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Abstract. Describing the coupling of nitrogen (N), phos-
phorus (P), and carbon (C) cycles of land ecosystems re-
quires understanding microbial element use efficiencies of
soil organic matter (SOM) decomposition. These efficien-
cies are studied by the Soil Enzyme Steady Allocation Model
(SESAM) at the decadal scale. The model assumes that the
soil microbial communities and their element use efficiencies
develop towards an optimum where the growth of the en-
tire community is maximized. Specifically, SESAM approx-
imated this growth optimization by allocating resources to
several SOM-degrading enzymes proportional to the revenue
of these enzymes, called the Relative approach. However, a
rigorous mathematical treatment of this approximation has
been lacking so far.

Therefore, in this study we derive explicit formulas of en-
zyme allocation that maximize the total return from enzy-
matic processing, called the Optimal approach. Further, we
derive another heuristic approach that prescribes the change
of allocation without the need of deriving a formulation for
the optimal allocation, called the Derivative approach. When
comparing predictions across these approaches, we found
that the Relative approach was a special case of the Opti-
mal approach valid at sufficiently high microbial biomass.
However, at low microbial biomass, it overestimated alloca-
tion to the enzymes having lower revenues compared to the
Optimal approach. The Derivative-based allocation closely
tracked the Optimal allocation.

These findings increase our confidence in conclusions
drawn from SESAM studies. Moreover, the new develop-
ments extend the range of conditions at which valid conclu-
sions can be drawn. Further, based on these findings we for-
mulated the constrained enzyme hypothesis. This hypothesis

provides a complementary explanation why some substrates
in soil are preserved over decades, although they are often
decomposed within a few years in incubation experiments.

This study shows how optimality considerations lead to
simplified models, new insights, and new hypotheses. This is
another step in deriving a simple representation of an adap-
tive microbial community, which is required for coupled sto-
ichiometric C–N–P dynamic models that are aimed to study
decadal processes beyond the ecosystem scale.

1 Introduction

The Soil Enzyme Steady Allocation Model (SESAM) stud-
ies the effect of an adaptive soil microbial community on
the coupling of element cycles in aerated soils at a decadal
timescale. The coupling of the cycles of nitrogen (N), phos-
phorus (P), and carbon (C) is especially strong in soils be-
cause the stoichiometric requirements of soil organic mat-
ter (SOM) decomposers is much less flexible than the stoi-
chiometric requirements of plants (Robert W. Sterner, 2002;
Mooshammer et al., 2014b). The stoichiometric require-
ments, in turn, together with the stoichiometry of consumed
substrates, determine the decomposer’s carbon and nutrient
use efficiencies, which are important controls on ecosystem
dynamics. Carbon use efficiency (CUE) is key to control-
ling how much of the litter input is stored in soil or respired
again to the atmosphere (Manzoni et al., 2017). Similarly,
nitrogen use efficiency affects how much N in litter inputs
is stored in organic matter or mineralized and made avail-
able for plant nutrition (Mooshammer et al., 2014a). These
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element use efficiencies are also affected by properties of
the microbial community. Furthermore, the microbial com-
munity is hypothesized to adapt to a changing environment,
such as increased litter inputs or litter stoichiometry or nitro-
gen deposition (Manzoni, 2017; Manzoni et al., 2021).

However, there is a gap between knowledge of microbial
processes at smaller and effect at larger scales. On the one
hand, knowledge of the complex microbial ecology and com-
munity adaptations accumulates at the soil pore scale. On the
other hand, dynamic SOM models, which rely on nutrient ef-
ficiencies of the decomposers, focus on SOM changes at the
ecosystem to global scale. Hence, we need to find ways to
incorporate effects of soil microbial community adaptations
on element use efficiencies (Kaiser et al., 2014) without the
need to model all the microbial populations and microbial
details.

Therefore, the SESAM model abstracts from microbial de-
tails by assuming that community composition develops to-
wards maximizing growth of the entire microbial commu-
nity. This assumption is in line with arguments from system
ecology (Nielsen et al., 2020), which realized that open sys-
tems with positive internal feedback develop towards the best
exploitation of a gradient of potential energy (Ulanowicz,
2002). This exploitation of the gradient is usually associated
with maximizing the entropy production that can support the
internal structure of the system (Kondepudi, 1998). For soil
systems this mainly translates into efficiently degrading the
chemical energy input provided by plant litter and rhizode-
position. In a first approximation this efficient degradation
is achieved by maximum growth and respiration of soil mi-
crobes. This focus on the system perspective leads to comple-
mentary insights, compared to focusing on competition, and
opens up new ways of studying living systems (Ulanowicz,
2009). One of the problems of this argument is the question
at which scale to apply the maximum entropy production hy-
pothesis. Application at different scales leads to different pre-
dictions of optimal system dynamics (Dewar, 2010). Hence,
the assumption of optimal community growth is rational, but
it is still an assumption to be challenged.

The heuristic approach of how community growth is op-
timized in SESAM requires a more rigorous treatment. The
heuristics that is applied in SESAM v3.0 assumes the pro-
portion of allocation for an enzyme, Z, to be proportional to
its revenue, i.e. return per investment. Wutzler et al. (2017,
Appendix B) provide a rationale for this approach, which
argues that exploiting the full range of resources is benefi-
cial. However, this attempt does not sufficiently well explain
why this leads to optimal community growth. Hence, a bet-
ter, i.e. more rigorous, rationale is required to increase confi-
dence of assumptions made in SESAM.

Such a rigorous treatment of optimal enzyme allocation
has now become possible because of recent model devel-
opments. The model developments of Wutzler et al. (2022)
comprise a new formulation of decomposition based on the
quasi-steady state of enzymes and the new formulation of

Figure 1. The SESAM model: microbial biomass, B, produces en-
zymes that depolymerize substrate pools (L and R) that differ in
their elemental ratios. Adaptive microbial community enzyme allo-
cation, α, determines which part of the microbial community de-
polymerizes L versus R by producing respective depolymerizing
enzymes, EL and ER, and a biomineralizing enzyme, EP, which
cleaves phosphate groups. Microbes take up dissolved organic mat-
ter (DOM) and use it for synthesizing new biomass, new enzymes,
or catabolic respiration. A part of microbial turnover (tvr) adds to
the residue pool, another part is mineralized, and another part adds
to DOM and is recycled into microbial biomass. Stoichiometric im-
balance between DOM and B is resolved by mineralizing the excess
element or immobilizing required element (8B ) from inorganic N
and P pools (I ). There are additional fluxes from L and R to the
inorganic pools, I , and additional plant uptake and leaching fluxes
drawing from the inorganic pools, I , which are not shown in this
figure. Boxes correspond to pools, and disks correspond to fluxes.
Solid lines represent fluxes of C, N, and P, while dotted and dashed
lines represent separate C, N, or P fluxes respectively. Red ellipses
denote changes from the Wutzler et al. (2022) version.

revenue with limitation-weighted enzyme investments. They
make it possible to express the revenue directly as a function
of the enzyme allocation. This functional expression now al-
lows us, in this study, to derive optimal community allocation
by maximizing the total return from enzymatic processing.
Further, it inspired another simpler heuristic optimality ap-
proach.

The aim of this study is to present and compare three
approaches of computing enzyme allocation, i.e. the rigor-
ous Optimal approach, the previously applied heuristic Rel-
ative approach, and the new heuristic Derivative approach.
We compare approaches based on several scenarios of dy-
namic simulation and discuss the resulting insights and im-
plications. One of those insights is the constrained enzyme
hypothesis.

2 Methods

In this section, we first summarize the SESAM model and
restate the equations that are most relevant for the optimality
approaches (Sect. 2.1). Next, we present the three optimality
approaches (Sect. 2.2). Finally, we describe the setup of the
simulation experiments (Sect. 2.3).
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Table 1. State variables and model drivers. Values correspond to the FACE simulation experiment (Sect. 2.3.2) with the initial steady state
for the Optimal approach.

Symbol Definition Value Unit

L,LN,LP C, N, and P in labile substrate 109 ·βE iL(0) gm−2

R,RN,RP C, N, and P in residue substrate 3687 ·βE iR(0) gm−2

B Microbial biomass C 30.46 gm−2

IN Inorganic N 0.194 gm−2

IP Inorganic P 2157b gm−2

αL, αR, αP Allocation to an enzyme,Z ∈ {L,R,P } 0.74, 0.26, 0.0 (–)

iL(t) Labile C input 400.0 gm−2 yr−1

βNiL(t) C : N ratio of labile inputs 28 gg−1

βNiR(t) C : N ratio of residue inputs 10 gg−1

βPiL(t) C : P ratio of labile inputs 120 gg−1

βPiR(t) C : P ratio of residue inputs 40.3 gg−1

iIN(t) Inorganic N input 0.0714 gm−2 yr−1

iIP(t) Inorganic P input 0 gm−2 yr−1

kIEP (t) Plant uptake of inorganic E per IE 100a yr−1

uIE ,max(t) Maximum plant uptake of E = iL/βE iL + iIE
b gm−2 yr−1

eP Plant production of biomineralizing en-
zyme

0 gm−2 yr−1

a Arbitrary high value so that plant uptake is constraint by uIE,max(t).
b Balancing nutrient input to the system.

