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Abstract. The regeneration niche of trees is governed by
many processes and factors that are challenging to deter-
mine. Besides a species’s geographic distribution, which de-
termines if seeds are available, a myriad of local processes
in forest ecosystems (e.g., competition and pathogens) ex-
ert influences on tree regeneration. Consequently, the repre-
sentation of tree regeneration in dynamic forest models is a
notoriously complicated process which often involves many
subprocesses that are often data deficient. The ForClim for-
est gap model solved this problem by linking species traits
to regeneration properties. However, this regeneration mod-
ule was never validated with large-scale data. Here, we com-
pare this trait-based approach with an inverse calibration ap-
proach where we estimate regeneration parameters directly
from a large dataset of unmanaged European forests. The
inverse calibration was done using Bayesian inference, es-
timating shade and drought tolerance as well as the temper-
ature requirements for 11 common tree species along with
the intensity of regeneration (i.e., the maximum regeneration
rate). We find that the parameters determining the species’
light niche (i.e., light requirements) are similar for the trait-
based and calibrated values for both model variants, but only
a more complex model variant that included competition be-
tween recruits leads to plausible estimates of the drought
niche. The trait-derived temperature niche did not match to
the estimates from either model variant using inverse cali-
bration. The parameter estimates differed between the com-
plex and the simple model, with the estimates for the com-
plex model being closer to the trait-based parameters. In both

model variants, the calibration strongly changed the param-
eters that determine regeneration intensity compared to the
default.

We conclude that the regeneration niche of trees can be
recovered from a large forestry dataset in terms of the stand-
level parameters light availability and regeneration intensity,
while abiotic drivers (temperature and drought) are more elu-
sive. The higher performance (better fit to hold out) of the
inversely calibrated models underpins the importance of in-
forming dynamic models by real-world observations. Future
research should focus on even greater environmental cover-
age of observations of demographic processes in unmanaged
forests to verify our findings at species range limits under
extreme climatic conditions.

1 Introduction

Predictions of species range shifts and forest dynamics under
climate change require process-based models that account
for the complex feedback between stand dynamics, soils, and
climate (Morin and Thuiller, 2009). In this context, tree re-
generation is particularly important because of its key roles
in species range shifts (McDowell et al., 2020) and forest
resilience to climate change (i.e., reorganization after distur-
bances; Seidl and Turner, 2022). Yet, tree regeneration is an
uncertain and convoluted process (Price et al., 2001; König
et al., 2022), as shown by numerous studies that yield dif-
ferent results depending on the site, species, and spatial and
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temporal scales that are considered (Clark et al., 1999; Lett
and Dorrepaal, 2018). The reasons for these divergences be-
tween observations and experimentation are that (a) many
seemingly stochastic regeneration processes are actually con-
trolled by biotic and abiotic conditions that vary across a
wide range of temporal and spatial scales (Grubb, 1977; Hart
et al., 2017) and (b) there is a lack of suitable data for con-
sistently studying these processes on different scales (Clark
et al., 1999).

A challenge that hinders progress on these questions is that
a tree’s regeneration niche is generally driven by many fac-
tors and lacks a clear definition that distinguishes it from
a plant’s full niche (Grubb, 1977). Instead, differences be-
tween Grubb’s niche types are continuous (see also onto-
genetic shifts in environmental preferences; Heiland et al.,
2022) and valid only conceptually. At the same time, Grubb’s
definition of the regeneration niche as “an expression of the
requirements for a high chance of success in the replace-
ment of one mature individual by a new mature individual
of the next generation [. . . ]” provides a coherent framework
to which regeneration models can be related.

Regeneration in most dynamic forest models (DFMs) is
captured in a relatively simple manner (compared to the
growth and mortality of adult trees) and, due to the lack of de-
tailed process data, mostly phenomenologically (König et al.,
2022). Nevertheless, even these simplified representations of
tree regeneration are characterized by widely different lev-
els of complexity (Bugmann and Seidl, 2022). Typically, the
representations of regeneration in DFMs are based on knowl-
edge that is abstracted to an aggregate over many processes
(Price et al., 2001). DFMs usually simulate regeneration via
binary, count, or hurdle models. Such probabilistic models
simulate the occurrence of small trees at certain size thresh-
olds as a function of environmental variables and sometimes
dispersal, vegetative reproduction, or browsing. The com-
plexity of these models is characterized by the different def-
initions of the relation between environmental variables and
the species’ regeneration probability. Consequently, there is a
wide range from very simple models that use binary thresh-
old values for one or very few variables (e.g., FORMIND;
Köhler and Huth, 1998) to highly complex models with con-
tinuous transitions from unsuitable to suitable regeneration
conditions comprising many variables (e.g., iLAND; Seidl et
al., 2012). In addition, the actual regeneration amount is of-
ten calculated invoking random numbers, which leads to high
stochasticity and renders the validation of tree regeneration
patterns in DFMs challenging. Bugmann and Seidl (2022)
and Hanbury-Brown et al. (2022) provide a comprehensive
overview of regeneration models.

In this study, we focus on the relation between the tree
species’ regeneration success and environmental variables in
DFMs. For this purpose, we aim to disentangle the effects
of large- and small-scale environmental drivers on tree re-
generation based on regeneration data that stem from natu-
ral conditions, i.e., unmanaged forests. In conjunction with

such data, DFMs can be used to assess how simulated nat-
ural regeneration relates to real-world observations. First,
DFMs represent complex stand–environment feedbacks ex-
plicitly, which places the quantified effects in the context of
specific processes. For example, species shade tolerance es-
timates will only be constrained by the actual available light
and not by any other confounding factors. This opens up op-
portunities for more nuanced inference on processes instead
of yielding loose associations between observed regenera-
tion patterns and environmental drivers. Second, using data
from unmanaged forests minimizes the confounding influ-
ence of management on demographic processes. Specifically,
the promotion of certain species or individual trees through
planting or thinning is absent in unmanaged forests.

Over the past decade, robust methods for evaluating
stochastic models of ecological processes with data have
been developed (see Hartig et al., 2011). Yet, only a few
studies have compared tree regeneration models with for-
est inventory data (Rüger et al., 2009; Díaz-Yáñez et al.,
2024). An important reason for this is the issue of elucidat-
ing the drivers of ecological processes at different spatial and
temporal scales mechanistically, as the apparent stochastic-
ity makes it challenging to retrieve the signal from the data
(Hart et al., 2017; Oberpriller et al., 2021; Shoemaker et al.,
2020). Specifically, trade-offs between meaningful observa-
tions for key small-scale processes, such as light competition,
browsing, microclimate (e.g., frost events), and the coverage
of macroclimatic gradients at which dispersal and plant mi-
gration take place, impede a comprehensive analysis across
the stages of tree regeneration (Clark et al., 1999). Conse-
quently, there is a need to advance the frontier of evaluating
tree regeneration in DFMs with data (see Díaz-Yáñez et al.,
2024).

In the DFM ForClim (Huber et al., 2020), which we use
as a case study, the regeneration niche is captured, among
other factors, based on light availability, water availabil-
ity, and summer temperature conditions. It is derived from
trait values for shade tolerance, drought tolerance, and mini-
mum degree-days (e.g., Leuschner and Ellenberg, 2017). The
model is highly sensitive to the values of these parameters
(see Huber et al., 2018), which adds weight to their detailed
evaluation based on real-world observations. For traits di-
rectly linked to a specific explicitly modeled process, such
as the relationship between the species’ shade tolerance and
light availability, a higher predictive power is anticipated. In
contrast, traits influencing multiple processes tend to exhibit
lower predictive power. An example of this is the intricate re-
lationships involving the species’ temperature requirements,
frost tolerance, and drought tolerance, all of which interact
with factors such as precipitation and temperature (see Yang
et al., 2018). Functional traits have been successfully applied
in simple dynamic models of annual plant communities (e.g.,
Chalmandrier et al., 2021), thus underpinning the validity of
trait-based approaches for modeling plant demography.
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In ForClim, the interplay between the traits of multiple
species is implemented in two variants, i.e., a simple and a
complex approach for capturing regeneration processes. In
the simple approach, the relation between traits and envi-
ronmental conditions is defined using binary thresholds and
competition among regenerating trees is not considered. In
the complex approach, the relation between traits and envi-
ronmental conditions is defined with continuous transitions
between suitable and unsuitable regeneration conditions, and
competition among regenerating trees is considered (Huber
et al., 2020). Interestingly, in both variants, the link between
traits and processes leads to ecologically plausible emergent
properties of simulated potential natural vegetation along el-
evational gradients in the Swiss Alps (Huber et al., 2020) and
elsewhere (Bugmann and Solomon, 2000). While empirical
studies based on plot-level data have provided valuable in-
sights into large-scale regeneration patterns (Zell et al., 2019;
Käber et al., 2021), it remains unclear whether DFMs can
match such empirical data. A comparison of many DFMs
with data on unmanaged European forests shows that mis-
matches exist; yet, the reasons for these mismatches remain
vague (Díaz-Yáñez et al., 2024).

Here, we evaluate possible reasons for mismatches be-
tween process formulations and observations by comparing
two approaches for parameterizing the regeneration niche in
ForClim: (1) a trait-based approach, where the regeneration
niche is based on trait values determined a priori from eco-
logical knowledge, and (2) an inverse calibration approach,
where the trait values are derived a posteriori using a novel
observational dataset of demographic processes in European
unmanaged forests that covers unprecedented spatial and
temporal scales (Käber et al., 2023). Specifically, we address
two research questions:

– How does the regeneration niche that emerges from the
inverse calibration differ compared to the niche defined
by the species’ traits?

– Does a more complex regeneration model that includes
competition feature a higher performance compared to
a simple regeneration model without competition?

2 Methods

2.1 Data

2.1.1 Forest inventory data

We used records of tree recruitment from 6540 forest in-
ventory plots covering 299 strict forest reserves that are cu-
rated by 18 European research institutions in the context
of the European Forest Research Initiative (EuFoRIa, https:
//www.euforia-project.org, last access: 15 September 2023)
(Käber et al., 2023). Depending on the forest inventory de-
sign, different diameter thresholds (DBH, diameter at breast

height) were used as the calipering limit in the inventories
(i.e., 4, 7, or 10 cm). These inventory plots were aggregated
or split into units of ca. 1 ha to obtain samples of a sim-
ilar spatial extent (Käber et al., 2023), which reduces the
stochasticity in the data and thus increases the stability of
the signal used for model evaluation. After data processing
(Käber et al., 2023), 865 plots were available for this study.
Some trees within these plots had implausible DBH mea-
surements (e.g., annual DBH growth was unrealistically high
(1DBH> 2 cm yr−1) or negative (1DBH<−0.1 cm yr−1)),
which required the exclusion of some plots. This allowed us
to obtain a dataset where all observations are in an ecologi-
cally plausible range.

