−1), while China shows one of
the lowest (67 µgd−1), but it is still among the top 20 emit-
ters.

Overall, the spatial patterns of contaminant emissions to
rivers and lakes are very similar to the global patterns of
consumption, with an average emission to consumption ra-
tio of 9.2 % (Table 2). In Ethiopia, the ratio of emission to
consumption was predicted to be on the low end (7.3 %),
which is mostly due to the population being predominantly
rural without access to treatment (77.9 %), contributing to

52.5 % of the total emission of SMX. In contrast, other coun-
tries such as Indonesia, Vietnam, and Egypt have a ratio
above the global average (11.5 %, 11.4 %, and 11.2 %, re-
spectively) due to the main source of SMX being untreated
urban pathways (i.e., impervious surfaces with less attenua-
tion) or treated pathways (i.e., wastewater treatment removal
efficiency for SMX is lower than the assumed proportion of
SMX removed by processes of natural attenuation in rural
areas).

Figure 3 illustrates the resulting spatial distribution of
SMX concentrations in the global river network for the two
baseline scenarios: Scenario 1 corresponding to average-
flow conditions and Scenario 2 corresponding to low-flow
conditions. Generally, higher concentrations are predicted
for rivers in countries with high emissions, such as India,
United States, Pakistan, and South Africa. Nonetheless, even
in countries that are not among the highest emitters, such as
many African countries, low river discharges can cause high
concentrations of contaminants in the rivers, especially dur-
ing low-flow conditions.

4.3.2 Exposure assessment

The results of baseline Scenario 2 (low-flow conditions)
predict aquatic exposure to SMX concentrations above the
PNEC (i.e., risk quotient ≥ 1) for 1.7 % (i.e., 409 000 km)
of all rivers in the world with long-term annual average dis-
charge above 0.1 m3 s−1 (Table 3). India, Pakistan, and Su-
dan show the largest extents of rivers in this category which
indicates a potential risk for environmental health. This per-
centage decreases to 0.1 % (corresponding to 29 000 km) for
baseline Scenario 1, i.e., when average-flow conditions are
assumed. Pakistan has a particularly high percentage of rivers
in the risk category for both scenarios (i.e., 33.5 % and 8.6 %
of all rivers for Scenarios 2 and 1, respectively).

To assess the contribution of instream decay processes
(i.e., decay in rivers and removal in lakes) to the reduction in
contaminant concentrations, the increase in length of rivers
with SMX concentrations exceeding PNEC was calculated
assuming that these processes are not taking effect (i.e., the
respective first-order decay constant k is set to 0). Globally,
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Figure 3. Estimated concentrations of sulfamethoxazole (SMX) in the global river network using the HydroFATE model for baseline Scenar-
ios 1 (a, average-flow conditions) and 2 (b, low-flow conditions). See Table 1 for scenario settings. The black triangles represent the locations
of measured environmental concentrations (MECs) used in the model evaluation. For visual clarity, only rivers exceeding a long-term average
flow of 3 m3 s−1 are shown on the map.
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Table 2. Top 20 countries ranked by their predicted emissions of SMX to rivers and lakes, with their population sources, their national
consumption, their emission rates by pathway, and their global totals. For a complete list of all countries, see Table S3 in the Supplement.

Country Population source (%) Consumption Total emission to Emission to Contaminant pathway into rivers or lakes (%)

Treated (WWTPs Urban Rural Total Per capita rivers and lakes consumption Treated (WWTPs Urban Rural
and DWTSs) untreated untreated (kg yr−1) (µgd−1) (kg yr−1) ratio (%) and DWTSs) untreated untreated

