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Abstract. The Australian Bureau of Meteorology has de-
veloped a national hydrological projections (NHP) service
for Australia. The NHP aimed to provide nationally con-
sistent hydrological projections across jurisdictional bound-
aries to support planning of water-dependent industries. NHP
is complementary to those previously produced by federal
and state governments, universities, and other organisations
for limited geographical domains. The projections com-
prise an ensemble of application-ready bias-corrected cli-
mate model data, derived hydrological projections at daily
temporal and 0.05°× 0.05° spatial resolution for the pe-
riod 1960–2099, and two emission scenarios (Representa-
tive Concentration Pathway (RCP) 4.5 and RCP8.5). The
spatial resolution of the projections matches that of grid-
ded historical reference data used to perform the bias cor-
rection and the Bureau of Meteorology’s operational gridded
hydrological model. Three bias correction techniques were
applied to four CMIP5 global climate models (GCMs), and
one method was applied to a regional climate model (RCM)
forced by the same four GCMs, resulting in a 16-member
ensemble of bias-corrected GCM data for each emission sce-
nario. The bias correction was applied to fields of precip-
itation, minimum and maximum temperature, downwelling
shortwave radiation, and surface winds. These variables are

required inputs to the Bureau of Meteorology’s landscape
water balance hydrological model (AWRA-L), which was
forced using the bias-corrected GCM and RCM data to pro-
duce a 16-member ensemble of hydrological output. The
hydrological output variables include root zone soil mois-
ture (moisture in the top 1 m soil layer), potential evapo-
transpiration, and runoff. Here we present an overview of
the production of the hydrological projections, including
GCM selection, bias correction methods and their evalua-
tion, technical aspects of their implementation, and exam-
ples of analysis performed to construct the NHP service.
The data are publicly available on the National Comput-
ing Infrastructure (https://doi.org/10.25914/6130680dc5a51,
Bureau of Meteorology, 2021), and a user interface is acces-
sible at https://awo.bom.gov.au/products/projection/ (last ac-
cess: 24 November 2023).

1 Introduction

Australia’s climate has large natural variability encompass-
ing many different climate zones and multiple climate
drivers, leading to frequent floods and extended periods of
droughts. In addition, Australia’s climate is changing with
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increasing temperatures and shifts to rainfall patterns impact-
ing all components of the hydrologic cycle. Seasonal precip-
itation has changed across the country, broadly increasing in
the north and decreasing in the south (Dey et al., 2019), with
similar patterns evident in streamflow (Zhang et al., 2016).
The State of the Climate 2022 (CSIRO and Bureau of Mete-
orology, 2022) reports that cool-season (April–October) pre-
cipitation has declined by around 15 % since 1970 in Aus-
tralia’s southwest. Across the same region, May–July rainfall
has seen the largest decrease, i.e. around 19 % since 1970.
In the southeast of Australia, precipitation started to decline
around 1990, and the average cool-season precipitation from
2000 to 2019 was 10 % less than the previous century. Along
with this observed decline in precipitation, streamflow has
declined substantially in both the southwest and southeast,
with changes in streamflow typically disproportionally larger
than changes in precipitation (Chiew, 2006; Wasko et al.,
2021; Zhang et al., 2016).

To deal with changes in water availability, Australia’s wa-
ter policy and infrastructure investment decisions require
high-resolution hydroclimate information representative of
past, current, and future variability. Of prime interest are pre-
cipitation changes and how those changes will impact runoff,
soil moisture, and evapotranspiration across Australia. At
present, many water utilities, planners, and operators use
in-house hydrological models to manage their resources at
strategic time frames of 20–50 years (or more), whereby the
simulations of streamflow feed into decision-making, plan-
ning, and implementation requiring significant investment.
Traditionally, the modelling approach for these studies has
been to use the historic climate record of a variable (e.g. rain-
fall, runoff) for a region or catchment of interest and extend
it using stochastic methods to increase the sample of extreme
events (Crosbie et al., 2009; CSIRO, 2009). However, this
approach is insufficient to adequately represent the range of
plausible climate futures. Several Australian states have com-
missioned and produced downscaled climate projections of
rainfall (and in some cases runoff). However, a key issue is
that the methodologies, ensemble sizes, emissions scenarios,
and sets of host global climate models (GCMs) used vary
considerably, meaning the data are too heterogenous for use
in applications that intersect jurisdictional boundaries.

Detailed climate projections for Australia have been pro-
duced by the Bureau of Meteorology and the Commonwealth
Scientific and Industrial Research Organisation (CSIRO), re-
sulting in the Climate Change In Australia service (CSIRO
and Bureau of Meteorology 2015; hereafter referred to as
CCiA). The CCiA service provides application-ready data
and information on climate projections for Australia using
a subset of eight GCMs selected from all CMIP5 GCMs
for their ability to reproduce climate features that are im-
portant for the Australian climate and suitable for use in
impact models. The application-ready data were produced
using a mean scaling for all variables other than precipita-
tion for which quantile–quantile scaling was applied. How-

ever, the application-ready data are not continuous1, and ex-
plicit hydrological output was not provided. Data currently
available for runoff projections that are sufficient to cover
multiple catchments from one data source have been devel-
oped by Chiew et al. (2018) (see also Zheng et al., 2019b).
This is an ensemble of national projections of runoff us-
ing a delta change methodology that applies the mid-century
change signal from 42 GCMs to historical time series, which
are then run through GR4J rainfall–runoff models (Perrin et
al., 2003) for each catchment. As with any scaled dataset,
applications are limited to uses for which continuous se-
ries are not required and assume the variability and persis-
tence in the observed period (for example, the daily distri-
bution and sequencing of precipitation) is representative of
a future climate undergoing warming. Ensembles of daily
hydrological projections produced from bias-corrected cli-
mate model output are available globally, including for Aus-
tralia, via ISIMIP (https://esg.pik-potsdam.de/search/isimip/,
last access: 24 November 2023) at a spatial resolution of 0.5°
(approx. 50 km). The application of this data is limited by the
relatively coarse spatial resolution, and there is no informa-
tion describing the suitability of the bias correction reference
data for Australian conditions.

To address these deficits in hydrological projections, the
Australian Bureau of Meteorology (the Bureau) has pro-
duced an ensemble of daily projections of hydrological vari-
ables at 0.05°× 0.05° (approximately 5 km) spatial resolu-
tion spanning the period 1960–2099. In addition, application-
ready datasets of the variables required to produce the hydro-
logical output at the same temporal and spatial resolution are
also available. These were produced as a central component
of the Bureau’s National Hydrological Projections (NHP)
project. The overarching goal of the NHP was to provide
a nationally consistent set of projections, including publicly
accessible datasets and communication tools that will be use-
ful to water-sensitive sectors of the Australian community to
prepare for and adapt to the many possible impacts of climate
change, especially those sectors for which the hydrological
cycle is of importance. By developing these datasets we aim
to address these limitations and provide nationally consistent
hydrological projections for the Australian community.

Development of the application-ready climate data and the
derived hydrological projections required several considera-
tions:

– GCM selection and the associated choice of emission
scenarios,

– selection of a regional climate model (RCM) to dynam-
ically downscale the GCM output;

1Continuous projections are those that are applicable for the en-
tire duration of the projection period. The scaling methodology used
in CCiA requires that the correction be applied in discrete time
chunks (30 years), and therefore it is not suitable to be used as a
continuous time series.
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– selection of techniques to correct the biases of the GCM
and RCM output;

– creation of an observational dataset, which is required
for both implementation and evaluation of bias correc-
tion;

– a choice of a hydrological model to run using the down-
scaled climate data;

– development of communication tools for users of the
projections data.

Each of these decisions was guided by both pragmatic and
scientific considerations. The various components of these
decisions and the resultant modelling chain are shown in
Fig. 1. The objective of this paper is to detail the decisions
made and methodologies employed to develop a national
continental-scale hydrological projections service.

The structure of the paper broadly follows points listed
above. Section 2 details the GCM selection process, includ-
ing how the selected GCMs compare to the larger collection
of CMIP5 models, and the model used to dynamically down-
scale the GCMs. The reference observational data are de-
scribed in Sect. 3. The bias correction methods implemented
are reviewed in Sect. 4. The AWRA-L hydrological model
is described in Sect. 5. A brief evaluation of the bias cor-
rection methods against the reference observational data is
detailed in Sect. 6. The GCM and hydrological projections
and some example analyses are detailed in Sect. 7, with a
focus on extreme rainfall and runoff events in Sect. 7.4. We
provide details of how the datasets were used to provide com-
munication tools for the projections to end users in Sect. 8.
Finally, conclusions, considerations around the limitations of
the projections, and details of code availability are presented.

