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Abstract. Canada’s forests play a critical role in the global
carbon (C) cycle and are responding to unprecedented cli-
mate change as well as ongoing natural and anthropogenic
disturbances. However, the representation of disturbance in
boreal regions is limited in pre-existing land surface models
(LSMs). Moreover, many LSMs do not explicitly represent
subgrid-scale heterogeneity resulting from disturbance. To
address these limitations, we implement harvest and wild-
fire forcings in the Canadian Land Surface Scheme Includ-
ing Biogeochemical Cycles (CLASSIC) land surface model
alongside dynamic tiling that represents subgrid-scale het-
erogeneity due to disturbance. The disturbances are captured
using 30 m spatial resolution satellite data (Landsat) on an
annual basis for 33 years. Using the pan-Canadian domain
(i.e., all of Canada south of 76° N) as our study area for
demonstration, we determine the model setup that optimally
balances a detailed process representation and computational
efficiency. We then demonstrate the impacts of subgrid-
scale heterogeneity relative to standard average individual-
based representations of disturbance and explore the resul-
tant differences between the simulations. Our results indi-
cate that the modeling approach implemented can balance
model complexity and computational cost to represent the
impacts of subgrid-scale heterogeneity resulting from dis-
turbance. Subgrid-scale heterogeneity is shown to have im-
pacts 1.5 to 4 times the impact of disturbance alone on gross
primary productivity, autotrophic respiration, and surface en-
ergy balance processes in our simulations. These impacts are
a result of subgrid-scale heterogeneity slowing vegetation re-
growth and affecting surface energy balance in recently dis-

turbed, sparsely vegetated, and often snow-covered fractions
of the land surface. Representing subgrid-scale heterogeneity
is key to more accurately representing timber harvest, which
preferentially impacts larger trees on higher quality and more
accessible sites. Our results show how different discretization
schemes can impact model biases resulting from the repre-
sentation of disturbance. These insights, along with our im-
plementation of dynamic tiling, may apply to other tile-based
LSMs. Ultimately, our results enhance our understanding of,
and ability to represent, disturbance within Canada, facilitat-
ing a comprehensive process-based assessment of Canada’s
terrestrial C cycle.

Copyright statement. © His Majesty the King in Right of Canada,
as represented by the Minister of Environment and Climate Change,
2024.

1 Introduction

Canada’s forests play a critical role in the global car-
bon (C) cycle (Keenan and Williams, 2018; Lenton et al.,
2008). Canada’s forests are also responding to both unprece-
dented climate change and ongoing anthropogenic distur-
bance (Lenton et al., 2008; White et al., 2017). Unfortu-
nately, disentangling the relative impacts of disturbance pro-
cesses and climate change on the Canadian forest C cycle
is difficult (Sulla-Menashe et al., 2018; Goetz et al., 2005;
Ju and Masek, 2016; Weber and Flannigan, 1997). Process-
based land surface models (LSMs) provide a tool to evalu-
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ate the impacts of both types of disturbance, but there has
only been limited representation of anthropogenic distur-
bance in regional or global C cycling assessments (Friedling-
stein et al., 2019; Peng et al., 2014; Chaste et al., 2017; Hayes
et al., 2012). Moreover, of those LSMs that do explicitly
represent anthropogenic disturbance, only a small subset ac-
count for the resulting subgrid-scale heterogeneity (Le Quéré
et al., 2018; Nabel et al., 2020; Pongratz et al., 2018). Here
we demonstrate the impacts of disturbance and subgrid-scale
heterogeneity on C and energy fluxes by implementing a dy-
namic tiling scheme in the Canadian Land Surface Scheme
Including Biogeochemical Cycles (CLASSIC).

Subgrid-scale landscape heterogeneity refers to any char-
acteristic of the landscape that differs at scales below that of
the main model grid – in this case, differences in tree age and
biomass in the burned or harvested subfraction of the grid
cell. Tile-based LSMs, unlike individual-based models (i.e.,
models which simulate the landscape using several heteroge-
neous individuals), do not inherently represent subgrid-scale
heterogeneity. Instead, the tile represents the average individ-
ual of a given plant function type (PFT) and thus represents
the PFT’s average state within the grid cell (a single height,
biomass, etc.), which is used to simulate fluxes. Although
most tile-based LSMs account for wood harvest, few repre-
sent the resulting subgrid-scale landscape heterogeneity, in-
stead representing the impact of disturbances on the average
individual PFT (Le Quéré et al., 2018; Pongratz et al., 2018;
Nabel et al., 2020).

Stand-replacing forest disturbances (i.e., timber harvest
and fire) directly impact forest C stocks through the removal
of standing biomass (Wulder et al., 2020). In addition, stand-
replacing disturbances also impact stand structure, especially
in the case of managed timber harvest (Pan et al., 2010; Ku-
uluvainen and Gauthier, 2018; Pan et al., 2013). The result-
ing stand structure impacts forest function such as the ex-
change of matter and energy with the atmosphere as well
as the forest’s response to climate change (Erb et al., 2017;
Luyssaert et al., 2014; Körner, 2006; Dore et al., 2010; Liu,
2005; Maness et al., 2012; Hirano et al., 2017). Historically,
0.4 % of Canada’s ∼ 650 Mh of forested ecosystems are af-
fected by stand-replacing disturbance per year (White et al.,
2017). The age structure of Canadian forests due to historical
disturbance has impacted the strength of the historical C sink
in Canadian forests (Kurz and Apps, 1999, 1993; Böttcher
et al., 2008). The age structure resulting from disturbance
also influences the surface energy balance of stands by, for
example, altering the sensible heat flux due to differences in
snow cover and albedo and altering the seasonality of sur-
face energy budgets and land surface properties (Liu, 2005;
Maness et al., 2012). Therefore, it is key that we enhance our
ability to accurately represent both disturbance processes and
the influence of the subgrid-scale heterogeneity that distur-
bances produce within LSMs.

Disturbance events impact the response of Canada’s
forests to climate change. The responses of forest produc-

tivity, forest soil decomposition processes, and evaporation
rates to warming, rising CO2 concentrations, and changes to
precipitation regimes will depend on stand structural char-
acteristics and tree species characteristics (Hember et al.,
2012; Kurz et al., 1997; Körner, 2006; Shrestha and Chen,
2010; Bond-Lamberty and Gower, 2008; Czimczik et al.,
2006; Kurz et al., 2008). Warmer temperatures and higher
atmospheric CO2 concentrations are likely to increase the
productivity of boreal forests, whereas drought stress and
changing disturbance regimes are likely to decrease produc-
tivity and enhance the decomposition of soil C, leading to
a patchwork of contrasting future responses (Babst et al.,
2019; Reich et al., 2018; Lenton et al., 2008; Weber and
Flannigan, 1997; Potapov et al., 2008; Ju and Chen, 2008;
Sulla-Menashe et al., 2018). Complex changes in vegeta-
tion productivity have already been observed across the pan-
Canadian domain due to the intermingling of different dis-
turbance regimes and different vegetation sensitivities to cli-
mate change (Marchand et al., 2018; D’Orangeville et al.,
2018; Ma et al., 2012; Girardin et al., 2016). Decreases
in vegetation productivity are generally occurring in north-
western boreal forests, whereas southeastern boreal forests
show positive trends (Marchand et al., 2018). Much of the
landscape-scale change in vegetation productivity detected
across Canada’s boreal forests is a product of or is influenced
by stand-replacing disturbance (Hermosilla et al., 2015b, a).
Some negative productivity trends in the southern fringes of
western undisturbed forests can be largely be attributed to
moisture stress, and some of the positive trends in cooler and
wetter portions of eastern boreal forests can be attributed
to warming (Marchand et al., 2018; Sulla-Menashe et al.,
2018). Process-based models which represent both distur-
bance and the resultant subgrid-scale landscape heterogene-
ity can offer insight into the drivers of these complex trends
(Böttcher et al., 2008).

