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Abstract. The evaluation and quantification of Southern
Ocean cloud–radiation interactions simulated by climate
models are essential in understanding the sources and mag-
nitude of the radiative bias that persists in climate models for
this region. To date, most evaluation methods focus on spe-
cific synoptic or cloud-type conditions that do not consider
the entirety of the Southern Ocean’s cloud regimes at once.
Furthermore, it is difficult to directly quantify the complex
and non-linear role that different cloud properties have on
modulating cloud radiative effect. In this study, we present
a new method of model evaluation, using machine learning
that can at once identify complexities within a system and
individual contributions.

To do this, we use an XGBoost (eXtreme Gradient Boost-
ing) model to predict the radiative bias within a nudged ver-
sion of the Australian Community Climate and Earth Sys-
tem Simulator – Atmosphere-only model, using cloud prop-
erty biases as predictive features. We find that the XGBoost
model can explain up to 55 % of the radiative bias from these
cloud properties alone. We then apply SHAP (SHapley Addi-
tive exPlanations) feature importance analysis to quantify the
role each cloud property bias plays in predicting the radia-
tive bias. We find that biases in the liquid water path are the
largest contributor to the cloud radiative bias over the South-
ern Ocean, though important regional and cloud-type depen-
dencies exist. We then test the usefulness of this method in

evaluating model perturbations and find that it can clearly
identify complex responses, including cloud property and
cloud-type compensating errors.

1 Introduction

The Southern Ocean (SO) shortwave cloud radiative bias is a
well-documented problem in global climate models (Bodas-
Salcedo et al., 2014; Schuddeboom and McDonald, 2021) as
well as some numerical weather prediction models (Protat
et al., 2017; McFarquhar et al., 2021). The bias is charac-
terised by too much shortwave radiation reaching the sur-
face of the ocean and not enough being reflected by clouds
back out to space. Significant work has been done to iden-
tify the cause of this model bias. Haynes et al. (2011) and
Bodas-Salcedo et al. (2016) have shown that a large part of
this bias can be attributed to the inability of models to sim-
ulate super-cooled liquid water clouds in the SO, in partic-
ular in cold sectors of extra-tropical cyclones. A number of
observational studies have shown the prevalence of super-
cooled liquid water clouds over the SO (Huang et al., 2012;
Chubb et al., 2013; Mace and Protat, 2018). The prevalence
of super-cooled liquid water clouds is attributed to the pris-
tine conditions found in the region removed from the sources
of terrestrial (e.g. dust/biomass burning) and anthropogenic
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(e.g. black carbon) aerosol (although these aerosols can oc-
casionally intrude into the region). The lack of these particu-
lar aerosols, which contribute large sources of ice-nucleating
particles (INPs), limits the ability of cloud droplets to freeze,
resulting in liquid clouds at temperatures well below zero.
Currently, many climate and weather models do not take into
account the pristine composition of the SO atmosphere, as-
suming, like much of the world, that INPs are available to
help freeze cloud droplets, resulting in too many ice-phase
clouds which allow too much shortwave radiation to reach
the surface of the ocean (Vergara-Temprado et al., 2018; Mc-
Cluskey et al., 2023).

Numerous studies have attempted to address the shortwave
cloud radiative bias via cloud-phase parameterisations, in-
cluding but not limited to treatment of ice-nucleating temper-
atures (Furtado and Field, 2017; Varma et al., 2020, 2021),
ice crystal shapes (Varma et al., 2020) and growth rates (Fur-
tado et al., 2016), INP number concentrations (Vignon et al.,
2021) and sources (Vergara-Temprado et al., 2017, 2018),
convective detrainment temperatures (Kay et al., 2016). In-
variably, many of these studies find that altering parameters
for specific SO conditions results in changes in model per-
formance over other parts of the climate system for better
or worse (as explored in Kay et al., 2016; Furtado et al.,
2016; Varma et al., 2020, 2021). This outcome is particu-
larly important given the range of recent literature highlight-
ing a latitudinal dependence of cloud properties in the South-
ern Ocean, which has been attributed by some to differences
in aerosol properties (McCoy et al., 2015; Humphries et al.,
2021; Mace et al., 2021b, a).

Many model evaluation techniques used to diagnose this
problem rely on satellite observations and hence require a
satellite simulator such as the Cloud Feedback Model Inter-
comparison Project (CFMIP) Observation Simulator Pack-
age (COSP) described in Bodas-Salcedo et al. (2011). More
recently, ground-based lidar simulators have also become
available for more accurate model evaluation from ceilome-
ters and lidars on the surface (e.g. Kuma et al., 2020). In con-
junction with such simulators, most studies have separated
their data into specific conditions, for example, by isolat-
ing particular synoptic situations (e.g. Field and Wood, 2007;
Bodas-Salcedo et al., 2016) or by cloud regimes (or “weather
states”) (e.g. Williams and Webb, 2009; Tselioudis et al.,
2013; Oreopoulos et al., 2014; Mason et al., 2015; Oreopou-
los et al., 2016; McDonald et al., 2016; Leinonen et al., 2016;
Schuddeboom et al., 2018; Tselioudis et al., 2021; Fiddes
et al., 2022). By isolating particular conditions, the specific
microphysical causes of the radiative bias that are relevant
to that condition can be diagnosed. However that cause may
not perhaps be relevant to other conditions. Additionally, as
Fiddes et al. (2022) (a companion paper to this study; herein
F22) found, the model being examined in this study rarely
simulates cloud regimes correctly, which may reduce the use-
fulness of the cloud regime approach and calls for a different
method of evaluation. Without the use of synoptic typing or