Table 2. Model parameters. Values correspond to the FACE simulation experiment (Sect. 2.3.2) with the initial steady state for the Optimal
approach.

Symbol Definition Value Unit

βNB C : N ratio of microbial biomass 11 gg−1

βNEnz C : N ratio of extracellular enzymes 3.1 gg−1

βPB C : P ratio of microbial biomass 40 gg−1

βPEnz C : P ratio of extracellular enzymes 50 gg−1

βPm C : P ratio of a substrate at which the biomineralization decreased to 1/2 500 gg−1

kL Maximum decomposition rate of L 5.0 yr−1

kR Maximum decomposition rate of R 0.0318 yr−1

aE Enzyme production per microbial biomass 0.365 yr−1

kmN Product of enzyme half-saturation constant and enzyme turnover 3.0 gm−2 yr−1

τ Microbial biomass turnover rate 6.1 yr−1

m Specific rate of maintenance respiration 5.84 yr−1

ε Anabolic microbial C-substrate efficiency 0.68 (–)
εtvr Fraction of microbial turnover that is not mineralized 0.3 (–)
νN Aggregated microbial organic N use efficiency 0.9 (–)
νP Aggregated microbial organic P use efficiency 0.0 (–)
iBN Maximum microbial uptake rate of inorganic N 0.4 yr−1

iBP Maximum microbial uptake rate of inorganic P 100∗ yr−1

lN Inorganic N leaching rate 0.96 yr−1

lP Inorganic P leaching rate 0.001∗ yr−1

∗ Arbitrary high/low value so that system is not constrained by P.

2.1 The SESAM model

SESAM is described in the previous paper of this incremental
model description paper series (Wutzler et al., 2022). A sum-

mary of the model is presented in Fig. 1, and state variables,
model drivers, model parameters, and other symbols used in
SESAM are listed in Tables 1, 2, and 3. The symbol d with
subscripts denotes a form of decomposition or return flux,
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Table 3. Further symbols.

Symbol Definition Unit

S ∈ {L,R} Soil organic matter substrates, labile or residues gm−2

Z ∈ {L,R,P } Enzyme classes for depolymerizing substrates L and R or biomineralizing phosphorus from
both substrates

gm−2

wE Weight of limitation of microbial growth by an element, E ∈ {C,N,P} (Eq. 4) –
dZw(αZ) Elemental-limitation-weighted return of an enzyme, Z gm−2 yr−1

dZ Elemental-limitation-weighted potential return for unlimited concentration of an enzyme, Z gm−2 yr−1

ωZ Elemental-limitation factor for return of an enzyme, Z –
ωEnz Elemental-limitation factor for the total enzyme synthesis in C units, aEB –
uT Total return =

∑
ZdZw(αZ) gm−2 yr−1

revZ Revenue, i.e. return per investment, of an enzyme, Z gm−2 yr−1

synB C for microbial biomass synthesis gm−2 yr−1

νTE Total proportions of the mineralization that are taken up by microbial biomass, νE + (1−
νE)pimmo,E

–

tvrB Microbial biomass C turnover in addition to enzyme production, mostly mortality gm−2 yr−1

Figure 2. Community allocation, α controls the partitioning of the
enzyme synthesis. This in turn, affects the depolymerization and
biomineralization fluxes of labile (L) and residue organic matter
(R). α adapts in such a way, so that the sum of the returns from
degradation fluxes, dZ , is maximized. Specifically, its the part of
the degradation fluxes that reaches microbial biomass, B, by direct
and indirect uptake, νTE, of elements E ∈ {C,N,P}, and the sum is
weighted by current elemental limitation of the microbes and the
elemental investments required to synthesize the enzymes. Dotted
lines denote controls. Other line types and shapes correspond to
Fig. 1.

while the symbol d without subscripts denotes the derivative
operator. The model version used in this study already an-
ticipates ongoing unpublished model developments, which
include phosphorus (P) cycling and microbial P limitation.
While P is generally handled the same way as nitrogen (N),
there is an additional class of P-biomineralizing enzymes,
EP, that does not depolymerize substrates in stoichiomet-
ric quantities but cleaves phosphate groups. Moreover, EP, is
produced not only by microbes but also by plant roots. Those
P-related developments will be described in their own paper,
but this paper presents formulas that can account for this new
type of enzyme.

This study focuses on approximating optimal microbial
community allocation, α. It modifies Eq. (3) in Wutzler et al.
(2022) and compares several variants. SESAM substrate de-
composition is controlled by the quantity of enzymes, which
in turn, are controlled by the microbial community that
adapts their allocation to different enzymes in order to maxi-
mize growth (Fig. 2). Allocation to different enzymes adapts
to the return and revenue, i.e. return/investment, of those en-
zymes.

The details of how SESAM computes the return of an en-
zyme are restated in the following section, while revenue is
described in Sect. 2.2.1.

2.1.1 Depolymerizing enzymes

The return of an enzyme, EZ , which depolymerizes a sub-
strate, SZ , is the elemental-limitation-weighted average of
the returns for the modelled elements required for microbial
growth. The return equals the depolymerization flux that is
taken up by microbes.

C depolymerization flux, dZC, is described by reverse
Michaelis–Menten kinetics (Schimel and Weintraub, 2003),
which is first order to the source pool, kZSZ , and saturating
with the amount of the respective enzyme. By assuming en-
zymes to be near quasi-steady state at the timescale of larger
than a month, their amount is proportional to microbial en-
zyme production flux (αZaEB). This enzyme production flux
then is used in the Michaelis–Menten kinetics together with
a lumped affinity parameter, kmNZ .

dZC = kZSZ
αZaEB

kmNZ +αZaEB
(1)

Nutrient, E ∈ {N,P}, depolymerization fluxes are derived by
dividing the C flux by the C : E ratio, βEZ , of the source pool.
These depolymerization fluxes are then converted to C units
by C : E ratio of microbial biomass, βEB , so that a weighted

Geosci. Model Dev., 17, 2705–2725, 2024 https://doi.org/10.5194/gmd-17-2705-2024



T. Wutzler et al.: Optimal enzyme allocation 2709

return, dZw, can be computed. Further the depolymerization
fluxes are multiplied by a dynamically computed proportion,
νTE , that describes what part of the flux currently reaches mi-
crobes rather than plants, leaching, or sequestration at min-
erals (Wutzler et al., 2022, Appendix B).

dZN =dZC/βNZ

dZP =dZC/βPZ

dZw =wCdZC νTC+wNdZN νTNβNB +wPdZP νTPβPB

=
kZSZ αZaEB

kmNZ +αZaEB

·

(
wCνTC+wNνTN

βNB

βNZ
+wPνTP

βNB

βPZ

)
The limitation-weighted return can be expressed as a poten-
tial return, dZ , multiplied a factor that reduces return due to
low enzyme levels. Hence, the potential return denotes the re-
turn potentially achieved at infinitely high enzyme levels. It
is the potential C-substrate depolymerization flux, multiplied
by the combined elemental weighting factor, ωZ .

dZw = dZ
αZaEB

kmNZ +αZaEB
(2a)

dZ = kZSZωZ (2b)

ωZ = wCνTC+wNνTN
βNB

βNZ
+wPνTP

βPB

βPZ
(2c)

Similarly to defining an elemental-weighted limitation fac-
tor for enzyme returns, such an elemental-weighted factor is
defined for the enzyme synthesis flux (Eq. 3).

ωEnz = wC+wN
βNB

βNEnz
+wP

βPB

βPEnz
(3)

The elemental weights, wE, are the same in both ωZ and
ωEnz. Therefore, they do not need to be normalized within
ratios of these two quantities, e.g. the revenue calculation in
Sect. 2.2.1.

How strongly microbial biomass is limited by either of
the elements E ∈ {C,N,P } is described by the elemental-
limitation weights (Eq. 4) (Wutzler et al., 2022, A15).

wE = exp
(
−δ
CsynBE− synB

tvrB

)
, (4)

It exponentially decreases with the difference between flux
potentially available for microbial biomass synthesis by this
element,CsynBE, and the actual synthesis flux, synB , which is
constrained also by other elements. To derive a unitless quan-
tity, it is scaled by the microbial turnover flux, tvrB. Parame-
ter δ controls how steep is the transition near co-limitation
by several elements. For an more detailed presentation of
the elemental limitation we refer the reader to Wutzler et al.
(2022).