CLASSIC is a tile-based LSM that can be coupled to the
Canadian Earth System Model (CanESM). Several meth-
ods are available for representing disturbance history in tile-
based LSMs. Some models represent the age classes within
the stand by using a fixed number of tiles to represent frac-
tional areas below the scale of the main model grid (i.e., from
two to 12 tiles) (Shevliakova et al., 2009; Yue et al., 2018a;
Naudts et al., 2015; Yang et al., 2010; Stocker et al., 2014).
Alternatively, several models simulate subgrid-scale forest
structure using another model housed in a separate module
coupled to the main model (Bellassen et al., 2010; Haverd
et al., 2014). The module takes information about net pri-
mary productivity from the main model and uses it to simu-
late and track the growth of individual trees. The module then
returns grid-cell average state information (i.e., biomass and
litter fluxes), which is used by the main model to simulate
subsequent fluxes. Finally, a recently developed approach
uses a fixed number of tiles to represent age classes (Nabel
et al., 2020). Tile fractional area and associated state vari-
ables (i.e., biomass C) are horizontally exchanged between
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the tiles to represent processes like aging, harvest, and distur-
bance. Each approach entails a host of strengths and weak-
nesses as well as its own biases resulting from discretization
error (Nabel et al., 2020; Fisher et al., 2018).

In this study, to demonstrate the impacts of disturbance
and subgrid-scale heterogeneity on C and energy fluxes, we
implement a dynamic tiling scheme in CLASSIC. Our im-
plementation is a modified version of approaches that use
a fixed number of tiles to represent age classes within the
stand and may apply to other tile-based LSMs. We build
upon a version of CLASSIC tailored to the pan-Canadian
domain using region-specific plant functional types (PFTs)
and a 0.22° (∼ 20 km× 20 km) common grid (Curasi et al.,
2023b). The age classes within the stand are represented us-
ing a variable number of subgrid tiles of variable fractional
area and are subject to a user-determined maximum number
of tiles available for the simulation. Tiles are split to rep-
resent disturbance and the resulting age and size structures.
Tiles, and their underlying characteristics, are joined by the
simulation either when the number of tiles reaches the user-
determined maximum bound or pre-emptively based upon
other user-determined parameters. The model is driven by
externally forced harvest and fire from region-specific dis-
turbance history drivers. We set an optimal maximum num-
ber of tiles that are available for the simulation by evaluat-
ing different model setups through model-on-model evalua-
tion and assessing the run times of these setups. Finally, we
compare the differences across runs to assess the impacts of
the imposed trade-off between run time and a more detailed
representation (i.e., more tiles). This investigation provides
insight into the model configuration and the roles of fire, har-
vest, and tiling within CLASSIC as a step towards a com-
prehensive process-based assessment of Canada’s terrestrial
C cycle. These insights may also apply to other tile-based
LSMs.

2 Methods

2.1 Study area

We use all of Canada south of 76° N as our simulation study
area. Canada contains 650 Mha of forested land, and 98 Mha
(18 %) of this forested land was disturbed from 1985–2015.
On average, each year, 1.61 Mha is disturbed by wildfire,
whereas 0.64 Mha is disturbed by harvest (Hermosilla et al.,
2019). Disturbance due to wildfire is most prevalent in north-
ern boreal regions, whereas harvest and other anthropogenic
disturbances are more common in southern boreal regions
where wildfire is suppressed. The spatial extent of individual
disturbances is highly variable. In Canada, over the course
of a year, each contiguous timber harvest event clears on av-
erage 98± 115 ha. These timber harvest patterns are heav-
ily influenced by forest management practices (Hermosilla
et al., 2015b; White et al., 2017). Similarly, over the course

of a year, each contiguous fire event burns 324± 633 ha (Her-
mosilla et al., 2015b). The spatial scale of these change ob-
jects, sourced from 30 m spatial resolution Landsat imagery,
falls well below the ∼ 40 000 ha resolution of the 0.22° pan-
Canadian domain model grid. Located largely in southern
latitudes, around 52 % of Canada’s forested land is consid-
ered managed forest (Stinson et al., 2011). Canada’s forest
structure is characterized by relatively young stands in cen-
tral and northwestern Canada, with much older stands found
in the Pacific coastal and interior forests in British Columbia
(Maltman et al., 2023). Forest ages in Canada are the result of
prevailing natural disturbance regimes and, to a lesser extent,
forest management practices (Pan et al., 2013).

2.2 The CLASSIC model

CLASSIC is an open-source community model that couples
the Canadian Land Surface Scheme (CLASS) (Verseghy,
2000, 2017; Verseghy et al., 1993; Verseghy, 2007) and the
Canadian Terrestrial Ecosystem Model (CTEM) (Melton and
Arora, 2016; Arora, 2003). CLASSIC v1.0 is described and
evaluated by Melton et al. (2020) and Seiler et al. (2021).
A detailed description of model updates and improvements
to CLASSIC since v1.0 that are utilized by our simula-
tions can be found in Asaadi et al. (2018), MacKay et al.
(2022), and Curasi et al. (2023b). We carry out simulations
of the pan-Canadian domain using a parameterization of the
model which includes Canada-specific plant functional types
(PFTs) that were developed and evaluated by Curasi et al.
(2023b).

The CTEM dynamic vegetation sub-model simulates pho-
tosynthetic fluxes at a 30 min time step in offline simulations
and the allocation of C within live vegetation to structural
and non-structural components of leaves, stems, and roots
at a daily time step. CTEM also simulates daily autotrophic
respiration from leaves, stems, and roots and heterotrophic
respiration fluxes from litter and soil C. The pan-Canadian
parameterization of CTEM utilizes 14 biogeochemical PFTs
(Curasi et al., 2023b). CTEM is coupled to CLASS at a daily
time step and provides CLASS with vegetation height, leaf
area index, biomass, and rooting depth. CLASS, in turn, pro-
vides CTEM with mean daily soil moisture, soil temperature,
and net radiation incident on the land surface. CLASS simu-
lates ground and canopy energy exchange from four possible
subareas – bare ground, snow-covered bare ground, canopy-
covered ground, and snow-covered canopy – at a 30 min time
step. It uses 20 ground layers from 0.1 to 30 m thick to a
depth of over 61 m and simulates heat transfer within all per-
meable soil layers and the underlying bedrock. It also simu-
lates water fluxes between the soil layers up until the depth
of the impermeable bedrock layer. The depth of the imperme-
able bedrock layer in each grid cell is derived from Shang-
guan et al. (2017). CLASS models a single-layer canopy
and uses five physics PFTs, which map directly onto the
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14 CTEM biogeochemical PFTs, in the pan-Canadian pa-
rameterization (Curasi et al., 2023b).

2.3 Dynamic tile representation of externally forced
fire and harvest

2.3.1 The composite versus mosaic representation in
CLASSIC

CLASSIC can utilize either a composite (one tile) or mo-
saic (> 1 tile) representation of the land surface. The com-
posite representation simulates average individual PFTs for
each grid cell and uses their average structural attributes (i.e.,
leaf area index, height, and rooting depth) to simulate the
energy balance and physical environment (i.e., soil tempera-
ture). The structural attributes of all of the average individual
PFTs that exist within a grid cell are averaged in proportion
to their fractional coverages, and the PFTs all experience a
common land surface physical environment. For the com-
posite representation, a disturbance event (i.e., wood harvest)
takes an amount of C from the average individual PFT pools
that is proportional to the areal fraction disturbed (i.e., a com-
plete harvest of 50 % of the grid cell thereby removes 50 %
of the vegetation biomass; Fig. 1).