2 GCM selection

The GCM selection was guided by both pragmatic and scien-
tific considerations. The AWRA-L hydrological model (see
Sect. 5) requires daily values of precipitation (pr), maxi-
mum and minimum temperature (tasmax, tasmin), surface
wind speed (sfcWind), and downwelling shortwave radiation
(rsds) as inputs. Furthermore, the Australian research com-
munity uses CMIP5 GCM data stored on the National Com-
puting Infrastructure (NCI) supercomputer, meaning that the
ready availability of these variables (at daily temporal res-
olution) was of paramount practical importance. Ideally, an
exhaustive set of GCM data, for instance, the complete set
of 47 CMIP5 simulations assessed in CCiA, would have
been utilised; however, that was not feasible, requiring us
to choose a subset. The CCiA report guided this decision-
making, wherein it recommended the use of eight GCMs to
prepare application-ready data for Australia. They were cho-
sen primarily based on their ability to represent the climate

drivers of significant importance for Australia (El Niño–
Southern Oscillation (ENSO), the Southern Annular Mode
(SAM), and monsoonal rainfall patterns), as well as to pro-
vide a reasonable representation of the wet–dry and cool–
warm variation between CMIP5 models (CSIRO and Bureau
of Meteorology, 2015). Using this guidance and the prac-
tical considerations around data availability, the final suite
of models chosen was ACCESS1-0, CNRM-CM5, GFDL-
ESM2M, and MIROC5 (see Table 1).

A choice of emission scenarios was also required, and
simulations produced using the Representative Concentra-
tion Pathway (RCP) 4.5 and RCP8.5 emission pathways were
chosen. These emissions pathways were chosen to provide
a high (RCP8.5) and moderate (RCP4.5) set of temperature
projections, noting that the set of modelled greenhouse gas
emission pathways provided in CMIP5 have relatively min-
imal deviation before 2050 and that the observed climate
change trends for CO2 emissions and temperature in recent
decades indicate that the high-emission pathway (RCP8.5)
has been followed more closely than other emissions path-
ways (e.g. RCP2.6) (Schwalm et al., 2020; Stocker et al.,
2013). However, we also note that RCP8.5 may be at the high
end of emission scenarios for future risk assessment (Peters
and Hausfather, 2020).

2.1 Regional climate model (CCAM)

To extend the GCM data, the Conformal Cubic Atmospheric
Model (CCAM; McGregor, 2005; McGregor and Dix, 2008)
was used to dynamically downscale the four GCMs. CCAM
outputs contribute to the CORDEX (Coordinated Regional
Downscaling Experiment)2 international intercomparison of
downscaling models. It is a global atmosphere-only climate
model that has the ability for its grid to be stretched such
that it has a finer resolution over the domain of interest (Aus-
tralia) and coarser resolution in more distant regions (Mc-
Gregor, 2005). CCAM can be forced via two methods, one
using bias-corrected sea surface temperatures (SSTs) and
another using spectral nudging to update the circulation to
that of the host GCM. It was the former configuration used
for NHP, whereby the mean and variance SSTs of the host
GCM are bias corrected to provide boundary conditions for
CCAM. This produced 50 km resolution projections of the
atmospheric state over the Australian continent (Clarke et
al., 2019; Hoffmann et al., 2016). As for the host GCMs, the
simulations were run for the period 1960 to 2100 for both
RCP4.5 and RCP8.5 scenarios. The resulting 50 km simula-
tions represent a reconstruction of the atmosphere for which
the GCM SST biases have been removed and the atmosphere
is allowed to evolve independently of the host GCM.

2Further details about CCAM physics and versions can be found
at https://confluence.csiro.au/display/CCAM/CCAM (last access:
24 November 2023), including a list of relevant publications at
https://confluence.csiro.au/display/CCAM/Key+publications+for+
CCAM (last access: 24 November 2023).
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Figure 1. Modelling flow diagram for the National Hydrological Projections. Individual components are detailed in the main text (Sects. 2,
3, 4 and 5).

Table 1. List of GCMs used in this study.

Model acronym Institution Horizontal resolution Reference
(lat× long)

ACCESS1-0 Commonwealth Scientific and Industrial Organisation (CSIRO)
and Bureau of Meteorology, Australia

1.25°× 1.875° Dix et al. (2013)

CNRM-CM5 Centre National de Recherches Météorologiques, France 1.4°× 1.4° Voldoire et al. (2013)

GFDL-ESM2M GFDL, Princeton, New Jersey, United States 2.0°× 2.5° Dunne et al. (2012)

MIROC5 Atmosphere and Ocean Research Institute and NIES, Japan 1.4°× 1.4° Watanabe et al. (2010)

The only information incorporated into CCAM from the
host GCM is the bias-corrected SSTs, so the resultant atmo-
spheric evolution may depart quite markedly from the host
GCM. This has the effect that the range of the projections,
and by implication the uncertainty, will differ from those that
only include the host GCM. There are systematic differences
between the GCM and CCAM projections, which we will ex-
plore in Sect. 7; however, the general effect of the inclusion
of the CCAM simulations in the NHP ensemble is to increase
the ensemble range. The approach to forcing the downscaling
model is the same as that used for the Victorian Climate Pro-
jections – 2019 (Clarke et al., 2019) but differs from that used
in some other projects, e.g. the Energy Sector Climate Initia-
tive (ESCI), where a spectral nudging approach was used.

2.2 Comparison to the CMIP5 ensemble

It is informative to understand how our selection of GCMs
fits within the larger ensemble of CMIP5 model simulations.
Figures 2 and 3 show the ranking of 40 GCMs used in CCiA,
for surface temperature (tas) and precipitation (pr). The rank-

ing was evaluated by calculating the areal (in this case all
of Australia) and temporally averaged difference in the pro-
jection period and the same quantity for the historical pe-
riod; we will refer to this as a “change factor”. To examine
the change factor, we define four future 30-year time slices:
2016–2045, 2036–2065, 2056–2085, and 2070–2099, which
are centred on 2030, 2050, 2070, and 2085, respectively,
while the historical period was defined as 1976–2005. Due
to Australia’s large size and geographical location, the cli-
mate of Australia varies markedly from the tropical north to
the temperate south. As such, nationally averaged precipita-
tion may not provide meaningful insight from a climatologi-
cal perspective; nevertheless, it does impart interpretation of
how our choice of GCMs occupies the phase space spanned
by the CMIP5 models. For surface temperature, our selec-
tion falls approximately midway in the range of the CCiA
ensemble; however, it still spans a relatively large range of
change factors. The spread amongst the change factor values
generally increases as a function of time and is also slightly
larger for the RCP8.5 scenario. The ACCESS1-0 and GFDL-
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ESM2M models have an increased warming signal compared
to MIROC5 and CNRM-CM5. The change factor for pre-
cipitation consists of both wetting and drying signals across
each time slice and scenario, although generally two mod-
els (ACCESS1-0 and GFDL-ESM2M) show a drying sig-
nal and two show increased precipitation (CNRM-CM5 and
MIROC5). GFDL-ESM2M has a consistent and large dry-
ing signal, while the precipitation change signal from the
ACCESS1-0 model varies between time slices and scenarios;
CNRM-CM5 and MIROC5 both indicate enhanced precipi-
tation.

Although focussing on a particular model is useful, when
using the output from several models the range of uncertainty
(provided by the differing simulations) can be examined by
constructing the model ensemble and calculating ensemble
statistics. As shown in Fig. 2, the change factor is calcu-
lated for each model separately, which is then aggregated to
calculate ensemble statistics, including the median and the
10th and 90th percentiles. Here, we introduce “change factor
plots”, an example of which is shown in Fig. 4. It displays
the model ensemble change factor spread for surface temper-
ature (left) and precipitation (right) for the NHP ensemble
and the CCiA ensemble, averaged over Australia, for both
RCPs and for the four future time slices. The NHP ensemble
median is cooler than that of the CCiA ensemble and has a
decreased ensemble range. The precipitation signals between
the NHP ensemble and CCiA ensemble are often of opposite
sign, especially for RCP4.5. Although the ensemble range
is generally smaller for the NHP models, it is comparable to
that of CCiA, and in the case of the 2030 and 2050 time slices
for RCP4.5 it is larger.

Figure 4 indicates that the NHP ensemble provides a sub-
sample of the CCiA ensemble. To focus on how the climate
in a particular region is projected to change in the future it is
useful to divide a large geographical region, such as Aus-
tralia, into sub-regions. In keeping with the recommenda-
tions of CCiA, the Natural Resource Management (NRM)
areas are used in this report, and we will refer to changes
across NRM clusters (see Fig. 5). These regions were chosen
to reflect locally similar climatic conditions, biophysical fac-
tors, and broad patterns of climate change (CSIRO and Bu-
reau of Meteorology, 2015). CCiA also included further sub-
divisions that may be better suited for impact and assessment
studies. However, our intention here is not to provide such
assessments but rather a broad overview of the data available
that can be used for such studies in the future.