2.1.2 Biomineralizing enzymes

The phosphatases only cleave phosphate groups from soil or-
ganic matter. Hence, they only make P available for uptake,
without making C and N available. They attack both labile
and residue organic matter. Although the P cycle in SESAM
will be described in its own paper, we state the return and
revenue here.

The potential return of action of P-degrading enzymes, dP,
includes the P-limitation weights, wP, only, contrary to the
depolymerizing enzymes (Eq. 2). Moreover, it does not di-
vide by the C : P ratio of the substrate, as the mineralization
flux is already expressed in P units:

dPw = dP
αPaEB

kmNP+αPaEB
(5a)

dP = ωP(kLP lβPLLP+ kRP lβPRRP) (5b)
ωP = wPνPβPB (5c)

lβPS =
1

1+βPS/βPm
=

βPm

βPm+βPS
. (5d)

In addition, a limitation factor, lβPS ∈ (0,1), decreases the
potential rate of a biomineralizing enzyme with an increasing
C : P ratio, βPS , of a substrate, S. Parameter βPm is the C : P
ratio at which the limitation factor decreased to 1/2.

Moreover, these phosphatases are also produced by plant
roots at a rate, eP. Hence, one needs to calculate the return of
microbe-produced enzymes, dPm, by subtracting the flux due
to plant-produced enzymes from total biomineralization flux
(Table B1).

2.2 Allocation optimization approaches

The derivative of the total return, uT, with respect to each en-
zyme allocation share, αZ , called “the derivative” for short,
is the central quantity to inspect. The differences across
those derivatives across enzymes determine the direction of
changes in enzyme allocation, i.e. changes in the microbial
community. Allocation is changed towards the enzyme, Z,
that has the highest derivative, i.e. highest increase in return
per additional allocation, at the expense of decreasing allo-
cation to enzymes with the lowest derivative. Hence, deriva-
tives are equal at the optimum (Appendix B1). The deriva-
tives decrease with increasing allocation because the return
saturates at high enzyme levels. Therefore, it is often bene-
ficial for the community to distribute investment in enzymes
across different enzymes rather than investing solely in the
enzyme with the highest potential return (Fig. 3).

The revenue of allocation to an enzyme, Z, another im-
portant quantity, is the return from enzymatic processing
(Sect. 2.1.1 and 2.1.2) divided by the investment in enzyme
production: uZ =

dZw(αZ)
αZωEnzaEB

. The investment is the share, αZ ,
invested in the production of an enzyme, Z, multiplied by
total elemental-limitation-weighted carbon flux allocated to
enzyme production, ωEnzaEB.
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Figure 3. The derivative of the total return with respect to en-
zyme allocation, duT

dαZ
, decreases with an increasing share of the

allocation αZ . Therefore, when going from zero allocation propor-
tions (αL = αR = 0) towards complete allocation (αL+αR = 1), in
the shown example, microbes first increase allocation to enzymes
that degrade labile substrates, αL, which yields the highest positive
change in return. However, starting at levels of αL > 0.25 (indicated
by the dotted horizontal line crossing the solid Labile derivative
line), the increase in return with only increasing αL is less or equal
to the increase in return when also allocating something to residue-
degrading enzymes, αR > 0. Optimal allocation is attained when
both derivatives are equal and allocation proportions add up to 1
(indicated by dashed horizontal line). This happens here at the allo-
cation of about 1/3 to residue depolymerizing enzymes (αR = 1/3)
and 2/3 to labile pool depolymerizing enzymes (αL = 2/3).

Hence the total return and revenue depend on the potential
decomposition flux, i.e. the amount and the decomposition
rate of the substrate, as well as its stoichiometry via weight-
ing by the current elemental limitation of the microbes. In
addition, they depend on enzyme levels, i.e. the size of the
microbial biomass producing the enzymes, and on the cur-
rent enzyme allocation, i.e. the shares of the total enzyme
production in the alternative enzymes.

Three approaches of estimating the time development of
enzyme allocation, α, are presented in this study. The Opti-
mal approach is the mathematically exact formulation of the
hypothesis of the maximum return of enzyme investment, but
it is only practical for simple cases. Therefore, two heuristic
approximations are added. First, the Relative approach as-
sumes that the optimal allocation can be estimated by set-
ting the allocation proportional to the revenue. Second, the
Derivative approach describes the direction of change in al-
location without explicitly computing the optimal allocation.
The optimum, to which microbial community in SESAM de-
velops towards, is characterized by maximum growth of the
entire microbial community, which in turn is achieved when
the return from extracellular enzymatic processing is maxi-
mized.

2.2.1 Total return of enzyme action

We seek the enzyme allocation, α, that maximizes the to-
tal limitation-weighted return, i.e. the action of enzymes, de-
polymerization, and biomineralization. We exclude the triv-
ial case of investing only into a single enzyme (αZ = 1) and
exclude enzymes that are not allocated to (αZ = 0).

The total return that is optimized is the sum of each rev-
enue multiplied by enzyme investment.

uT = ωEnzaEB
∑
Z

αZrevZ (6)

uT fulfils the conditions of Lemma 1 (Appendix B1). There-
fore, potential optima are located at the borders or at condi-
tion d(αZrevZ)

dαZ
= C3. This implies that the derivatives of the

total return, duT
dαZ
= ωEnzaEB

d(αZrevZ)
dαZ

, are equal at the opti-
mum.

The revenue for a depolymerizing enzyme and its deriva-
tive are

revZ(αZ)=
return

investment
=

dZw

αZωEnzaEB

= dZ
αZaEB

kmNZ +αZaEB

1
αZωEnzaEB

=
dZ

ωEnz

1
kmNZ +αZaEB

(7a)

d(αZrevZ)
dαZ

=
dZ

ωEnz

(kmNZ +αZaEB)−αZaEB

(kmNZ +αZaEB)2

=
dZ

ωEnz

kmNZ

(kmNZ +αZaEB)2
. (7b)

Revenue, revP, and its derivative of a biomineralizing en-
zyme are slightly more complex due to plant enzyme produc-
tion, but they are similar to the ones of the depolymerizing
enzymes. They are presented in Table B1.

2.2.2 Optimal approach

The Optimal approach computes the target allocation that
maximizes the total return by computing where the deriva-
tives of the total return across the set of allocated enzymes
are equal (Appendix B1). Such a derivative of the return
with respect to enzyme allocation, αZ , is proportional to
the derivative of the allocation times the revenue, duT

dαZ
∝

d(αZrevZ)
dαZ

(Sect. 2.2.1). While the maximum change of re-
turn is realized at an arbitrarily small allocation, ρZmax =
d(αZrevZ)

dαZ

∣∣
αZ→0, the optimal allocation, α∗, often involves

several enzymes (Fig. 3). However, if the maximum change
of return for an enzyme, Zj , is lower than the return of allo-
cating only to other enzymes, the optimal allocation to this
enzyme is zero; i.e. it is excluded from the set of allocated
enzymes. The set of allocated enzymes, i.e. enzymes among
which to distribute resources, can be found by the following
algorithm.

Geosci. Model Dev., 17, 2705–2725, 2024 https://doi.org/10.5194/gmd-17-2705-2024
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1. Order the enzymes according to their maximum change
in return, ρZmax; index them by i; set i = 1; and start
with a mix that includes only the most efficient enzyme,
{Z1}.

2. Solve for the optimal allocation strategy, αi , equalizing
derivatives

duT

dαZ
∝

d(αZrevZ)
dαZ

= ρi for all Z ∈ {Z1, . . .,Zi},

and allocate nothing to enzymes that are not part of the
current mix.

3. For ρi computed in step 2, if ρi > ρZi+1 max, stop and
report the found optimum, α∗ = αi . Otherwise increase
i; i.e. include the enzyme, Zi+1, in the mix and go to
step 2.

Step 2 needs explicit solutions for different numbers and
types of enzymes in the mix. Appendix B3 provides such
explicit solutions for up to three enzymes across depolymer-
izing and biomineralizing enzymes.

2.2.3 Relative approach

The Relative approach, which was used up to SESAM v3.0
(Wutzler et al., 2022), estimates optimal allocation to be pro-
portional to revenue based on current allocation (Eq. 8).

αZ,Opt =
revZ∑
irevi

, (8)

where revZ is the revenue for an enzyme, Z.
Appendix C shows that it is a special case of the Optimal

approach given several assumptions. It approximates opti-
mal allocation well for the case of sufficiently high microbial
biomass levels.