The mosaic representation splits the grid cell into multiple
tiles representing fractional areas of the grid cell. Each tile
receives the same meteorological forcing but simulates its re-
spective average individual of each PFT present, PFT struc-
tural attributes, and energy balance. The structural attributes
of all the average individual PFTs that exist within each tile
are averaged in proportion to their fractional coverages, and
the PFTs all experience a land surface physical environment
common to that tile. The tiles are aggregated to the scale of
the final model grid by accounting for each tile’s fractional
coverage of the grid cell. CLASSIC’s tiling capability has
been used in the past to investigate the impacts of subgrid-
scale heterogeneity in soil texture by breaking grid cells with
heterogeneous soil textures into tiles (Melton et al., 2017),
as well as vegetation cover (Melton and Arora, 2014; Li and
Arora, 2012) and competition between plant functional types
(Shrestha et al., 2016) by breaking grid cells with heteroge-
neous vegetation cover into tiles. These approaches result in
regional differences in fluxes of up to 30 %. We adapt the mo-
saic representation to dynamically create disturbance history
tiles and represent the subgrid-scale heterogeneity resulting
from disturbance (i.e., we represent a complete harvest of an
area corresponding to 50 % of the grid cell as a 100 % re-
duction of the vegetation biomass in a new subgrid tile that
covers 50 % of the grid cell; Fig. 1). In our approach, the tiles
serve to represent vegetation that is in different stages of re-
covery. Thus, the soil textures and vegetation fractional cover
are the same for all tiles within a given grid cell.

2.3.2 Notation and background

We present generalized equations that illustrate the dy-
namic tiling calculations done by the model to split and
join tiles. In these equations, scalars are lowercase let-
ters (i.e., x= [1]), vectors are bold lowercase letters (i.e.,
x= [x1,x2, . . .,xn]), and matrices are bold uppercase let-

ters (i.e., X= (x1,1· · ·x1,n
...
. . .
...xn,1· · ·xn,n). The model is set

up to simulate state variables for a user-defined maximum
number of tiles within a grid cell (i.e., the state variable xall
with a length equal to the user-determined maximum number
of tiles). Tiles can be set as either active or inactive at each
time step (Fig. 1). When the model identifies active tiles for
merging or splitting (e.g., Sects. 2.3.4–2.3.6), they become
candidate tiles. Depending upon the operation and the frac-
tion of the grid cell involved, anywhere between one and the
total number of tiles being actively simulated are candidate
tiles for the merging or splitting operation. Because the max-
imum number of tiles is fixed, the model must manage the
number of tiles being actively simulated. The model ensures
that up to two inactive tiles are available to simulate distur-
bance each year (i.e., one for fire and one for harvest; see
Sect. 2.3.4). During the merging or splitting operation, the
model temporarily stores values from the candidate tiles be-
fore the operation (i.e., xpre of length n, the total number of
candidate tiles) and after the operation (i.e., xpost of length n,
the total number candidate of tiles) and uses them to calculate
the values for a new single output tile (i.e., xnew). All these
values are temporarily stored and used in calculations up un-
til the point where the dynamic tiling operation is complete,
and the model’s main data structures are updated.

2.3.3 Dynamic tiling splits and joins

Dynamic tiling allows the model to split grid cells into sub-
grid tiles during the model run or to join existing subgrid
tiles. Dynamic tiling operations (splitting/joining) occur on
1 January at an annual time step alongside rigorous checks
to ensure water, mass, and energy conservation. The area
occupied by a given tile is a fraction of the grid cell land
area between 0 and 1 (i.e., aall with a length equal to the
user-determined maximum number of tiles). The sum of aall
for all the active tiles within a grid cell must equal 1. When
tiles are split, the fractional area occupied by the single new
tile (anew) must be less than the sum of the vector of frac-
tional areas of the candidate tiles (apre of length n candidate
tiles). The candidate tiles’ fractional areas are a product of
the dynamic tiling operations that occur in all previous time
steps. When the first dynamic tiling operation in a run oc-
curs, apre = [1], but apre is a much more complex vector in
subsequent operations (e.g., apre = [0.1,0.2,0.3]). The can-
didate tiles are later assigned a vector of new fractional areas
adjusted to account for the new tile and the decrease in size
of the candidate tiles (apost, also of length n candidate tiles;
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Figure 1. Illustrative diagram contrasting the composite (one tile) and mosaic (> 1 tile) representations of disturbance implemented herein.
A hypothetical scenario where 50 % of a grid cell undergoes timber harvest is assumed here. The fraction of a grid cell that is occupied by a
tile is denoted above each tile. Tiles that are not active have a gray background (e.g., tile 3 across all time steps).

Eq. 1).

anew <
∑n

i=1
apre,i

apost,n = apre,n− anew
apre,n∑n
i=1apre,i

(1)

When tiles are joined by the model, the fractional area of
the new tile is the sum of the vector of the fractional areas
of the candidate tiles. The candidate tiles are later assigned
fractional areas of zero (Eq 2).

anew =
∑n

i=1
apre,i

apost = 0 (2)

For a tile or group of tiles to be split or joined, they must
pass rigorous checks that ensure they share the same abiotic
characteristics and static fractional PFT cover. These char-
acteristics (i.e., soil texture, soil permeable depth, and PFT
fractional coverage) are copied directly to the new tile by the
split or join. Mass-based variables (i.e., vegetation C pool
mass, soil C pool mass, soil water, ponded water, and wa-
ter held in the vegetation canopy) are split or joined using
fractional-area-based weighted averages to ensure mass bal-
ance. The value of the mass-based variable in the new tile
(Mnew for l layers and o PFTs; kgm−2) is the average of the
values for the candidate tiles (Mpre of length n candidate tiles
for l layers and o PFTs; kgm−2) weighted by the fractional
areas of the candidate tiles (Eq. 3).

mnew,lo =

∑n
i=1mpre,iloapre,i∑n

i=1apre,i
(3)

Temperature-based variables (i.e., the temperatures of the
vegetation canopy, ponded water, snowpack, and soil) are
split or joined using a fractional area-based weighted aver-
age that blends the different temperature materials from the
candidate tiles. The value of a given temperature for the new
tile (tnew for l layers; K) is a function of the temperatures
in the candidate tiles (Tpre of length n candidate tiles for
l layers; K) weighted by the fractional areas of the candi-
date tiles before the split, the masses of the pools which track
that temperature (Mpre of length n candidate tiles for l layers
and m pools; kgm−2), and the specific heat capacities which
characterize those mass pools (c for m pools; Jkg−1 K−1;
Eq. 4).

tnew,l =

∑n
i=1

(
tpre,ilapre,i

∑m
j=1(mpre,ilj cj )

)
∑n
i=1

(
apre,i

∑m
j=1(mpre,ilj cj )

) (4)

2.3.4 Dynamic tiling management

The maximum number of dynamic tiles in a given simulation
is limited by a parameter set at the start of the model run. If
this upper limit is reached, tiles are joined based on a sim-
ilarity criterion. By default, the model selects the two tiles
with the most similar vegetation heights and joins them. The
model uses the vector of tile average vegetation heights (
of length n for the total number of tiles; m) and calculates
the absolute differences between all possible combinations
of the elements therein (i.e., using the nested iterators n1 and
n2). The resulting absolute difference matrix of tile average
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vegetation heights ( , a n1 total number of tiles by n2 to-
tal number of tiles matrix; m) is used to judge the similarity
between tiles. The tile average vegetation height is a func-
tion of each PFT height (H of length n, the total number of
tiles, for o PFTs; m) and the PFT fractional coverage within
the tile (F of length n, the total number of tiles for o PFTs;
Eq. 5; Fig. S1 in the Supplement). In the default case, the
two tiles with the minimum are joined when the maxi-
mum number of dynamic tiles is reached.

1n1,n2 = |n1− n2|

n =

∑# of PFTs
o=1 hn,ofn,o∑# of PFTs
o=1 fn,o

(5)

An optional relative height threshold (rht; unitless) allows
for tiles to be pre-emptively joined at a yearly time step be-
fore the maximum number of dynamic tiles is reached. rht
can be conceptually thought of as breaking the tiles into
equally spaced bins organized by vegetation height. It is used
to calculate a threshold value from the maximum tile average
vegetation height ( ; m). The threshold logically determines
which pairs of tiles are pre-emptively joined at a yearly time
step based on the absolute differences in their tile average
vegetation heights ( ; m; Eq. 6; Fig. S1).