cloud regimes, calculating zonal means are a popular way
of diagnosing model biases at a macro-scale. However, this
method severely limits the microphysical inferences that can
be made.

Another way to evaluate and in some instances tune mod-
els is to explore parameter uncertainty (Lee et al., 2013;
Regayre et al., 2020, 2023). In these cases, the parameter
space (the range of plausible values) and its impacts in global
climate models are emulated with more simplified statisti-
cal models. This allows re-sampling over a range of multi-
parameter values many times over what is possible with
physically driven models. From these large samples, the un-
certainty attributed to particular parameters can be identi-
fied, and the best combination of parameter values can be
constrained based on comparisons with observations. These
methods present a powerful way of reducing uncertainty in
climate models within known and quantified parameters and
physical mechanisms.

The evaluation techniques presented in the literature are
important methods in understanding model biases and have
been shown to be useful in testing and tuning new param-
eterisations. However, these techniques are often limited to
using human ability to discern complex physical processes,
interactions and patterns to diagnose the drivers of biases. We
suggest that utilising machine learning and associated feature
importance metrics can enhance pattern recognition, aid our
ability to assess non-linearity and collinearity, and shed new
light on our understanding of the underlying causes of the
biases across multiple conditions.

Increased computing power as well as increased data avail-
ability now means that machine learning techniques are
useful tools to further understand and predict climate and
weather problems, especially in relation to clouds (Beucler
et al., 2021). Currently, applications of machine learning in
climate science are limited for a number of reasons, including
the relatively recent advances in the field with respect to both
methods and accessibility of computing resources, the diffi-
culty in applying often non-perfect or very limited datasets to
a problem, and the fact that physical understanding in climate
science is often more important than model accuracy (Beu-
cler et al., 2021). Current applications include (but are not
limited to) predicting a particular field, such as low marine
clouds (Fuchs et al., 2018; Lewis et al., 2023), liquid wa-
ter path (Zipfel et al., 2022) and radiation (Fan et al., 2018;
Mallet et al., 2023); improving retrievals for remote sens-
ing (Yan et al., 2020); downscaling of coarse-resolution data
(Vandal et al., 2019); improving subgrid-scale parameterisa-
tions (Rasp et al., 2018); or classification problems (Zhang
et al., 2019).

Of particular note is the application of machine learning
to climate emulation, i.e. emulating the global response of
complex climate models, as outlined in Watson-Parris et al.
(2022). Climate emulation has typically used simple models
to estimate what the response of the climate (usually temper-
ature) may be to changes in forcings. These models tend to
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not capture spatially varying and non-linear processes well,
whereas machine learning has been shown to do well in this
space but has been challenged by a lack of data for train-
ing purposes. Watson-Parris et al. (2022) have now provided
a dataset and some initial machine learning frameworks de-
signed specifically for training models for this application,
which may provide a new way to determine possible climate
responses to changes in forcings beyond that of the tempera-
ture.

To our knowledge, no study has yet applied machine learn-
ing methods to understanding biases in climate models. We
now believe that current methods for regression problems
combined with feature importance metrics may provide use-
ful insight into how biases are occurring. Feature importance
metrics aim to provide quantification of how each predic-
tive feature in a problem (regressive or categorical) has con-
tributed to the final outcome. Commonly, feature importance
metrics have been considered misleading due to their inabil-
ity to take into account dependencies between predictive fea-
tures (Hooker et al., 2021). However, the recent advances in
this space, including the development of the SHAP (SHapley
Additive exPlanations) feature importance, mean that we can
better take into account these dependencies.

SHAP analysis builds on Shapley values, a method orig-
inally derived for game theory applications to identify how
important one player in a team was to the outcome of the
game (Shapley, 1953; Lundberg and Lee, 2017). SHAP fea-
ture importance can be used to assess individual, accumu-
lative and interacting feature importance, taking into account
collinearities. Furthermore, SHAP analysis is model agnostic
and is considered a powerful tool in feature analysis.