2.2.4 Derivative approach

The Derivative approach computes the rate change in αZ over
time. It assumes that enzymes allocation changes faster the
larger the corresponding derivative is away from the average,
i.e. the optimal state where all derivatives are equal. More
precisely, it assumes the change rate of allocation over time
to be dαZ

dt ∝
duT
dαZ
−meani

(
duT
dαi

)
across the enzymes in the

current mix (Appendix D). It does not rely on an optimal so-
lution, α∗. This is beneficial because formulas in the Optimal
approach for a higher number of enzymes or more types of
enzymes quickly grow and involve higher-order polynomi-
als of αZ with multiple roots and additional mathematically
possible solutions outside the reasonable bound αZ ∈ [0,1].

The Derivative approach assumes that a higher increase
in the total return leads to faster shifts of allocation towards
this enzyme. It takes care, similar to the Optimal approach,
to compute the average only across enzymes that are part of
the current mix (Appendix D1).

2.3 Simulation experiments

In order to study the effects of using different allocation opti-
mization approaches on model behaviour, we set up different
simulation experiments and compared differences in predic-
tions among the approaches.

2.3.1 Immediate response: Prescribed potential returns

The “Prescribed potential returns” simulation experiment
fixed the direct inputs to the function computing allocation
changes. It neglected all other model feedback and focused
and compared computation of optimum allocation for pre-
scribed conditions.

Specifically, the experiment prescribed elemental-
limitation-weighted potential return fluxes, dZ (Sect. 2.1.1),
which otherwise had been dynamically computed in the
model from pools and parameters. It assigned values for en-
zymes decomposing residue litter and biomineralizing phos-
phorus of dR = 0.7gCm−2 yr−1 and dP = 0.5gCm−2 yr−1

and varied the flux for enzymes decomposing labile sub-
strates, dL ∈ {0. . .1}, in units gCm−2 yr−1. It simulated the
allocation state until it converged to its estimated optimum
for each dL. For complete reference we list the other relevant
parameters without further explanation here: aE = 0.1yr−1,
B = 1gCm−2, eP = 0gCm−2 yr−1, τ = 365/30yr−1,
kmN = aEB/2, and ωEnz = 1. The experiment included
further runs with a 5-fold increase in microbial biomass
levels, B.

2.3.2 Decadal term: FACE

The Free Air Carbon Enrichment (FACE) simulation exper-
iment simulated the decadal-term response of the system to
increased labile substrate inputs. It started with model pools
in steady state with litter inputs. Next it prescribed a jump
of labile substrate inputs by 20 % simulated for 50 years and
prescribed another jump of labile substrate inputs to initial
values. It simulated N-limited conditions and excluded P lim-
itation by prescribing an arbitrary high value of potential P
immobilization and very low P leaching (Table 2). The ex-
periment included two additional scenarios where parame-
ters with the Relative approach had been adjusted to match
the initial steady-state conditions of the Optimal approach.
These additional scenarios allowed testing if the differences
in predictions could be compensated by other model param-
eters.

2.3.3 Sub-annual: Incubation

The Incubation simulation experiment added a portion of la-
bile substrate to a previously labile-substrate-depleted soil.
Next, it tracked the carbon use efficiency (CUE) of the mi-
crobial community over time and across different C : N ratios
of the added labile substrate. Specifically, it first simulated
model pools in steady state with continuous annual inputs,
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then simulated no inputs for 1 year in order to deplete the
labile substrate pool, and next it simulated a step increase of
the labile substrate C and N pools. In addition to the three
scenarios that differed by optimality approach, it simulated
a scenario where microbial community allocation was fixed
to αR = 0.5. This scenario allowed comparing results to a
model where microbial community is not adaptive.

We do not expect simulating a correct time-dynamics with
SESAM at this short timescale, because SESAM explicitly
omits detailed microbial processes that are relevant at this
scale such as storage, resting stages, or dynamics of the en-
zyme pools. However, the experiment allows inspecting gen-
eral dynamics with smooth annual changes and differences
between model variants as the labile substrate pool gets de-
pleted.

3 Results

In this section, we present the results of the simulation ex-
periments in turn.

3.1 Immediate response: Prescribed potential returns

The Derivative approach yielded the same allocation as the
Optimal approach with the “Prescribed potential returns”
simulation experiment. The Relative approach yielded sim-
ilar results as the Optimal approach for high microbial
biomass levels, i.e. levels that resulted in an enzyme syn-
thesis flux of 10 times the half-saturation constant of en-
zyme action kmN , which in SESAM is a flux, specifically the
product of a half-saturation enzyme concentration and en-
zyme turnover rate. For moderate microbial biomass levels
it overestimated allocation to the enzymes with low revenue
(Fig. 4). With the Optimal and Derivative approaches there
was no investment in enzymes with very low revenue at mod-
erate biomass levels.

Since all state variables are held constant in this exper-
iment, there is no change in respiration, microbial growth,
CUE, as well as C in key model compartments. These subse-
quent changes are explored in the following experiments.

3.2 Decadal term: FACE

The Derivative approach yielded the same allocation as the
Optimal approach with the FACE simulation experiment.
The Relative approach differed by overestimating the allo-
cation to the enzyme with lowest revenue, αR. Hence, it not
only predicted smaller initial steady-state stocks but also pre-
dicted relatively less mining of residue OM during the period
of increased carbon inputs (Fig. 5). By adjusting parame-
ters related to organic matter decomposition in the simulation
with the Relative approach, the same steady-state stocks were
simulated, but still the decrease in residue OM was smaller
(Fig. A1).

3.3 Sub-annual: Incubation

The difference between optimization approaches were small
compared to the differences to the variant without adapta-
tion (Fig. 6). All three optimization approaches showed de-
creased fluctuations in CUE, both in time, as well as across
C : N ratios of added labile substrate compared to a non-
optimized fixed allocation. The Derivative approach’s predic-
tions matched the Optimal approach’s predictions, while the
Relative approach initially slightly underestimated allocation
to the residue-degrading enzyme (αR), resulting in decreased
biomass synthesis (Fig. 7).

The Relative approach’s predictions differed from the Op-
timal approach after 1 year of incubation when microbial
biomass and enzyme levels declined (Fig. 8). It still allo-
cated to the enzymes degrading the labile substrate (αR < 1),
while with the Optimal approach, the microbial community
did not invest in degrading the small labile substrate pool
anymore. Hence, some of the labile substrate pool was not
decomposed, i.e. was apparently persistent with the Optimal
approach.

4 Discussion

The purpose of this work was to more rigorously define and
implement the optimal growth hypothesis for SESAM and
study the consequences of two simplifications. We found
that the previously used Revenue approach could be derived
from the more rigorous Optimal approach for a set of condi-
tions. Therefore, we are more confident in conclusions drawn
from previous SESAM studies. Further, we found no or only
marginal differences between the Derivative and Optimal ap-
proaches. Therefore, we will use the Derivative approach to
further develop SESAM. The following section discusses the
optimization approaches in more detail.

4.1 Optimization approaches

The Optimal approach constitutes the mathematical formal-
ization of the hypothesis of community enzyme allocation,
optimizing microbial biomass growth for SESAM. The Rel-
ative approach was used in previous SESAM versions. It was
shown in this study to be a special case of the mathemati-
cally formalized Optimal approach. It is valid for enzyme al-
location fluxes larger than the half-saturation constant in the
decomposition equation, which is usually the case at not too
low a microbial biomass. The Derivative approach is another
heuristic of optimal enzyme allocation that relies on deriva-
tives of the enzyme returns but does not require explicit for-
mulas for the optimal allocation.

The three approaches predicted the same patterns in long-
term as well as sub-annual-scale simulation experiments.
Hence, the conclusions drawn with SESAM so far were cor-
roborated. Specifically, the following patterns emerge as a
consequence of microbial community adaptation of enzyme
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Figure 4. In the “Prescribed potential returns” simulation experiment, all allocation approaches predicted the same pattern of increasing
allocation to the enzymes degrading the labile substrate; increase in EL with increasing potential return from the depolymerization labile
substrate; and a corresponding decrease of allocation to the other enzymes, αR (residue depolymerizing) and αP (phosphorus biomineralizing)
respectively. The Derivative approach (dashed lines) and the Optimal approach (same predictions as Derivative, not shown) allocated nothing
to the labile-depolymerizing enzyme, EL, at low potential returns at moderate microbial biomass levels. The Relative approach (dash-dotted
lines) predicted allocation very similar to that of the Derivative approach at higher microbial biomass levels (indicated by overplotting of the
thick lines) but overestimated allocation to enzymes of low revenue at moderate biomass levels (thin lines).

Figure 5. In the FACE simulation experiment all three allocation
approaches predicted the same pattern of increased labile substrate
(L in gCm−2) and a shift towards mineralization of residue sub-
strate (R normalized by initial steady-state values). The Derivative
approach yielded the same predictions as the Optimal approach (in-
dicated by the dashed line overplotting the solid line). The Rela-
tive approach (dash-dotted line) slightly overestimated allocation to
the residue-degrading enzymes, αR. This resulted in lower initial R
stocks and a smaller decrease in the period of higher carbon inputs
between year 10 and 60.