< rht ·max( ) (6)

When the rht parameter is used, the optional tile preservation
parameter (tpp; number of tiles) prevents tiles with the short-
est average vegetation height from being merged. tpp is an
integer which determines the number of tiles that the model
will retain, starting from the tile with the shortest average
vegetation height. This means the tiling scheme will carry
out pre-emptive joins based upon rht while preserving young
recently disturbed tiles and explicitly representing early suc-
cessional differences in fluxes (Bellassen et al., 2010; Za-
ehle et al., 2006; Nabel et al., 2020). When dynamic tiling
is active, the time since disturbance is tracked for all tiles.
Time since disturbance increases at the CTEM time step (i.e.,
daily). Any disturbance event applied to a particular tile re-
sets its time since disturbance to zero.

2.3.5 Externally forced fire

Externally forced fire builds upon the pre-existing fire mod-
ule within CLASSIC (Melton and Arora, 2016; Arora and
Melton, 2018). The annual fractional burned area in a grid
cell is read from a file. The model assumes that fire impacts
all non-crop PFTs.

If dynamic tiling is not active, biomass from the average
individual and the litter pool burns proportional to the re-
quested fractional burned area. If dynamic tiling is active, a
new tile with a fractional area equal to the fractional burned
area is split from the active tiles within the grid cell and sub-
sequently burned. Depending upon the requested fractional

burned area and the conditions in the grid cell, the model
uses anywhere between one tile and the total number of tiles
being actively simulated as candidate tiles for this splitting
operation.

To determine the candidate tiles for this splitting oper-
ation, the model ranks the tiles based on their probabil-
ity of fire (p of length n) conditional on the total above-
ground biomasses available for burning (b of length n;
kgCm−2). p is a linear function of the lower biomass thresh-
old (0.4 kgCm−2) under which fire cannot sustain itself and
the upper biomass threshold over which fire has a probability
of 1 (1.2 kgCm−2; Eq. 7) (Moorcroft et al., 2001; Kucharik
et al., 2000; Melton and Arora, 2016).

pn =max
[

0,min
(

1,
bn− 0.4
1.2− 0.4

)]
(7)

The model initially selects tiles with a p of 1 as candi-
date tiles to be split to yield the tile to be burned. However,
if these selected tiles do not contain enough fractional area
to simulate the fractional burned area requested, the model
selects tiles with a p of less than 1 from largest to smallest
(Fig. S1). Externally forced fire uses a single probability (p)
to rank tiles, whereas CLASSIC’s standard fire module uses
three probabilities to calculate the burned area: the proba-
bility of fire conditional on the total aboveground biomasses
available for burning, the combustibility of the fuel based on
its moisture content, and the presence of an ignition source
(Arora and Boer, 2005; Arora and Melton, 2018). We make
this simplification here because the fractional burned area
comes from a file and all the tiles within a grid cell expe-
rience the same driving meteorology, limiting differences in
moisture content and ignition (Melton et al., 2017; Melton
and Arora, 2014). With dynamic tiling either active or inac-
tive, we calculate the C emissions to the atmosphere using
pre-defined PFT-specific fire emission fractions for each live
vegetation component (i.e., both structural and non-structural
leaves, stems, and roots) as well as the litter pool (υ; Table 1).
We calculate the quantity of live vegetation C transferred to
the litter pool as a result of fire-related mortality using pre-
defined PFT-specific mortality fractions (2; Table 1). Exter-
nally forced fire does not impact crop PFTs, and thus their
biomass never combusts nor experiences fire-related mortal-
ity.

2.3.6 Externally forced harvest

Harvest simulates the removal of biomass from the landscape
because of logging activities and builds upon the pre-existing
land use change module within CLASSIC (Arora and Boer,
2010). The annual fractional harvested area on a per-grid-cell
basis is read from a file. The model assumes that all harvest
events are clearcuts that impact some fraction of the simu-
lated grid cell.

If dynamic tiling is not active, the average individual is
harvested proportional to the requested fractional area. If dy-
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Table 1. The PFT-specific fire emission fractions (υ) used to calculate C emissions to the atmosphere due to fire for each live vegetation
component (i.e., both structural and non-structural leaves, stems, and roots) and the litter pool as well as the PFT-specific mortality fractions
(2) used to calculate the quantity of C from each live vegetation component transferred to the litter pool. Crop PFTs are not impacted by fire
and are therefore not assigned fractions (Melton and Arora, 2016).

PFT type Green leaves Brown leaves Stems Roots Litter

Combusted Litter Combusted Litter Combusted Litter Combusted Litter Combusted
(υL) (2L) (υB) (2B) (υS) (2S) (υR) (2R) (υD)

Tree 0.42 0.20 – – 0.12 0.60 0.00 0.10 0.30
Herbaceous 0.48 0.10 0.54 0.06 0.00 0.00 0.00 0.25 0.42
Shrub 0.42 0.20 – – 0.12 0.60 0.00 0.10 0.36

Table 2. The fractions of harvest-affected biomass transferred to different wood product pools for herbaceous PFTs and woody PFTs (ε).
The fractions for woody PFTs differ depending on the aboveground biomass density (Arora and Boer, 2010).

Aboveground Fraction of deforested Fraction of deforested Fraction of deforested
biomass density biomass emitted to the biomass as slash/pulp biomass as durable
(kgCm−2) atmosphere (εA) and paper products (εD) wood products (εS )

Woody PFTs > 4.0 0.15 0.70 0.15
1.0–4.0 0.30 0.70 0.00
< 1.0 0.45 0.55 0.00

Herbaceous PFTs – 0.45 0.55 0.00

namic tiling is active, a new tile with a fractional area equal
to the requested fractional area is split from the oldest undis-
turbed active tile, and the entire new tile is harvested. If the
harvested area requested exceeds the fractional area of the
oldest undisturbed active tile, the model selects additional
active tiles as candidate tiles from oldest to youngest until
there is sufficient fractional area.

In either case, the harvested aboveground biomass (i.e.,
both non-structural and structural stem and leaf C) is split
into three streams using fractions developed by Arora and
Boer (2010). These streams contribute C to the atmosphere,
the slash/pulp and paper product pool, and the durable
wood product pool. The fractions of harvested aboveground
biomass allocated to each stream (ε; Table 2) depend upon
whether the PFT is woody or herbaceous and, in the case of
woody PFTs, the aboveground biomass density. Unlike the
procedure described by Arora and Boer (2010) where root
biomass is transferred to the slash/pulp and paper product
pool, we transfer harvested root biomass to the applicable
PFT and soil-depth-specific litter pools.

2.4 Model forcing

2.4.1 Meteorological drivers and land cover

CLASSIC requires seven meteorological forcing variables:
incoming shortwave radiation, incoming longwave radiation,
air temperature, precipitation rate, air pressure, specific hu-
midity, and wind speed. We use the interpolated and disag-
gregated meteorological forcing described in detail by Meyer

et al. (2021) and Curasi et al. (2023b) (GSWP3–W5E5–
ERA5) in our simulations. The 1901–1978 portion of the
forcing comes from the Inter-Sectoral Impact Model Inter-
comparison Project GSWP3–W5E5 and the 1979–2018 por-
tion comes from the ERA5 time series bias-corrected to
match the means of the overlapping period in the GSWP3–
W5E5 (Kim, 2017; Lange, 2019, 2020a, b; ECMWF, 2019).
The atmospheric CO2 concentrations (1700–2017) were
obtained from the global carbon project (“Trends in at-
mospheric carbon dioxide”, National Oceanic & Atmo-
spheric Administration, Earth System Research Laboratory
(NOAA/ESRL), 2022; Friedlingstein et al., 2022).