We defined two criteria for selecting plots suitable for
the study. The first criterion evaluated the number of trees
with implausible measurements relative to the total number
of measured trees and observed basal area: at least 95 % of
all trees needed to have plausible measurements and at least
95 % of the basal area comprised trees with plausible DBH
measurements. The second criterion evaluated the number
of trees with implausible measurements relative to the plot
area: the maximum number of trees with implausible mea-
surements per ha allowed in the dataset was defined as the
75th percentile of trees with implausible measurements per
ha (which amounted to 14.31 ha−1). The second criterion
was defined because some plots did not fulfill the first crite-
rion, although they had a relatively low number of trees with
implausible measurements per ha. These were particularly
large plots with a low tree number per ha (N = 51). After
plot selection, all trees with implausible DBH measurements
of the selected plots were removed.

The final number of sites considered was 696, which pro-
vided sufficient information on tree regeneration for 11 tree
species. All other species were aggregated in an extra cat-
egory (“other” species). About half of the sites (353) were
used for calibration (training data), and the other half (343)
were used for evaluation (test data). We split the sites so that
the variation of the represented inventory datasets (i.e., the
individual data associated with one research institution) and
DBH thresholds was similar in both test and training data.
This also resulted in similar variations of environmental con-
ditions because each inventory dataset (from a given institu-
tion) represents a specific region with similar environmental
conditions.

2.1.2 Environmental input data

ForClim contains a stochastic weather generator where the
long-term averages and standard deviations of monthly mean
temperature and log-transformed precipitation sums, along
with their cross-correlation, serve as input (Bugmann, 1994;
Risch et al., 2005). These climatic input variables were de-
rived from the CHELSA dataset version 2 (Karger et al.,
2017) with a horizontal resolution of 30 arcsec. The plot’s
slope and aspect (represented as “kSlAsp” in the model; Bug-
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mann, 1994) are input variables as well; they were derived
from the Copernicus digital elevation model EU-DEM (EU-
DEM 2020) with a spatial resolution of 25 m, which was fur-
ther processed with QGIS (QGIS Development Team, 2022)
to calculate the slope and aspect with a spatial resolution of
100 m. The so-called “bucket size”, i.e., the plant-available
water storage capacity of the soil, was derived with a ran-
dom forest model trained with expert assessments of the soil
quality of a subset of the plots (see Käber et al., 2023).

2.2 The forest gap model ForClim

ForClim is a dynamic vegetation model that simulates
the processes of growth, mortality, and regeneration (often
also called “establishment”) of individual trees via species-
specific size cohorts (Bugmann, 1994). ForClim is classified
as a forest gap model (Shugart, 1984) and simulates forests
in independent patches, each with a size of 800 m2. By de-
fault, 100 patches (i.e., 8 ha) comprise a forest stand, which
is used to obtain realistic averages of forest dynamics across
patches. The model uses an annual time step and represents
trees as cohorts with the properties number of trees (Trs), di-
ameter at breast height (DBH), height, leaf area, and stress
level. Here, we used two variants of the regeneration module
within ForClim v4.0.1 (Huber et al., 2020).

2.2.1 The two regeneration models

The ForClim regeneration module initiates new cohorts of
trees based on (a) site variables for climate and soil in com-
bination with (b) species traits and (c) state variables of for-
est structure. The species traits of drought tolerance, tem-
perature, and light requirements originate from the indicator
values of Ellenberg (1986) (see the latest translated edition,
Leuschner and Ellenberg, 2017) and the FORECE model
(Kienast, 1987). They define thresholds (so-called “establish-
ment flags”, EFs) that must be fulfilled for a species to qual-
ify for establishment at a DBH of 1.27 cm. For example, if
a species has an EF of 10 % of the available light to regen-
erate, the EF will be fulfilled if the available light is ≥ 10 %.
If the available light is < 10 %, the species EF is not fulfilled
(see the detailed description of establishment flags below). In
this study, we focus on a simple variant and a more complex
variant of the regeneration model. Below, a brief summary
of the two models is provided, followed by an explanation of
the EFs investigated here. For more details, see Fig. 1, Ap-
pendix B, and the original documentation for the simple and
complex models in Bugmann (1994) and Huber et al. (2020),
respectively.

The simple model simulates tree regeneration for each
species independently and corresponds to the original For-
Clim establishment module in Bugmann (1994), which is
the same as model variant 1 in Huber et al. (2020). EFs
in this model indicate either “suitable” or “not suitable”;
i.e., they are binary. In a first step, the annual regeneration

probability (kEstP), modulated by species-specific EFs, de-
termines whether regeneration takes place for each species.
Second, if the regeneration of a species takes place, the po-
tential maximum number of new trees for that species is cal-
culated from (1) a regeneration intensity parameter (kEst-
Dens, which is the maximum tree establishment density
per species [m−2 yr−1]), and (2) the species-specific suc-
cessional strategy (i.e., shade-tolerant species have a higher
number of seeds and thus offspring compared to shade-
intolerant species). Third, the actual number of new trees per
species is derived by drawing a random number between 1
and the potential maximum number of trees for each species.

The complex model includes a mechanism for competition
and was first introduced as variant 11 in Huber et al. (2020).
EFs in this model are continuous, which allows for a more
nuanced gradient from “suitable” to “not suitable”. In the
first step, kEstP, as modulated by a drought index and degree-
days, is used to determine if regeneration takes place for any
species. Second, if regeneration does take place, the total po-
tential number of new trees over all species is calculated from
(1) a regeneration intensity parameter (kTrMax, which is the
absolute maximum number of trees [ha−1]) and (2) a drought
index, degree-days, and the continuous EFs. The actual num-
ber of new trees over all species is then derived by drawing a
random number between 1 and the potential maximum num-
ber of trees over all species. Third, the number of new trees
per species is calculated by multiplying the actual number
of trees over all species by the species-specific ratio of each
species’ EF and the sum of the EFs of all species.

2.2.2 Establishment flags regarding light, temperature,
and soil moisture

In the present study, we focus on three of the five EFs that
are used in the two models (Table 1). The definitions of these
three EFs (for light, drought, and degree-days) are given be-
low.

The available light establishment flag (ALEF) evaluates
whether the sunlight available at the forest floor (gAL0; see
p. 63 in Bugmann, 1994 for details) matches a parameter for
the species’ light requirements to regenerate (kLy,s). kLy,s is
derived from indicator values (ranging from 1 to 9) regarding
the light requirements of young trees (Ls) (Leuschner and
Ellenberg, 2017). Here,

kLy,s =
{

0.025 · (Ls − 1) Ls < 5
0.1 ·Ls − 0.4 else. (1)

For each species s, the binary EF (ALEFb,s) in the simple
model is calculated with

ALEFb,s =

{
0 gAL0 < kLy,s
1 else, (2)
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Figure 1. Simplified visual representation of the simple and complex regeneration model variants of ForClim. A full description of the
models is provided in Sect. 2.2 below.

while the continuous EF (ALEFc,s) in the complex model is
calculated with

ALEFc,s =
0 gAL0 < kLy,s
1 gAL0 ≥ kLy,s + 0.5
gAL0,−kLy,s

0.5 kLy≤ gAL0 < kLy,s + 0.5,
(3)

where the value 0.5 refers to the highest kLy,s (see Eq. 1) and
serves as a buffer for the transition from 0 to 1.

The degree-days establishment flag (DDEF) evaluates
whether the annual degree-day sum (gDD; see p. 81 in
Bugmann, 1994 for details) matches the species’ minimum
degree-day requirement (kDDMin). The values of kDDMin
originate from Kienast (1987), who derived climatic vari-
ables from Müller (1982) and Rudloff (1981) for multiple
geographic locations and elevations within the species’ dis-
tribution range (Ellenberg and Klötzli, 1972; Meusel et al.,
1965). This approach was further improved by applying a
site-specific bias correction (Bugmann, 1994). Note that this
parameter has never been modified to reflect possible devia-
tions regarding the regeneration niche. In this study, we dis-
tinguish between the original parameter (kDDMin of adults)
and kDDMiny , which applies to the regeneration. For each
species s, the binary EF (DDEFb,s) in the simple model is
calculated with

DDEFb,s =

{
0 kDDMiny,s ≥ gDD
1 else, (4)

while the continuous EF (DDEFc,s) in the complex model is
calculated with

DDEFc,s =
0 kDDMiny,s ≥ gDD
1 gDD≥ kDDMiny,s + 256
gDD−kDDMiny,s

256 kDDMiny,s < gDD< kDDMiny,s + 256,
(5)

where the value 256 refers to the lowest kDDMiny,s and
serves as a buffer for the transition from 0 to 1.

Lastly, the soil moisture establishment flag (SMEF) eval-
uates whether the drought index (gDr), defined as the ra-
tio of actual evapotranspiration and water demand by the
atmosphere (i.e., potential evapotranspiration), matches the
species’ threshold for this index, i.e., the drought tolerance
(kDrTol). The original trait values for drought tolerance
range from 1 to 5 (Leuschner and Ellenberg, 2017) and were
scaled between 0.06 and 0.3 (i.e., 30 %). The evolution of the
formulation of the drought index, including its integration
into the regeneration model (Didion et al., 2009a), is doc-
umented in Bugmann (1994), Bugmann and Cramer (1998),
and Bugmann and Solomon (2000). Similar to the DDEF, the
original parameter (kDrTol of adults) and kDrToly are distin-
guished here, and the latter applies to regeneration only. For
each species s, the binary EF (SMEFb,s) in the simple model
is calculated with

SMEFb,s =

{
0 gDr> kDrToly,s
1 else, (6)
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while SMEFc,s in the complex model is calculated with

SMEFc,s =
0 gDr> kDrToly,s
1 gDr≤ kDrToly,s − 0.08
kDrToly,s−gDr

0.08 kDrToly,s > gDr> kDrToly,s − 0.08,
(7)

where the constant of 0.08 indicates the lowest kDrToly,s and
serves as a buffer for the transition from 0 to 1, i.e., the EF
being fulfilled or not (see Huber et al., 2020).