Change plots were also constructed for the NRM clus-
ters (not shown) and the discrepancy between the NHP and
CCiA ensembles changes depending on the geographical re-
gion. For instance, the NHP warming signal in the Southern
and Southwestern Flatlands (SSWF) NRM is not as large as
the CCiA ensemble; however, the precipitation change signal
for both the CCiA and NHP ensembles indicates a consistent
drying trend despite the NHP ensemble drying signal being
lower. As for all of Australia, the range of temperature and

precipitation projections of the NHP ensemble was evaluated
against the 40-member CCiA ensemble, and it was found that
the NHP ensemble spanned the complete ensemble range re-
markably well. This means that the four GCMs used in NHP
include both cooler and warmer and dryer and wetter pro-
jections, giving us confidence that the mean changes in the
NHP ensemble reflect that of the complete ensemble. Never-
theless, the spread of the NHP ensemble is less than that of
CCiA, suggesting that the NHP GCM ensemble spread may
be less than the CCiA GCM recommendations. However, we
note that this analysis only considers the four host GCMs
and does not include CCAM simulations. Since CCAM de-
velops a climate independent of the host GCM, it has the
effect of increasing the ensemble spread compared to that of
the host GCMs. While the inclusion of the CCAM ensem-
ble increases the uncertainty in the projections, rather than
considering this a limitation, it is instead advantageous as it
enables sampling more of the phase space represented by the
full suite of CMIP5 models (see Figs. 2, 3, and 4), thereby
decreasing the reliance on the interpretation of the results for
GCM selection.

3 Reference data

The outputs from GCMs and RCMs have systematic biases
that need to be corrected before using their data for climate
change impact and risk assessment studies. This is achieved
using bias correction methods that are designed to preserve
certain moments between the observations and the simula-
tions. Implementation of a bias correction method requires
three main components: (1) GCM and/or RCM simulations
that are to be corrected for bias; (2) reference data, which can
be direct observations or a derived product (e.g. gridded ob-
servations or reanalyses); and (3) a bias correction algorithm.
The reference datasets required are those necessary to run
the AWAR-L hydrological model (see Sect. 5): precipitation
(pr), maximum and minimum temperature (tasmax/tasmin),
downwelling shortwave radiation (rsds), and surface wind
speed (sfcWind). Here we describe the reference datasets
used to bias correct the GCM output over the historical pe-
riod (defined to be 1976–2005).

3.1 Precipitation and temperature

Daily gridded precipitation and temperature data were
obtained from the Australian Water Availability Project
(AWAP)3 climate dataset, which consists of surface air tem-
perature (daily minimum and maximum) and daily precipita-
tion from 1 January 1911 to the present (Jones et al., 2009).
The rainfall and temperature data are interpolated from daily

3The interpolation used to produce the AWAP analysis is cur-
rently being updated by the Bureau of Meteorology and is now
known as Australian Gridded Climate Data (AGCD)/AWAP; v
1.0.0; see Evans et al. (2020) for details.
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Figure 2. The ranking of surface temperature (tas) for the GCMs used in this study (darker shading) with regard to the CCiA ensemble
(lighter shading). The horizontal bars indicate the change signal (the difference in the nationally averaged quantity from the climatology for
the period 1976–2005). Four 30-year periods are shown centred on 2030, 2050, 2070, and 2085 for RCP8.5.

station records using a Barnes successive-correction scheme
that applies weighted averaging to the station data and then
provided on a 0.05° (approximately 5 km) spatial grid across
Australia. Topographical information is included by using
anomalies from long-term (monthly) averages in the analysis
process. For temperature, the daily anomaly is represented
by the difference from the monthly mean, while for rainfall
the ratio of the daily observed precipitation to the monthly
average precipitation is used.

Precipitation data represent the total recorded over the
24 h beginning (and ending) at 09:00 LT (local time) and is
assigned to the day from which the recording began. The
highest temperature over the 24 h before the observation at
09:00 LT is recorded as the maximum temperature (Tmax) for
the previous day. The lowest temperature (Tmin) for the 24 h

before 09:00 LT is recorded for the day on which the observa-
tion was made. This convention usually guarantees that Tmin
and Tmax will have occurred on the same calendar day; how-
ever, in some instances it is possible that Tmin > Tmax. For
the ISIMIP2b method (see Sect. 4.1), the surface temperature
(tas) is corrected (not Tmin and Tmax) and the minimum and
maximum are derived (see Eq. 26 in Hempel et al., 2013).
As such, for the ISIMIP2b method, tas was derived from the
AWAP data using their average (i.e. tas= (Tmin+ Tmax)/2).
In some circumstances tasmin can exceed tasmax (Tmin >

Tmax), for which we set Tmin = Tmax. The other bias cor-
rection methods (multivariate recursive nested bias correc-
tion and quantile matching for extremes) correct Tmin and
Tmax directly; therefore, no calculation of tas was required
for these methods. Note that while observations are made

Geosci. Model Dev., 17, 2755–2781, 2024 https://doi.org/10.5194/gmd-17-2755-2024
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Figure 3. The same as Fig. 2 but for precipitation. Note that percentage change in precipitation is shown.

from 09:00 to 09:00 LT the next day, the bias corrections are
calculated by calendar day.

Since AWAP is a gridded dataset it has errors compared to
measurements from the original station data. This is partic-
ularly true in data-sparse areas for rainfall since it is highly
variable both spatially and temporally. For this reason, some
regions, particularly in central Western Australia, have a
mask applied and are excluded from the analysis. Further-
more, in areas of steep topography and a sparse gauge net-
work, particularly along the Great Dividing Range, AWAP
has been shown to underestimate rainfall (Chubb et al.,
2016). It has also been shown to underestimate extreme rain-
fall percentiles when compared to station data (King et al.,
2013).

3.2 Solar radiation and wind speed

Daily surface shortwave downwelling solar radiation flux
(rsds) is obtained from geostationary satellites (Grant et
al., 2008) and aggregated to the same 0.05° AWAP grid.
The solar radiation record is from 1990 to the end of 2005
(the calibration period). From 1 January 1990, the GMS-4,
GMS-5, GOES-9, and MTSAT-1R satellites were used, al-
though these were replaced by the Himawari-8 satellite from
23 March 2016 onward. Daily climatological averages (for
each day of the year) are used for solar radiation before 1990.

Site-based daily near-surface wind speed observations
(sfcWind) collated by the Bureau of Meteorology and inter-
polated nationally (McVicar et al., 2008) were used for daily
average wind speed from 1975 onwards (when sufficient site
observations were being collated by the Bureau) for the GCM
bias correction. The near-surface wind dataset is for the wind
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Figure 4. Change plot of surface temperature (a, c) and precipitation (b, d) for all of Australia. The NHP models are indicated by the larger
blue symbols, while the CCiA models are shown as smaller grey-filled circles. The thick vertical lines represent the ensemble median, and
the left and right extent of the rectangles show the 10th and 90th percentile of the model ensemble, respectively. Time is displayed on the
ordinate, and the magnitude of change (from the historical period) is shown on the abscissa; RCP4.5 is shown in blue, and RCP8.5 is shown
in red. The larger rectangles and vertical grey lines, and dots show the spread of the CCiA ensemble, while the smaller hatched rectangles,
vertical blue lines, and shapes display the NHP ensemble.

Figure 5. The eight NRM regions used in the NHP to present re-
sults relevant to the differing climate regimes across Australia. Im-
age sourced from CSIRO and Bureau of Meteorology (2015).

speed recorded at a height of 2 m; however, since the GCM
data are reported at a height of 10 m, the observed 2 m winds
were transformed to 10 m using the following logarithmic
transform (Garratt, 1992),

u(z2)= u(z1)
ln[(z2− d)/z0]

ln[(z1− d)/z0]
, (1)

where u(z2) is the observed wind speed at height z2, u(z1)

is the wind speed at height z1, z0 is the roughness length
to account for the effect of the roughness of a surface on
wind flow, and d is the zero-plane displacement to account
for flow around obstacles. The bias correction was applied to
the derived 10 m wind speeds; however, AWRA-L (Sect. 5)
requires wind speed at 2 m height, so Eq. (1) was again used
to transform the near-surface wind speed back to 2 m height
as input for the AWRA-L simulations.

4 The bias correction methods

Many bias correction (BC) techniques have been developed,
and several authors have provided detailed summaries and
critiques of them (e.g. Fowler et al., 2007; Hewitson et al.,
2014; Maraun, 2013, 2016; Maraun and Widmann, 2018;
Teutschbein and Seibert, 2012); however, they fall into three
general categories: (1) empirical scaling techniques, (2) non-
parametric quantile matching (QM), and (3) parametric QM
(Potter et al., 2020). Empirical scaling techniques include lin-
ear methods that preserve only the mean and apply a constant
correction factor (Lenderink et al., 2007), while non-linear
scaling, such as power transformations, preserves the mean
and variance (Leander and Buishand, 2007). Non-parametric
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QM techniques map the simulated quantiles of the cumula-
tive distribution function (CDF) to the observed CDF quan-
tiles without any underlying assumptions that the variable
can be modelled by a mathematical distribution, whereas for
parametric QM distributions are fitted to the variables be-
fore the application of QM (Heo et al., 2019). One of the ad-
vantages of using a parametric method is that it can provide
a useful estimate based on the distribution when matching
simulated fields that fall outside the calibration range of the
historical observations (while noting that the extrapolation
of a parametric distribution to values outside the range used
to produce that distribution involves some uncertainties). For
instance, the simulated field of projected temperature may
not have any historical precedent, in which case assumptions
have to be made as to how it will be associated with a quan-
tile based on observations (Piani et al., 2010a, b).