India 8.0 29.2 62.7 366 000 801 32 300 8.8 9.3 53.0 37.7
United States 77.1 2.5 20.5 290 000 3070 27 000 9.3 84.4 4.2 11.4
Pakistan 18.5 23.1 58.3 223 000 3155 19 100 8.6 22.1 43.3 34.6
South Africa 47.7 28.2 24.1 102 000 6216 10 700 10.6 46.2 42.8 11.1
Nigeria 8.3 37.3 54.3 82 300 1236 7960 9.7 8.8 61.8 29.5
Brazil 61.8 17.0 21.2 77 400 1189 7910 10.2 61.7 26.7 11.6
Indonesia 5.0 52.5 42.5 74 800 904 8610 11.5 4.4 73.1 22.5
Mexico 78.4 4.3 17.4 63 000 1504 6090 9.7 82.8 7.0 10.2
Egypt 65.8 25.2 8.9 55 500 1920 6220 11.2 60.0 36.1 4.0
Ethiopia 1.2 20.9 77.9 40 400 1214 2940 7.3 1.7 45.9 52.5
DR Congo 0.3 28.4 71.4 39 900 1236 3220 8.1 0.3 56.2 43.4
Bangladesh 5.0 42.4 52.6 39 100 714 4100 10.5 4.9 64.7 30.4
Iran 27.2 18.4 54.5 34 700 1265 3010 8.7 31.9 33.9 34.2
Vietnam 1.0 54.6 44.3 33 000 1031 3800 11.4 0.9 76.4 22.7
Russia 79.9 0.2 19.9 32 700 696 3020 9.2 88.3 0.3 11.4
China 57.3 8.0 34.7 31 800 67 2860 9.0 65.0 14.2 20.8
Ecuador 60.4 1.7 37.8 22 800 4126 1970 8.7 71.1 3.2 25.7
Myanmar 1.2 30.6 68.2 22 700 1292 2070 9.1 1.3 53.7 45.0
Germany 99.1 0.0 0.9 22 300 816 2270 10.1 99.6 0.0 0.4
Tanzania 0.2 28.5 71.3 21 600 1267 1700 8.0 0.2 57.0 42.8

Total 34.4 21.0 44.5 1 675 000 1708 156 850 9.4 37.6 37.9 24.5

Global 36.1 19.9 44.0 2 400 000 1331 220 000 9.2 38.2 36.0 25.7

Table 3. Top 20 countries by total length of rivers with a predicted risk quotient (RQ)≥ 1 for SMX for Scenarios 2 (low-flow conditions) and
1 (average-flow conditions). See Table 1 for scenario settings. The total length of rivers is extracted for each country from the RiverATLAS
database (Linke et al., 2019), accounting for all rivers in the world with long-term annual average discharge above 0.1 m3 s−1 (i.e., a global
total of 23.9×106 km). The increase in length of rivers presenting risk of exposure based on specific conditions was calculated by running the
model for the pertinent scenario but changing the parameters and configurations accordingly. See Table S4 in the Supplement for a complete
list of all countries.

Country Total length RQ ≥ 1 at low-flow conditions RQ ≥ 1 at average-flow conditions

of analyzed Length of % of total % increase % increase Length of % of total % increase % increase
rivers (km) rivers (km) length in length without in length without rivers (km) length in length without in length without

instream decay lake removal instream decay lake removal

India 776 000 123 000 15.9 6.9 17.9 3370 0.4 17.4 37.1
Pakistan 102 000 34 200 33.5 6.9 4.0 8750 8.6 2.9 4.1
Sudan 100 000 15 100 15.1 7.7 1.4 290 0.3 34.5 18.6
Iran 202 000 14 500 7.2 6.3 2.3 800 0.4 3.9 1.4
Ethiopia 186 000 14 400 7.7 10.7 2.6 382 0.2 8.9 21.7
South Africa 107 000 13 900 13.0 10.8 43.0 3770 3.5 27.6 68.2
Nigeria 201 000 12 600 6.3 7.2 11.3 673 0.3 48.6 85.9
Saudi Arabia 71 400 11 800 16.5 12.0 0.3 67 0.1 35.8 0.0
United States 1 780 000 10 700 0.6 13.5 30.9 1240 0.1 17.7 69.1
Mexico 270 000 9180 3.4 9.8 30.0 1180 0.4 7.7 19.3
Algeria 94 200 8760 9.3 5.8 9.9 806 0.9 16.4 15.0
Yemen 23 100 8540 37.0 2.0 0.1 1210 5.3 5.7 1.3
Niger 49 500 7990 16.1 8.7 7.9 444 0.9 25.2 73.2
Somalia 42 200 7440 17.6 8.3 0.0 32 0.1 34.4 0.0
Iraq 36 400 6100 16.8 3.9 7.4 171 0.5 19.9 1.8
China 1 440 000 5900 0.4 15.8 20.7 39 0.0 38.5 176.9
Chad 85 100 5870 6.9 12.5 2.4 68 0.1 0.0 79.4
Afghanistan 79 700 4640 5.8 9.9 2.2 56 0.1 0.0 16.1
Oman 14 000 4620 33.0 3.2 0.1 0 0.0 0.0 0.0
Turkmenistan 14 900 3920 26.3 4.0 11.9 402 2.7 8.2 2.2