In this study, we combine SHAP feature analysis with a
regression model to evaluate and understand cloud radiative
model biases for the first time. We test if we can perform
such an evaluation in a more holistic manner than in previous
studies, considering all conditions at once rather than specific
cloud or synoptic regimes. To do this, rather than isolating a
particular regime and then examining the particular biases
in cloud properties associated with it, biases in cloud micro-
physical properties are used to predict the bias in the cloud
radiative effect. We then apply SHAP feature importance to
understand the primary drivers of the cloud radiative bias at
any point in space or time. We hypothesise that this method
can provide new insight into the cloud radiative bias problem
and may be useful tool when it comes to model sensitivity
testing.

2 Data and methods

2.1 ACCESS-AM2 model and observational products

The Australian Community Climate and Earth System Simu-
lator (ACCESS) – Atmosphere-only model version 2 (AM2)
model is used in this work (Bodman et al., 2020). ACCESS-

AM2 uses the same atmospheric setup as that of the Coupled
Model Intercomparison Project (CMIP) ACCESS–coupled
model 2 (CM2) (Bi et al., 2020) submission but with pre-
scribed sea surface temperatures (SSTs) and sea-ice concen-
trations as done for the Atmospheric Model Intercompari-
son Project (AMIP) design (Eyring et al., 2016). While we
will provide key details here, a full description of the exact
model setup can be found in F22 (Fiddes et al., 2022). The at-
mospheric model is the Unified Model (UM) vn10.6, GA7.1
(Walters et al., 2019), used in conjunction with the Commu-
nity Atmosphere Biosphere Land Exchange (CABLE) ver-
sion 2.5 land surface scheme (also described in Bi et al.,
2020) and the GLOMAP-mode (Global Model of Aerosol
Processes) aerosol microphysical scheme (Mann et al., 2010;
Ma et al., 2012). Importantly, for this work we have the
COSP simulator switched on (Bodas-Salcedo et al., 2011),
in this case for the MODIS (Moderate Resolution Imaging
Spectroradiometer) satellite, to allow for sensible compari-
son between satellite fields and the model.

We have run the model from 2014–2019, discarding the
year 2014 as spin-up. The European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5)
product (Hersbach et al., 2020) is used to nudge the model
every 3 h using the horizontal wind and temperature above
the boundary layer. The ACCESS model runs at 1.25×1.875°
horizontal resolution with 85 vertical levels, and for this work
we have output daily means.

We use two satellite products in this work: cloud
properties from the combined MODIS (Aqua/Terra)
Level 3 daily, 1× 1° grid, Collection 6.1, COSP prod-
uct (MCD06COSP_D3_MODIS) derived specifically for
CMIP6 (Pincus et al., 2012; Platnick et al., 2017; Hubanks
et al., 2020) and radiation fields from the Clouds and the
Earth’s Radiant Energy System (CERES) SYN1deg product
(Doelling et al., 2013, 2016). Both these products are
available at daily mean timescales and have been regridded
to match the ACCESS-AM2 horizontal grid. How these
products have been prepared is fully described in F22, which
has used the exact same dataset as this current work. F22
includes discussion about the satellite product’s strengths
and limitations, quality (including successful pixel retrieval),
past evaluation, and processing.

We use the outgoing top-of-atmosphere (TOA) shortwave
(SW) cloud radiative effect (CRE) (SWCRETOA) for this
work. We have defined the SWCRETOA as the difference be-
tween the clear-sky radiation and the all-sky radiation fields
(for both the model and the satellite products). A positive
SWCRETOA bias indicates that the ACCESS-AM2 model
is allowing too much shortwave radiation to pass through
the clouds and not reflecting enough shortwave radiation out
to space. This corresponds to too much shortwave radiation
reaching the surface. We have excluded any land regions
as significant cloud and radiative biases were found due to
non-marine features such as orography. We only consider the
summer period for this paper due to the much larger biases
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found in this season (see F22). Our analysis has been limited
to the region of 30–69° S.

The cloud fields of interest include the grid box mean liq-
uid and ice cloud fractions (CFL and CFI), liquid and ice
cloud optical depths (TauL and TauI), and cloud-top pres-
sure (CTP). These are described in detail in F22, includ-
ing the pre-processing performed and the decision-making
around what specific dataset to use. As described in F22, the
model’s COSP liquid water path (LWP) and ice water path
(IWP) showed considerable biases when compared to the ob-
served COSP products. This is thought to be a continuation
of poor retrievals of the cloud effective radius. While we ac-
knowledge that this brings uncertainty into our results, we
have greater confidence in the raw model fields in this in-
stance. For this reason, the raw model output was used for
these fields (LWP and IWP) instead.

In addition to the cloud fields described above, we use the
cloud-top pressure – cloud optical depth histogram-derived
cloud types described in F22. These cloud types were de-
veloped using K-means clustering, where 12 cloud types
were found using the MODIS dataset. The 12 cluster cen-
tres defined by K-means were then applied to the respective
ACCESS-AM2 product so that each data point was assigned
the cluster (a.k.a. cloud type) that most closely fit. After ini-
tial analysis, the 12 cloud types were merged into 10 cloud
types. A full description of how these cloud types were found
and an analysis of their patterns and relationships to the cloud
radiative bias can be found in F22.