It is important to note that bias correction cannot add cli-
mate change information to that of the GCM to which it is
applied. It instead modifies the coarse-scale GCM projec-
tions at a finer resolution to produce localised projections
(Ekström et al., 2015). Furthermore, the application of bias
correction may correct the bias at a local scale while ignoring
the interdependency of variables, which has the unintended
consequence of interfering with the underlying physics of the
GCM (e.g. conservation of energy and mass) such that the
resulting temporal and spatial representation of fields is un-
realistic (Maraun et al., 2017).

Three statistical bias correction methods were applied to
the GCM output, and one (ISIMIP2b)4 was applied to the
CCAM output (see Fig. 1). In addition, the original GCM
data spatially interpolated to the resolution of the AWAP
were archived to provide data before the application of bias
correction; we refer to these data as “NOBC” and “NOBC-
CCAM” for the GCM and CCAM data, respectively. At a
fundamental level, they are all variants of quantile match-
ing (e.g. Maraun and Widmann, 2018); however, they have
important distinctions concerning their implementation. De-
spite the various pros and cons discussed in the literature of
various BC methods, the choice was also (as for GCM selec-
tion) guided by pragmatic considerations, the foremost being
ready availability to source code, thorough documentation in
the scientific literature, and access to technical support. Here
we present a mostly qualitative overview of the individual
methods; a complete mathematical formulation of the meth-
ods can be found in the respective citations.

4.1 ISIMIP2b

The Inter-sectoral Impact Model Intercomparison (ISIMIP)
Project (https://www.isimip.org/, last access: 24 Novem-
ber 2023) was designed to offer a consistent framework for
projecting climate change impacts at different global warm-

4Due to time constraints, the only bias correction algorithm ap-
plied to the CCAM output was the ISIMIP2b method.

ing levels across different sectors and spatial scales. Some
of the sectors catered for in ISIMIP include regional wa-
ter, fisheries, agriculture, biomes, and terrestrial biodiversity.
To maintain consistency across so many diverse impact as-
sessment models a common framework for bias correction
and downscaling of GCM data was implemented. There have
been several iterations of the bias correction method adopted
for ISIMIP. At the commencement of the NHP, the most re-
cent version of the bias correction available for download
was the one developed for the ISIMIP2b protocol. The com-
plete description of the bias correction used in ISIMIP2b
is a modification of the method described by Hempel et
al. (2013), which extends the method described in Piani et
al. (2010a, b). Although ISIMIP is a set of protocols and out-
put data across different impact models, we will refer to the
bias correction as ISIMIP2b to be explicit. The ISIMIP2b
method is classified as a parametric quantile matching (QM)
method as it assumes variables of interest can be described
by a particular parametric distribution. It uses Gaussian dis-
tributions to model daily temperature and gamma distribu-
tions to model daily precipitation probability distributions.
For temperature, which can take both negative and positive
values, the correction applied is additive, while in the case of
fields such as precipitation, solar radiation, and surface wind
speed, which have positivity constraints, the correction ap-
plied is multiplicative.

The ISIMIP2b method is comprised of the following steps:
(1) correction of the monthly mean, (2) correction of the
daily variability, and for precipitation (3) correction of the
frequency of dry days and (4) correction for the intensity of
wet days. Steps (1) and (2) have different implementations
depending on whether the correction to be applied is additive
or multiplicative. Furthermore, steps (1) and (2) are designed
to preserve the absolute trend of simulated temperature and
the relative trend of the other variables. The preservation of
the absolute long-term trend in the simulated temperature
field preserves the climate sensitivity of the GCM and fur-
ther ensures that there is consistency between the projected
temperature and the bias-corrected climate change signal.
For variables that have positivity constraints, the ISIMIP2b
method conserves the relative trend. The use of an additive
correction for temperature and a multiplicative correction for
precipitation ensures that the ratio of the relative change in
precipitation to an absolute change in temperature is con-
served and thus does not alter the hydrological sensitivity of
the GCM (Hempel et al., 2013).

4.2 MRNBC

The multivariate recursive nested bias correction method
(MRNBC) is an extension of QM to include inter-variable
dependencies and in addition corrects across multiple
timescales. It was progressively developed from the nested
bias correction (NBC; Johnson and Sharma, 2012) and re-
cursive nested bias correction techniques (RNBC; Mehrotra

https://doi.org/10.5194/gmd-17-2755-2024 Geosci. Model Dev., 17, 2755–2781, 2024

https://www.isimip.org/


2764 J. Peter et al.: Bias-corrected hydrological projections for Australia

and Sharma, 2012). The NBC corrects the distribution (mean
and standard deviation) and persistence (lag 1 autocorrela-
tion coefficient) at monthly, seasonal, and annual timescales
using a standard autoregressive lag 1 model (Srikanthan and
Pegram, 2009). The RNBC method is an extension of the
NBC method, whereby the method is applied three to five
times repeatedly so that it significantly reduces the biases in
mean, variability, and persistence-related attributes in GCM
and RCM simulations. The MRNBC method is a multivari-
ate version of the above RNBC method. It simultaneously
corrects many GCM and RCM variables, using a multivari-
ate first-order autoregressive model at daily, monthly, quar-
terly, and annual timescales to impart observed distributional
and persistence properties of the input fields (Mehrotra and
Sharma, 2015).

The implementation of a multivariate autoregressive
model means that the MRNBC may better capture the joint
dependence among input variables and hence be more ef-
fective in capturing the behaviour of natural processes that
contribute to the variability in a field, particularly precipita-
tion. Furthermore, as the MRNBC also corrects for the biases
at seasonal and annual timescales, the bias-corrected atmo-
spheric fields may provide a better representation of long-
term variability in the downscaled simulations. This is of
particular importance for hydrological applications where the
representation of variability and persistence of precipitation
is important for the simulation of the occurrence and inten-
sity of extreme events such as floods and droughts.

4.3 QME

The quantile matching for extremes method is described in
Dowdy (2020, 2023). As its name implies, it has a focus on
matching the extremes of the CDF of a variable. It was origi-
nally developed to examine future projections of fire weather
conditions for Australia based on the Forest Fire Danger In-
dex (FFDI) (McArthur, 1967). In general, QM methods di-
vide the quantiles of the observed and simulated fields into
discrete bins (for example 100 percentile bins) so that events
in the top percentile of the simulated field are associated with
those in the same quantile bin from the observational period.
However, having uniform resolution quantiles does not cap-
ture extreme events well, especially those that fall outside
the historical record. Rather than using uniform percentiles,
the QME method applies a logarithmic transformation so that
there is higher resolution in the percentile bins at the upper
and lower ranges. This has the effect of being able to assign
percentiles in the upper (and lower) tails (e.g. the 99, 99.5,
and 99.9 percentiles) without the use of interpolation.

The QME method allows for simulated values that fall out-
side the historical reference values to be bias corrected while
still avoiding the influence of extreme outliers that may have
occurred in the historical period. As an example, the temper-
ature recorded near Melbourne on Black Saturday (7 Febru-
ary 2009) had no historical precedent in the prior 109 years

of records (Trewin et al., 2020). An exceptionally rare event
that happens to occur in the training period may not be ideal
to use in isolation for calibrating the model data. In the QME
method, an additional step is included to help represent ex-
tremes, where the top and bottom five most extreme values
are used to calculate the mean bias between the model and
the reference data. By using the mean of the five extreme val-
ues (rather than fewer than that) the QME method is intended
to provide a reasonable estimate of extremes up to about the
10–20-year average recurrence interval (ARI), while not be-
ing overly influenced by individual exceptional events that
may occur. This is done individually for the top five values,
as well as for the bottom five values, where the mean biases
are subtracted from the extreme values for the model data.
The QME method is trained using the 43 years from 1975 to
2017, such that estimates of extremes should be reasonably
well calibrated up to values of around the 10-year return pe-
riod (i.e. ARI near 10 years) based on a sample size of about
four to five events on average for estimating those extreme
values. Additionally, the mean bias for the five most extreme
values is also subtracted from simulated values that lie out-
side the historical range of occurrence, noting the relevance
of this in our changing climate.