Figure 6. The differences in predicted carbon use efficiency (CUE)
were small across optimization approaches (a, b, d, e) compared to
non-adaptive Fixed allocation in the Incubation simulation experi-
ment. Differences in allocation to residue-degrading enzymes, αR
(gg−1), are constrained to the very start and end of the experiment.
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Figure 7. In the sub-annual Incubation simulation experiment the
three optimization approaches yielded a higher biomass synthe-
sis, synB (gCm−2 yr−1), than Fixed, i.e. not adapting allocation.
They allocated relatively more resources to the residue-degrading
enzymes, αR, during the initial N limitation. This resulted in lower
overflow respiration, respO (gCm−2 yr−1). The Relative approach
initially underestimated αR, resulting in slightly lower biomass syn-
thesis compared to the Optimal approach. Shown predictions corre-
spond to an amendment with a C : N ratio of 50 gg−1.

Figure 8. In the sub-annual Incubation simulation experiment after
some time microbial biomass, B (gCm−2), decreased to low lev-
els and allocation shifted towards residue-degrading enzymes only,
αR = 1 with the Optimal approach (solid line). Hence, decompo-
sition of a small remaining pool of labile substrate, L (gCm−2),
stopped.

allocation: the priming effect (Kuzyakov et al., 2000) and the
N-banking mechanism (Perveen et al., 2014) (Fig. 5) and the
dampening of CUE fluctuations with an adaptive microbial
biomass (Kaiser et al., 2014) (Fig. 6).

While the Optimal approach is exact, it is tedious to im-
plement and to update with further developments of SESAM.
It requires the developers to derive explicit formulas for the
optimal allocation for enzymes that are in the subset of en-
zyme types that microbes allocate resources to. With includ-
ing more enzymes or more types of enzymes, the formulas
grow complex and an increasing number of potential optima

need to be checked and compared. Therefore, we also con-
sider the simpler Relative and Derivative approaches and dis-
cuss their effect on model predictions.

The Derivative approach yielded predictions that were so
close to the predictions of the Optimal approach that they can
hardly be spotted in the plots (Figs. 5, 7). However, it works
similarly to gradient-based numerical optimization schemes
and also shares its risks. First, it might result in limit cycles,
where residue organic matter and microbial biomass oscillate
instead of converge to a stable optimal allocation. We argue
that this actually may really happen in soil, although pertur-
bations with fluctuating litter input and decomposition fluxes
changing with environmental conditions may quickly shift
the decomposer system into states away from the basin of
such a limit cycle (Strogatz, 1994). If the Derivative approach
yields predictions with a decadal-scale limit cycle, perturba-
tions of model drivers are expected to drive the simulation
away from the limit cycle. Second, the Derivative approach
might get stuck in local optima and saddle points where the
derivative of the return approaches 0. Gradient-based opti-
mization schemes implement some notion of momentum to
get past such points. There is also some momentum in the
soil system because enzyme levels need some time to de-
velop towards its quasi-steady state and microbes use storage
compounds to support developments in an hourly to weekly
timescale where returns from enzymatic processing do not
support further growth. Because SESAM explicitly tries to
abstract from such microbial details that are important for
reacting on short-term fluctuations, the Derivative approach
is prone to the risk of getting stuck at saddle points. We have
not yet encountered such conditions in our simulations. How-
ever, in case such issues pose a problem, we need to think
of ways how to implement simple notions of momentum in
SESAM.

The Relative approach yielded predictions that differed
from the predictions of the Optimal approach, specifically for
low microbial biomass levels and for enzymes with low rev-
enue. This was expected with the derivation of the conditions
where the Relative approach is valid (Appendix C). Although
small differences in enzyme allocation yield also only small
differences in relative steady-state stocks, a small relative dif-
ference in the stock of the residue pool can result in consid-
erable differences in total soil organic matter stocks. Such
behaviour is observed in the FACE simulation experiments
(Fig. 5). With this experiment, the Relative approach pre-
dicted an initial share of enzyme allocation towards residue-
degrading enzymes of 30 % compared to about 26 % with
the Optimal approach. This led to a decrease in residue
steady-state stocks from about 3600 to about 3400 gCm−2

(Fig. A1), which is an absolute difference that was larger than
the entire labile substrate pool. This, in turn, resulted in a pre-
dicted relative change in residue stocks with the FACE simu-
lation experiment that significantly differed from the predic-
tions with the Optimal approach (Fig. 5).
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Figure 9. Constrained enzyme hypothesis: at low microbial concen-
trations, it is not beneficial for the microbial community to allocate
to different enzymes types. There are some substrates for which
no enzymes are synthesized. Hence, some substrates, which may
be quickly decomposed at higher microbial concentrations, become
apparently persistent. This apparent persistence only indirectly de-
pends on the properties and accessibility of the substrates and de-
pends more on the relative availability of alternative substrates.

Based on these findings, we will continue developing
SESAM, focusing on the Derivative approach.

4.2 The constrained enzyme hypothesis

The Optimal approach’s predictions differed most from the
previously used Relative approach’s predictions at low mi-
crobial biomass levels. The Optimal approach excluded en-
zymes with low revenue from the set of enzymes to allocate
to. For example, the allocation to the enzyme depolymeriz-
ing the labile substrate pool was zero for a potential return of
this enzyme below 0.2 gm−2 yr−1 in the “Prescribed poten-
tial returns” simulation (Fig. 4). Optimal enzyme allocation
is determined primarily by availability of carbon and nutri-
ents from organic and inorganic uptake. However, with the
Optimal approach, optimal enzyme allocation in addition de-
pends on the size of the microbial biomass because they con-
trol the relative size of the enzyme pools compared to sat-
urating levels. The lower the microbial biomass, the farther
away enzyme production is from levels where organic matter
decomposition saturates. Hence at low microbial biomass it
is not beneficial to distribute enzyme allocation across sev-
eral enzymes including enzymes with low potential revenue.
Similarly, the Optimal approach predicted in the Incubation
simulation experiment that a small fraction of added organic
matter, L, is not decomposed (Fig. 8). This insight into opti-
mal allocation with SESAM generates an additional hypoth-
esis as to why we observe high ages of some organic matter
in soil and an additional insight into priming mechanisms
(Fig. 9): the microbial community expresses a smaller set of
enzyme types at low biomass levels. This hypothesis predicts
that some organic matter is not decomposed in the presence
of microbes that potentially can decompose it if biomass lev-
els are low and if there are alternative substrates decompos-
able with higher revenue.

The constrained enzyme hypothesis is able to account
for observed rhizosphere priming (Cheng et al., 2014)
or increased SOM loss after disturbance. When microbial
biomass grows, e.g. by making enough labile substrate avail-
able, the focus solely on the enzymes with the highest rev-
enue is not beneficial anymore and the optimal microbial
community also invests in decomposition of the organic mat-
ter with lower revenue. Apparently persistent organic matter
becomes decomposed.

This non-investment in enzymes of relatively low revenue
is a complementary hypothesis to the existing hypotheses of
SOM preservation (von Lützow et al., 2006, 2008). Since
the chemical recalcitrance hypothesis has largely been dis-
missed (Schmidt et al., 2011; Dungait et al., 2012; Kögel-
Knabner, 2017), most hypotheses focus on restricted acces-
sibility of SOM to soil microbial decomposition. One set of
hypotheses emphasizes protection by association with miner-
als (Schrumpf et al., 2013; Ahrens et al., 2015; Mathieu et al.,
2015; Woolf and Lehmann, 2019), another set emphasizes
protection inside soil aggregates (Six et al., 2000; Lehmann,
2007; Schrumpf et al., 2013), and yet another set emphasizes
soil heterogeneity and spatial separation (Ekschmitt et al.,
2005, 2008; Salome et al., 2009) or environmental conditions
(Or et al., 2007; Keiluweit et al., 2017). They are related to
the hypothesis of microbial energy limitation and are mod-
ified by inputs of fresh organic matter, i.e. the priming ef-
fect (Keiluweit et al., 2015; Henneron et al., 2022). Recently,
the diversity hypothesis has gained attention for SOM preser-
vation (Lehmann et al., 2020; Weverka et al., 2023), which
has formerly been discussed in aquatic literature (Jannasch,
1967; Jiao et al., 2010; Arrieta et al., 2015). It emphasizes the
low return on investment for very heterogeneous substrates
and the associated required investment in a broad set of en-
zymes. The constrained enzyme hypothesis goes beyond the
diversity hypothesis. While in the diversity hypothesis the
preservation is controlled by the heterogeneity of available
substrates, the constrained enzyme hypothesis predicts that
preservation additionally depends on the amount or density
of microbial biomass and on the availability of alternative
substrates.