2.2 XGBoost

XGBoost, or eXtreme Gradient Boosting, is a highly effi-
cient, fast and scalable algorithm that can handle a large
variety of problems (Chen and Guestrin, 2016). XGBoost
uses decision trees to predict either categorical or quantita-
tive data, e.g. classification or regression problems. Instead
of randomly bootstrapping data over many decision trees to
minimise variance, as in the random forest technique, boost-
ing takes a staged approach where each decision tree learns
from the mistakes of the previous decision trees to minimise
errors and at the same time boost higher-performing trees
(Hastie et al., 2009). Gradient boosting, instead of minimis-
ing absolute or squared errors, uses a gradient descent algo-
rithm to minimise the errors in previous trees (Hastie et al.,
2009). XGBoost, an “extreme” gradient boosting method, is
computationally optimised, reduces the amount of data being
considered via tree pruning (i.e. removing parts of the trees
that were not useful) or the number of nodes in the trees, and
can reduce the risk of overfitting (Chen and Guestrin, 2016).

In this work, we use XGBoost to predict the SWCRETOA
biases using the biases in the cloud properties described in
the previous section. We refer to these cloud properties as
“features”, in line with the language used in machine learn-
ing.

To make our prediction, the dataset was split into training
and testing datasets, where it was trained on 4 years of data
and tested on 1. We have tested the XGBoost model on each
of the full summers available at daily resolution: 2015–2016,
2016–2017, 2017–2018 and 2018–2019 (where training was
performed on the remaining years) to avoid overfitting.

Model tuning was performed to improve the accuracy and
efficiency of the XGBoost model. We have used 4-fold cross-
validation which splits the training data into a further four in-
dividual datasets, in effect generating an ensemble. We note
that the “folds” did not split the data at random but rather into
continuous sections in time to avoid the risk of overfitting due
to autocorrelation. We have employed both the scikit-learn
GridSearchCV function (Pedregosa et al., 2011) and the XG-
Boost cross-validation function (Chen and Guestrin, 2016)
to identify the best combination of hyperparameters for our
application. We note that the cross-validation described here
is in addition to testing on different summers. The workflow
used for this tuning (and the exact values used for this work)
can be found in the available code linked to this study.

Tuning increased the XGBoost model root mean square
error (RMSE) by only 0.44 and the explained variance by
0.014 %. While this is a small improvement, we recognise
that greater XGBoost model improvement could be found
by adding more features. We tested this by including the ac-
tual MODIS cloud features (i.e. not the biases) as predic-
tors, which also resulted in small improvements. However,
by adding more features, physical interpretation of the re-
sults becomes more difficult. For this reason, a decision was
made to reduce the complexity of the XGBoost model (by
only using the biases as features) for the benefit of our un-
derstanding.

For the following methods and analysis, we have run the
tuned XGBoost model over the entire dataset. While this may
lead to some overfitting (up to 3 % of explained variance), we
felt it was important to capture some year-to-year variability,
as opposed to data from just one summer.

2.3 SHAP feature importance

With our predictive XGBoost model, we can now begin to
understand what cloud features are most important in driving
the radiative bias. SHAP aims to understand what contribu-
tion each feature has made, i.e. how important they are, to
the prediction of x at any particular point in time or space
(known as a local prediction) (Lundberg and Lee, 2017). For
the SHAP analysis, two key outputs need to be considered to
understand the results. The first one is a singular “base” value
for the entire dataset of the target variable. This is equal to
the mean prediction, in this case provided by the XGBoost
model. Secondly, for each point in time and space and for
each predictor variable, a SHAP value is given with the same
units as that of the base value. A SHAP value quantifies how
important a feature is to the total prediction of that point x. It
is essential to note that the sum of all SHAP values for a point
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x does not equal the prediction of x, so the base value must
also be added. In this sense, we can consider local SHAP val-
ues to represent information of the prediction away from the
mean (the base value), giving us an indication of how they are
contributing to the overall variance. In Sect. 4, we will pro-
vide further description of how to interpret the SHAP values
using the results from this study.

An important strength of SHAP analysis is that the result-
ing SHAP values are additive with respect to feature attribu-
tion, making comparisons across features easy to interpret,
even if the features themselves have different units. Simi-
larly, averaging across time or space allows for an in-depth
analysis of the results. SHAP analysis further includes the
ability to explore the feature dependence and feature interac-
tion, again making interpreting complex models more “hu-
manly understandable”. Of specific interest to this work are
the built-in functions to cluster SHAP values, allowing us to
determine if two predictors are providing the same informa-
tion to the XGBoost model and the SHAP interaction values.
Clustering the SHAP values provides an indication of how
independent each predictor is.