4.4 Effect of bias correction on GCM output

Insight as to how the bias correction and the dynamical
downscaling have modified the original GCM biases are
shown in Figs. 6 and 7. Areal averages of the input and out-
put data were produced for each ensemble member for all of
Australia and each NRM region. Time series of maximum
temperature for each GCM, averaged over all of Australia
and smoothed with a 10-year running mean, are shown in
Fig. 6. The NOBC data (shown in magenta) are significantly
cooler than the AWAP reference data (shown in black), and
the bias correction has brought the GCM data in closer agree-
ment with the AWAP data. Consequently, the bias-corrected
projections are warmer than the NOBC data for all GCMs. In
contrast, the NOBC-CCAM data are warmer than the AWAP
reference data, and the application of ISIMIP2b has gener-
ally decreased the warming bias; however, CCAM-ISIMIP2b
is still significantly warmer than both the original GCM
(NOBC) and bias-corrected data. The three bias correction
methods follow very similar trajectories, and only slight dif-
ferences are discernible for the GFDL-ESM2M model. Since
temperature is a smooth field (both spatially and temporally)
and all the bias correction methods are variants of quantile
matching, this indicates that (at least for the mean and large
geographical aggregation) the bias correction imparts less
uncertainty than GCM selection in the projections.

A contrasting bias, shown in Fig. 7, is present for pre-
cipitation. All the original GCMs except ACCESS1-0 are
significantly wetter than the AWAP reference data and that
bias continues in the projections. The bias correction meth-
ods have lowered the average daily Australia-average pre-
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Figure 6. Time series of maximum temperature averaged over Australia for each GCM in the ensemble. Different colours correspond to the
bias correction methods. The labels NOBC and NOBC-CCAM indicate the GCM and CCAM data before the application of bias correction.
Time series have been smoothed with a 10-year running mean. The AWAP reference data are shown in black.

Figure 7. The same as Fig. 6 but for precipitation.

cipitation. The effect of the bias correction methods on pre-
cipitation shows more contrast among the methods than
for maximum temperature. The NOBC-CCAM simulation
is wetter than the reference data; however, the application
of ISIMIP2b has produced a generally drier bias than when
applied to the GCM data. The bias-corrected data correlate

with both the NOBC and NOBC-CCAM data; however, the
data have translated the time series to lower values. Finally,
the application of a 10-year smoothing window demonstrates
how the CCAM model produces quite distinct projections
from its host GCM.
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5 The AWRA-L hydrological model

The Bureau’s operational Australian Water Resources As-
sessment Landscape (AWRA-L) model was used to pro-
duce the National Hydrological Projections outputs. AWRA-
L is a daily semi-distributed water balance model (Frost
et al., 2018) that is run daily using climate input data
(pr, tasmax/tasmin, rsds, sfcWind) to produce hydrologi-
cal outputs (runoff, evapotranspiration, soil moisture) at the
5 km× 5 km grid resolution. Land use and vegetation are
represented within each grid cell by the fractional cover-
age of two hydrologic response units (HRUs) representing
shallow-rooted vegetation (grass) and deep-rooted vegeta-
tion. The terrestrial water storage component is represented
by three soil layers, namely, top (0–10 cm), shallow (10–
100 cm), and deep (100–600 cm) layers. Shallow-rooted veg-
etation is assumed to access soil moisture up to the shal-
low layer (up to 100 cm), while deep-rooted vegetation is as-
sumed to access soil moisture up to and including the deep
layer (up to 600 cm). The soil moisture content modelled
AWRA-L in the three soil layers is denoted by s0, ss, and
sd, respectively. For many hydrological applications, the root
zone soil moisture (sm), which is the sum of the soil mois-
ture in the top two soil layers (0–100 cm), is of most interest
(i.e. sm= s0+ ss). Many fluxes and stores are output by the
AWRA-L model; however, for the NHP, we focus on runoff
(qtot), potential evapotranspiration (e0), and root zone soil
moisture (sm).

The AWRA-L model was calibrated by using 295 unim-
paired catchments and validated against 291 evaluation
catchments (Frost and Wright, 2018). The median values of
the relative bias and daily and monthly Nash–Sutcliffe ef-
ficiency (NSE; Nash and Sutcliffe, 1970) were −0.01 and
0.49 and 0.67, respectively, for runoff. Wasko et al. (2020)
evaluated the performance of AWRA-L to simulate trends
in catchment-aggregated surface runoff and found good cor-
respondence with observed trends in the southeast of Aus-
tralia, particularly in the Murray Basin and Southern Slopes
NRM regions. They also found reasonable correspondence
between modelled and observed trends in streamflow in the
northern parts of Australia for the warmer months.

For the NHP, the AWRA-L model is forced using the his-
torical daily gridded reference dataset to output a gridded
observation-based dataset of the three hydrological output
variables (qtot, e0, and sm); this dataset constitutes the ref-
erence hydrological data and, as for the GCM data, the his-
torical period is defined as 1976–2005. To produce the his-
torical AWRA-L hydrological data for the reference period
(1976–2005), it was necessary to use historical GCM simu-
lations (bias corrected to the reference period) beginning in
1960. This is because AWRA-L requires a “spin-up” time to
equilibrate its water cycle since soil moisture is initialised
at zero. The modelling of the deep-layer soil moisture re-
quires several years of simulation for surface water to drain
into the deeper levels. Starting the AWRA-L simulations in

1960 allows 16 years for the deep-layer soil content to reach
a pseudo-equilibrium before the beginning of the historical
period (1976–2005).

6 Evaluation of the bias correction methods

Each of the bias correction methods has been published pre-
viously and comprehensively evaluated (see references in
Sect. 4). A further detailed evaluation of both the GCM
and AWRA-L output was performed for the historical sim-
ulations (1976–2005) against the gridded reference datasets
(Vogel et al., 2023). They examined the spatial and tempo-
rally aggregated (annual, seasonal, and monthly) bias for
each NRM region and multiple individual grid locations
around Australia. A complete evaluation is outside the scope
of this paper; however, we provide an overview of the spa-
tial biases for the hydrologically relevant variables (pr, qtot,
sm and e0) and annual and seasonal biases aggregated over
Australia for all variables. The bias is calculated as the dif-
ference between the bias-corrected historical simulations and
the reference gridded data. Figure 8 shows the area-averaged
annual biases (seasonal biases are shown for water-related
variables for ACCESS1-0 bias corrected with the MRNBC
method in Figs. S3–S6 in the Supplement). Absolute and rel-
ative biases are shown to aid the interpretation of the maps.
For instance, an absolute bias of about 20 mm in the north
of Australia during austral summer (DJF), which is also dur-
ing the northern Australian “wet season”, is on the order of
a −2.5 % relative difference. Conversely, in southern Aus-
tralia, absolute deficits of about 5–10 mm translate to rel-
ative deficits of 5 %–25 %. The mostly dry relative biases
in precipitation manifest as corresponding dry biases in the
runoff and root zone soil moisture. Potential evapotranspira-
tion most likely increases due to the increases in minimum
and maximum temperature. Similar maps (not shown) were
produced for all 16 ensemble members.

The relative biases averaged over Australia are shown in
Fig. 9 (for water-related variables) and Fig. 10 (for the re-
maining GCM output variables). Similar plots are shown for
the SSWF NRM in Figs. S7 and S8 in the Supplement. Each
subpanel corresponds to one of the bias correction methods
implemented on each GCM. These summarise the informa-
tion that was shown in the spatial bias maps (Fig. 8). The bar
plots presented here are for Australia; however, similar anal-
yses were conducted for each of the NRM regions to quan-
tify their spatially aggregated bias and assess the contribution
from each GCM and bias correction method. For instance,
the application of MRNBC results in negative biases in rain-
fall, runoff, root zone soil moisture, and downwelling solar
radiation for most GCMs on annual and seasonal timescales.
The various model and bias correction combinations have
differing bias magnitudes and signs between NRM regions.
The reasons for this are due to the various GCMs’ ability to
simulate major climate drivers and also due to the AWRA-L

Geosci. Model Dev., 17, 2755–2781, 2024 https://doi.org/10.5194/gmd-17-2755-2024



J. Peter et al.: Bias-corrected hydrological projections for Australia 2767

Figure 8. Bias maps of annual precipitation (a), runoff (b), root zone soil moisture (c), and potential evapotranspiration (d). The maps are
for the ACCESS1-0 GCM with the MRNBC bias correction method applied. The bias is the difference between the historical (1976–2005)
GCM simulations from the historical (1976–2005) gridded reference data. The mean bias is shown at the top of each map in the panel. Note
that the scale for the absolute biases is dynamic, while for the relative bias it is fixed in the range −50 %–50 %. Data-sparse regions have
been masked (see Sect. 3.1).

model’s ability to simulate the diverse hydroclimate of Aus-
tralia. For example, each NRM will be dominated by differ-
ing land use, agricultural, and natural reserve regimes, which
in turn impact the hydrological response in an NRM (Frost
and Wright, 2018). However, it was found that the applica-
tion of the bias correction methods resulted in satisfactory
confidence in the ability to simulate the hydroclimate across
each NRM on annual, seasonal, and monthly timescales.
Note that the numbers displayed in Fig. 8 (and Figs. S3–S6
in the Supplement) differ slightly from those in the bar plots
displayed in Figs. 9 and 10 due to slightly different methods
in their calculation. For the former (bar plots), the Australia-
wide mean was calculated first and then the relative bias (as a
percentage) was calculated from the two regionally averaged
values, while for the spatial maps, area-averaged biases were
calculated by first calculating the relative bias (as a percent-
age) for each grid cell and then averaging it over Australia.