Total 5 674 500 323 160 5.7 7.8 12.9 23 750 0.4 13.1 27.8

Global 23 900 000 409 000 1.7 8.4 14.4 29 000 0.1 12.8 26.8
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Figure 4. Estimated risk quotient for sulfamethoxazole (SMX) us-
ing HydroFATE in parts of Southeast Asia, with a focus on India
and Pakistan. The risk quotient was calculated using Scenario 2
(see Table 1 for scenario settings). The black dots represent the
location of wastewater treatment plants (WWTPs) in the database
HydroWASTE. For visual clarity, only rivers exceeding a long-term
average flow of 0.1 m3 s−1 are shown on the map.

if both river and lake environmental decay processes were
omitted, there would be a combined increase of 22.8 % and
39.6 % in the length of rivers that fall in the risk category
compared to Scenarios 2 and 1, respectively (Table 3). If only
lake removal processes were excluded, there would be an in-
crease of 14.4 % in Scenario 2 and 26.8 % in Scenario 1. Lake
removal is predicted to be particularly important in rivers
in South Africa, United States, Mexico, and China. For in-
stance, without lake removal, there would be an increase of
43 % of rivers in South Africa falling in the risk category at
low-flow conditions.

Finally, to demonstrate the utility of a contaminant fate
model operating at high spatial resolution, Fig. 4 depicts the
risk distribution under low-flow conditions (Scenario 2) for
the region of Southeast Asia, including the two countries
(India and Pakistan) with the longest total length of rivers
in which SMX concentrations exceed PNEC. The high spa-
tial resolution permits the detection of local increases in risk
immediately downstream of individual WWTPs, which then
can diminish along the flow paths once inflowing tributaries
cause dilution effects. Model results also reveal the exposure
of individual rivers receiving contaminant discharge without
any treatment (i.e., areas without any black dots but present-
ing a high density of rivers at risk).

4.4 Performance evaluation

Modelling results were evaluated by comparing predicted
SMX concentrations with available measurements in river
reaches across the world using 227 MECs with values above
the detection threshold and 134 measurements below the lim-
its of detection. Figure 5a to d show an analysis of results for
baseline Scenario 1 (average-flow conditions; see Table 1 for
scenario settings), distinguished by certain characteristics of
the measurements. The different colors of points in the over-
all scatter plot shown in Fig. 5a illustrate the global distri-
bution of measurements. The African continent presents the
highest SMX concentrations (both measured and predicted)
and the predicted concentrations in Asia, Europe, and Cen-
tral America are in their majority below reported measured
concentrations. These results confirm that model predictions
for Scenario 1 are generally reasonable, with 77.5 % of the
predicted values being within 1 order of magnitude of the
measured concentrations reported in literature (Johnson et
al., 2008; Oldenkamp et al., 2018).

Figure 5b shows substantial uncertainties in PEC calcula-
tions (i.e., reflected by the extent of error bars) when using
the parameter and configuration settings of Scenarios 3 and
4, representing low-end and high-end simulations that were
within plausible ranges. Taking these uncertainties into ac-
count, 80 % of all MECs fell within the range of error bars
of HydroFATE; that is, they were reproducible by the model
within at least one of the chosen parameter and configuration
settings. Additional model performance indicators, obtained
by comparing all 227 MECs against estimates derived for
Scenario 1, also reflect overall fair results yet with a clear
bias of modelled concentrations tending to be lower than re-
ported measurements.

Figure 5c shows the same points with bubbles sized ac-
cording to average discharge at the measurement location,
and Fig. 5d shows bubbles sized according to upstream urban
extents. Most measurement locations for which model pre-
dictions of concentrations were too high are located down-
stream of urban populations on rivers with low discharge,
which is a challenging combination to model; that is, urban
streams can be heavily modified by anthropogenic activities
that influence their flow quantities and water quality, such
as channelization, dams, and sewers. Besides, if the urban
population is not served by WWTPs, the predictions were
based on the assumption of a constant direct discharge co-
efficient, which in all probability is variable in reality. De-
spite these uncertainties, only two measurements were pre-
dicted erroneously above the PNEC threshold, resulting in a
risk quotient that is falsely predicted to be above 1. On the
other hand, 17 measurements were erroneously predicted to
be below the PNEC threshold, which is in accordance with
the overall conservative approach and scenario configuration
used in this case study.