SHAP interaction values offer a further insight into what
the “main” contribution from each feature is compared to the
value of its interactions with other individual features (Lund-
berg et al., 2020). It is calculated in a similar way to SHAP
values but allocates credit not just to individual features, as
normal SHAP values do, but to all possible pairs of features.
It produces a matrix for each individual prediction whereby
the main (i.e. non-interacting) contribution is represented by
the diagonal values, while the interaction value (8) is split
evenly between each feature (e.g. 8LWP,IWP =8IWP,LWP),
which are represented in the off-diagonal values of the matrix
so that the total interaction value is 8LWP,IWP+8IWP,LWP
(Lundberg et al., 2020). Summing the SHAP interaction val-
ues along a particular feature gives the same value as the
SHAP value for that feature at any one point. Summing the
entire interaction matrix (including the interaction values and
the main values) will give the same value as the sum of the
SHAP values. In that sense, it can be useful to think of the
“main” values from the interaction matrix as the SHAP val-
ues minus the interaction values.

However, despite the increased ability to interpret how the
features are contributing to the prediction, like many statis-
tical methods, strong feature importance does not provide a
causal relationship. Physical understanding of the underlying
data must also be considered.

2.4 Tools and analysis methods

To produce the results presented in this work, we have ap-
plied the XGBoost model and SHAP analysis to the en-
tire dataset (2015–2019). For both the bias prediction and
feature importance analyses performed in this work we
have used the Python packages for the Dask (Dask De-
velopment Team, 2016) scheduling software, in conjunc-

tion with Xarray, scikit-learn and other packages specif-
ically mentioned below (Hoyer and Hamman, 2017; Pe-
dregosa et al., 2011). We have run this analysis on the Na-
tional Computational Infrastructure supercomputer Gadi, us-
ing 16 CPUs and 44 GB of memory available via their Open
OnDemand interface. The workflow for this paper can be
found at https://github.com/sfiddes/code_for_publications_
2022/tree/main/ACCESS_machine_learning_eval (last ac-
cess: 8 April 2024) with our exact methods.

We have defined three regions in this work, following F22,
with the boundaries of 30–43° S for the mid-latitudes of the
SO, 43–58° S for the sub-polar region and 58–69° S for the
polar region.

In order to fully evaluate the added value of using a power-
ful, yet complex and computationally expensive, model such
as XGBoost, we also used a simple multiple linear regres-
sion (MLR) and Pearson correlation to linearly predict and
understand the relationships of the SWCRETOA bias to the
COSP cloud biases (available from scikit-learn; Pedregosa
et al., 2011).

3 Predicting the SWCRETOA biases

Figure 1a shows the difference in December–January–
February (DJF) SWCRETOA between the ACCESS-AM2
and satellite product (CERES-Syn1Deg). As a reminder,
the SWCRETOA is calculated as the clear-sky radiation mi-
nus the all-sky radiation fields, which results in negative
SWCRETOA values (see Fig. A1). The biases are calculated
as model minus observations, with positive SWCRETOA bi-
ases indicating that the model has less negative values than
the observations, resulting in a positive SWCRETOA bias, in-
dicating that less sunlight is being reflected out to space.

As discussed in F22 (Fiddes et al., 2022), a strong bias
in the polar region of the SO is found, corresponding to too
little shortwave solar radiation being reflected back out to
space by clouds and too much being absorbed into the Earth
system, including reaching the surface of the ocean. In the
sub-polar region, a zonally asymmetric bias is found with
positive biases shown in the eastern Indian Ocean and Pacific
Ocean sectors, while negative biases are found throughout
the rest of that region as well as in the mid-latitude region.
Examination of the model and satellite fields separately (see
Appendix Fig. A1) shows that the asymmetrical bias appears
to be due to ACCESS-AM2 failing to capture the observed
spatial variability. We will consider causes of this asymmetry
again in Sect. 4.2.

The spatial variability in this bias suggests that cloud/ra-
diative regimes strongly vary across the Southern Ocean. The
asymmetry of this bias makes it difficult to evaluate and un-
derstand without splitting the region up into specific synoptic
or cloud regimes, as done in studies such as Bodas-Salcedo
et al. (2016) or Fiddes et al. (2022). Building on knowledge
from previous work, where we understand that particular
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Figure 1. The true (a) and XGBoost-predicted (b) DJF SWCRETOA bias (CERES-Syn1Deg minus ACCESS-AM2) averaged over time;
(c) shows the residual difference between the predicted and true biases. The dashed lines represent the three regions of interest: mid-latitudes
(30–43° S), sub-polar (43–58° S) and the polar (58–69° S) regions. In (d) a histogram of the residual against the prediction, the black lines
represent 0 W m−2 for the residual and the mean prediction of 12.42 W m−2. All units are in W m−2.

cloud characteristics (or lack of) are responsible for driving
the SWCRETOA bias in parts of the Southern Ocean, in this
study we use biases in such cloud characteristics to predict
the SWCRETOA bias. We hypothesise that if we can satisfac-
torily predict a bias, we can then use the derived XGBoost
model to better understand the sources contributing to the
bias. Firstly however, we want to understand more about the
individual relationships of each cloud feature bias and the
SWCRETOA bias.