Very similar conclusions have been drawn by a modelling
study that was published shortly after the discussion paper
of this study. Weverka et al. (2023) modelled the revenue of
intracellular enzymes or metabolic pathways that need to be
expressed to assimilate a diverse set of substrates. Similar to
Wutzler et al. (2017), they compared different strategies of
microbes investing in different enzymes including a strategy
of investing only in the enzyme with the highest revenue and
a strategy that the corresponds to the Relative approach. They
also assumed microbes to maximize growth. Their model
structures, formulas for allocation, and insights are compa-
rable to this study. They differ by focusing on assimilation
and intracellular enzymes, rather than decomposition and ex-
tracellular enzymes, and they focus on the number of differ-
ent substrates rather than stoichiometry of substrates. Instead
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of computing optimal allocation they assumed that microbes
would not invest in enzymes where change in return was less
than investments (Harvey et al., 2016).

Similar to this study, they observed in their model that sub-
strates at a low concentration persist because it is not benefi-
cial for microbes to produce respective enzymes. Moreover,
they explained cometabolization of a substrate of low rev-
enue by the assumptions that assimilation/degradation satu-
rates at high enzyme levels and that it is therefore beneficial
for microbes to distribute their investments also in enzymes
of a lower potential return (Fig. 3). The current study dif-
fers from Weverka et al. (2023) by actually computing op-
timal enzyme allocation and consequently predicts different
allocation and conditions at which specific enzymes are pro-
duced.

4.3 Optimality assumptions

The conclusions of this paper depend on several assumptions.
First, they depend on the formulation of depolymerization
(Eq. 1) and biomineralization (Eq. 5). Specifically, they de-
pend on the assumption that the decomposition fluxes sat-
urate at high enzyme levels (Schimel and Weintraub, 2003;
Tang and Riley, 2019). With alternative formulations (Wut-
zler and Reichstein, 2008) that assume a linear dependence
of decomposition on enzyme levels (or alternatively micro-
bial biomass) it would be optimal to allocate to the single
enzyme that yields the highest decomposition flux of the cur-
rently limiting element.

Moreover, we assumed that the instantaneous growth rate
of the microbial community is optimized. Alternatively to
instantaneous growth, the cumulative growth over a micro-
bial characteristic time span could be optimized, e.g. the time
for decomposing a single portion of carbon (Manzoni et al.,
2023). The instantaneous strategy is sub-optimal for dynam-
ical strategies if legacy effects are present that are internal
to the optimized system. At the same time the two strate-
gies yield similar performance when legacy effects are ex-
ternal to the optimized system (Feng et al., 2022) because
competition alters the trade-off between current and future
gains. Hence, optimizing at a different system boundary,
which is usually associated with a different timescale, re-
sults in different optimal strategies (Dewar, 2010). The fo-
cus of SESAM on the entire microbial community calls for
a dynamic strategy because it renders many factors inter-
nal, compared to a focus on competing microbial populations
that renders soil organic matter an external factor. However,
SESAM is intended to model decadal-term changes and to
be driven with annually averaged drivers. The two strategies
will presumably converge at such conditions. This is because
enzyme pools and decomposition develop towards a quasi-
steady state where current and future gains are similar within
a sub-annual timescale of microbial growth.

SESAM focused on the partitioning of allocation of the
total enzyme investment towards different enzymes. In addi-

tion, the total allocation in enzyme production can be a trait
that adapts to optimize microbial growth (Calabrese et al.,
2022). Future SESAM developments will explore if a joint
optimization of total allocation and allocation partitioning
can be derived and whether such a joint optimization alters
the consequences for the long-term dynamics of SOM stocks.

4.4 Observational evidence

The constrained enzyme hypothesis is a consequence of sev-
eral model assumptions. It was derived without reference to
observed patterns. However, there is already some observa-
tional evidence supporting the hypothesis of lower diversity
of expressed enzymes at low microbial activity.

Metatranscriptomics (Carvalhais et al., 2012) directly
studies functional diversity of expressed enzymes in soils.
Evidence for the constrained enzyme hypothesis resulting
from such studies is mixed. Straw amendments increased mi-
crobial activity diversity of an agricultural soil and let mi-
crobes upregulate several enzyme families (Kozjek et al.,
2023). This result is in line with the constrained enzyme hy-
pothesis. Contrary, microbes downregulated enzyme families
with straw amendment to a soil of an already diverse grass-
land soil in the same study.

A novel approach combines isotopically labelled measure-
ments of microbial growth with quantitative stable isotope
probing (Hungate et al., 2015). It can assess microbial diver-
sity of the active part of the microbial community. It revealed
a reduction in diversity of actively growing microorganisms
with lower microbial activity under drought (Richter, 2023),
which is in line with an expected reduction in diversity of ex-
pressed enzymes with lower microbial biomass as predicted
with the constrained enzyme hypothesis. However, low di-
versity of actively growing microorganisms under drought
could also be due to stress-induced shifts toward non-active
conditions rather than due to optimal allocation with lower
active microbial biomass.

Analysis of potential activities of specific enzymes (Marx
et al., 2001) and the spatially resolved zymography version
(Spohn et al., 2013) do not directly explain the diversity of
enzyme expression because only specific enzymes are anal-
ysed. However, in line with the constrained hypothesis, zy-
mography of a temperate forest soil revealed that common
enzymes are hardly expressed outside hotspots and before
fostering microbial growth by amendments (Heitkötter and
Marschner, 2018).

In summary, studies that specifically look at enzyme diver-
sity in relation to microbial biomass levels are still lacking.
However, we can find observations from other studies that
are in line with the constrained enzyme hypothesis.
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5 Conclusions

The Optimal approach is the mathematical formulation of the
hypothesis that microbial community enzyme allocation de-
velops in a way that optimizes growth in SESAM. The find-
ing of similar predictions by the heuristic approaches com-
pared to the Optimal approach increases our confidence in
conclusions drawn with SESAM. The heuristic Relative ap-
proach is shown to be a special case of the Optimal ap-
proach valid at sufficiently high microbial biomass levels.
The Derivative approach, another heuristic of the Optimal ap-
proach, is valid also for low microbial biomass levels. Given
that the Derivative approach is a good heuristic of the Op-
timal approach that is better scalable to more enzyme types
than the Optimal approach, we will continue the SESAM de-
velopments with the Derivative approach.

The Optimal and Derivative approaches yield predictions
at low microbial biomass that differ from the predictions of
the Relative approach. Specifically, they predict that enzymes
with low revenue are not expressed at low microbial biomass.
This finding generated the constrained enzyme hypothesis
for the preservation of organic matter in soils.

Appendix A: Additional figures

This section provides figures that detail some of the results
and provide consistent presentation of main quantities across
the experiments. The consistent presentation of all the quan-
tities can not avoid some overplotting.

First, predictions of the FACE simulations experiment for
the non-normalized residue pool, R, and for additional sce-
narios with adjusted decomposition parameters are shown in
Fig. A1.

Next, Figs. A2, A3, and A4 present common quantities
across experiments. They also include a “Fixed” scenario,
where enzyme allocation is not adaptive but constant, where
specifying the initial value corresponds to specifying another
model parameter.

Figure A1. Relative approach simulated with a decreased decom-
position rate of the residue pool, kR or an increased kmNR , in
the FACE simulation experiment, matched the initial steady-state
stocks but still underestimated the decrease in residue stocks, R
(gCm−2), during the period of higher carbon inputs.

Figure A2. Additional quantities and Fixed scenario of the decadal-
term experiment compared to Fig. 5. αR (gg−1): proportion of en-
zyme allocation to the residue-degrading enzyme. B (gm−2): mi-
crobial biomass. synB (gm−2 yr−1): C flux for microbial biomass
synthesis. CUE (gg−1): carbon use efficiency. L, R (gm−2): C in
labile and residue substrate pool. resp (gm−2 yr−1): respired C flux.
The results based on the Optimal and Derivative approaches are so
close together that they overplot.
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Figure A3. Additional quantities and Fixed scenario of the sub-
annual experiment compared to Fig. 7. Facets, colours, and line
styles correspond to Fig. A2.

Figure A4. Additional quantities and Fixed scenario of the sub-
annual experiment compared to Fig. 8. Facets, colours, and line
styles correspond to Fig. A2.
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Appendix B: Optimal enzyme allocation

This section derives explicit formulas of optimal enzyme
allocation by finding the allocation that maximizes the to-
tal return. It starts with a lemma that states conditions for
which the optimum is attained when derivatives are equal.
The lemma is then used in subsequent derivations of optimal
allocation.