The two EFs in the model that are not considered here
are the winter temperature establishment flag (WTEF),
which depends on the minimum tolerated winter tempera-
ture and chilling requirements (Bugmann, 1994; Bugmann
and Cramer, 1998; Kienast, 1987), and the browsing pressure
flag, which depends on the species’ susceptibility to ungulate
browsing (Didion et al., 2009b). WTEF is correlated with
DDEF and excluded from the calibration to avoid too many
degrees of freedom. We therefore used the default parameter-
ization for WTEF. Because no site information on browsing
pressure was available, we decided against using this factor
in the calibration. Instead, we kept browsing pressure con-
stant across all sites at its default value of 20 %.

2.3 Calibration approach

We used Bayesian inference to estimate the unknown pa-
rameters of the two ForClim regeneration models and their
uncertainties. We estimated three species-specific (kLy,s ,
kDDMiny,s , and kDrToly,s) and two general (kEstDens, kTr-
Max) regeneration parameters of ForClim based on recruit-
ment data from the EuFoRIa reserves. The species param-
eters were estimated for 11 out of 30 simulated species for
which the data covered sufficient environmental variation.
The species not considered for calibration were simulated
with their default parameters (see Huber et al., 2020).

2.4 Calibration target

The calibration target was to obtain recruitment rates in
the model that match to observations. Tree recruitment was
quantified as the number of trees that pass an inventory-
specific DBH threshold. Observed decadal tree recruitment
rates Ri,s were calculated for each plot i and species s with

Ri,s,=

Nperiods∑
p=1

Ri,s,p

Ti × 10
, (8)

where p is the inventory period and Ti is the total number
of years between the first and the last inventory at plot i.
Simulated tree recruitment rates R̂ were calculated as

R̂i,s =
1

Nrepi

Nrepi∑
k=1

Nperiods∑
p=1

Npatchi,s,p,k∑
j=1

nTrsi,s,p,k,j

Ti× 10
, (9)

where nTrsi,s,p,k,j is the number of recruited trees for one
patch j , inventory period p, and repetition k. Each simulation
during the calibration was conducted on > 100 patches (i.e.,
ca. 8 ha) to reduce the variability caused by the k stochas-
tic realizations of the ForClim model. The trees in the initial
forest inventory were randomly distributed to each of the 100
patches (each with a size of 0.08 ha) proportionally to the ac-
tual plot size until a full repetition exceeded 100 patches. If
one repetition was not a multiple of the patch size of 0.08 ha,
the difference in exceeded plot area determined the propor-
tion of additional trees drawn from all trees in the initial for-
est inventory to populate the patches. The number of repe-
titions Nrepi for each plot i emerges from the next integer
above 8 ha

Ai
, where Ai is the plot size in ha. This resulted in

an average of eight repetitions k across all sites, although k
ranged from 40 for plot sizes of 0.2 ha to 2 for two sites with
plot sizes of > 4 ha. The number of patches j (Npatchi,p,k)

within one repetition k is the next integer above 100 patches
Nrepi

.

2.5 Model initialization

To initiate the calibration runs, we had to resolve the is-
sue that trees below the inventory-specific DBH threshold
(i.e., small trees), which may have been present in reality,
are obviously not present in the data. Ignoring these trees
in the initialization would create a temporal lag in tree re-
cruitment (i.e., trees surpassing the DBH threshold), which
is connected with a potentially significant underrepresenta-
tion of tree regeneration directly after model initialization.
To overcome this problem, we initialized unobserved trees
below the DBH threshold with the model’s steady state (i.e.,
equilibrium of regeneration).

This steady state was determined by running the simula-
tion with the stand structure of the initial forest inventory for
50 years and suspending all processes affecting trees above
or equal to the DBH threshold. During this “spin-up” phase,
trees above the DBH threshold that were included in the ini-
tial forest inventory could neither die nor grow, but they still
modulated the variables of stand structure that affect regen-
eration (i.e., gAL0, Trs). In contrast, trees below the DBH
threshold were allowed to grow and die under the condi-
tions observed in the initial inventory. If these newly regen-
erated trees grew larger than the DBH threshold during the
spin-up, they were removed. This means that these trees did
not die from mechanisms that simulate tree mortality in the
model; they were forcefully removed from the simulation to
avoid the accumulation of trees with a DBH close to the
DBH threshold. Visual inspection of the simulation results
showed that an equilibrium of the stand structure below the
DBH threshold was reached after approximately 50 simula-
tion years, which was the reason to fix the spin-up at this time
period. After the spin-up, the simulation was continued with
all trees and by running all model processes (i.e., regenera-
tion, growth, and mortality).
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Table 1. Description of ForClim model parameters that are considered for calibration.

Model variant Description Default Prior Comment

Simple & complex kDrToly Species drought
tolerance

0.08–0.37 0.001–0.02 (0.001–0.4) The species’ drought tolerance and
a drought index determine the EF
for drought (Bugmann, 1994; Hu-
ber et al., 2020).

kDDMiny Species minimum
degree-days

385–1339 100–1500 The species’ minimum degree-day
sum and degree-days determine
the EF for temperature (Bugmann,
1994; Huber et al., 2020).

kLy Species light
requirements

0.03–0.4 0.001–0.5 The species’ light requirements and
available light on the forest floor de-
termine the EF for light (Bugmann,
1994).

Complex kTrMax Maximum number
of trees per ha

30 000 500–50 000 Maximum number of trees per ha
refers to the number of trees, re-
gardless of the species. It also in-
cludes the trees that are already
present on the patch (Huber et al.,
2020).

Simple kEstDens Maximum estab-
lishment density
[trees (m2 yr)−1]

0.006 0.001–0.2 Maximum tree establishment den-
sity is defined per species (Bug-
mann, 1994).

2.6 Definition of goodness of fit

The goodness of fit was quantified by a (pseudo-)likelihood.
We assumed that the observations Ri,s for site i and species s
with the parameter vector θ were negatively binomially dis-
tributed, leading to a log-likelihood per observation of

log[Ps
(
Ri,s |θ

)
] = NegBinomial2

(
Ri,s |R̂i,s,φ

)
. (10)

Here, the mean R̂i,s is predicted by ForClim based on
the chosen values for the model parameters kLy , kDDMiny ,
and kDrToly , the respective regeneration intensity parame-
ters (kEstDens and kTrMax) of the two models (as explained
above), and the dispersion parameter φ of the negative bi-
nomial distribution, which can be interpreted as a measure
of residual variation and is a free parameter that needs to be
estimated in addition to the model parameters.

We assumed that the dispersion may vary with species,
DBH, and plot size according to the formula

φ = φs × e
φDBH×DBHi+φA×Ai , (11)

where φs is the species-specific dispersion, φDBH is the effect
of the diameter threshold DBHi , and φA is the effect of the
plot size Ai on the dispersion. We used an exponential func-
tion to only allow for positive values, as required by the neg-
ative binomial distribution. In sum, the likelihood depends
on a parameter vector θ that includes the model parameters

as well as the parameters that control the value of φ based on
the DBH and plot size.

Summing the expressions in Eq. (10) over all plots i and
over all species s, we arrive at the joint log-likelihood

log
[
P (y|θ)

]
=

∑Nsites
i=1

∑Nspecies
s=1

log[Ps
(
yi,s |θ

)
]. (12)

We then additionally re-scaled the joint log-likelihood
(Eq. 13) by a factor of 1/12 (reflecting Nspecies) to arrive
at a pseudo-likelihood that we used as the calibration target
in our MCMCs.

pseudo-likelihood=
log[P (y|θ)]

Nspecies
(13)

The effects of this re-scaling are that the uncertainties get
larger and the absolute magnitude of (stochastic) likelihood
differences decreases. For both reasons, MCMC samplers are
less prone to get stuck in local optima, whereas the shape of
the posterior surface as well as the posterior optimum remain
unchanged. However, the re-scaling (which essentially corre-
sponds to a down-weighting of the observational evidence by
a factor of 12) can be interpreted as accounting for possible
non-independence of the data and structural model error (see
Oberpriller et al., 2021). The value 1/12 was chosen ad hoc,
but, given that some structural error and non-independence
are likely present in the observations, we believe it is of the
right order of magnitude. Given the approximate nature of
this correction, our scaled likelihood should be viewed as
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a pseudo-likelihood or an informal likelihood (Smith et al.,
2008), and the same labels should be applied to the posterior.

In total, our pseudo-likelihood depends on a vector θ con-
sisting of 48 parameters, as we estimated three ecologi-
cal threshold parameters (kLy , kDDMiny , and kDrToly ; see
Fig. 1) and a separate dispersion parameter φs for each of
the 11 species, one extra dispersion parameter for all other
species, two parameters for the effects of DBH and plot area
(φDBH and φA), and one parameter for the regeneration in-
tensity (kEstDens or kTrMax for the simple or the complex
model, respectively). We defined wide uniform priors for
each parameter that comprise the full range from the species’
lowest value to its highest value in the default parameteriza-
tion in ForClim (see Table 1).

2.7 Posterior estimation

We calibrated the model using the differential evolution sam-
pler (DEzs; ter Braak and Vrugt, 2008) implemented in the
R package BayesianTools (Hartig et al., 2019). We sam-
pled with two independent sets of three chains (i.e., a to-
tal of six chains) for all 353 training plots. The z matrix
was re-initialized at the beginning of the sampling proce-
dure (at 5000 to 6800 and 2000 to 3700 iterations for the
simple model and the complex model, respectively) to im-
prove the mixing of the chains. This was necessary because
of the very wide prior range for the dispersion parameters,
which led to a degenerate z matrix. The same procedure was
applied to improve chain mixing after 120 000 to 139 300
(simple model) and 120 000 to 145 500 iterations (complex
model). For the simple model, the upper prior range for the
parameter kEstDens had to be adjusted from 0.02 to 0.2 after
139 300 iterations. Ultimately, after 191 600 (simple model)
and 200 900 iterations (complex model), one set of three in-
dependent chains converged, as judged from a visual inspec-
tion of the chains and Gelman and Rubin’s MCMC con-
vergence diagnostic (see Table A4). The other set of inde-
pendent chains did not fully converge, mostly because one
chain was stuck for the species-specific dispersion param-
eters. Computational constraints did not allow us to run the
sampler for even longer. A single simulation took 3 s per plot;
i.e., 6 chains × 353 calibration plots resulted in a total com-
putation time of 1.765 h per iteration without parallelization.
Fortunately, the Euler High Performance Computing Clus-
ter of ETH Zürich enabled us to use 1000 cores (500 per
model variant) and sufficient memory. The effective comput-
ing time, including the overhead when utilizing all resources,
was 10–15 s per iteration and ca. 25 d in total for each model
variant.