We set the fractional coverage of PFTs using the re-
motely sensed 14 PFT-hybrid land cover product gener-
ated by Wang et al. (2023) and expanded upon and evalu-
ated by Curasi et al. (2023b). This land cover corresponds
to the year 2010. This land cover product combines infor-
mation from the North American Land Change Monitor-
ing System land cover (Latifovic et al., 2017), the National
Terrestrial Ecosystem Monitoring System (NTEMS) (Her-
mosilla et al., 2018, 2016), satellite-derived maps of the Na-
tional Forest Inventory attributes (Beaudoin et al., 2018),
and British Columbia’s biogeoclimatic ecosystem classifica-
tion map (MacKenzie and Meidinger, 2018; Salkfield et al.,
2016). Using a land cover that does not vary in time (i.e.,
static land cover as opposed to dynamic or prescribed land
cover changes) allows us to focus on the influences of fire,
harvest, and dynamic tiling on the model outputs.
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Figure 2. Plots of the disturbance drivers over time. Annual total (a) burned and (b) harvested areas from 1740–2020. “Observed” indicates
the period that uses the Landsat fire and harvest observations (Hermosilla et al., 2016, 2015a, b). “Bias-corrected with aspatial records”
indicates the period where the disturbance was inferred from the 2019 stand age (Maltman et al., 2023) and bias-corrected using the aspatial
harvested and burned areas (Skakun et al., 2021; World Resources Institute, 2000; Van Wagner, 1988). “Bias-corrected with aspatial inferred
records” and “Bias-corrected with constant value” indicate the period where the inferred disturbance was bias-corrected based on Kurz et al.
(1995) and Chen et al. (2000), respectively. The aspatial records line is the 9-year running mean, min, and max of the aspatial total harvested
and burned area data sets. (c) Per-grid-cell total area disturbed (1985–2017) and (d) the total number of simulated events (1985–2017).
(e) Per-grid-cell total area disturbed, excluding undisturbed cells, plotted against the total number of simulated events. The black line is a
LOESS curve. Note that a simulated event combines all the individual fire or harvest events that occur in a grid cell in a single year, with a
maximum of two simulated events per year (one fire and one harvest) occurring in each grid cell.
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2.4.2 Fire and harvest forcing

We develop fire and harvest drivers that detail the per-grid-
cell annual fractional area harvested or burned between 1740
and 2017 (Fig. 2a and b). For the satellite era (1985–2017),
we use remotely sensed 30 m spatial resolution records of
harvest and fire events. These data were derived from Land-
sat by using breakpoint detection to identify changes and
trends (Hermosilla et al., 2016, 2015a) followed by a ran-
dom forest classification of change types (Hermosilla et al.,
2015b). We mask the remotely sensed harvest records to in-
clude only private, long-term tenure, and short-term tenure
forests, as indicated by Stinson et al. (2019).

Before the availability of remotely sensed records used
herein (pre-1984), to our knowledge, there are no spatially
explicit pan-Canadian integrated harvest and fire data sets
available. Therefore, to represent the impact of historical dis-
turbance on the model state, we employ established meth-
ods for inferring disturbance events from stand age (Nabel
et al., 2020; Kurz et al., 2009; Chen et al., 2000, 2003). We
also focus our analysis of the CLASSIC simulations on the
satellite era (1985–2017) due to uncertainties in inferred his-
torical disturbance and the model state before the satellite
era. Maltman et al. (2023) derived a 30 m resolution stand-
age map for 2019 from Landsat and MODIS data utilizing
three methods. The methods included disturbance detection
for stands between 0 and 34 years of age, the detection of
spectral signals indicative of recovery for stands between 34
and 54 years of age, and inverting allometric equations for
stands between 54 and 150 years of age. We infer the year
in which the last disturbance occurred from the stand age.
For example, a 40-year-old forest in 2019 is assumed to have
been last disturbed in 1979. We use regional averages of the
per-pixel ratio of burned to total disturbed area from the first
decades of the satellite era (1985–1995) to fraction total in-
ferred disturbance into fire and harvest.

However, pre-1984 disturbance that has been inferred
from stand age does not align with available aspatial records
of total harvested and burned area within Canada. Therefore,
we utilize the aspatial records to bias-correct the 1740–1984
disturbance that has been inferred from stand age to ensure
that the total values match the available historical records.
From 1740–1920, we utilized aspatial records of total dis-
turbed area derived from 1920 stand age with harvest held
constant (0.3 Mhayr−1) (Chen et al., 2000; Kurz et al., 1995).
From 1920–1984, we utilized aspatial records of the total
harvested and burned area within Canada from Skakun et al.
(2021) and World Resources Institute (2000). We utilize bias
correction that retains the spatial patterns of pre-1984 dis-
turbance inferred from stand age while correcting positive
and negative biases to match the aspatial records. This neces-
sitated two distinct bias correction methods. For years with
positive biases, the positive bias indicates that sufficient dis-
turbance is inferred from stand age. In these cases, a uniform
bias correction factor can be used to scale down disturbance.

Years with negative biases, however, do not contain suffi-
cient disturbance as inferred from stand age. Here, residual
disturbed area from nearby years needs to be added to the
year under consideration to match the aspatial records’ level
of disturbance while preserving the spatial patterns derived
from stand age. Because the uncertainty of stand age esti-
mates increases further into the past, the negative bias cor-
rection is carried out starting in 1984 and looping backward
annually until 1740 (Maltman et al., 2023).

First, for years in which burned or harvested area inferred
from stand age (Dinferred for i years, l grid cells; m2) ex-
ceeded the aspatial records (daspatial for i years; m2), we cor-
rect the positive biases. We calculate an aspatial bias correc-
tion factor (f for i years; unitless; Eq. 8).

fi =

((∑# of grid cells
l=1 d inferred,i,l

)
− daspatial,i

)
(∑# of grid cells

l=1 d inferred,i,l

) (8)

Because the pre-1985 records are aspatial, the bias correc-
tion factor is temporally explicit but uniformly applied across
space. When we apply the bias correction factor to the in-
ferred disturbance time series, the result is a new time series
with all the positive biases corrected (Ddownsc for i years,
l grid cells; m2; Eq. 9).

ddownsc,il = dinferred,il − dinferred,ilfi (9)

When we apply the bias correction factor, we retain
the spatially and temporally explicit residuals (Dresidual for
i years, l grid cells; m2; Eq. 10).

dresidual,il = dinferred,il − ddownsc,il (10)

Second, for years in which burned or harvested area in-
ferred from stand age falls below that indicated in the aspa-
tial records, we correct the negative biases by adding in the
residuals from nearby years (Fig. 3). We loop backward in
time from 1984 to 1740 and accumulate residuals (rmoving
for l grid cells; m2) extending as far back in time as needed
to exceed the aspatial record for the year under consideration
(daspatial,i). We calculate an aspatial bias correction factor (f ;
unitless) and use it to apply a fraction of rmoving to the in-
ferred disturbance time series and subtract the residuals used
from rmoving. When the spatially explicit residuals are ex-
hausted (∼ 1920 for fire only), they are replenished using the
entire gridded remotely sensed and stand-age-inferred distur-
bance record. This procedure continues until all the negative
biases have been corrected between 1984 and 1740, yielding
the final spatially explicit time series (Dfinal for i years, l grid
cells; m2).

2.5 Simulation protocol

We carry out a total of 14 simulations using a common
simulation protocol to investigate the impacts of differ-
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Figure 3. A schematic diagram of the negative bias correction algorithm with applicable equations and logical tests. 1 Not shown: when the
spatially explicit residuals are exhausted, they are replenished using the entire remotely sensed and stand-age-inferred disturbance record.

ent maximum numbers of available tiles, rht, and tpp (Ta-
ble 3). rht (0.04–0.16, unitless) can be conceptually thought
of as breaking the range of tile average vegetation heights
into between 24 and six equally spaced bins, depend-
ing upon its value (e.g., (1 binmm−1/6 bins)= 0.16 mm−1).
tpp (4–6 tiles) can be conceptually thought of as the
maximum number of discrete disturbance events that the
model can simulate in a grid cell over 2–3 years (e.g.,
(1 harvest tile yr−1

+ 1 fire tile yr−1)× 3 years× 6 tiles).
We spin up the model to equilibrium conditions corre-

sponding to the year 1700 and then do a transient run over
the period 1700 to 2017. For the spin up, we loop the earliest

25 years of climate data available (1901–1925) and hold at-
mospheric CO2 concentrations constant at the pre-industrial
(1700) level. The 1700–1900 portion of the transient run
uses the same loop of 1901–1925 climate but transient at-
mospheric CO2 concentrations. The 1900–2017 portion of
the transient run uses transient atmospheric CO2 concentra-
tions and evolving GSWP3–W5E5–ERA5 climate. During
the full transient simulation from 1740–2017, the fire and
harvest are applied (see Sect. 2.4). The 14 transient simula-
tions utilize their individual, unique land-surface representa-
tion (i.e., composite or mosaic), maximum number of avail-
able tiles, rht, and tpp for the entire 1700–2017 run (Table 3).
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Table 3. An overview of the simulations conducted in this study.