In addition to the performance evaluation presented in
Fig. 5, 63 % of PECs at the same locations as MECs that re-
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Figure 5. Evaluation of the SMX concentrations estimated using HydroFATE for baseline Scenario 1 (average-flow conditions; see Table 1
for scenario settings). Individual points represent comparisons between measured (MEC) and predicted (PEC) environmental concentrations
in the same river reach. The black dashed line represents the 1 : 1 line and the gray dashed lines represent the error line corresponding to
1 order of magnitude. Panel (a) shows a general scatter plot between MECs and PECs and indicates their spatial distribution (with different
symbols and colors representing the geographic regions). Panel (b) shows uncertainties of PECs where the error bars represent the range of
resulting PECs using the parameter and configuration settings of Scenarios 3 and 4; n is the number of records; NRMSE is the normalized root
mean square error; PBIAS is the percent bias; NSE is the Nash–Sutcliffe efficiency; KGE is the Kling–Gupta efficiency. Panel (c) indicates
the annual river discharge at the river reach of the MEC in different bubble sizes; panel (d) indicates the urban extent upstream of the river
reach of the MEC in different bubble sizes; the red dashed lines represent the threshold for the PNEC. Error bars in panel (b) that extend
below 0.001 ng L−1 may include predicted zero concentrations.

ported to be below detection limits were correctly predicted
to have concentrations that fell below the reported limits. If
allowing an error of 1 order of magnitude, the success rate
increased to 91 %. Three additional scenarios (including 14
sub-scenarios) were also analyzed to specifically test the un-
certainty ranges introduced by individual parameter and con-
figuration settings (see Sect. S2 in the Supplement for de-
tails). The results indicate that the model reacts sensitive yet
within reasonable boundaries to the permutations of individ-
ual parameter settings. Of particular importance are the set-
tings related to substance removal simulations in the model

which depend on local characteristics and on the dominating
pathway of the contaminant.

5 Discussion

5.1 HydroFATE: strengths and limitations

In this study, the first global application of the contaminant
fate model (CFM) HydroFATE was presented, building upon
previous stages of the model that were used to assess the dis-
tribution of pharmaceuticals at the regional scale in Canada,

Geosci. Model Dev., 17, 2877–2899, 2024 https://doi.org/10.5194/gmd-17-2877-2024



H. Ehalt Macedo et al.: HydroFATE (v1) 2891

China and India. One of the main characteristics that dis-
tinguishes HydroFATE from other global CFMs, besides its
high spatial resolution, is that contaminant pathways can be
differentiated based on whether the wastewater undergoes
treatment or not and, if so, at what treatment level. Contam-
inants generated by populations connected to wastewater fa-
cilities are partially removed by treatment processes, whereas
contaminants generated by populations not connected to any
wastewater system are assumed to undergo natural attenua-
tion processes, which in the case of rural populations also de-
pend on how distant they are from any waterbody. The model
application showed that different regions indeed responded
differently to pharmaceutical drug consumption depending
on the main pathway of the contaminant before reaching the
river system.

Despite its high spatial resolution, HydroFATE has primar-
ily been designed as a CFM that operates at large scales, in-
cluding at the global scale, and it can be readily applied with
existing input data. Due to the necessary model simplifica-
tions to enable such an approach, it is recognized that, even
with anticipated future refinements, substantial uncertainties
will remain with respect to the model’s predictive capabil-
ity. As such, HydroFATE is intended to serve as a screen-
ing model whose primary purpose is to identify critical areas
where detailed field studies should be performed.