7 National Climate and Hydrological Projections

The core datasets produced comprise gridded daily time
series at 5 km× 5 km spatial resolution spanning the pe-
riod 1960–2099. They are composed of bias-corrected cli-
mate datasets of precipitation (pr), maximum and minimum
temperature (tasmax and tasmin), surface winds (sfcWind),
and surface downwelling solar radiation (rsds), which were
used to produce National Hydrological Projections of runoff
(qtot), actual and potential evapotranspiration (etot and e0),
and three layers of soil moisture (s0, ss and sd). For commu-
nication purposes, only projections of potential evapotranspi-
ration are displayed, and soil moisture is referenced by root
zone soil moisture (sm), which is the linear addition of the

top two layers (sm= s0+ ss) and represents the soil mois-
ture in the top 1 m soil layer. For each variable, 16 ensem-
ble members exist for each RCP, corresponding to the four
GCMs with the three bias correction methods applied (12
ensemble members) and the CCAM RCM with ISIMIP2b
applied (4 ensemble members). We will refer to the bias-
corrected GCM data as input data and the AWRA-L simu-
lations as the output data. The bias-corrected climate input
data complement the existing climate projections for Aus-
tralia and can be used as input to other impact and assessment
models.

To guide the interpretation of nationally consistent hydro-
logical projections for Australia (and the NRM regions), sev-
eral lines of evidence were explored: area-averaged time se-
ries, spatial change maps, and area-averaged change plots for
each RCP scenario and 30-year time slice. Here, we show
examples of each of these, choosing the SSWF as an exem-
plar as its westernmost portion (southwestern Western Aus-
tralia) has a well-documented historical rainfall decrease sig-
nal (CSIRO and Bureau of Meteorology, 2015). We also note
that the rainfall declines in southwestern Western Australia
have a robust attribution to an anthropogenic influence (Tim-
bal et al., 2006), and the scientific consensus is for those
trends to continue (Dey et al., 2019). However, our intention
is not to provide a complete hydrological overview of a par-
ticular region as these are provided elsewhere (see Sect. 8)
but rather to demonstrate the products and lines of enquiry
that were developed.

7.1 Area-averaged time series

To examine the projections of the hydroclimate of a particu-
lar region, consider Fig. 11, which shows projections for pre-
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Figure 9. Bias histograms for all of Australia for precipitation (a), runoff (b), root zone soil moisture (c), and potential evapotranspiration (d).
Annual and seasonal (four seasons) biases are shown. The legend indicates the various bias correction and GCM combinations.

cipitation, runoff, soil moisture, and potential evapotranspi-
ration for the SSWF NRM region. Total area-averaged pre-
cipitation is expected to decline with concomitant declines
in runoff and soil moisture, while potential evapotranspira-
tion projections show increases. The ensemble statistics have
been obtained by concatenating the historical and projected
data and applying a 30-year running mean. This results in
15 years of data being excluded from the beginning and end
of the time series, such that they cover the period 1975–
2085. This emphasises the long-term decadal-scale signal in
the projections. Interannual variability, shown as yearly aver-
aged data using the ACCESS1-0-ISIMIP2b ensemble mem-
ber, is shown to demonstrate the large departures from the
long-term signal for all variables.

7.2 Spatio-temporal average change signal

Further information can be obtained by examining the
change signal of future periods from the historical period (cf.
Fig. 4). Spatial and temporal averages of the change signal
were calculated for Australia and individual NRM cluster re-
gions for each of the input and output variables. An example
for the SSWF NRM at annual timescale is shown in Fig. 12.
A general decrease is projected for all variables except poten-
tial evapotranspiration. The following general observations
can be made: (1) there is a large spread among the ensem-
ble members; however, the spread among the individual BC
methods is less than that of the individual GCM to which
they were applied; (2) the change signal may be of opposite
sign between the various GCM/bias correction combinations;
and (3) the median projected change is not necessarily mono-
tonic, especially for the RCP4.5 scenario. We note that the
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Figure 10. The same as for Fig. 9 but displaying the biases for maximum temperature (a), minimum temperature (b), downwelling solar
radiation (c), and near-surface wind speed (d).

median projected change signal for temperature (not shown)
exhibits monotonic increases for all NRMs and both RCPs.
In addition, we note that the (ensemble median) change sig-
nal for RCP8.5 for all variables is monotonic; however, that is
not the case for all NRMs and is likely affected by the strong
change signal for precipitation in southwestern WA (which
is a subset of the SSWF NRM).

The first observation implies that, in general, the choice
of GCM contributes more to the ensemble spread than the
application of the BC techniques and that the inclusion of
the CCAM model has added further diversity to the ensem-
ble. The differing sign of individual members is a conse-
quence of the model selection as indicated in Fig. 3, whereby
some GCMs differ in their wetting or drying signal. The non-
monotonicity of the change signal (more apparent for other
NRMs) could be due to differing multi-year timescale pro-
cesses (e.g. ENSO) represented by each GCM, especially in

those areas where these processes dominate rainfall variabil-
ity. Combined, these uncertainties make communication of
the projections for end users a challenging problem; how-
ever, we address some of these in Sect. 8.

The diversity of climate in Australia makes the use of an-
nually averaged changes unsuitable for most hydrological
applications of the projections. As such, change plots were
also constructed considering both four seasons (DJF, MAM,
JJA, SON) and two seasons (a wet season of November–
April and a dry season of May–October) to gain insight into
the projected changes in seasonal hydrological projections.
An example is given for SSWF in Fig. 13 for four seasons,
which is appropriate for this region of Australia. It can be
seen that the major signal of the decrease in precipitation,
runoff, and soil moisture is due to their decreases in winter
(JJA) and spring (SON), while the annual increase observed
in potential evapotranspiration has no clear contribution from
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Figure 11. Projected ensemble change in precipitation, runoff, root zone soil moisture, and potential evapotranspiration for RCP4.5 (blue)
and RCP8.5 (red) scenarios in the SSWF NRM region. The shaded area represents the 10th to 90th percentile range for all ensemble members.
The time series for ACCESS1-0 (rcp8.5) with the ISIMIP2b method applied is included after 2020 to show the variability projected for an
individual ensemble member. The AWAP reference gridded observations are shown prior to 2020. The ensemble has been smoothed with a
30-year running mean.
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Figure 12. Relative change in annual (a) precipitation, (b) runoff, (c) root zone soil moisture, and (d) potential evapotranspiration for the
SSWF NRM. Changes are indicated for each GCM and BC method combination for four 30-year time periods centred on 2030, 2050, 2070,
and 2085. The change is the difference in the future from the historical period (1976–2005) expressed as a percentage. The left and right
extents of the shaded boxes represent the 10th and 90th percentile of the GCM and BC ensemble, while the vertical solid line shows the
median (50th percentile). RCP4.5 is shown in blue, and RCP8.5 is shown in red. The ensemble spread for each RCP has been offset from the
centre of the 30-year time slices for legibility. Note that time is descending on the ordinate and that the change (in percent) is shown on the
abscissa.

any particular season. The wetter signal is generally due to
the MIROC5 and CNRM-CM5 models; however, the signal
of CCAM forced with these models tends toward a drying
of these signals. Note that in Fig. 13 the annually averaged
absolute (rather than relative) values are shown, indicating
that small absolute changes may express as large percentage
changes, particularly in low-rainfall regimes. For example,
the annual change in runoff ranges from an approximately
20 % to 60 % decrease; however, most of this is expressed
as winter and spring runoff decreases of approximately 2 to
8 mm yr−1.

7.3 Time-averaged spatial plots

The final line of evidence used was that of time-averaged
spatial plots, where the temporal average of the daily data
for the historical and future time slices was calculated and
the change (future minus historical) plotted. An example of
the winter (JJA) ensemble median of variables is shown in
Fig. 14. They present the same temporal information dis-
played in Fig. 13; however, they include the spatial variabil-
ity in the change signal. For instance, the decreases in pre-

cipitation, runoff, and soil moisture for SSWF, displayed in
the winter (JJA) sub-panels of Fig. 13, are evident along the
southern and western regions of Australia. The spatial vari-
ability indicates that the change signal of decreases in pre-
cipitation, runoff and soil moisture is more prominent in the
Western Australian portion of SSWF than in the South Aus-
tralian sector. The projections for increased potential evapo-
transpiration apply to all time slices and RCPs. Similar plots
were produced for all time slices and RCPs for annual and
seasonal (both two and four) temporal aggregations for both
relative and absolute changes.