Abbreviation Land surface Includes Max available Relative height Tile preservation
representation disturbance tiles threshold parameter

1-tile/not-disturbed Composite No 1 – –
1-tile/disturbed Composite Yes 1 – –
3-tile Mosaic Yes 3 – –
7-tiles Mosaic Yes 7 – –
12-tile Mosaic Yes 12 – –
18-tile Mosaic Yes 18 – –
25-tile Mosaic Yes 25 – –
32-tile Mosaic Yes 32 – –
Optimal Mosaic Yes 12 0.04 4
– Mosaic Yes 12 0.08 4
– Mosaic Yes 12 0.16 4
– Mosaic Yes 12 0.04 6
– Mosaic Yes 12 0.08 6
– Mosaic Yes 12 0.16 6

The CLASSIC nitrogen cycling module is not active in these
simulations (Asaadi and Arora, 2021; Arora and Boer, 2010).

2.6 Model evaluation

We carry out model-on-model comparisons for a selection
of variables and model configurations for the satellite era
portions of our simulations (1985–2017) to select the model
setup that optimally balances a detailed process representa-
tion and model run time (Table 3). This model-on-model ap-
proach has the benefit of canceling out any pre-existing bi-
ases in the model and focusing our results on the impacts of
subgrid-scale heterogeneity, and discretization error (similar
to Torres-Rojas et al., 2022; Moorcroft et al., 2001). We also
use these evaluations to demonstrate the relative impact of
representing subgrid-scale heterogeneity within our model-
ing framework. We evaluate a suite of C cycling and surface-
energy-balance-related variables, including the land carbon
pool (cLand), vegetation C (cVeg), soil C (cSoil), gross pri-
mary productivity (GPP), autotrophic respiration (Ra), het-
erotrophic respiration (Rh), ecosystem respiration (ER), leaf
area index (LAI), sensible heat flux (HFSS), latent heat flux
(HFLS), albedo (ALBS), fire emissions (fFire), total defor-
ested C (fDeforestTotal), and cumulative deforested C (the
running sum of fDeforestTotal starting in 1985; fDeforestCu-
mulative).

To select the optimal maximum number of tiles available
for the simulation as well as the rht and tpp, we calculate the
mean squared deviation (msd for the j model runs detailed
in Table 3 over the 1985–2017 period) between the model
runs under evaluation and the reference 32-tile run. The 32-
tile run is the reference point, as it is the simulation with
the least compromise between run time and simulation detail
and is assumed to best represent the impacts of disturbance
in CLASSIC. MSD represents the mean of the squared dif-

ferences between the annual summary (i.e., means for fluxes
and sums for pools) of each variable for the 32-tile run (x̂32tile
containing i years) and that for the simulations under evalu-
ation (X̂ containing i years for j model runs; Eq. 11).

msdj =
1

33

∑2017
i=1985

(
x̂j,i − x̂32tile,i

)2 (11)

We also use a normalized response metric (1Xnorm for
j model runs, k variables; Eq. 12) to evaluate the relative
impacts of disturbance and subgrid-scale heterogeneity on
the simulations. The normalized response metric is a unitless
summary statistic. Its strength is that a wide range of vari-
ables with different units can be visualized on the same axis
to make relative comparisons of their simulated responses to
disturbance and tiling. For a given variable, the metric nor-
malizes each variable’s output (X for i years, j model runs,
k variables, l grid cells) using the minimum and maximum
across all the outputs (Xnorm for i years, j model runs, k
variables, l grid cells; Eq. 12). Each normalized variable is
averaged across the model domain and run years (Xnorm for j
model runs, k variables; 1985–2017) considering each model
grid cell’s area (agrid cell; m2). Finally, the absolute value of
the difference between Xnorm for the desired runs (the 1-
tile/not-disturbed and 32-tile runs) and the 1-tile/disturbed
run is calculated (Eq. 12).

xnorm,i,j,k,l =
(xi,j,k,l −min(Xk))
(max(Xk)−min(Xk))

(12)

xnorm,j,k =∑2017
i=1985

(∑# of grid cells
l=1 xnorm,i,j,k,lagrid cell,l

)
33
(∑# of grid cells

l=1 agrid cell,l

) (13)

1xnorm,j,k =
∣∣xnorm,j,k − xnorm,1-tile/disturbed,k

∣∣ (14)
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All plots are created using R or the External Dynamic and
Interactive Framework Integrating CLASSIC Experiments
(EDIFICE) Python suite (Hijmans et al., 2015; R Core Team,
2013).

3 Results and discussion

3.1 Disturbance events within Canada

For the period represented by satellite data in this study, the
highest total disturbed areas are in central boreal regions of
the country and are attributable to wildfire events (Fig. 2c).
In contrast, harvest is concentrated on the west coast and in
eastern boreal and maritime regions of the country. The an-
nual total disturbed area differs widely between years dur-
ing the satellite era (Fig. 2a and b). In aggregate, harvest
occurs in ∼ 2 % of the land area modeled, and fire occurs
in ∼ 6 % from 1985 to 2017. The total number of simulated
disturbance events is moderate, with 89 % of the grid cells in-
corporating 32 or fewer simulated disturbance events during
the satellite era and 61 % incorporating 11 or fewer (Fig. 2d
and e). Our aspatial tiling scheme operates on an annual time
step, and therefore the maximum number of possible events
in the 1985–2017 drivers is 66 (i.e., a harvest and fire each
year for 33 years; Fig. 2e). Generally, beyond 11 simulated
disturbance events, there is a limited correlation between the
number of simulated disturbance events and the total area
disturbed (Fig. 2e).

3.2 Model parameterization

The change in the MSD (Fig. 4a–h) as the maximum number
of available tiles for the run increases from 1 to 32 exhibits
a roughly exponential decline for the surface energy balance
(HFSS, HFLS) and C-cycle-related variables (cLand, GPP,
ER, LAI). The MSD is near zero at 7–12 tiles. The 32-tile
simulation captures all the discrete disturbance events from
1985–2017 across most of the model domain (Fig. 2). How-
ever, a simulation that resolves all the disturbance events be-
tween 1740 and 2017 as tiles would require far more than
32 tiles in many forested areas and would be computationally
intractable. However, we infer from the exponential (e.g.,
rather than linear) decreasing rate of change in Fig. 4a–f that
our reference 32-tile simulation has minimal discretization
error and converges on the results of that computationally in-
tractable simulation (Torres-Rojas et al., 2022; Nabel et al.,
2020; Nocedal and Wright 2006). The difference in MSD
between the 32-tile simulation and that computational in-
tractable simulation would likely be vanishingly small, sim-
ilar to the difference between the 25-tile and 32-tile simula-
tions (Nabel et al., 2020; Fisher et al., 2018; Ellner and Guck-
enheimer, 2011; Gelman and Hill, 2006). These roughly ex-
ponential declines in MSD reflect the model’s ability to dis-
cretize patches of vegetation in different stages of recov-
ery using greater numbers of tiles. This is reflected in how

the statistical distributions of aboveground tree biomass in
forested grid cells change as more tiles are utilized in the
simulation (Fig. 5a).

Disturbance-related variables, including fFire as well as
fDeforestedTotal, exhibit a less sharp decline when going
from one to seven tiles and approach zero at 12 tiles (Fig. 4g
and h). This reflects the influence of selecting and splitting
tiles in different phases of recovery on these processes and
the extent to which recovering tiles with lower aboveground
tree biomass are represented in the simulation (Fig. 5a).
As a result, there is a discontinuity between representing
these processes using average individuals, a small number
of highly heterogeneous tiles, and many tiles (Figs. 4g and h
and 5a). This pattern is also likely influenced by the rela-
tively low magnitude of the differences between the simula-
tions compared to the fluxes themselves (Fig. 6a, h, and i).