To apply any model appropriately and interpret its output,
it is essential to understand its limitations. The main limi-
tations of HydroFATE stem from its steady-state approach;
the difficulty of capturing some underlying processes at the
global scale; the lack of information on the behaviour, use,
and disposal of most CECs; and unaccounted variability re-
garding most input parameters of the model. HydroFATE
transport processes are based on long-term average discharge
or long-term monthly minimum discharge, which does not
account for the seasonality of river flows or any shorter-
term fluctuations that affect the dilution capabilities (or lack
thereof) of contaminant concentrations. The decay of con-
taminants along rivers and in lakes is assumed to follow a
first-order process, lumping and simplifying complex pro-
cesses such as deposition, adsorption, photodegradation, and
bioaccumulation that occur over time. These processes also
depend on local environmental and biological characteristics
that are currently very difficult to capture on a global scale.
Therefore, more experiments and measurements are needed
to reduce the uncertainties inherent in quantifying the decay
constants for different substances and under different condi-
tions, especially contaminants of emerging concern. In the
presented case study application, an average decay constant
arising from only a few reports for sulfamethoxazole was
used, which likely represents an overly narrow range that
does not adequately capture what happens under different
conditions in rivers worldwide.

The efficiency of a WWTP in removing a specific contam-
inant is also a complex process that depends on characteris-
tics of the individual facilities and local conditions that are

not represented in the global HydroWASTE database. Fur-
thermore, processes not simulated by HydroFATE may have
an impact on contaminant loads entering surface waters. For
example, depending on how far a household is located from
the facility, decay processes in sewers can reduce contami-
nant loads on the way to the WWTP. In addition, sewer lines
that are poorly maintained may result in wastewater leakages
into the ground, further reducing the load of contaminant be-
fore it reaches the WWTP.

On the other hand, wastewaters from almost half of the
world’s population are untreated. The uncertainties in Hy-
droFATE related to contaminant simulations from untreated
sources have two main sources: (1) the difficulty to spa-
tially distinguish wastewater contributions from populations
as treated or untreated in the first place, based only on
WWTP characteristics, country-level statistics, and a global
population grid, and (2) the generalization of the pathways
of untreated contaminants into only two types (i.e., distin-
guishing only rural versus urban conditions), based on sim-
plified assumptions and very little evidence from field exper-
iments (Grill et al., 2018). In fact, Grill et al. (2018) found
in a sensitivity analysis for China that the setting of the di-
rect discharge coefficient in rural areas represented the main
source of model uncertainties. However, while the simplified
approach to modelling soil-related processes and the corre-
sponding determination of spatially heterogenous parameter
settings are major limitations of the HydroFATE model and
likely important sources of error, in particular in areas domi-
nated by untreated pathways, these simulations are critically
important to be implemented in the model design. For ex-
ample, in the presented case study, the untreated pathways
contributed an estimated 62 % of the global emission of sul-
famethoxazole, demonstrating their decisive role. Overall,
despite the described uncertainties related to simplified pro-
cess simulations, the baseline scenario was able to reproduce
field measurements reasonably well, especially considering
the large range of possible values for the direct discharge co-
efficients (see Table 1). Panel (d) of Fig. 5 suggests a gen-
eral overestimation of contaminant concentrations in regions
with substantial urban extents upstream (larger bubbles) and
a general underestimation for rural areas (i.e., smaller bub-
bles representing areas with smaller urban extents), an obser-
vation which could be used to revise the direct discharge co-
efficients in future model runs. However, to ensure that Hy-
droFATE is generally applicable to a range of substances, it
is recommended that the model be first tested when applied
to other substances before a potential calibration of different
direct discharge coefficients is carried out to improve model
performance. In addition, as further discussed below, the cur-
rent model version only accounts for one type of source (do-
mestic), which excludes veterinary and industrial contribu-
tions that can be present in waters, making any uncontrolled
measurements inadequate for calibration.

Besides the river network, the pathways of the contami-
nants determine most of the spatial contaminant distribution
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of the model. The method developed in this study distin-
guishes the wastewater contributions from the global popula-
tion as treated or untreated by relying mostly on global pop-
ulation and urban extent grids, as well as the global WWTP
database HydroWASTE. Both population and urban extent
grids have their own uncertainties related to the way they
have been developed, their spatial resolutions, and their rep-
resentative years, potentially misrepresenting actual condi-
tions especially in sprawling cities in developing countries
(Sridhar and Mavrotas, 2021). HydroWASTE is a data com-
pilation that contains estimated characteristics instead of of-
ficial records for 9 % of the WWTPs, and it does not include
small DWTSs that are more common in rural areas. In the ab-
sence of data, country-level statistics on sanitation were used
to minimize these uncertainties regarding HydroWASTE.