The posterior distribution from the calibration consisted of
1000 samples drawn from the last 32 300 (simple model) and
45 400 (complex model) iterations. The simulations from the
posterior parameter distribution provided posterior estimates
of decadal tree recruitment rates (R̂i,s) for all 343 test plots
i and species s. The mean posterior estimate (MPE) and the

80 % credible intervals (CIs) of R̂i,s from the 1000 posterior
simulations were used to assess residuals and evaluate model
performance (see Table A4). The MPE and CIs for the pa-
rameter estimate of the posterior distribution were used to
compare the trait-based model and the calibrated model.

2.8 Performance comparison using the RMSE and
marginal pseudo-likelihood (ML)

Model performance was assessed with the RMSE and the
marginal pseudo-likelihood (ML) on both training and hold-
out data. The difference between the two metrics is that the
RMSE is a general metric of fit, while the marginal pseudo-
likelihood is a Bayesian metric that relates to the Bayes factor
and posterior model weights and thus allows the support for
two alternative models to be compared based on a specific
likelihood.

For the simulations from the calibrated and trait-based
models, the RMSE was calculated for different DBH thresh-
olds: for variable thresholds between plots and harmonized
DBH thresholds of 7 and 10 cm. This harmonization was
done by artificially increasing the DBH threshold in the ob-
served and simulated data to mimic a consistent inventory
design with a common DBH threshold. We calculated the
RMSE from the training and test data based on a compar-
ison of observed and simulated recruitment in terms of the
species-unspecific, the species-specific, and the average over
the species-unspecific and species-specific RMSEs (Table 2).

The ML was calculated only for the simulations of the cal-
ibrated models because the pseudo-likelihood relies on the
dispersion parameters, which were not estimated for the trait-
based model. The ML is the average pseudo-likelihood of
the model given the training or the test data and is averaged
over the posterior parameter uncertainty (see Delpierre et al.,
2019). We evaluated the ML in both cases on the valida-
tion data based on the posterior distribution inferred from the
training data. This approach, which corresponds to the frac-
tional Bayes factor (O’Hagan, 1995), avoids inconsistencies
when comparing models with weak or uninformative priors.
The Bayes factor is then obtained by taking the ratio between
two marginal likelihoods with eM1−M2. This provides the rel-
ative posterior support of M1 relative to M2 by the data (Kass
and Raftery, 1995).

When interpreting the results, it is important to remem-
ber that both the RMSE and the ML, as evaluated here, will
typically be higher for more complex models of the training
data, so the comparison of models with these metrics of the
training data is of limited use. However, models can be sensi-
bly compared by comparing their performances for the hold
out, and it is also informative to look at the reduction in per-
formance between training and the hold out, which gives an
indication of overfitting.
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2.9 Posterior sensitivity

Global sensitivity analyses allow for the assessment of model
behavior across large parameter spaces. However, large pa-
rameter spaces may also cover unrealistic parameter configu-
rations, and computational requirements are high. Therefore,
a strategy for constraining the parameter space to a relevant
location is required (see Huber et al., 2018). We combined
the benefits of a global and a local sensitivity analysis by
constraining the parameter space by deriving a posterior dis-
tribution from the observations. This allowed us to evaluate
model sensitivity with respect to the uncertainty derived from
observed recruitment patterns in European forest reserves.

To analyze the sensitivity of regeneration to changes in the
model parameters within the posterior distribution, we ana-
lyzed the effect of increased tolerance of trait values (i.e., a
lower kLy , higher kDrToly , and lower kDDMiny) on simu-
lated recruitment within the posterior parameter range. This
was done by modeling R̂ with a GLM and a negative bino-
mial distribution with z-scaled values of negative kLy , neg-
ative kDDMiny , and positive kDrToly as predictors. This
model was implemented using glmmTMB (Brooks et al.,
2017).

3 Results

3.1 Species traits and regeneration intensity

The trait-based regeneration niche differs from the regenera-
tion niche that emerges from the model which was calibrated
with the observations made in unmanaged forest reserves.
Variation in these differences is evident between trait types,
species, and model variants (Fig. 2 and Table A2).

Light requirements stand out from the other traits because
they were most sensitive during model calibration, as indi-
cated by the narrow posterior distributions compared to the
prior parameter range (Fig. 2, left; Fig. A2a). Most poste-
rior estimates were not only narrow but also supported by
the trait values (Fig. 3, left). Estimates of the complex model
were generally closer to the trait values, with a good rank
correlation (i.e., Spearman’s rho= 0.57). Light requirements
defined by traits for the simple model were systematically
lower compared to the values emerging from the calibra-
tion. Nevertheless, a Spearman’s rho of 0.94 indicates that
the calibration put the species in a plausible order (Fig. 3, top
left). The estimates of the species-specific light requirements
were more similar for both approaches for shade-tolerant tree
species in general. Values from the calibration for Quercus
spp., Pinus sylvestris, and Betula spp. were much lower com-
pared to the trait values in the complex model but were more
similar in the simple model. For Tilia cordata, the calibra-
tion led to much higher light requirements compared to the
trait-based values with either model (see Fig. 2, left).

Drought tolerance values from both approaches matched
moderately well when using the complex model (Spearman’s
rho = 0.46) with a relatively large CI, and the expectation
was within the CI for eight species (Fig. 2, center). The MPE
from the calibration was close to the definitions of the trait
values for five species. However, drought tolerance estimates
from the calibration did not match the trait values well for
the simple model (Spearman’s rho = −0.18). Only for six
species did the wide CIs include the trait-based values, and
the MPE matched the trait values in the simple model for
two species only. For Quercus spp. (complex model), Tilia
cordata (simple model), and Pinus sylvestris (both models),
the calibration led to much lower values compared to the trait
values. Conversely, for Alnus glutinosa and Fraxinus excel-
sior, the calibration resulted in higher values compared to the
trait-based values (see Fig. 2, center).

Estimates for the minimum degree-days had a wide CI
for both models and a low rank correlation between the ap-
proaches (Spearman’s rho= 0.19 for the complex model and
−0.3 for the simple model; Fig. 2, right). Although the pos-
terior CI of the calibration included the trait-based values for
many species, the intervals were wide and the MPE values
were close to the trait-based values for only two and three
species in the complex and simple model, respectively. This
indicates that the calibration values neither fully disagree nor
perfectly match the trait-based values. For Tilia cordata (both
models) and Carpinus betulus (simple model), the calibrated
values were much lower compared to the trait-based val-
ues. Conversely, the calibrated degree-day values for Pinus
sylvestris (simple model) and Abies alba (both models) were
considerably lower compared to the trait-based values (see
Fig. 2, right).

The estimates of the calibration for general regenera-
tion intensity were narrow compared to the prior (Fig. 4)
and therefore considerably sensitive. While the species-
unspecific parameter kTrMax from the calibration (complex
model) was significantly lower than its default value for
the trait-based model, the species-specific parameter kEst-
Dens (simple) was higher than its default value for the trait-
based model (Table A1). Considering the interaction between
kEstP (which was reduced by a factor of 1/5) and kEstDens
or kTrMax (see the model description in Appendix B), the
overall amount of regeneration is generally lower for the cali-
brated model compared to the trait-based model. Specifically,
for the complex model, the MPE (kTrMax = 8762) suggests
25 times less maximum regeneration compared to the de-
fault values of the trait-based models (kTrMax = 50 000× 5
= 250 000). For the simple model, the MPA (kEstDens =
0.022) suggests a reduction of ca. 24 % per species compared
to the default trait-based model (kEstDens = 0.006× 5 =
0.03). However, it is noteworthy that these parameters mod-
ulate regeneration differently and that the magnitude of the
deviation between the parameters in the calibrated model,
the default trait-based model, and the model variants is not
directly translated into the simulated regeneration amount
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Figure 2. Mean posterior estimate, including the 80 % CI, of the species-specific parameters for the complex model (red) and the simple
model (blue). Point type indicates the approach (inverse calibration approach (ICA) or trait-based approach (TBA)). The panels show values
for three species traits: light requirements (kLy ), drought tolerance (kDrToly ), and minimum degree-days (kDDMinkLy ). The uniform prior
parameter range (min, max) of each species trait (x axis) is indicated by the gray rectangle in the background.

Figure 3. Comparison of expected values for species-specific establishment thresholds based on ecological knowledge (TBA, trait-based
approach; see Leuschner and Ellenberg, 2017) and MPE (ICA, inverse calibration approach; this study). The range displays the 80 % CI for
the complex model (top panels) and the simple model (bottom panels). The 1 : 1 relationship is indicated by the black line. Spearman’s rank
correlation of the MPE and the trait-based approach (TBA) values are shown in each panel.
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Figure 4. Posterior distributions of the non-species-specific param-
eters determining the amount of regeneration: (a) kTrMax (complex
model, red) and (b) kEstDens (simple model, blue). Effects on the
dispersion parameter φ: (c) DBH threshold and (d) plot size. The
prior parameter in (a) and (b) is given by the extent of the graph.
The prior range for the dispersion parameters was−5 to 5 and is not
shown. Note that lower values of the dispersion parameter indicate
higher dispersion. Consequently, negative estimates for dispersion
are positive effects on the actual dispersion. Species’ dispersion pa-
rameters are presented in Table A3.

within the model (see Fig. 1 and the full set of equations in
Appendix B).

The coefficient for the effect of the DBH threshold in the
species-specific dispersion was significantly different from
zero, with an MPE of −0.39 and −0.41 for the complex
model and simple model, respectively. This indicates that
dispersion increases for higher DBH thresholds (Fig. 4c).
The coefficient for the effect of plot size is slightly nega-
tive but not significantly different from zero (Fig. 4d), which
indicates that there is no significant effect of plot size on dis-
persion. However, a very weak positive effect of larger plots
on dispersion is visible. At the species level, dispersion ef-
fects differed significantly, with the lowest dispersion seen
for Fagus sylvatica and the highest for Quercus spp. (Fig. A1
and Table A3). These findings emerged from both the simple
and the complex model (see Fig. 4c and d).