Correlations have been calculated for each cloud feature
(shown in Fig. A3) with respect to the SWCRETOA bias as
well as to each other to test for both linearity of the cloud ra-
diative bias relationship and collinearities between the cloud
features. We find that the LWP bias has the strongest relation-
ship with the SWCRETOA bias but can only linearly explain
30 % of the variance. The other cloud features explain very
little of the SWCRETOA bias under a linear assumption. Sim-
ilarly, explained variance between cloud features does not
exceed 31 %, indicating weak collinearity. Analysis of the
mean SWCRETOA bias versus the cloud feature biases for
each of the cloud types developed by F22 over three latitu-
dinal areas is shown in Appendix Fig. A2. This figure con-
firms, even when only considering the means across cloud
types/locations, that these relationships are in some cases
highly non-linear and in other cases very weak.

In reality, how clouds interact with radiation is a com-
plex system that depends on many, not individual, variables.
Hence, analysis comparing singular features should not be
expected to provide strong indications of how this system
works. For this reason, we also wanted to test whether a sim-
ple technique such as multiple linear regression (MLR) could
predict the SWCRETOA bias more satisfactorily. The benefit
of such a technique is the low computational requirements
and easy initial interpretation. The MLR was able to predict
between 42 %–43 % of the variance (when tested on differ-
ent summers, in the same way as described for the XGBoost
training and testing datasets). We have provided more detail
on how the MLR prediction performs in the Supplement. The

improvement of the MLR compared to a linear prediction
from the individual cloud features does give us an expec-
tation that we can improve upon this problem with a more
sophisticated tool that can account for the inherent character-
istics of the data.

The tool we have chosen to address these issues is XG-
Boost because it can handle non-linear applications and its
performance is not significantly impacted by collinearity
among predictor variables, although as we discuss shortly,
these must be still considered when we interpret the impor-
tance of these predictors. Using XGBoost, we model the DJF
SWCRETOA biases using the biases in the cloud features dis-
cussed above. The results for each period of training and
testing were similar, predicting between 54 %–55 % of the
SWCRETOA bias (the R2) and a root mean squared error be-
tween 29.45–30.12. For the subsequent results and analysis,
we use the full dataset, where 58 % of the SWCRETOA bias
is explained.

Figure 1 shows the XGBoost-predicted bias (b), the resid-
ual between the true and predicted bias (c), and a his-
togram of the residual versus the predicted bias (d). If we
were to consider just the median values of the entire re-
gion, the XGBoost model predicts a SWCRETOA bias of
11.4 W m−2 compared to 11.7 W m−2 (the means are 12.4
and 12.4 W m−2, respectively), implying that the XGBoost
model performs quite well, albeit with a lower standard
deviation (32.9 W m−2) than that of the true bias values
(44.4 W m−2). The area-weighted statistics for the entire re-
gion for the true and XGBoost-predicted values, respectively,
are as follows: means of 12.0 and 11.5 W m−2, medians of
11.1 and 10.6 W m−2, and standard deviations of 45.2 and
33.5 W m−2. In Fig. 1d, a more symmetrical concentration
of residuals (y axis), centred around zero, and a narrow range
of predictions are indicators of a well-performing model (x
axis). We can see that the XGBoost model does provide a
relatively symmetric pattern, with little skew in any direc-
tion. This is especially the case when compared to the MLR,
shown in the Supplement.

Geosci. Model Dev., 17, 2641–2662, 2024 https://doi.org/10.5194/gmd-17-2641-2024



S. L. Fiddes et al.: ACCESS-AM2 cloud radiative biases 2647

We get a much clearer picture of the XGBoost model’s
performance in different spatial regions in Fig. 1a, b and c.
Here, we can see that the XGBoost model appears to cap-
ture the SO negative bias in the polar region reasonably well,
with the predicted median of 23.2 W m−2 and a true value
of 19.4 W m−2. The residual is fairly uniform except in the
Weddell Sea region, which could reflect the influence of sea
ice. In the sub-polar region, there are small differences be-
tween the predicted and true SWCRETOA biases, with a me-
dian predicted bias of 6.9 W m−2 compared to the true bias
of 7.3 W m−2. Interestingly, these small residuals are not
zonally symmetrical, with positive values in the Australian
and Pacific sectors and negative biases in the Atlantic and
most of the Indian Ocean sectors. In the mid-latitude region,
the positive SWCRETOA bias is slightly underestimated in
the XGBoost model (median of 8.6 W m−2 for the predicted
bias compared to 12.6 W m−2). The residuals, however, are
more zonally symmetric than the sub-polar and polar latitude
bands.