The run time for the satellite-era simulation (1985–2017)
with one tile is ∼ 318 CPU hours (i.e., the sum of time uti-
lized by all cores across multiple machines; Xeon Platinum
8380). Compared to the 1-tile run, the 32-tile, 12-tile, and op-
timal runs consume 14 times, 3 times, and 2 times as many
CPU hours, respectively. The run time of the simulations in-
creases linearly between one and 12 tiles (Fig. 4i) but in-
creases more rapidly from 18 to 32 tiles due to the increas-
ingly large multidimensional per-tile structures in memory.
The intercept (i.e., the overhead for pre-processing meteoro-
logical files and initializing message passing interface ses-
sions to run the model with a single tile) is around 3 times
the slope (i.e., the time required to run each additional tile)
for simulations with less than 12 tiles. This suggests that the
splitting operations involved in simulating additional tiles are
computationally efficient and do not dramatically increase
the run time (Nabel et al., 2020).

As with all modeling exercises, we must balance model ac-
curacy, complexity, and computational efficiency. We, there-
fore, use simulations with 12 tiles to set the rht (i.e., the rela-
tive height threshold for pre-emptively joining tiles) and tpp
(i.e., the number of preserved recently disturbed tiles) pa-
rameter values. Simulations using 12 tiles and different rht
and tpp parameters are very similar in terms of run time,
and the surface energy balance and C-cycle-related variables
exhibit no consistent patterns (Fig. S2a–f and i). There is
a gradual increase in MSD for fFire and fDeforestedTotal
as rht and tpp increase (Fig. S2g–h). However, these differ-
ences are again of relatively low magnitude compared to the
fluxes themselves (Fig. 6a, h, and i). Therefore, we chose
an rht of 0.16 and a tpp of 4 to maximize computation effi-
ciency. The optimal parameterization has MSD values sim-
ilar to those of a run with 12 tiles but with a lower run
time (∼ 23 % less; Fig. 4i). The optimal model nearly ap-
proximates the heterogeneous tile structure of the more com-
plex 32-tile simulation and represents forested areas with low
aboveground tree biomass like the 32-tile simulation, in line
with observations of aboveground tree biomass from the NFI
(Fig. 5b). However, it may over-smooth the transition be-
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Figure 4. Plots of the mean squared deviation (msd; 1985–2017; Eq. 11) for (a) the land carbon pool (cLand), (b) gross primary productivity
(GPP), (c) ecosystem respiration (ER), (d) leaf area index (LAI), (e) sensible heat flux (HFSS), (f) latent heat flux (HFSS), (g) fire emissions
(fFire), and (h) total deforested carbon (fDeforestTotal) for model runs including disturbance with varying numbers of tiles (1–32) compared
against the run including disturbance with the largest number of tiles (32). (i) The run time for each configuration. Values are also shown for
the optimal model run including disturbance with 12 tiles (tile preservation parameter, tpp= 4; relative height threshold, rht= 0.16).

tween low- and high-biomass areas (i.e., the ∼ 2–3 gCm−2

range in Fig. 5b), thereby impacting the size classes of the
tiles selected for splitting during the disturbance simulation
(Fig. 4g and h). Nonetheless, the optimal simulation effec-
tively balances computational efficiency and discretization
error.

3.3 Impacts on simulated variables

The responses of the modeled variables to dynamic tiling
(i.e., 1-tile/disturbed vs. 32-tile, as illustrated in Fig. 1,
Table 3) often meet or exceed their responses to distur-
bance alone (i.e., 1-tile/not-disturbed vs. 1-tile/disturbed;
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Figure 5. Weighted histogram of aboveground tree biomass for forested areas of Canada (a) at the end of a selection of model runs, including
the 1-tile/not-disturbed run, 1-tile/disturbed, 3-tiles, and 32-tiles, as well as for (b) 32-tiles, optimal (12 tiles, four preserved tiles, and a
threshold of 0.16), and observations from the National Forest Inventory (NFI) (Gillis et al., 2005). All runs using> 1 tile include disturbance.
The bootstrapped 95 % CI for the NFI observations is also shown. The contributions of all forested subgrid areas weighted by their fractional
area within the modeled region are considered. An area is classified as forested if it contains at least 50 % tree cover.

Fig. 6a). The impact of the optimal tiling scheme is mini-
mal by comparison; therefore, we focus on comparisons be-
tween the 1-tile/not-disturbed, 1-tile/disturbed, and 32-tile
outputs (Figs. 6b–i and S3). C-cycle-related variables, in-
cluding cVeg and LAI, show the strongest responses to dis-
turbance, whereas energy-balance-related variables, includ-
ing HFLS, HFSS, and ALBS, show the weaker responses.
Many variables also respond strongly to dynamic tiling, in-
cluding LAI, Ra, and cVeg (Fig. 6a, b, and e). Select surface-
energy-balance-related variables, including HFLS, HFSS,
and ALBS, respond more strongly to dynamic tiling than dis-
turbance alone (Fig. 6a). These strong responses further re-
inforce the impact of disturbance-induced subgrid-scale het-
erogeneity on ecosystem processes and the value of repre-
senting this heterogeneity within models (Bellassen et al.,
2010; Zaehle et al., 2006; Nabel et al., 2020; Körner, 2006;
Dore et al., 2010; Luyssaert et al., 2014; Erb et al., 2017).

Disturbance-related variables such as fFire exhibit lit-
tle difference from subgrid-scale heterogeneity (Fig. 6h),
whereas fDeforestCumulative increases slightly (Fig. 6i).
These patterns occur as fire can potentially impact all subgrid
stands above a certain biomass threshold (Eq. 7), while wood
harvest preferentially impacts the tiles with the largest above-
ground biomass (i.e., approximating the highest-quality tiles
being harvested). Biomass removal by disturbance leads to
an ∼ 1.6 Pg decrease in cVeg across Canada (an 8 % de-
crease), while the subgrid-level (tiled) representation of these
processes leads to another ∼ 1 Pg decrease (Fig. 6b). LAI
mirrors these patterns, with a 4 % decrease due to disturbance

and another 4 % decrease with the subgrid-level (tiled) repre-
sentation (Fig. 6e). As a result of disturbance, cSoil decreases
at a higher rate from 1985 to 2017, whereas cVeg increases
at very similar rates of ∼ 0.035 Pgyr−1 (Fig. 6b and c). For
GPP and Ra, the impact of dynamic tiling is ∼ 1.5–2.5 times
the impact of disturbance alone (Fig. 6a and d). This offset
in GPP and Ra is, in part, likely a product of dynamic tiling
simulating the naturally slower process of recovery from bare
ground versus the recovery of an average individual with
substantial pre-existing biomass and leaf area (Zaehle et al.,
2006; Körner, 2006; Dore et al., 2010; Luyssaert et al., 2014).
This slower recovery likely also contributes to the losses in
cVeg between the 1-tile/disturbed and 32-tile simulation.

Dynamic tiling has impacts on HFLS, HFSS, and ALBS
that are ∼ 1.5–4 times the impact of disturbance alone
(Fig. 6a). The relative impact on HFLS is the more muted
of the three, possibly because, while removing vegetation
causes a decrease in transpiration, evaporation from the
ground surface increases (Fig. 6g). Dynamic tiling does ap-
pear to have larger impacts on ALBS, with the surface be-
coming brighter; by extension, HFSS decreases (Fig. 6a
and f). This occurs as the model with dynamic tiling is ca-
pable of representing sparsely vegetated and often snow-
covered fractions of the land surface as a result of recent
disturbance (Bright et al., 2013; Nabel et al., 2020). These
impacts are muted or absent when disturbance is simulated
by an average individual model because only a proportion
of the average individual’s biomass is removed, with enough
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Figure 6. (a) Plot of the normalized response metric (1Xnorm; Eq. 12) for 1-tile/not-disturbed versus 1-tile/disturbed and for 1-tile/disturbed
versus 32-tile for vegetation carbon (cVeg), soil carbon (cSoil), gross primary productivity (GPP), autotrophic respiration (Ra), heterotrophic
respiration (Rh), leaf area index (LAI), sensible heat flux (HFSS), latent heat flux (HFLS), albedo (ALBS), fire emissions (fFire), and total
deforested carbon (fDeforestTotal). Time series plots of (b) cVeg, (c) cSoil, (d) GPP, (e) LAI (f) HFSS, (g) HFLS, (h) fFire, and (i) cumulative
deforested carbon (fDeforestCumulative; the running sum of fDeforestTotal starting in 1985) for 1-tile/not-disturbed, 1-tile/disturbed, 32-tile,
and optimal (tpp= 4; rht= 0.16; purple). All runs using > 1 tile include disturbance. In panel (a), a normalized response of zero indicates
that there are no differences between the runs. ∗ These are disturbance-related fluxes that are omitted in the 1-tile/not-disturbed model run.
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remaining to support a tall dense canopy that obscures the
ground surface and recovers quickly.