3.2 Model performance

The calibration led to somewhat better performance com-
pared to the trait-based approach (Fig. 5 and Table 2). Both
model variants performed better when calibrated and re-
vealed the uncertainty of the posterior simulations. However,
performance differed strongly between species. The most
gains in performance coupled with a high degree of uncer-
tainty were evident for Abies alba and Tilia cordata with
both models (Fig. 5). No increase in performance was ev-

ident for Quercus spp. and Alnus glutinosa, although high
uncertainty of the simulations was evident for Alnus gluti-
nosa with the complex model. Slight but distinct gains in
performance were found for Fagus sylvatica and Picea abies
with the complex model. Note that not only the intercept for
the comparison of observations and simulations but also the
slope changed, which indicates that this was not only due to
the regeneration intensity parameters. Overall performance
increased distinctly for the complex model and considerably
for the simple model (see the RMSE in Table 2). In sum-
mary, the calibration clearly improved model performance
for almost all species in the complex model and to a limited
extent in the simple model. In addition, the uncertainty based
on the posterior parameter distribution was clearly visible in
the simulations. The RMSE decreased with increasing DBH
threshold (Fig. A3) for both models.

The ML confirmed the higher performance of the complex
model (ML = −391.61) compared to the simple model (ML
= −401.86), which was also evident from the RMSE (Ta-
ble 2 and Fig. A2b). According to Kass and Raftery (1995),
the fact that the Bayes factor from the training data is above
200 suggests strong support for the complex model (Bayes
factor = 28 282.54).

3.3 Posterior sensitivity

The variation of the parameter values characterizing the
species’ light requirements had the strongest effect on con-
specific regeneration for each model variant (Fig. 6a and b,
respectively). The variation of drought tolerance within the
posterior, which was rather high, had a much weaker effect
on conspecific recruitment, and the minimum degree-days
had a very low effect on recruitment within the posterior pa-
rameter range. Interestingly, positive effects for heterospe-
cific recruitment were evident in the case of higher shade tol-
erance of Quercus spp. and Acer pseudoplatanus, but only in
the complex model (Fig. 6b). Picea abies (simple model) and
Fagus sylvatica (complex model) showed the strongest neg-
ative effects on the emergence of heterospecific recruitment
(Fig. 6).

4 Discussion

Below, we discuss the research questions with respect to the
results and the ecological implications of our findings. First,
we focus on the differences in species-specific traits between
the calibrated and the trait-based model; second, we evalu-
ate how the structures of the simple and complex models af-
fected performance; and third, we discuss technical advances
and methodological aspects.
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Table 2. RMSEs of the simulated and predicted R and the pseudo-likelihoods for the different models and approaches (the inverse calibra-
tion approach (ICA) and the trait-based approach (TBA)). The marginal pseudo-likelihood (ML) was derived from the posterior parameter
distribution of the training data (N = 353) and the test data (N = 343). Species-specific RMSE values are presented in Fig. A4.

Complex Simple

ICA TBA ICA TBA

Test Training Test Training Test Training Test Training

RMSE 5.84 6.19 8.86 9.29 6.32 6.63 6.17 6.47
ML −391.61 −411.38 −401.86 −419.65

Figure 5. Simulated vs. observed recruitment rates at 7 cm DBH of the 11 species for (a) the simple model and (b) the complex model. The
red lines show linear regressions from 1000 simulated recruitment rates using the posterior parameter distribution at the 343 test plots. The
data points used for the regression are indicated by the blue color of the hexagons, where light blue indicates fewer points and dark blue
indicates more points. The yellow lines characterize the recruitment rates for the same test plots based on the default parameter setting (TBA,
trait-based approach).

4.1 Species traits

The species trait values varied considerably between the cal-
ibrated models, the trait based-models, and the two model
variants. We aim to explain these differences by reflecting
on (a) the theoretical expectations of the two approaches and
(b) the structural differences between the model variants.

Differences between the trait-based and calibrated models
can be expected based on ecological considerations regarding
the regeneration niche (Grubb, 1977) and ontogenetic niche
shifts (Werner and Gilliam, 1984) as well as methodologi-
cal aspects such as the importance of context for modeling
trait–demography relationships (Yang et al., 2018). Specifi-
cally, we expected high sensitivity and a good match for the
shade tolerance of the species because light availability is a
key determinant of tree regeneration on small spatial scales

(Collins and Good, 1987) and its context is modeled explic-
itly and in rather high detail in ForClim (note the direct link
between stand structure and light availability in Eqs. 1 to
3). In contrast, the context of trait values related to climate
(drought tolerance and temperature requirements) is only
vaguely defined by species distribution limits (Meusel et al.,
1965) along macroclimatic gradients (Rudloff, 1981). In ad-
dition, the traits for light requirements are differentiated be-
tween juveniles and adults (Leuschner and Ellenberg, 2017),
while those related to climate are not. Therefore, we expected
less agreement between the calibrated and trait-based mod-
els for the latter drivers. Our results supported these expec-
tations, as shown by the mostly good agreement between the
light requirement parameters compared to climatic parame-
ters in the two approaches. Notably, this pattern was found in
both the simple and the complex model, and it thus appears
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Figure 6. Estimates of the effects of increased tolerances for kLy , kDrTolyy , and kDDMinyy on the emergence of conspecific and het-
erospecific recruitment for the simple model (a) and the complex model (b). The effect sizes correspond to the coefficients from a GLM that
predicts recruitment with scaled tolerance parameters so that they have a mean of 0 and a standard deviation of 2; an increase in the value
always indicates an improvement for the species.

to be a robust feature, irrespective of the structure of the re-
generation model. Furthermore, the drought-related parame-
ters matched better between the calibrated and the trait-based
models in the complex variant, which indicates that trait val-
ues embedded in a model that connects drought effects and
competition during regeneration have more support from the
data. This interlink of competition and drought has also been
demonstrated in grassland communities (Grant et al., 2014;
Levine et al., 2022) and tree species mixtures (Jucker et al.,
2014; Grossiord, 2020; Young et al., 2017; Clark et al., 2016;
Ruiz-Benito et al., 2013; Haberstroh and Werner, 2022).

4.1.1 Light

The nuanced differences between the model variants in terms
of the estimates of the species’ light requirements can be put
in context with the regeneration intensity parameter. The cali-
brated trait values from the complex model were almost iden-
tical to the trait-based values for most species (Larcher, 1996;
Lyr, 1992), whereas in the simple model, the light require-
ments were systematically lower in the calibrated compared
to the trait-based models. This indicates that in the simple
model, excessive recruitment levels (as embodied by the pa-
rameter kEstDens) were compensated for by erroneous light
requirements (see Fig. 2). These inconsistencies may arise
from the structure of the simple model, where the amount of
recruitment is equal for all species that regenerate. Thus, the
simple model lacks the flexibility to (a) generate an appropri-
ate number of recruits for the dominant species and (b) lower
the number of recruits for less dominant species. This expla-
nation is supported by two other findings: the estimates of the

light requirements for the often-dominant species Fagus syl-
vatica matched the trait-based values, while almost all other
species had exaggerated estimates (Fig. 2); and the sensitiv-
ity of Fagus sylvatica to light within the posterior distribution
was close to zero, while there was considerable uncertainty
regarding the modulating effects of light for other species
(Fig. 6). The light-demanding tree species Quercus spp., Pi-
nus sylvestris, and Betula spp., along with Tilia cordata, did
not match expectations either, which is in line with this pat-
tern. These findings suggest that structural problems regard-
ing competition for light in regeneration models of European
forests can be exposed by the behavior of Fagus sylvatica.
Thus, if the competitive dominance of Fagus sylvatica is not
captured appropriately, a calibrated model is likely to com-
pensate for this elsewhere.

In contrast to the absolute values for light requirements,
the ranking of the species was more similar for the ap-
proaches for the simple model (Fig. 3). The lower rank corre-
lation of the complex model is mostly due to much lower es-
timates for light-demanding tree species such as Betula spp.,
Pinus sylvestris, and Quercus spp., thus suggesting that the
simple model performs better in simulating the regeneration
of early-successional species. One possible reason for this
behavior could be that all establishment factors (i.e., envi-
ronmental drivers of regeneration) are assumed to be equally
important in virtually all vegetation models, including For-
Clim (see Bugmann and Seidl, 2022). This assumption has
different implications for a model with competition between
species (complex model) compared to a model without com-
petition (simple model). This becomes clear if we consider
a stand with high light availability, i.e., in which the light
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requirements of all species are fulfilled. Within the simple
model, the species establishment count takes into account
their successional strategy, while the complex model lacks
this mechanism and may favor species with higher suitability
derived from factors other than light, thus blurring the over-
whelming effect of the life-history strategies on the amount
of tree regeneration under high-light conditions (see Welden
and Slauson, 1986). Subsequently, the simple model adjusts
for excessive regeneration through the processes of growth
and mortality. By contrast, in the complex model, there may
be too few early successional trees, and subsequent compen-
sation is insufficient. This notion is supported by the fact
that the RMSE decreased with higher DBH thresholds and
suggests that unrealistic regeneration patterns must be com-
pensated for in vegetation models by subsequent growth and
mortality (see Díaz-Yáñez et al., 2024).

In summary, the light niches of most species were recov-
ered considerably well. Although the identified inconsisten-
cies regarding light requirements are caused by structural
problems of the model, our results provide strong support
for the quantification and ranking of species’ trait-based light
requirements (i.e., the original parameterization of species’
light requirements in ForClim).

4.1.2 Drought

The credible intervals (CIs) of the estimates for drought tol-
erance were wide in the calibrations for both model variants,
and the rank correlation between calibrated and trait-based
values was better for the complex model. The ranking of
species-trait-based drought tolerance values is ecologically
plausible and widely accepted (Huber et al., 2020; Bugmann,
1994; Leuschner and Ellenberg, 2017). Yet, a key difference
between the structures of the simple and complex models is
competition during regeneration, which may explain the bet-
ter rank correlation for the complex model (see Grant et al.,
2014; Andivia et al., 2018; Käber et al., 2023). However, the
CIs of the calibration estimates were high, and various mis-
matches were evident. We surmise that they arise from an
oversimplified representation of drought in which nuanced
differences between species drought tolerances and poten-
tial facilitation effects are not reflected (Lortie and Callaway,
2006). A different and more detailed perspective on model-
ing competition for drought is to consider the intra- or inter-
annual variability of water availability in contrast to species
phenological requirements (see Detto et al., 2022 and Levine
et al., 2022). However, mismatches in temporal and spatial
scales between the representation of drought in the simula-
tions and actual drought conditions at the observed sites, cou-
pled with errors in the input variables (climate and soil prop-
erties) and observations, are possible reasons for high CIs
(see Shoemaker et al., 2020). Consequently, we would expect
a higher predictive ability of tree species traits for drought
at smaller scales with clearly defined relations between envi-
ronmental drivers and outcomes, as shown by Li et al. (2022),

who found that species traits explained more of the varia-
tion in tree seedling performance under controlled conditions
in experiments compared to large-scale studies (see Paine et
al., 2015). For the simple model, the estimates did not fol-
low a clear pattern, and it is difficult to assess whether the
estimates that are close to the expectation (e.g., for Picea
abies) are actually providing a signal or are just random. De-
spite these uncertainties, it is noteworthy that some species-
specific trait-based values were recovered with the calibra-
tion, thus providing at least some support from the calibrated
drought-related regeneration niche, as it was defined by the
traits.