B1 Optima at equality of derivatives

Lemma 1. Let uT(α)= C2
∑
ZαZrevZ be a function that is

a weighted sum of components, revZ up to some constant
C2 6= 0, where weights αZ ∈ (0,1) add up to 1,

∑n
ZαZ = 1,

and a component, revZ , may depend on a weight, αZ , but not
on the other weights. Further, let revZ be differentiable to αZ
and let potential optima ∈ (0,1). Then at the optima of uT(α)

all derivatives, d(αZrevZ)
dαZ

, are equal.
Proof. Because of the sum-to-1 constraint, we express one

of the weights as a function of the other weights and have
only n− 1 free weights.

αn = 1−
n−1∑
Z=1

αZ

dαn
dαZ
=−1

We are interested in the optima of uT away from the borders,
i.e. αOpt ∈ (0,1). In the derivative to αZ all terms vanish ex-
cept the term involving revZ and the term involving revn be-
cause there αn is a function of αZ . By the chain rule we have

duT

dαZ
= 0= C2

(
d(αZrevZ)

dαZ
+

d(αnrevn)
dαn

dαn
dαZ

)
= C2

(
d(αZrevZ)

dαZ
−

d(αnrevn)
dαn

)
.

Hence, for C2 6= 0 each d(αZrevZ)
dαZ

has to be equal to d(αnrevn)
dαn

;
i.e. all these derivatives have to be equal.

B2 Return, revenue, and derivative for a
biomineralizing enzyme

The return, revenue, and its derivative of a biomineralizing
enzyme are slightly more complex than the corresponding
quantities of depolymerizing enzymes (Sect. 2.1.2 and 2.2.1).
They are presented in Table B1 because of the one-column
constraint of normal text in this journal.

B3 Explicit optimum formulas

We seek the community composition, here represented by
enzyme allocation, α, that maximizes the total return. This
maximizer is located either at the borders of the domain or at
a location where all derivatives of the total return are 0. We
only look at cases where we know which enzymes take part

in the mix with positive allocation, i.e. having αZ ∈ (0,1),
and therefore do not need to look at the borders.

The strategy is first to find the small set of allocations
where all the derivatives are 0, which includes maxima, min-
ima, and saddle points. Second, we constrain the set to con-
ditions αZ ∈ (0,1) and select that element that results in the
highest return.

In order to simplify formulas, we make the assumption that
all half-saturation parameters are equal: kmNZ = kmN .

B3.1 Two depolymerizing enzymes

Utilizing Lemma 1 (Appendix B1) we have

d(αLrevL)

dαL
=

d(αRrevR)

dαR
dL

(kmN +αLaEB)2
=

dR

(kmN + (1−αL)aEB)2
,

where αR = 1−αL.
This provides a quadratic equation of αL, which one can

solve. We used the SymPy symbolic math tool. One of the
two roots where αL ∈ (0,1) and yielding a higher uT(αL)

provides the optimal αL.

αL1,2 =
aEBdL+ kmN (dL+ dR)±

√
dLdR (aEB + 2kmN )

aEB (dL− dR)

B3.2 Depolymerizing and biomineralizing enzyme

d(αLrevL)

dαL
=

d(αPrevP)

dαP
dL

(kmN +αLaEB)2
=

dP

((eP+ kmN )+ (1−αL)aEB)2

αL1,2 =
(aEB + eP + kmN )dL+ kmNdP ±

√
dLdP (aEB + eP + 2kmN )

aEB (dL− dP )

B3.3 Two depolymerizing and one biomineralizing
enzyme

We set αR = 1−αL−αP and have equations of Table B2.
One of the four roots where αP ∈ (0,1) and derived

αL(αP) ∈ (0,1) and yielding the highest uT(α) provides the
optimal α.

B4 Excursion: replacing revenue by relative profit

Revenue, here, is defined as return per investment, revZ =
dZw/invZw. One could argue that one should rather maxi-
mize the profit, i.e. return – investment and corresponding
profit revenue, revpZ , i.e. profit / investment by optimizing
enzyme allocation. Here we show that optimizing the profit
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Table B1. Equations of return, dPm, revenue, revP, and derivative, d(αPrevP)
dαP

, of a biomineralizing enzyme. Note that the last one has the

same form as the one of the depolymerizing enzyme ( d(αzrevZ)
dαZ

in Sect. 2.1.1). It differs, however, in the half-saturation constant of the
Michaelis–Menten term which now includes the plant enzyme production: (eP+ kmNP).

dPm = dP
eP+αPaEB

kmNP+ eP+αPaEB
− dP

eP
kmNP+ eP

= dP
(eP+αPaEB)(kmNP+ eP)− eP(kmNP+ eP+αPaEB)

(kmNP+ eP+αPaEB)(kmNP+ eP)

= dP
ePkmNP+αPaEBkmNP+ e

2
P+αPaEBeP− (ePkmNP+ e

2
P+αPaEBeP)

(kmNP+ eP)2+αPaEB(kmNP+ eP)

= dP
αPaEBkmNP

(kmNP+ eP)2+αPaEB(kmNP+ eP)

= dP
kmNP

eP+ kmNP

αPaEB

(eP+ kmNP)+αPaEB

revP =
dP
ωEnz

kmNP
eP+ kmNP

1
(eP+ kmNP)+αPaEB

d(αPrevP)

dαP
=

dP
ωEnz

kmNP
eP+ kmNP

d
dαP

(
αP

(eP+ kmNP)+αPaEB

)
=

dP
ωEnz

kmNP
eP+ kmNP

(eP+ kmNP)+αPaEB)−αPaEB

((eP+ kmNP)+αPaEB)2

=
dP
ωEnz

kmNP
(eP+ kmNP+αPaEB)2

Table B2. Potential optima for two depolymerizing enzymes and one biomineralizing enzyme.

d(αLrevL)

dαL
=

d(αRrevR)

dαR
=

d(αPrevP)

dαP
dL

(kmN +αLaEB)2
=

dR

(kmN + (1−αL−αP)aEB)2
=

dP

((eP+ kmN )+αPaEB)2

We first compute αL given αP using the first equality.

αL1,2 =
aEB(1−αP )dL+ kmN (dL+ dR)±

√
dLdR (aEB(1−αP )+ 2kmN )

aEB (dL− dR)

Next we insert both roots of αL(αP) in equating the first and third derivative to solve for αP.
For the first root of αL we get the following.
αP1,2 = (A1±D1)/B1

A1 = 2Bad
3
2
L
dP
√
dR −Bad

2
LdP −BadLdP dR + 4d

3
2
L
dP
√
dRkmN − d

3
LeP − d

3
LkmN

− 2d2
LdP kmN + 2d2

LdReP + 2d2
LdRkmN − 2dLdP dRkmN − dLd

2
ReP − dLd

2
RkmN

D1 =
√
dP (Ba+ eP + 3kmN )

√
−2d

9
2
L

√
dR + 4d

7
2
L
d

3
2
R
− 2d

5
2
L
d

5
2
R
+ d5

L
− d4

L
dR − d

3
L
d2
R
+ d2

L
d3
R

B1 = Ba

(
2d

3
2
L
dP
√
dR + d

3
L− d

2
LdP − 2d2

LdR − dLdP dR + dLd
2
R

)
For the second root of αL we get the following.
αP3,4 = (A2±D2)/B2

A2 = 2Bad
3
2
L
dP
√
dR +Bad

2
LdP +BadLdP dR + 4d

3
2
L
dP
√
dRkmN + d

3
LeP + d

3
LkmN

+ 2d2
LdP kmN − 2d2

LdReP − 2d2
LdRkmN + 2dLdP dRkmN + dLd

2
ReP + dLd

2
RkmN

D2 =
√
dP (Ba+ eP + 3kmN )

√
2d

9
2
L

√
dR − 4d

7
2
L
d

3
2
R
+ 2d

5
2
L
d

5
2
R
+ d5

L
− d4

L
dR − d

3
L
d2
R
+ d2

L
d3
R

B2 = Ba

(
2d

3
2
L
dP
√
dR − d

3
L+ d

2
LdP + 2d2

LdR + dLdP dR − dLd
2
R

)
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yields the same optimal allocation as optimizing the return.

revpZ = (dZw− invZw)/invZw = revZ − 1
d(αZrevpZ)

dαZ
=

d(αZrevZ)
dαZ

−
dαZ
dαZ
=

d(αZrevZ)
dαZ

− 1

The total profit is the sum of profit revenues multiplied by
total enzyme investment, invw.

uTp(α)= invw
∑
Z

αZrevpZ(αZ)

This equation fulfils the conditions of Lemma 1 (Ap-
pendix B1), and at the optima all derivatives are equal.

d(αirevpi)
dαi

=

d(αj revpj )

dαj
d(αirevi)

dαi
− 1=

d(αj revj )
dαj

− 1

d(αirevi)
dαi

=
d(αj revj )

dαj

The last line corresponds to the same condition as when op-
timizing returns. Hence, they lead to the same optima.