5.2 Performance evaluation of HydroFATE using
sulfamethoxazole

As a first case study application of HydroFATE, country-
level consumption data of sulfamethoxazole (SMX) were
used to assess its distribution in the global river and lake
network. Results predicted that a total of approximately
214 000 kg of SMX is released into rivers and lakes every
year from domestic sources. A cursory exposure assessment
shows that this release may potentially result in a risk of envi-
ronmental impact (i.e., defined as PEC≥PNEC) during low-
flow conditions throughout 390 000 km of the global river
network.

In terms of the input information regarding SMX, uncer-
tainties can derive from various assumptions incorporated
into the model parameters, including the country-level con-
sumption rate, the excretion fraction (after metabolism), the
wastewater treatment removal efficiency, and the instream
decay constant. The contaminant emission is estimated based
on country averages of consumption and population den-
sity based on the assumption that every person consumes
the same amount of SMX in a year across a country, which
therefore does not account for regional, municipal, or per-
sonal (e.g., age-dependent) spatial variability of consump-
tion. The excretion fraction has a relatively small range of
uncertainty (Table 1) as the metabolism process of SMX in-
side the human body is well known and was extensively stud-
ied by pharmaceutical companies before its release during
the drug development phase (Zhang and Tang, 2018). The
removal efficiency in treatment facilities, including WWTPs
and DWTSs, depends on the specific type of treatment be-
ing employed. The values reported in the literature vary
widely, possibly due to SMX being transformed to N4-
acetyl-SMX and glucuronide conjugates (the most common
SMX metabolites) and vice versa during the treatment pro-
cess (Straub, 2016). HydroFATE is, in principle, able to ac-
count for different levels of treatment provided by WWTPs
(i.e., primary, secondary, or advanced) by using different
removal efficiencies. However, due to a lack of consistent

data, a choice was made in the presented case study to ap-
ply one single average value for the substance removal ef-
ficiency across all wastewater facilities, including DWTSs.
This could lead to over- or underestimated SMX concentra-
tions in rivers, since primary and advanced treatment pro-
cesses are expected to result in lower or higher removal effi-
ciencies, respectively.

To evaluate the general performance of HydroFATE re-
garding its simulation of SMX concentrations, PECs result-
ing from the model were compared with MECs reported in
the literature. The results showed an overall reasonable pre-
dictive capability with the goodness-of-fit indicators NSE
and KGE above 0.6 and with 77.5 % of PECs being within
1 order of magnitude of reported MECs. This was despite
the inherent uncertainties associated with assumptions made
in the development of the model and those associated with
estimates of the various model parameters and input datasets.
It is noted that other global water quality models, which
also simulate substance loads and concentrations, have re-
ported similar values of NSE between 0.4 and 0.71 (Font et
al., 2019; Harrison et al., 2019). However, a more detailed
comparison between results from these models and Hydro-
FATE is difficult as different substances and spatial resolu-
tions were applied.

Unfortunately, the lack of specificity of field measure-
ments, for which literature sources generally do not pro-
vide enough information on the precise locations of mea-
surements nor river discharge conditions at the time of sam-
ple collection, does not allow for a conclusive evaluation of
the model under different modelling scenarios. Since there
is a possibility that some of the MECs were measured dur-
ing low-flow conditions (Sect. 4.1.3), the comparison with
results using Scenario 1 (i.e., representing average-flow con-
ditions) might not be appropriate. This issue is further ex-
plored in Fig. 6, where error bars were added to the points
of the scatter plot between MECs and PECs for Scenario 1.
The ends of the error bars (extending only leftwards) show a
recalculated MEC for average discharge conditions when as-
suming that the original concentration of SMX was measured
during low-flow conditions. This analysis demonstrates that
cases in which predicted values were too low could, in part,
be explained by uncertainties within the measurements rather
than errors in the model predictions.