4.1.3 Temperature

In contrast to the two other autecological parameters, the
calibration estimates for the minimum degree-day require-
ments rarely matched the trait-based values. In general, the
species minimum degree-days had wide CIs. We consider
three factors to explain this. First, the manifold effects of
temperature on regeneration at different scales, which can-
not reasonably be aggregated into one single parameter, cou-
pled with the fact that the original source of the trait val-
ues did not differentiate juvenile distribution ranges (Meusel
et al., 1965; Kienast, 1987; Rudloff, 1981). Second, onto-
genetic shifts (e.g., Vitasse, 2013) and demographic depen-
dencies, i.e., the cumulated survival probability and growth
over a tree’s lifetime (see Grubb, 1977; Heiland et al., 2022).
And third, it is likely that temperature-related processes lim-
ited regeneration much less often in our dataset compared to
the persistent and strongly varying competition for light (see
Grime and Mackey, 2002; Vincent and Harja, 2008). Distin-
guishing between filters for the macroclimatic factors and dy-
namic small-scale filters might be a better conceptual basis
for more realistic and more accurate tree regeneration mod-
els (but see Thakur and Wright, 2017). Consequently, with
respect to process formulations in dynamic models, valid
growth and mortality formulations might be more important
for temperature–regeneration relations than the formulation
of the initiation phase of tree regeneration.

4.2 Model performance

Generally, the calibration resulted in much better perfor-
mance for the complex model and a moderate improvement
for the simple model compared to the trait-based approach.
This is consistent with previous studies using Bayesian cal-
ibration of dynamic models (Augustynczik et al., 2017;
Cailleret et al., 2019; Trotsiuk et al., 2020; Van Oijen et al.,
2005). The main reason for this improvement in both model
variants is the overall lower regeneration amount, which re-
sults from the combination of establishment probability and
regeneration intensity. Thus, our results suggest that calibra-
tion can help to sharpen the estimates of regeneration param-
eters that are not well constrained by standard empirical data.
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The somewhat better performance of the complex model
is best explained by the way the species-specific amount of
regeneration is determined. While the simple model does this
uniformly, the complex model distributes the regeneration to
the species according to their environmental suitability. This
is also reflected in the more realistic estimates of the regener-
ation niche along the drought gradient. Overall, our findings
corroborate the considerations of Huber et al. (2020), who
suggested the simultaneous use of different model variants.
In our study, the regeneration patterns across the very hetero-
geneous forest types in our dataset were captured much better
by the complex model, which implicitly allows for differen-
tiating processes (captured via the EFs) in the regeneration
layer. In contrast, the ideas underlying the simple regenera-
tion model, which was originally developed for multi-species
forests with high evenness (Botkin et al., 1972), turned out
to be less suitable for reproducing the observed regeneration
patterns.

In addition to established performance measures such as
the RMSE or Bayes factor, the comparison of the default
trait values and inversely calibrated trait values allowed us
to evaluate whether the calibrated parameters are just “de-
grees of freedom” that are used to make the model fit better
to the data or whether their estimates are plausible from an
ecological perspective (see Hellegers et al., 2020). Based on
the discussion of species trait values above, this leads to the
conclusion that the simple model is more realistic for the fac-
tor of light, whereas the complex model captures processes
related to drought better.

4.3 Methodological considerations

4.3.1 Spin-up phase

We used a spin-up phase for dealing with the lack of infor-
mation on small trees (i.e., the trees that are smaller than
the diameter threshold, which inevitably has to be used in
any inventory) in the initial state of the forest inventory. The
spin-up phase proved to be a good solution because regenera-
tion amounts were generally in agreement with observations.
However, we were unable to evaluate whether the assumption
of a steady state of regeneration below the DBH threshold
was realistic. For this, data with much higher temporal reso-
lution and a low DBH threshold (≤ 1.27 cm) would be neces-
sary. Theoretically, our approach would lead to biased regen-
eration if the actual conditions for regeneration were signif-
icantly different from the conditions observed in the initial
inventory. For example, an actual condition of lower light
availability would lead to a bias towards shade-intolerant
species; conversely, a higher light availability would lead to
a bias towards shade-tolerant species. In addition, the overall
regeneration amount could be affected by these biases. Thus,
we encourage future studies to test the implications of our
assumptions to evaluate the potential bias introduced by our
approach.

4.3.2 Dispersion

Processes that are not considered in the models could explain
further variation in parameters and performance between ap-
proaches and model variants. We found that the dispersion
parameter of the negative binomial distribution was mostly
determined by ecological processes: large differences in dis-
persion between species indicate that species-specific factors
play a key role, as discussed below.

One such factor is the regeneration strategy, for which light
requirements usually are a good predictor (Grime, 1977).
Species with high light requirements that require distur-
bances for regeneration (e.g., Betula spp., Pinus sylvestris)
featured higher dispersion than typical late-successional,
shade-tolerant species (e.g., Fagus sylvatica or Picea abies.
This pattern was also reflected for intermediate species on a
gradient from low to high light requirements. However, not
all species follow this pattern.

Migration limitations are another factor that are likely to
contribute to species-specific range limits. Specifically, the
range limits of Abies alba, Carpinus betulus, and Quercus
spp. are potentially determined by lags in postglacial range
expansion (Mauri et al., 2022; Svenning et al., 2008) and its
interplay with long-term demographic processes and com-
petition (Scherrer et al., 2020). The mismatch between esti-
mated and ecologically plausible parameters could be caused
by the model’s assumption that seeds of all species are avail-
able all the time and the associated absence of dispersal limi-
tations in the model. Dispersion parameters that are based on
real-world observations account for such problems when us-
ing likelihood-based approaches for model evaluation. Con-
sequently, species-specific clustering (e.g., random draws
from a negative binomial distribution) could substitute for
mechanisms that are not explicitly included in dynamic forest
models. However, the parameterization of such mechanisms
would be challenging because it would require a process-
based justification; otherwise, dispersion parameters are only
useful as a statistical measure for clustering in observed data
(Hartig et al., 2012).

Overall, whether the incorporation of dispersion is benefi-
cial in a model calibration study depends on the purpose of
the study. Our study demonstrates that dispersion must be ac-
commodated to achieve a higher accuracy of stand-level pre-
dictions. In particular, validation and calibration studies re-
quire dispersion components to enable a reliable comparison
of simulations with observations of tree regeneration. From
a theoretical point of view, however, the incorporation of dis-
persion is not necessarily required. For example, a study on
different management scenarios that does not consider dis-
persion can still generate valuable insights for silvicultural
decisions if the assumptions and context are clearly defined.
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4.3.3 Pseudo-likelihood

Our approach to deriving the likelihood (see Eqs. 8 to 12)
proved to be generally useful for our model calibration. Nev-
ertheless, several aspects regarding the approach applied here
can be improved in follow-up research. First, we deal with
a stochastic likelihood that makes it extremely difficult for
the sampler DEzs to efficiently sample the parameter space.
We acknowledge that, theoretically, other approaches, such
as Bayesian synthetic likelihood (Wood, 2010) or approx-
imate Bayesian computation (Csilléry et al., 2010), might
solve the issue of intractable likelihoods more elegantly than
our approach. However, the computation time would be a
major challenge if one wanted to apply these alternative ap-
proaches. Second, we focused on decadal average tree re-
cruitment rates as a benchmark for evaluating the tree regen-
eration niche. This aggregates over many subprocesses and
does not explicitly include time as a factor in the pseudo-
likelihood. We did not consider early growth or mortality
just after establishment either. Future studies may consider
all three demographic processes simultaneously to construct
an improved benchmark of model accuracy (Bröcker and
Smith, 2007; Dietze, 2017). Third, our study covered very
few boreal plots and only rarely covered the transition to-
wards very dry, Mediterranean-type forest ecosystems. Thus,
future studies could benefit strongly from extending the en-
vironmental gradients to more extreme climates so as to re-
duce parameter uncertainty. Thus, our study also underlines
the importance of long-term monitoring of forest ecosystems
over a wide range of conditions (see Hanbury-Brown et al.,
2022).

5 Conclusions

This study aimed to compare two tree regeneration mod-
els with different complexities and to examine their abilities
to capture the regeneration niches of 11 tree species in un-
managed European forests. Furthermore, we sought to gain
a deeper understanding of the effectiveness of the two ap-
proaches at parameterizing tree regeneration in dynamic for-
est models.

The comparison of the regeneration niche that emerged
from the inverse calibration approach with the predefined
niche of the trait-based approach revealed that calibration
led to better predictions of tree regeneration. The improve-
ments were mostly caused by the lower regeneration inten-
sity compared to the trait-based models. Decreases in regen-
eration intensity were modulated by competition for light,
with a subordinate role of drought. Temperature was not sen-
sitive, and, based on the EuFoRIa dataset, it was not possi-
ble to recover the temperature-based niche. The mismatches
between predefined and inversely calibrated trait values led
to the conclusion that competition for light is a key process
for tree regeneration, along with parameters that modulate

the tree regeneration amount. We therefore hypothesize that
climatic drivers must become more important after initial es-
tablishment, having pronounced effects on tree growth and,
indirectly, on mortality.

Furthermore, we found that a more complex model that in-
corporates competition during regeneration features a higher
performance compared to a simple model without competi-
tion. This highlights the importance of considering the inter-
actions between species during the regeneration process and
underscores the potential of adding model complexity for im-
proving model performance.