Appendix C: Derivation of the relative approach

The Relative approach approximates optimal alloca-
tion by setting optimal allocation proportional to rev-
enue (Sect. 2.2.3). Hence, we seek the conditions for which
the following relationship holds:

αj

αi
≈

revj
revi

.

At the solution of the Optimal approach all the derivatives of
(revenue times αZ) for all enzymes in the mix are equal (Ap-
pendix 2.2.1). By using d(αZrevZ)

dαZ
≈ revZ

eZ+kmNZ
αZaEB

, as shown
below, for any two enzymes, i and j , we have

d(αirevi)
dαi

=
d(αj revj )

dαj

revi
ei + kmN i

αiaEB
≈ revj

ej + kmNj

αjaEB

αj

αi
≈

revj
revi

ej + kmNj

ei + kmN i
αj

αi
≈

revj
revi

.

The last approximation holds only for similar half-saturation
parameters across enzymes kmNZ ≈ kmN , with plant en-
zyme production being low compared to the following half-
saturation: eZ � kmN .

The first approximation in the second line is only valid for
an enzyme production flux that is not larger than the half-
saturation, kmNZ (see below). This is violated at low micro-
bial biomass or very low αZ .

Hence, the optimal allocation is approximately propor-
tional to the revenue for the combination of the following
conditions:

– all enzymes having a non-negligible share

– microbial biomass being sufficiently high

– plant biomineralizing-enzyme production being low.

The derivation above used the following relationship that still
needs to be shown: d(αZrevZ)

dαZ
≈ revZ

eZ+kmNZ
αZaEB

.
For depolymerizing enzymes we use the following ap-

proximations. For αZaEB� kmNZ , i.e. 2kmNZ +αZaEB ≈

αZaEB, the half-saturation kmNZ can be neglected in the de-
nominator of the revenue. Note that αZaEB� kmNZ implies
(αZaEB)

2
� k2

mNZ
.

revZ =
dZ

ωEnz

1
kmNZ +αZaEB

≈
dZ

ωEnz

1
αZaEB

d(αZrevZ)
dαZ

=
dZ

ωEnz

kmNZ

(kmNZ +αZaEB)2

=
dZ

ωEnz

kmNZ

k2
mNZ
+ 2kmNZαZaEB + (αZaEB)2

≈
dZ

ωEnz

kmNZ

αZaEB(2kmNZ +αZaEB)

= revZ
kmNZ

2kmNZ +αZaEB

≈ revZ
kmNZ

αZaEB
,

where the first two relationships have been derived in Ap-
pendix 2.1.1. For depolymerizing enzymes we have eZ = 0
because they are not produced by plant roots.

Similarly, for biomineralizing enzymes we require
αZaEB� kmNZ + eZ , where eZ is the production of an en-
zyme, Z, by plants.

revZ =
dZ

ωEnz

kmNZ

eZ + kmNZ

1
eZ + kmNZ +αZaEB

≈
dZ

ωEnz

kmNZ

eZ + kmNZ

1
αZaEB

d(αZrevZ)
dαZ

=
dZ

ωEnz

kmNZ

(eZ + kmNZ +αZaEB)2

=
dZ

ωEnz

kmNZ

(eZ + kmNZ)
2+ 2(eZ + kmNZ)αZaEB + (αZaEB)2

≈
dZ

ωEnz

kmNZ

αZaEB(2(eZ + kmNZ)+αZaEB)

= revZ
eZ + kmNZ

2(eZ + kmNZ)+αZaEB

≈ revZ
eZ + kmNZ

αZaEB
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Appendix D: Derivative-based change of community
allocation

SESAM assumes that microbial community develops in a
way to maximize growth of the entire community. Growth
increases with uptake and hence increases with decomposi-
tion flux for given enzyme allocation. The revenue of alloca-
tion to an enzyme, Z, is revZ =

dZw(αZ)
αZωEnzaEB

. The return, dZw,
is a limitation-weighted mineralization flux or uptake flux of
nutrients and carbon (Sect. 2.1.1 and 2.1.2). The investment
is the share, αZ , invested in the production of an enzyme, Z,
multiplied by total limitation-weighted flux, ωEnzaEB, allo-
cated to enzyme production.

Although it is possible to derive explicit formulas for the
allocation that optimize the total return for simple cases, the
formulas quickly grow and involve higher-order polynomials
of αZ with several solutions outside the reasonable bound
αZ ∈ [0,1].

Here we follow an alternative local approach where we
assume the rate change in αZ over time to be proportional to
the deviation of the derivative of change of the total return
with respect to αZ to the average across the derivatives for
different enzymes. The higher the increase in the total return
for shifting allocation towards a specific enzyme, the faster
the community changes in this direction.

The total return is a weighted sum of enzyme revenues,
and derivatives of d(αZrevZ)

dαZ
have been derived for depoly-

merizing and biomineralizing enzymes (Sect. 2.2.1).

uT = ωEnzaEB
∑
Z

αZrevZ(αZ)

duT

dαZ
= ωEnzaEB

∑
Z

d(αZrevZ)
dαZ

We assume that the larger the change in return with increas-
ing allocation, i.e. the derivative to allocation coefficient, αZ ,
the larger the change in allocation is. In addition to the as-
sumption of proportionality to the derivative, we assume that
the community changes at a rate of the same magnitude as
synthesis and turnover of microbial biomass.

dαZ
dt
∝

duT

dαZ
−mdu

=

(
|synB |
B
+ τ

) duT
dαZ
−mdu

mdu

mdu =meani

(
duT

dαi

)
,

where mdu is the average across derivatives of return across
enzymes. If all changes are the same, i.e. equal to the mean,
the allocation is optimal because it does not increase in any
direction.

We want the change to be proportional to the change in
return compared to the average return. Subtracting this mean
ensures that the sum of all the changes in α sums to 0 so

that the sum across αZ is preserved. The proportionality fac-
tor normalizes the change in return and multiplies this rela-
tive change by the rate of microbial turnover, composed of
biomass synthesis and biomass turnover.

D1 Exclude enzymes whose negative relative change is
larger than its share

The community may not allocate to all enzymes. Hence,
mdue (an updated version of mdu) averages only across a
subset of enzymes. The derivative optimization strategy as-
sumes that nothing is allocated to an enzyme if its normalized
change towards 0 is larger than its current share, i.e. is more
negative than −αZ .

Z0 =

{
Z|

duT
dαZ
−mdue

mdue
<−αZ

}

dαZ
dt
=

(
|synB |
B
+ τ

)−αZ for Z ∈ Z0
duT
dαZ
−mdue

mdue
otherwise

=

(
|synB |
B
+ τ

)
max

( duT
dαZ
−mdue

mdue
,−αZ

)

mdue =

∑
ζ 6∈Z0

duT
dαζ

|{Z}rZ0| +
∑
ζ∈Z0

αζ
,

where |{Z}rZ0| denotes the number of enzymes allocated,
i.e. the cardinality of the set of all enzymes without those
in Z0. The relative change of those excluded enzymes is set
to −αZ , resulting in negative changes going to 0 as αZ ap-
proaches 0. Hence, the relative change is lower-bounded by
−αZ .
mdu has to be adjusted to mdue so that

∑
i

dαi
dt = 0 holds,

i.e.
∑
ζ 6∈Z0

duT
dαZ
−mdue

mdue
+
∑
ζ∈Z0
−αζ = 0.

This definition is recursive because mdue is computed
across a set that is defined using mdue. In order to determine
Z0 one can start with the empty set and add all enzymes that
fulfil the condition. If enzymes were added, then the mean
across remaining derivatives increases and the condition has
to be checked again. Hence, adding enzymes to Z0 is re-
peated until no more enzymes fulfil the condition and the
mean does not change any more.

Code and data availability. SESAM (v3.1) is available coded in R
at https://github.com/bgctw/sesam (last access: 19 February 2024)
(https://doi.org/10.5281/zenodo.8026318, Wutzler, 2023a) and
coded in Julia at https://github.com/bgctw/Sesam.jl (last access:
19 February 2024) (https://doi.org/10.5281/zenodo.8026366, Wut-
zler, 2023b). R source code is released using the GPL v2 (GNU
General Public License) because it uses other GPL libraries. Julia
code is released using the more permissive MIT License.

The simulation experiments are part of the R repository.
They use the derivSesam3P model variant. The “Prescribed po-
tential returns” code is provided in the “Allocation” section
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of file develop/23_optimAlloc/sesamess/sesam_LRP_deriv.Rmd.
The decadal-term FACE code is provided with file devel-
op/23_optimAlloc/Face1_3P.Rmd. The sub-annual Incubation code
is provided with file SimBareSoilPulse_opt.Rmd. This paper
presents prototypical artificial simulations based on synthetic data.
All the necessary information is listed in the tables as well as in the
referenced source code.
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