As stated previously, our XGBoost model can explain just
over half of the variance in the SWCRETOA bias (R2

= 0.55).
The remainder of this variance, as well as some of the spatial
differences observed in Fig. 1c, suggests that the biases in the
cloud fields used in this work may not be the only contribu-
tors towards this particular feature of the radiative bias. Al-
ternatively, it could also imply that the robustness of the data
that we consider truth are not the same for all regions. The
study that the current work follows on from, F22, showed
little zonal asymmetry in the LWP, IWP, CFL and CFI bi-
ases and similarly little asymmetry in the relative frequency
of occurrence biases of different cloud types, suggesting the
need to account for additional physical properties and rela-
tionships in these regions.

The missing component could be a range of things, for ex-
ample, another microphysical cloud field, dynamical field or
environmental factor, i.e. the presence of INPs, sea surface
temperatures or thermodynamical properties of the atmo-
sphere. For example, the influence of dust-derived INPs may
be greater in particular sectors of the SO in certain seasons,
which may change cloud properties in those regions. Alter-
natively, Zipfel et al. (2022), in predicting LWP over marine
boundary layer clouds in the southeast Atlantic, found that
dynamical characteristics and sea surface temperature were
important environmental factors along with other cloud prop-
erty predictors.

Although the XGBoost model is able to explain a larger
amount of the SWCRETOA bias than any individual or lin-
early associated cloud feature could, we must keep two
things in mind. Firstly, by adding more (and in particular,
not internally consistent) data we make interpretation more
difficult, and secondly, the relationships shown here do not
prove a causal relationship. We must understand what the
model is inferring physically for us to make such an associ-
ation. In this work, we show that even with only 54 %–55 %
of the variance explained by these cloud biases, we can de-

rive valuable information from how they contribute or do not
contribute to the radiative bias. For these reasons, we will
continue with our described method and explore how each
of these cloud features contributes to predicted SWCRETOA
bias using SHAP analysis.

4 Understanding the SWCRETOA biases

SHAP feature importance analysis allows us to quantify the
contribution (or importance) each cloud feature made to the
predicted result, in this case, the XGBoost radiative bias.
This is demonstrated in Fig. 2a, where a so-called force plot
is shown. Here, we can see how, for this singular prediction
of x, each cloud feature has contributed to the total predic-
tion f (x), by shifting the values away from the base value
(12.4 W m−2). We note that for the cloud features, their ac-
tual values, not the SHAP values, are shown in text for the
top predictors, while the magnitude and sign of the SHAP
value are indicated by the bar. The base value can be con-
sidered the starting point of any prediction; i.e. if we had
no information about the cloud state, a good prediction to
start with would be the base value. Each cloud feature then
adds subsequent information to the prediction, which all to-
gether adds up (with the base value) to the total prediction.
This also means that when summed together for any indi-
vidual point, or subsection of points, the SHAP values do
not represent the total prediction for that point or subsection
but rather the difference from the base value. This is demon-
strated by Fig. 2b, which shows the mean sum of all SHAP
values spatially, which are equivalent to the difference be-
tween the predicted bias (shown in Fig. 1b) minus the base
value. This characteristic of the SHAP analysis must be kept
in mind when considering the SHAP values.

4.1 The mean importance of cloud features to the
SWCRETOA bias

With this functionality of SHAP features in mind, we can
now start to analyse our results both globally (i.e. the mean
across all points) and locally (using subsections, either spa-
tially, temporally or other groupings). Figure 2c shows the
global importance values, which are simply the absolute
mean (|M|) of all SHAP values for each cloud feature. These
values give us the first indication of how important each
cloud feature is comparatively, with the higher the |M| value,
the more important that feature is to the overall prediction.
Here, we can clearly see that the biases in liquid water path
contribute most to the predicted SWCRETOA bias, with |M|
equal to 12.12 W m−2. This is followed by the liquid cloud
fraction (9.38 W m−2), ice cloud fraction (9.27 W m−2) and
ice water path (7.59 W m−2), ice optical depth (5.80 W m−2),
cloud-top pressure (5.18 W m−2), and liquid optical depth
(5.16 W m−2) biases.
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Figure 2. (a) A SHAP force plot showing the SHAP values for each predictor for a single example prediction. The sum of these values is
the difference between the “base” value (i.e. mean prediction) of 12.4 W m−2 and the individual prediction of 9.17 W m−2. (b) The sum of
all SHAP values for each spatial point. (c) The global importance plot showing the mean of the absolute SHAP values (in W m−2) for each
predictor across all predictions with the dendrogram indicating the degree to which these predictors are clustered.

Figure 2c has not been arranged in order of most to least
important but has instead been clustered using the built-in
SHAP clustering function. This is shown by the dendrogram
on the right of the plot, where features are hierarchically
merged into clusters. Clustering the SHAP features together
can give us an indication of which cloud features are provid-
ing similar information to our XGBoost model. If two fea-
tures provide the same information, the XGBoost model will
only use one of them for efficiency, which, while maintaining
statistical robustness (e.g. avoiding the effects of collinear-
ity), can impact our interpretation of the results. For this
plot, we have used a clustering distance cut-off of 0.8, al-
lowing us to see that our features merge at a distance closer
to 1. A distance of 1 would imply complete feature indepen-
dence, while zero would imply complete redundancy. Here,
we see that one of the least important cloud features (CTP)
is the first to be merged into clusters with the most important
cloud features (e.g. CFI). However, the merge is occurring
only slightly before other features are merged into the other
clusters, indicating that even the weakest cloud features are
providing independent, if not as important, information to the
XGBoost model.