Future research faces the challenge of identifying the
sweet spot between simulating realistic, nuanced regenera-
tion amounts for individual species on the one hand and ex-
cessive regeneration that must be regulated later in tree life
by growth and mortality on the other hand. While the former
might expose more structural problems of the model, with
the consequences of unrealistic species composition and in-
sufficient regeneration intensity, the latter potentially results
in overoptimistic predictions of forests’ regenerative capa-
bilities, with consequences for, e.g., the assessment of the
capacity of forests to adapt to climate change.

Overall, we encourage the use of inverse calibration to im-
prove the understanding of the relation of real-world observa-
tions to tree regeneration models. Our major contribution to
improving tree regeneration models lies in the finding that,
overall, regeneration intensity and light availability are the
most important factors that govern tree regeneration. Con-
versely, macroclimatic drivers (i.e., effects of climate) are not
expected to directly alter the emergence of small trees; rather,
they affect tree regeneration by modulating the light avail-
ability via increased mortality of larger trees. Thus, the accu-
racy of predictions of tree regeneration for the resilience of
forests under climate change may depend more strongly on
the representation of within-stand dynamics than the species
range limits along large climatic gradients.
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Appendix A

Figure A1. Posterior distribution of species-specific parameters for the complex model (red) and the simple model (blue). Column (a) shows
the species-specific dispersion parameter φ. The other columns show the ecological regeneration thresholds: (b) shows the light requirements
(kLy), (c) shows the drought tolerance (kDrToly), and (d) shows the degree-days (kDDMiny). The species are sorted row-wise according to
their average dispersions across both models. The prior parameter range and the expected value are indicated by the dashed and solid yellow
lines, respectively.
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Figure A2. (a) Sensitivity of the parameters expressed as the percentage of the prior range that is covered by the 80 % CI. (b) Likelihood
distribution of the posterior simulations from the simple model (blue) and the complex model (red). The results for the complex model and
the simple model are shown in red and blue, respectively.

Figure A3. Relationship between RMSE and DBH threshold. “flexible” refers to the individual DBH thresholds applied during model
calibration. The DBH thresholds“7” and “10” refer to the subset of sites which had DBHs of at least 7 and 10 cm, respectively.

Geosci. Model Dev., 17, 2727–2753, 2024 https://doi.org/10.5194/gmd-17-2727-2024



Y. Käber et al.: Inferring the tree regeneration niche 2745

Figure A4. RMSE of the difference between posterior predictions (R̂) and observations (R). Axis scaling: (a) log10 scaled; (b) the x-axis
range varies with the RMSE of the trait-based approach (TBA; the default); the x-axis range varies between species with the RMSE of the
inverse calibration (ICA).
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Table A1. Posterior values of the recruitment amount parameters kTrMax (complex model) and kEstDens (simple model), and the effects of
DBH φDBH and plot area φA on dispersion. The outer values refer to the 80 % CIs and the middle values refer to the MPE (i.e., 10 %CI |
MPE | 90 %CI).

φDBH φA kTrMax kEstDens

ICA TBA ICA TBA

Complex −0.439 | −0.388 | −0.346 −0.345 | −0.171 | −0.002 7372 | 8762 | 10210 50 000 – –
Simple −0.473 | −0.405 | −0.345 −0.261 | −0.120 | 0.017 – – 0.017 | 0.022 | 0.027 0.006

Table A2. Species posterior parameter values for light requirements (kLy ), drought tolerance (kDrToly ), and degree-days (kDDMiny ),
including their default values. The outer values refer to the 80 % CIs and the middle values refer to the MPE (i.e., 10 %CI |MPE | 90 %CI).
∗ Default values for Betula spp. are those of Betula pendula; default values for Quercus spp. are those of Quercus petraea.

Species kLy kDrToly kDDMiny

ICA ICA ICA

TBA 10 %CI |MPE | 90 %CI TBA 10 %CI |MPE | 90 %CI TBA 10 %CI |MPE | 90 %CI

Simple Complex Simple Complex Simple Complex

Abies alba 0.03 0.02 | 0.07 | 0.12 0.01 | 0.07 | 0.15 0.23 0.10 | 0.17 | 0.25 0.11 | 0.22 | 0.34 641 810 | 1058 | 1301 844 | 1072 | 1292
Acer pseudoplatanus 0.05 0.11 | 0.14 | 0.16 0.05 | 0.07 | 0.10 0.25 0.15 | 0.22 | 0.30 0.08 | 0.18 | 0.29 898 927 | 1148 | 1365 305 | 677 | 1091
Alnus glutinosa 0.2 0.18 | 0.27 | 0.37 0.13 | 0.19 | 0.25 0.08 0.19 | 0.27 | 0.35 0.02 | 0.08 | 0.14 898 661 | 997 | 1325 576 | 827 | 1092
Betula spp.∗ 0.5 0.25 | 0.32 | 0.38 0.07 | 0.19 | 0.33 0.16 0.11 | 0.20 | 0.29 0.06 | 0.17 | 0.28 610 512 | 892 | 1265 427 | 752 | 1054
Carpinus betulus 0.075 0.17 | 0.20 | 0.24 0.11 | 0.14 | 0.18 0.25 0.22 | 0.29 | 0.36 0.21 | 0.30 | 0.37 898 260 | 496 | 736 260 | 626 | 1051
Fagus sylvatica 0.03 0.03 | 0.05 | 0.06 0.01 | 0.02 | 0.03 0.25 0.26 | 0.32 | 0.38 0.14 | 0.24 | 0.34 723 506 | 811 | 1094 204 | 454 | 745
Fraxinus excelsior 0.075 0.12 | 0.15 | 0.19 0.05 | 0.08 | 0.12 0.16 0.26 | 0.31 | 0.37 0.08 | 0.16 | 0.26 980 443 | 737 | 1040 293 | 635 | 996
Picea abies 0.05 0.10 | 0.12 | 0.14 0.03 | 0.05 | 0.08 0.15 0.04 | 0.15 | 0.28 0.16 | 0.25 | 0.33 385 416 | 603 | 782 208 | 461 | 720
Pinus sylvestris 0.4 0.20 | 0.31 | 0.42 0.11 | 0.20 | 0.30 0.37 0.02 | 0.06 | 0.09 0.15 | 0.25 | 0.34 610 828 | 1147 | 1419 180 | 432 | 719
Quercus spp.∗ 0.2 0.28 | 0.39 | 0.47 0.04 | 0.05 | 0.06 0.33 0.24 | 0.31 | 0.38 0.05 | 0.11 | 0.19 785 394 | 820 | 1213 787 | 1056 | 1328
Tilia cordata 0.075 0.20 | 0.30 | 0.39 0.23 | 0.33 | 0.43 0.33 0.09 | 0.15 | 0.22 0.20 | 0.29 | 0.37 1339 260 | 512 | 752 246 | 487 | 735

Table A3. Species dispersion parameter posterior values. The outer values refer to the 80 % CIs and the middle values refer to the MPE (i.e.,
10 %CI |MPE | 90 %CI).

Species Complex Simple

Abies alba 0.010 | 0.018 | 0.025 0.011 | 0.019 | 0.028
Acer pseudoplatanus 0.043 | 0.072 | 0.102 0.038 | 0.064 | 0.092
Alnus glutinosa 0.008 | 0.018 | 0.031 0.008 | 0.018 | 0.030
Betula spp. 0.001 | 0.004 | 0.008 0.001 | 0.004 | 0.009
Carpinus betulus 0.028 | 0.052 | 0.077 0.028 | 0.048 | 0.069
Fagus sylvatica 0.141 | 0.199 | 0.257 0.117 | 0.161 | 0.208
Fraxinus excelsior 0.035 | 0.055 | 0.080 0.029 | 0.047 | 0.064
Picea abies 0.087 | 0.135 | 0.182 0.081 | 0.121 | 0.165
Pinus sylvestris 0.013 | 0.026 | 0.040 0.009 | 0.021 | 0.032
Quercus spp. 0.000 | 0.003 | 0.006 0.001 | 0.005 | 0.010
Tilia cordata 0.026 | 0.051 | 0.080 0.019 | 0.036 | 0.054
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Table A4. Gelman–Rubin diagnostics for the simple and complex models split into two sets of independent chains.