7.4 Extreme wet events

The previous analyses have focussed on changes in the mean,
whether it be the temporal and spatial mean (e.g. Figs. 12
and 13) or a temporal mean (Fig. 14). Mean changes are
useful quantities; however, for many impact studies it is the
quantification of events with a low probability and high im-
pact (or extreme events) that are most crucial. As the climate
warms, heavy-rainfall events are expected to increase due
to the increased moisture content of the atmosphere (Sher-
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Figure 13. The same as Fig. 12 but displaying seasonally averaged absolute change values for four seasons (DJF, MAM, JJA, SON) for each
variable: precipitation (a), runoff (b), root zone soil moisture (c), and potential evapotranspiration (d).

wood et al., 2010). Model projections have indicated that the
frequency of extreme rainfall events in Australia is also ex-
pected to increase (Alexander and Arblaster, 2009; Perkins
et al., 2014; Watterson et al., 2017). Extreme rainfall may
be expected to manifest itself as an increased probability of
flooding events; however, the risk of flooding is also deter-
mined by antecedent soil moisture conditions. Wasko and
Nathan (2019) suggested that in Australia (and other parts
of the world) that following heavy rainfall events soil mois-
ture deficits are first augmented such that despite increases
in heavy rainfall events there has been a decrease in flood
magnitudes. However, it was also noted that soil moisture
plays a decreasing role in flood severity as catchment size de-
creases (Wasko and Sharma, 2017). Here we examine some
future flood scenarios based on changes in low-probability,
heavy-rainfall and runoff events, which we denote as extreme
events. Characterising changes in flood frequency and inten-
sity at a large spatial and temporal scale is challenging; flood
risk is often dependent on local topography, sub-daily rain-
fall intensity, and antecedent conditions. A set of threshold-

based indicators using precipitation and runoff have been cal-
culated here to capture changes in flood risk on a broad scale.
We have analysed these extreme rainfall and runoff events us-
ing the generalised extreme value (GEV) distribution (Kharin
et al., 2007; Perkins et al., 2014), where the changes are de-
termined using the projected annual maximum daily rainfall
and runoff and the estimate of the 20-year return period of
the annual maximum.

Figure 15 shows the results of the application of the GEV
analysis in the SSWF NRM to the change in the daily mean,
maximum, and 1-in-20 return period rainfall and runoff event
to the reference period (1976–2005). Each statistic was eval-
uated at each grid cell, and then the mean of each statistic was
evaluated over the NRM. Even though the mean daily rain-
fall shows little change or a slight decrease, the maximum
daily and 20-year-return-period rainfall indicates a substan-
tial increase under both RCPs, and the increases are projected
throughout the ensemble. The pattern of a decrease in mean
rainfall and an increase in rainfall extremes is found in almost
all other NRM clusters and is supported by results from other
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Figure 14. Ensemble median relative change in winter (JJA) precipitation (a), runoff (b), root zone soil moisture (c), and potential evapo-
transpiration (d). The change signal is only shown for the 2030 and 2070 time slices for RCP8.5.

studies (Alexander and Arblaster, 2009; CSIRO and Bureau
of Meteorology, 2015; Wasko and Sharma, 2017). The pro-
jections for the extremes in runoff are less emphatic than
those of rainfall; however, like rainfall, mean daily runoff
shows decreases (relative to the reference period), while
maximum daily runoff and 20-year-return-period runoff indi-
cate a substantial increase under both RCPs (except for 2085

under RCP8.5). Similar analyses were conducted for each of
the individual NRM regions.

8 Communication for end users

To understand user requirements for the National Hydrolog-
ical Projections service, a user-centred design process was
undertaken using an expert consultant approach (Wilson et
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Figure 15. Relative changes in mean daily, maximum daily, and 20-year-return-period daily rainfall (a) and runoff (b).

al., 2022). Over 8 months, interviews were held with 56
potential users of NHP information from 20 organisations
across Australia. The organisations represented included wa-
ter utilities, government departments responsible for infras-
tructure planning, agriculture and water resources, hydro-
electricity generators, and emergency management services.
They comprised existing customers of the Bureau of Mete-
orology and those anticipated as being interested in using a
hydrological projections service. Interviews were recorded
and transcribed for documentation purposes. Following this
process, key user requirements were grouped into three dif-
ferent types: (1) general information about the impacts of fu-
ture climate change on Australian water resources in the con-
text of historical hydro-climatic trends (general audience);

(2) local- and/or regional-scale impact information, includ-
ing key messages of regional impact water resource assess-
ment and guidance on the use of hydrological projections
information (technical and policy audience); and (3) access
to application-ready hydrological projections datasets to be
able to run their hydrological models and localised assess-
ment analysis (planners and technical users).

To be able to attend to all three customer groups, we devel-
oped the following strategy: (1) the provision of application-
ready datasets, (2) the creation of a user interface to provide a
national picture of changes to key water variables and, (3) the
provision of guidance material and regional hydroclimatic
assessments.

Geosci. Model Dev., 17, 2755–2781, 2024 https://doi.org/10.5194/gmd-17-2755-2024



J. Peter et al.: Bias-corrected hydrological projections for Australia 2775

8.1 Application-ready NHP dataset

The complete foundational NHP dataset is hosted on
the Australian National Computational Infrastructure (NCI)
via the NCI Data Collection and its Thredds server.
The data are made publicly available free of charge
under the following link (under the Creative Com-
mons – Attribution 4.0 International – CC BY 4.0):
https://doi.org/10.25914/6130680dc5a51 (NCI Data Cata-
logue, 2024). The dataset consists of 16 datasets per green-
house gas emission scenario ordered by climate input vari-
able and hydrological output variable (Table 2). Each vari-
able is stored in individual netCDF files following a struc-
tured approach that is ordered by the host GCM, historical
or RCP scenario, and bias correction method (including data
with no bias correction applied). Metadata information is
made compliant with CMIP5 metadata standards. The data
are accessible either as a OpenDAP, netCDF, HTTP, WMC,
or WMS data provision service.

8.2 Australian Water Outlook user interface

The publicly facing portal created by the Bureau of Meteo-
rology called the Australian Water Outlook (AWO) service
(https://awo.bom.gov.au, last access: 9 April 2024) connects
people with interpreted key information on conditions and
changes to water balance components. The AWO brings to-
gether information about the current and historical state of
water in the Australian landscape with near-term and sea-
sonal forecasts and information about the impacts of cli-
mate change on water resources (Wilson et al., 2022). The
portal enables users to explore projections information in a
meaningful way that is selectable for their region of inter-
est. Hydroclimatic changes are expressed for rainfall, evapo-
transpiration, soil moisture, and runoff as absolute and rela-
tive change signals from the reference period of 1976–2005.
The underlying NHP data are visualised as maps of mean
changes for rainfall, runoff, soil moisture, and evapotran-
spiration for multiple future periods (30-year periods cen-
tred at 2030, 2050, 2070 and 2085) and for the two green-
house gas emission scenarios. The portal also provides the
ensemble statistics showing the spread across the NHP mem-
ber ensemble. The data in the interface is supported by re-
gional reports (see Sect. 8.3) that contextualise the informa-
tion against the current climate and the development of case
studies to demonstrate the potential application of the infor-
mation. In addition, non-technical users are provided with
digestible information on scientific and technical background
information about the hydrological projections through guid-
ance material (e.g. FAQs and “About” sections). Feedback
from a range of key users during multiple stages of the por-
tal development ensured that the information is fit for pur-
pose. This co-design process also guided the user-friendly
accessibility of the information presented. Maps, charts, in-
formation, and data can be freely downloaded from the AWO

interface under the Creative Commons – Attribution 4.0 In-
ternational – CC BY 4.0 license.

8.3 National hydrological projections assessment
reports

To understand future impacts on Australia’s water resources,
we prepared eight tailored hydrological change assess-
ment reports on plausible future changes in rainfall, po-
tential evapotranspiration, soil moisture, and runoff, in-
cluding an analysis of wet and dry extreme conditions.
These assessment reports are based on the eight clus-
tered NRM regions (see Fig. 5) and use the informa-
tion and analysis presented in Sect. 7. These NRM re-
gions broadly represent groups of similar climate and
biophysical settings in Australia and corresponding nat-
ural resources. The reports build on and are consistent
with similar reports of CCiA, which provided comprehen-
sive, robust information on future climate changes for each
of the NRM regions (https://www.climatechangeinaustralia.
gov.au/en/overview/methodology/nrm-regions/, last access:
9 April 2024). Our work builds a complementary picture in
the context of changes to the regional hydrologic cycle and
its future impacts.

The assessment reports provide an overview of the key
findings for each of the NRM regions. They describe each
NRM region, including background information about phys-
iographic and hydroclimatic characteristics, recent condi-
tions, and long-term hydroclimatic trends. The ability to sim-
ulate such changes is also examined by investigation of sev-
eral questions: (1) are the climate models chosen able to rep-
resent the region’s climate, (2) how well does the hydrologic
AWRA-L model perform in the region, and (3) how does
the evaluation of the bias correction methods affect the in-
terpretation of the projections? Together, addressing these
questions provides important context when assessing each
NRM’s hydroclimate. Results from the 16-member ensem-
ble (for each RCP) are presented as plausible future repre-
sentations of change in magnitude and sign for each of the
hydrological output variables.