Importantly, the PECs simulated by the present version
of HydroFATE are limited in that they do not include con-
taminant contributions from veterinary use or pharmaceutical
manufacturing operations due to a lack of available data. As
it is not possible to isolate only the contribution from domes-
tic sources in the MECs, this uncertainty in MECs combined
with the omission of veterinary antibiotics in the simulated
PECs could explain a portion of the high negative bias found
in the evaluation. Once data on veterinary use or manufactur-
ing become available, they could readily be implemented to
refine HydroFATE.
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Figure 6. Estimated uncertainties of measured environmental con-
centrations (MECs) considering the lack of reported river discharge
conditions at the time of collection. Individual points represent
comparisons between MECs and predicted environmental concen-
trations (PECs) estimated using HydroFATE for baseline Scenario 1
in the same river reach. The black dashed line represents the 1 : 1
line, and the gray dashed lines represent the error line correspond-
ing to 1 order of magnitude. The ends of the error bars represent
a recalculated MEC for average discharge conditions assuming the
original was measured during low-flow conditions.

6 Conclusion

Despite its current shortcomings and inherent uncertainties,
HydroFATE is the most spatially detailed global CFM cur-
rently available. It tracks multiple pathways of contaminants
in the river and lake environment and has the potential to be
used for any CEC of domestic use. In its current version,
HydroFATE is expected to be particularly useful to iden-
tify specific areas in the river network where high concen-
trations of contaminants may be found. As such, potential
applications include the support of decision-making in order
to prioritize and focus resources, regarding: (1) locations that
should be the subject of detailed field measurements and lo-
cal environmental impact studies; (2) the creation of scenar-
ios for policy-making and management of water resources
at regional or international scales; (3) the development of
screening methods to inform new regulation or guidelines
for the pharmaceutical industry with respect to establishing
markets for their products and performing regulatory compli-
ance tests to safeguard ecosystems and human health; (4) the
development of new or updated treatment standards for con-
taminants of emerging concern, including the establishment
of design specifications for wastewater treatment systems in
specific regions; and (5) the deployment of new treatment
technologies.

Appendix A: WWTP service areas

A1 Delineation of WWTP service areas

Figure A1 shows the conceptual design of the method devel-
oped to delineate wastewater treatment plant (WWTP) ser-
vice areas for every WWTP of the HydroWASTE database
(Ehalt Macedo et al., 2022), using a population grid (World-
Pop; WorldPop and CIESIN, 2018) combined with an urban
versus rural classification (Pesaresi and Freire, 2016) (see
Sect. 2.3 for more details on data sources). In the first of a to-
tal of six iterative processing steps, every population pixel lo-
cated within 10 km of any WWTP was temporarily assigned
to the closest WWTP by creating Thiessen polygons around
all WWTP point locations, where a Thiessen polygon defines
the area that is closer to its associated point than to any other
point. Then, a rank value was calculated for every population
pixel inside each Thiessen polygon indicating its assumed
likelihood to be associated with the respective WWTP (see
Box A1 for calculations). The ranking assumed that WWTPs
tend to serve populations in the following order of priority
(from highest to lowest): (1) residents in closer vicinity to
the WWTP, (2) residents in areas of high population density,
(3) residents of urban areas (versus rural areas), and (4) res-
idents living in clustered/contiguous areas (versus dispersed
single pixels).

After ranking all pixels within each Thiessen polygon,
they were gradually assigned to their respective WWTP until
the summed population was equivalent to the value of “pop-
ulation served” reported in the WWTP database. After com-
pletion of this population assignment, dispersed single pixels
or minor clusters were removed if they were not part of the
largest contiguous area and did not form their own additional
area of at least 9 pixels, assuming that small, isolated popu-
lation centres are not prioritized to be connected to a WWTP.
If a WWTP’s “population served” was reached at the end of
this first iteration, the WWTP was assumed to be “filled up”
and its assigned population pixels were removed from the
population map. All remaining pixels were classified to be
unassigned.

Next, four additional iterations were performed aiming to
fill up the remaining WWTPs. In each of these iterations, ev-
ery unassigned population pixel was temporarily assigned to
the closest WWTP that was not yet filled up; that is, the pixels
were temporarily assigned by creating new Thiessen poly-
gons around the remaining WWTPs by using increasingly
larger distance thresholds of 20, 30, 40, and 50 km, respec-
tively. The same ranking system (Box A1) was used to per-
manently assign pixels to the remaining WWTPs. However,
an additional constraint was applied in each of the four iter-
ations to avoid excessive service area distances for smaller
WWTPs: that is, WWTPs serving less than 10 000 people
were not considered in the second iteration, even if they were
not yet filled up; WWTPs serving less than 100 000 people
were not considered in the third iteration; WWTPs serving
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Figure A1. Conceptual approach of delineating service areas for wastewater treatment plants (WWTPs).

less than 600 000 people were not considered in the fourth
iteration; and WWTPs serving less than 1.1 million people
were not considered in the fifth iteration.