The relative impacts of subgrid-scale heterogeneity
demonstrated herein are robust given our model-on-model
approach which cancels out pre-existing biases. This is ev-
ident in model runs using alternative pre-1985 fire and har-
vest scenarios that are bias-corrected to match their respec-
tive means from the observed period (Fig. S4a and b). These
alternative scenarios have a limited impact on the mod-
eled statistical distributions of aboveground tree biomass
(Figs. 5a and S4c). Moreover, because our statistical analy-
sis focused on the period for which disturbance observations
are available (1985–2017), and because of the statistical met-
rics utilized in our model-on-model comparisons (Eq. 12),
the differences in 1Xnorm with these alternative scenarios
(Fig. S4d) are an order of magnitude smaller than shown in
Fig. 6a. Our evaluations provide insights into the impacts of
subgrid-scale heterogeneity alone, further reinforcing its im-
portance and the value of representing it within models.

4 Conclusion: implications for representing
disturbance and subgrid-scale heterogeneity in LSMs

The dynamic tiling scheme presented in this study could
form the basis for a more detailed representation of land use
change and resultant subgrid-scale heterogeneity in CLAS-
SIC, the land surface component of the LSM CanESM
(Melton et al., 2020; Seiler et al., 2021; Swart et al., 2019).
Our tiling scheme has several advantages over other methods.
It uses a relatively large number of dynamic tiles as opposed
to a small fixed number of tiles, which allows for a more
granular representation of vegetation recovery following dis-
turbance (Shevliakova et al., 2009; Yue et al., 2018a; Naudts
et al., 2015; Yang et al., 2010; Stocker et al., 2014). It also
explicitly simulates C and energy exchanges using tile aver-
age properties rather than grid cell average properties, thus
fully simulating the impacts of the removal of vegetation by
harvest or fire (Bellassen et al., 2010; Haverd et al., 2014;
Melton and Arora, 2014). Most importantly, the scheme is
dynamic and has no designated size or age class bins; the
number of simulated tiles increases as disturbances occur and
are then managed by on-demand or pre-emptive joins (Nabel
et al., 2020; Shevliakova et al., 2009; Naudts et al., 2015;
Bellassen et al., 2010). The tiling routine adapts its size dis-
tribution in response to lower disturbance frequencies, more
extreme individual disturbance events, and potentially the
addition of new PFTs, while remaining computationally ef-
ficient. Finally, the tiling scheme can preserve young, re-
cently disturbed tiles, which may improve its representation
of early successional differences in GPP, LAI, and cVeg (Bel-
lassen et al., 2010; Zaehle et al., 2006; Nabel et al., 2020).
In the context of pan-Canadian or global offline simulations
within CLASSIC, this dynamic tiling scheme presents the
opportunity for more detailed and efficient representations

of land use and land cover change (LULCC) than can be
achieved by simply increasing the spatial resolution of the
model, which is limited by model inputs such as meteorolog-
ical forcing or coupling considerations within CanESM. Fu-
ture LULCC representations could implement more complex
tile harvesting schemes to represent forest management (i.e.,
thinning, re-planting, clearcut avoidance, or low-intensity
harvest) (Puettmann et al., 2015; Pan et al., 2010) or could
introduce tiles to account for new LULCC processes and
states such as rangelands, pasture, fertilizer use, and irriga-
tion (Shevliakova et al., 2009). Other disturbances, including
insect damage, wind damage, and landslides, could likewise
be represented using dynamic tiling. Insects in particular are
an important disturbance agent in Canada that have more spa-
tially widespread impacts than fire and harvest but greater
variation in severity (Kurz et al., 2008; Chen et al., 2000).
Non-stand-replacing impacts such as those due to insect de-
foliation or drought stress can be detected, but their severity
or longer-term impacts remain difficult to quantify. Repre-
senting these disturbance events requires consistent spatially
explicit time series of the forcings, which are not widely
available at present (Pongratz et al., 2018; Erb et al., 2017).
This would also require careful consideration of the impacts
of the disturbance in question. We can infer from our results
that low-severity non-stand-replacing disturbances may not
require a tiled representation.

Finally, our model-on-model evaluation provides insights
into the biases induced in specific variables by the absence
of dynamic tiling or particular dynamic tiling setups, which
may also apply to other similar tile-based LSMs/discretized
schemes (Nabel et al., 2020; Fisher et al., 2018). These
results are strengthened by our model-on-model approach,
which acts to cancel out pre-existing biases to demonstrate
the impacts of subgrid-scale heterogeneity, and discretization
error alone (Fig. S4) (Torres-Rojas et al., 2022; Curasi et al.,
2023b; Melton et al., 2017; Melton and Arora 2014; Moor-
croft et al., 2001). Representing subgrid-scale stand structure
leads to differences in land-use emissions if particular size or
age classes within the grid cell are preferentially impacted by
fire or harvest (Nabel et al., 2020; Shevliakova et al., 2009;
Yue et al., 2018b). Our results suggest that representing a
relatively small number of heterogeneous tiles may yield un-
desirable biases when compared to simulations using a larger
number of tiles (Figs. 4a–h and 6a) (Yue et al., 2018a; Shevli-
akova et al., 2009; Stocker et al., 2014; Yang et al., 2010). For
a tile-based LSM to represent these subgrid impacts, the sim-
ulation needs to be sufficiently complex and judiciously im-
plemented and tested. In the case of CLASSIC, we find that
7–12 tiles optimally balances a detailed representation and
computational costs. Using an rht of 0.16 and a tpp of 4 in-
creases computation efficiency with little impact on the level
of detail represented. Likewise, subgrid-scale stand structure
impacts C fluxes, vegetation C stocks, and energy fluxes (Erb
et al., 2017; Luyssaert et al., 2014; Körner, 2006; Dore et al.,
2010). These subgrid-scale impacts can be of a similar mag-
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nitude to the impacts of disturbance alone, further reinforcing
their significance (Fig. 6).

Ultimately, Canadian forest ecosystems are critical com-
ponents of the global C cycle which are responding to un-
precedented climate change. Quantifying historical distur-
bances and evaluating the impacts of different methods of
representing disturbance will improve the representation of
the terrestrial C cycle in LSMs. This understanding will
also facilitate a comprehensive, process-based assessment of
Canada’s future terrestrial C cycle and its response to both
disturbance events and climate change.

Code and data availability. The Canadian Forest Service land
cover and maps of forest disturbance described herein for
Canada’s forested ecosystems are open access and freely avail-
able at https://opendata.nfis.org/mapserver/nfis-change_eng.html
(NFIS, 2022). The Stinson et al. (2019) forest management
product is available through the Government of Canada’s
Open Data Portal (https://open.canada.ca/data/en/dataset/
d8fa9a38-c4df-442a-8319-9bbcbdc29060, Natural Resources
Canada, 2019). The current version of CLASSIC is avail-
able via the project website: https://gitlab.com/cccma/classic
(Melton, 2021). The model version, additional software,
setup files, and outputs used herein are archived on Zenodo
(https://doi.org/10.5281/zenodo.8302974, Curasi et al., 2023a).
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