We use a storyline approach to demonstrate the appli-
cability of the NHP data for future water resource impact
analysis across Australia and to address the uncertainty in
hydrological projections (Shepherd et al., 2018). The sto-
ryline approach describes an internally consistent evolution
of plausible future events, allowing for a way to focus on
assessing only uncertainties that relate to a specific impact
of interest. By establishing a set of storylines that repre-
sent plausible changes in risk, the impacts of a particular
risk can be explored (as opposed to a forecast or likeli-
hood of specific outcomes). They are effective for assess-
ments where the change to risk is triggered by the inter-
action of multiple variables, such as water supply and de-
mand. For example, applying the storyline concept to the
Wet Tropics region in northern Australia, we used the wet-
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Table 2. Overview of NHP foundational dataset variables available in the NCI Data Collection.

Greenhouse gas Climate input Hydrological output Temporal and spatial Time period
emission scenario variable resolution available

RCP4.5/RCP8.5 Rainfall, temperature maxi-
mum and minimum, wind, and
solar radiation

Runoff, soil moisture, and po-
tential and actual evapotranspi-
ration

Daily grids at
0.05× 0.05°

1960–2099

season runoff as an indicator for water storage (and hence
supply) since almost all infilling occurs in the wet season.
Changes to soil moisture in the dry season were used as
an indicator of changes in demand due to increased agri-
cultural irrigation and domestic and consumptive use. Read-
ers are referred to the Australian Water Outlook (https://awo.
bom.gov.au/about/overview/assessment-reports, last access:
9 April 2024) to explore the regional assessment reports in
further detail.

9 Limitations of the hydrological projections

A factor not considered in the NHP projections was vege-
tation responses to increased CO2 and the resultant effects
on projections of runoff. Offline models generally indicate
an increase in terrestrial drying and drought metrics, espe-
cially those based on potential evapotranspiration (Naumann
et al., 2018; Scheff and Frierson, 2015). They also predict
decreases in runoff that exceed those projected by GCMs
(Milly and Dunne, 2016). This has been attributed to poten-
tial evapotranspiration being overestimated in offline models
since they do not capture stomatal conductance reductions
in response to elevated CO2 (Roderick et al., 2015; Yang et
al., 2019). AWRA-L was chosen as the hydrological model
based on the evaluation and benchmarking of the available
national models (Frost and Wright, 2018). It was also se-
lected for its ability to model projected hydrological vari-
ables when considering the larger uncertainties inherent to
the climate models and the static soil and vegetation inputs
(Azarnivand et al., 2022). Importantly, those evaluations con-
sidered runoff, soil moisture, and actual evapotranspiration
in the assessment of the models. However, AWRA-L is not
a coupled model and was run independently using the bias-
corrected GCM climate data as input.

The lack of feedback between the GCM’s and AWRA-L
means that the potential roles of increased CO2 levels on
vegetation growth and evapotranspiration rates are not con-
sidered (Yang et al., 2019). It is also uncertain how impor-
tant vegetation feedbacks are in a mostly water-limited envi-
ronment such as Australia, as the sensitivity of evapotranspi-
ration parameterisation is more important in humid regions
(Zheng et al., 2019a). In addition, recent observations indi-
cate a robust increase in the partitioning of rainfall to evap-
otranspiration rather than runoff in response to the warming
over land (Pascolini-Campbell et al., 2021). Finally, future

land use change and vegetation change due to future temper-
ature and water availability changes are also not considered
and contribute to the uncertainties in the hydrological projec-
tions (Prestele et al., 2017). Despite these caveats, we have
developed these datasets and complementary analysis for the
wider community. In particular, they have been developed
for those who wish to use hydrological projections for cli-
mate adaptation and for those in the scientific community
who wish to further interrogate these datasets for research
purposes.

10 Conclusions

This article has documented the National Hydrological Pro-
jections project (NHP), which resulted in the production of
datasets and communication tools for end users. We devel-
oped a 16-member ensemble of bias-corrected GCM out-
put which was used to force an offline hydrological model
(AWRA-L). The ensemble was constructed by applying three
bias correction techniques to the output of four GCMs and
one of the bias correction methods to the output of the
CCAM RCM forced by the same set of four GCMs. The four
GCMs were CMIP5 model simulations (Taylor et al., 2012)
using mid-range (RCP4.5) and high-emission (RCP8.5) sce-
narios (IPCC, 2000). The bias-corrected GCM variables
were those required as input to force the AWRA-L hydro-
logical model, namely precipitation, minimum and maxi-
mum temperature, surface wind speed, and downwelling
solar radiation. The subsequent hydrological output con-
sisted of runoff, soil moisture, and potential evapotranspira-
tion. The bias correction methods were applied to historical
(1960–2005) simulations using 0.05× 0.05 (approximately
5 km× 5 km) gridded reference data at a daily timescale. The
resulting calibrations were then applied to the GCM output
at a daily timescale for the period 2005–2099, and the sub-
sequent AWRA-L simulations were produced on the same
spatial and temporal scales. This is the first time that a na-
tionally consistent set of hydrological projections have been
produced for the entire Australian domain.

The bias-corrected GCM data and AWRA-L outputs were
evaluated against historical reference datasets and shown to
produce simulations that matched the historical record (i.e.
the bias correction methods had allowed the GCM output to
be suitable to force the AWRA-L hydrological model). Due
to the large spatial domain, only the output of four GCMs
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was able to be corrected for bias; however, they were cho-
sen using guidance from the Climate Change in Australia
report (CCiA; CSIRO and Bureau of Meteorology, 2015),
which suggested their inclusion for impact studies based on
several criteria (see Box 9.2, p. 180 in CCiA). Furthermore,
we explored the ensemble range of precipitation and surface
temperature using the NHP subset of GCMs and found they
spanned a similar range of wet and dry and cool and warm
projections to the larger (40-member) ensemble of CMIP5
models used in CCiA. This resulted in the NHP having en-
semble medians and a 10th–90th percentile ensemble spread
of similar magnitude to the CCiA ensemble, although they
showed slightly cooler and wetter median projections of sur-
face temperature and precipitation. However, the application
of the bias correction methods was found to apply correc-
tions to the raw GCM data that were model and bias correc-
tion dependent and hence expanded the range of projections
from consideration of the raw GCM data alone. Furthermore,
the use of the CCAM RCM, which often had projections and
temporal meanderings quite distinct from the host GCM, ex-
panded the phase space of the original four host GCMs con-
siderably.

To maintain some consistency with the CCiA report, we
explored projections of precipitation, runoff, soil moisture,
and potential evapotranspiration for the Natural Resource
Management (NRM) regions. For this paper, we used the
Southern and Southwestern Flatlands (SSWF) as an exem-
plar to present a range of analyses performed for the NHP.
These included spatially averaged time series, spatially and
temporally averaged bar plots of the change signal (fu-
ture minus historical), and temporally averaged plots of the
spatial change signal. To construct the change signal, we
considered four future time slices of 30 years centred on
2030, 2050, 2070, and 2085 for RCP4.5 and RCP8.5 and
analysed the magnitude and direction of change to provide
detailed hydrological projections for each NRM. Readers
are referred to the Australian Water Outlook (https://awo.
bom.gov.au/about/overview/assessment-reports, last access:
9 April 2024) to explore the regional assessment reports in
further detail. For further detailed regional analysis, guidance
on the use of NHP data or further general information, please
contact us via water@bom.gov.au.

Code and data availability. The ISIMIP2b code implemented
can be found at https://doi.org/10.5281/zenodo.7839687
(Peter, 2023a). The QME code is located at
https://doi.org/10.5281/zenodo.7939660 (Dowdy, 2023). The
MRNBC Fortran scripts and associated R wrappers can be found at
https://doi.org/10.5281/zenodo.8046380 (Peter, 2023b). The post-
processing of the MRNBC output, which requires “despeckling”
of the output to bilinearly interpolate missing grid cells, can be
found at https://doi.org/10.5281/zenodo.7873619 (Peter, 2023c).
The code to aggregate the MRNBC ASCII output and convert
to netCDF is located at https://doi.org/10.5281/zenodo.7873637
(Peter, 2023d). The version of CCAM used in this study is

archived at https://doi.org/10.5281/zenodo.7884565 (tha051
and Dix, 2023). The code used to transform the wind speed
from 2 to 10 m height (see Eq. 1) and vice versa is located at
https://doi.org/10.5281/zenodo.7873409 (Peter, 2023e). The code
used to analyse the NHP datasets and perform the evaluation
is located at https://doi.org/10.5281/zenodo.7844885 (Peter,
2023f). The code to perform the extreme analysis (Fig. 15) is
located at https://doi.org/10.5281/zenodo.7869921 (Peter, 2023g).
Finally, The NHP data application ready data are available at
https://doi.org/10.25914/6130680dc5a51 (NCI Data Catalogue,
2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-2755-2024-supplement.
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