Simple model Complex model

Chains 1–3 Chains 4–6 Chains 1–3 Chains 4–6

Point est. Upper CI Point est. Upper CI Point est. Upper CI Point est. Upper CI

kEstDens/kTrMax 1.001 1.002 1.034 1.050 1.004 1.015 1.073 1.090
dispdbh 1.000 1.000 1.232 1.657 1.002 1.003 1.274 1.761
disppsize 1.000 1.000 1.058 1.146 1.002 1.009 1.238 1.672
kDDMiny_0 1.001 1.003 1.053 1.153 1.004 1.011 1.044 1.050
kDDMiny_2 1.002 1.006 1.115 1.239 1.000 1.001 1.022 1.056
kDDMiny_5 1.005 1.011 1.251 1.780 1.000 1.000 1.212 1.597
kDDMiny_9 1.003 1.008 1.124 1.255 1.001 1.005 1.245 1.719
kDDMiny_10 1.001 1.005 1.096 1.175 1.002 1.006 1.057 1.091
kDDMiny_13 1.002 1.006 1.074 1.098 1.002 1.006 1.034 1.055
kDDMiny_14 1.007 1.022 1.204 1.618 1.002 1.008 1.067 1.168
kDDMiny_17 1.002 1.005 1.065 1.171 1.003 1.013 1.156 1.444
kDDMiny_18 1.001 1.003 1.108 1.274 1.004 1.014 1.164 1.474
kDDMiny_21 1.001 1.001 1.034 1.035 1.005 1.017 1.031 1.053
kDDMiny_27 1.002 1.005 1.314 1.995 1.001 1.002 1.211 1.640
kDrToly_0 1.004 1.010 1.080 1.088 1.003 1.007 1.025 1.030
kDrToly_2 1.000 1.000 1.092 1.244 1.012 1.038 1.027 1.040
kDrToly_5 1.004 1.011 1.138 1.325 1.000 1.001 1.101 1.228
kDrToly_9 1.002 1.006 1.082 1.218 1.002 1.006 1.057 1.114
kDrToly_10 1.001 1.004 1.108 1.273 1.003 1.009 1.324 2.116
kDrToly_13 1.001 1.003 1.058 1.091 1.001 1.004 1.041 1.052
kDrToly_14 1.001 1.002 1.222 1.681 1.000 1.001 1.071 1.167
kDrToly_17 1.005 1.011 1.156 1.435 1.001 1.002 1.039 1.057
kDrToly_18 1.004 1.007 1.284 1.981 1.002 1.008 1.176 1.504
kDrToly_21 1.000 1.001 1.003 1.005 1.001 1.006 1.083 1.195
kDrToly_27 1.001 1.006 1.182 1.530 1.002 1.006 1.228 1.676
kLy_0 1.003 1.007 1.252 1.876 1.005 1.009 1.403 2.317
kLy_2 1.002 1.005 1.138 1.280 1.002 1.003 1.030 1.039
kLy_5 1.003 1.007 1.090 1.194 1.002 1.007 1.142 1.389
kLy_9 1.007 1.014 1.190 1.559 1.000 1.001 1.037 1.060
kLy_10 1.004 1.010 1.072 1.074 1.009 1.032 1.232 1.754
kLy_13 1.002 1.004 1.110 1.235 1.004 1.012 1.112 1.289
kLy_14 1.001 1.005 1.243 1.819 1.000 1.001 1.077 1.091
kLy_17 1.000 1.001 1.034 1.093 1.001 1.002 1.037 1.062
kLy_18 1.002 1.003 1.145 1.164 1.001 1.003 1.042 1.053
kLy_21 1.006 1.013 1.210 1.643 1.001 1.004 1.066 1.115
kLy_27 1.001 1.002 1.137 1.345 1.001 1.002 1.059 1.098
disp_0 1.000 1.001 1.238 1.747 1.001 1.001 1.234 1.726
disp_2 1.000 1.000 1.237 1.727 1.002 1.004 1.343 2.168
disp_5 1.001 1.002 1.214 1.635 1.006 1.011 1.296 2.079
disp_9 1.001 1.001 1.222 1.700 1.001 1.002 1.239 1.725
disp_10 1.000 1.001 1.267 1.992 1.003 1.008 1.287 1.934
disp_13 1.004 1.009 1.228 1.730 1.030 1.060 1.230 1.727
disp_14 1.000 1.000 1.290 1.966 1.002 1.005 1.236 1.723
disp_17 1.000 1.000 1.246 1.740 1.007 1.015 1.358 2.096
disp_18 1.002 1.003 1.140 1.389 1.006 1.020 1.343 2.229
disp_21 1.012 1.022 1.276 2.006 1.004 1.008 1.174 1.501
disp_27 1.003 1.008 1.237 1.761 1.001 1.002 1.309 2.242
disp_999 1.002 1.002 1.342 2.195 1.002 1.005 1.397 2.197
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Appendix B: Model description

This appendix provides a detailed description of the two
model variants used in this study. It complements the de-
scription in the main script (Fig. 1) but only covers the re-
generation module of ForClim. Note that this model incor-
porates some minor changes compared to the original formu-
lations in Bugmann (1994) for the simple model and Huber
et al. (2020) for the complex model. However, these changes
do not affect the functioning of the model.

B1 Step 1 – does regeneration take place?

The first step is to determine whether regeneration takes
place at all in any given year; this is done for each species on
each patch. The probability of regeneration (kEstP) was set to
2 % for the calibration – lower than the default value (10 %)
of kEstP in the default model (the trait-based approach). This
was done to reduce the number of cohorts and thus computa-
tional costs. The reduction, however, does not reduce the ef-
fective regeneration because it can be compensated for by the
parameters for the regeneration amount (kEstDens and kTr-
Max; see Table B1 and Eqs. (B2) and (B3)) in the sense that
reducing kEstP by a factor of 1/5, for example, can be com-
pensated for by increasing kEstDens or kTrMax by a factor
of 5.

PEstEFs = kEstP×WTEFs ×ALEFs ×BPEFs
×DDEFs ×SMEFs

PEsts =
{

1, U(0,1) < PEstEFs
0, else, (B1)

where U is a function that draws a random number from a
uniform distribution ranging from 0 to 1. The complex model
determines whether regeneration takes place (PEst = 1) or
not (PEst= 0) regardless of the species, but it does depend on
the site factors degree-days (mDDAn) and drought (mDrAn).
Specifically, PEst is calculated with

kDrLL= 0.1; kDrUL= 0.5

kDDUL= 1225;kDDLL= 0

gRedFacDI=
mDrAn− kDrLL
kDrUL− kDrLL

gRedFacDD= 1.0−
mDDAn− kDDLL
kDDUL− kDDLL

gRedFac=

Max(gRedFacDI,gRedFacDD)
ukEstP= kEstP× (1− gRedFac)

PEst=
{

1, U(0,1) < ukEstP
0, else.

(B2)

B2 Step 2 – how much regeneration?

Second, the number of new trees is calculated.

The simple model simulates the maximum regeneration
amount per species based on the establishment intensity pa-
rameter (kEstDens) but also on kLas , which is used as a
proxy for seed production (Huber et al., 2020; Risch et al.,
2005). Specifically, the maximum regeneration kEstMaxs for
species s is calculated with

kEstMaxs = PEsts × kEstDens× kPatchSize · kLa,s , (B3)

where kPatchSize is the patch size, which was set to 800 m2

In the complex model, the regeneration amount is regulated
by the continuous establishment flag (EFc) of the most suit-
able species, site factors (see the calculation of gRedFac in
Eq. (B2)), and the regeneration intensity parameter kTrMax.
Specifically, the regeneration amount over all species (nTrs)
is calculated with

EFcs =MIN(WTEFcs,ALEFcs,BPEFcs,

DDEFcs,SMEFcs) (B4)
uEFMax=MAX(0,EFcs) (B5)

gEstMax= PEst · uEFMax

×

(
kTrMax× (1− gRedFac)

10000 × kPatchSize
−Trs

)
(B6)

nTrs= U(1,gEstMax). (B7)

B3 Step 3 – what species?

Third, the final number of new trees for each species (nTrss)
is determined.

In the simple model, for each species s, a random number
between 1 and kEstMaxs is drawn, with

nTrss = U (1,kEstMaxs) . (B8)

In the complex model, nTrss is calculated for each species
s based on its suitability for regeneration (EFcs) and relative
to the suitability of all other species (EFSum) with

EFSum=
n∑
s=1

EFcs (B9)

nTrss =
nTrs×EFcs

EFSum
. (B10)

Ultimately, nTrss denotes the number of trees with a DBH
of 1.27 cm in a new cohort per species s on one patch, and
it serves as a basis for calculating the likelihood (see be-
low). After a new cohort has established, it follows the rules
of adult growth and mortality, which are kept unchanged
throughout this study by keeping all model parameters that
directly affect trees with DBHs above 1.27 cm at their de-
faults (Bugmann, 1994; Huber et al., 2020).
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Table B1. Description of all model variables and parameters of ForClim used in this study. Calibrated parameters are explained in more
detail in Table 1 in the main text.

Group Variable Unit Description Model Reference

Establishment flags ALEF Boolean light availability establishment flag simple Bugmann (1994)
ALEFc %/100 continuous light availability establishment flag complex Bugmann (1994)
BPEF Boolean browsing pressure establishment flag simple Bugmann (1994)
BPEFc %/100 continuous browsing pressure establishment flag complex Bugmann (1994)
DDEF Boolean degree-days establishment flag simple Bugmann (1994)
DDEFc %/100 continuous degree-days establishment flag complex Bugmann (1994)
SMEF Boolean soil moisture establishment flag simple Didion et al. (2009a)
SMEFc %/100 continuous soil moisture establishment flag complex Didion et al. (2009a)
WTEF Boolean winter temperature establishment flag simple Bugmann (1994)
WTEFc %/100 continuous winter temperature establishment flag complex Bugmann (1994)

General parameter kDDLL °C d annual DD below which DDsum prevents establishment complex Bugmann (1994)
kDDUL °C d annual DD above which DDsum does not reduce kTrMax complex Bugmann (1994)
kDrLL %/100 mDrAn below which drought does not reduce kTrMax complex Bugmann (1994)
kDrUL %/100 mDrAn above which drought prevents establishment complex Bugmann (1994)
kEstDens m−2 yr−1 maximum tree establishment density both Bugmann (1994)
kEstP %/100 general probability of regeneration both Bugmann (1994)
kPatchSize m2 size of a forest patch both Bugmann (1994)
kTrMax ha−1 maximum number of trees per ha both Huber et al. (2020)
kDDMin °C d minimum degree-day sum for adults both Bugmann (1994)
kDDMiny °C d minimum degree-day sum for regeneration both –
kDrTol %/100 drought tolerance for adults both Bugmann (1994)
kDrToly %/100 drought tolerance for regeneration both –
kLa [1–9] adult light requirements as a proxy for seed production simple Risch et al. (2005)
kLy %/100 light requirements of regeneration both Bugmann (1994)

State variable (regeneration) EFc %/100 minimum continuous establishment flag complex Huber et al. (2020)
EFSum – sum over all continuous establishment flags complex –
gEstMax – annual potential maximum number of established trees both Bugmann (1994)
kEstMax – maximum regeneration for a species simple Bugmann (1994)
nTrs – number of trees that are being recruited both Bugmann (1994)
PEst %/100 realized regeneration probability both –
uEFMax %/100 helper variable to ensure that Efc is not smaller than 0 complex –
ukEstP %/100 helper variable to calculate PEst in the complex model complex –

State variable (site) gDD °C d mean annual degree-days from weather generator both Bugmann (1994)
gDr %/100 mean annual drought index from weather generator both Bugmann (1994)
gRedFac %/100 overall reduction factor complex Huber et al. (2020)
gRedFacDD %/100 reduction of kTrMax caused by degree-days complex Bugmann (1994)
gRedFacDI %/100 reduction of kTrMax caused by drought index complex Bugmann (1996)
mDDAn °C d mean annual degree-days from weather generator complex Bugmann (1996)
mDrAn %/100 mean annual drought index from weather generator complex Bugmann (1996)

State variable (stand) gAL0 %/100 available light at the forest floor both Bugmann (1996)
Trs – N of trees of all species in current simulation year both Bugmann (1996)
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Code and data availability. The current version of ForClim
is available from the project website: https://ites-fe.ethz.ch/
openaccess/products/forclim (last access: 15 September 2023)
under the GNU General Public License v3. The exact version of
ForClim used to produce the results used in this paper is archived
on Zenodo (https://doi.org/10.5281/zenodo.8334091, Käber et al.,
2024), as are the input data and scripts used to run the model and
produce the plots for all the simulations presented in this paper
(https://doi.org/10.5281/zenodo.8334091, Käber et al., 2024).
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