After these five iterations (corresponding to a maximum
distance of 50 km), one final iteration was performed for
all WWTPs that were still not filled up (even the smaller
WWTPs serving less than 10 000 people). That is, all remain-
ing unassigned pixels within their Thiessen polygon and up
to 20 km from the WWTP’s current service area (i.e., from
the result of the previous iterations) were ranked and as-
signed to the respective WWTP, even if they were not con-
tiguous to other pixels already assigned. This additional iter-
ation ensures that remaining unassigned pixels in the proxim-
ity of WWTPs of any size not yet filled up have a final oppor-
tunity to be assigned, including those pixels that were closer
to other WWTPs in earlier iterations but were ultimately not
assigned to them.

A2 Evaluation of resulting WWTP service areas

The population served by WWTPs as spatially assigned by
the procedure developed here is by design equal to or lower
than the population served as reported in the HydroWASTE
database, which is confirmed in Fig. A2. That is, the de-
scribed procedure delivers the best estimate yet with an in-
tended bias towards underestimating the amount of people
served by WWTPs. This design was intentionally chosen to
avoid exceeding reported values of populations served while
allowing for underestimates which may represent various
plausible realities, such as cases in which reported popula-
tion numbers represent maximum WWTP capacities. From
the total 46 270 original points of WWTP locations used
in this study, 45 394 (98 %) had their population served as-
signed within 1 order of magnitude from reported values,
with an R2 (coefficient of determination) of 0.96 and a bias
(percent error) of −13.6 %. Figure A2 shows that the largest
discrepancies were found for smaller WWTPs that are re-
ported to serve less than 10 000 people, likely including cases
where WWTPs treats industrial wastewaters or serves areas
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Box A1. Ranking method to prioritize the likelihood of a population pixel to be associated with a WWTP. The ranking is established for all
population pixels inside the Thiessen polygon that surrounds the WWTP.

Figure A2. Evaluation of the method used to spatially allocate
populations from a global population grid to the WWTPs of the
HydroWASTE database.

with substantial transient population (e.g., tourists, workers),
which are not represented in the population grid. Only two
WWTPs with reported capacities of more than 1 million peo-
ple showed an underestimation due to our service area allo-
cation of more than 1 order of magnitude. Both are located
near a village in Poland with less than 2000 residents and are
likely the result of reporting errors.

Table A1 shows the averages of the service area extents
(in km2) resulting from the described allocation method for
different reported sizes of WWTPs. For comparison, the
WWTP of Montréal, the largest in North America, serves
most of the population on the island of Montreal (∼ 2 mil-

Table A1. Averages of estimated service area extents by WWTP
size as reported in the HydroWASTE database (in terms of popula-
tion served).

Population served Average service area
(HydroWASTE) extent (km2)

1–100 0.2
101–1000 1.6
1001–10 000 20.7
10 001–100 000 42.4
100 001–1 000 000 133.4
> 1000000 406.6

lion people) which covers an area of 473 km2 (source: Ville
de Montréal, Quebec, Canada).

Code and data availability. Model predictions for the four main
scenarios were obtained with a run time of 18 min using a desk-
top PC with Intel Core i7-10700 CPU, 2.90 GHz, and 32 GB of
RAM. A license for the software ArcGIS Pro (by Esri) is re-
quired to run the provided scripts. The code for HydroFATE v1
(including compiling instructions) is available under the GNU
General Public License v3.0, and the input and output data are
available under a CC-BY-4.0 License at the following URL:
https://doi.org/10.6084/m9.figshare.23646282 (Ehalt Macedo et al.,
2023). Under the same URL, the code for the delineation of WWTP
service areas and the resulting grid containing all contaminant path-
ways are provided. Finally, the global river network dataset and the
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associated attribute information for every river reach as well as the
results from the case study are also available at the same URL under
a CC-BY-4.0 License.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-2877-2024-supplement.
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