We can further investigate the nature of feature interac-
tion by using the SHAP interaction values. SHAP interaction
values are similar to SHAP values but provide the “main”
contribution from each feature (along the diagonal) plus the
interaction values for each combination of features for ev-
ery point in the dataset. How to interpret these values is ex-

plained in more detail in Sect. 2.3. In Fig. 3, we show the
absolute mean values across the whole dataset. We note that
the off-diagonal values show the total interaction between the
two features (see Sect. 2.3 for more details on how this is cal-
culated).

Figure 3 shows us that LWP has the highest “main” in-
teraction, indicating that it provides the most important in-
dividual contribution overall. This is then followed by CFI,
CFL, IWP, TauI, CTP and TauL, which is a slightly differ-
ent order than that provided by the overall SHAP values in
Fig. 2c, though this is only occurring when SHAP values are
very close in magnitude. Importantly, we can see that the ab-
solute mean of the interaction values are smaller overall than
the main values, indicating that feature interaction is less im-
portant to the overall result than the main contributions. If we
consider the off-diagonal values in Fig. 3, we can see that the
largest value is between LWP and IWP, though this value is
still smaller than even the lowest “main” SHAP value. We be-
lieve this analysis supports our earlier finding of only weak-
to-moderate collinearity between cloud features and means
that we are able to make inferences about how each cloud
feature is impacting the radiative bias physically.

4.2 Drawing physical conclusions from our SHAP
values

While these global importance values are useful to sum-
marise results, they limit the information needed to be able
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Figure 3. A heat map of the absolute mean values for the SHAP
interaction matrix. The diagonal values represent the “main” con-
tribution, i.e. the contribution to the total SHAP values that can be
attributed to that individual feature. The off-diagonal values repre-
sent total interaction value for any two features combined.

to physically explain why a particular feature may or may
not be important. A strength of the SHAP analysis is that an
individual SHAP value can be calculated for each feature for
every point in time and space. Thus, we can use them to un-
derstand how these cloud features contribute to the radiative
bias spatially (i.e. their “local” values) and use the relation-
ships of the SHAP values to their respective cloud feature to
try to understand their contribution physically. Figure 4 sum-
marises the outcome of the SHAP analysis.

The density plots of Fig. 4 (bottom row) help us under-
stand the spatial means that are presented along the top two
rows. Here, we find that most of the relationships shown
are non-linear, especially with respect to the outliers, with at
least one case being parabolic (CTP in Fig. 4u). Interestingly,
the ice and liquid counterparts for each field (bar cloud-top
pressure) are similar in shape, giving us confidence that this
method is able to capture the role cloud phase plays in the
SWCRETOA bias.

Examining Fig. 4 field by field, for LWP, we can see that
the spatial SHAP values and the bias patterns line up closely
(plots a and h), indicating that increasingly large and positive
values of the LWP bias do contribute to an increasingly neg-
ative radiative bias (and vice versa). Figure 4o indicates that
this behaviour should be expected, with the distribution di-
agonally centred on zero. In the mid-latitudes, positive LWP
biases are associated with negative SHAP values, which tran-
sition to negative LWP biases and positive SHAP values in
the polar region. Both of these outcomes make sense with
our physical knowledge of how LWP interacts with radiation,

where clouds with high LWP would increase the amount of
sunlight being reflected out to space.

For CFL, SHAP values are negative in the mid-latitudes
while positive in the sub-polar and polar regions. The change
in sign of the biases in CFL does not coincide spatially with
the SHAP values, which are strongly negative in the po-
lar and sub-polar region and weakly negative in the mid-
latitudes. Examining Fig. 4p shows that the relationship be-
tween the biases and SHAP values is offset from zero so that
weakly negative CFL biases can produce negative SHAP val-
ues. These weakly negative CFL biases are occurring pre-
dominantly in the northern boundary of the sub-polar region.
If we consider making a prediction for the radiative bias
starting from our base value (12.4 W m−2) and only knowing
about the CFL properties, we can say that in instances where
the CFL bias is weakly negative, the radiative bias will be less
positive than if the CFL bias is much larger. While this makes
sense when considered together with the base value, this re-
sult still demonstrates that the radiative influence of clouds is
not as simple as “less cloud (even marginally) equals more
sunlight passing through” but highlights the ability of the
SHAP analysis to capture non-linear processes.

Unlike the CFL, the CFI SHAP values and bias patterns
are easier to interpret, with the spatial patterns of Fig. 4c
and j lining up neatly. Weakly negative biases in CFI corre-
spond to moderately strong positive SHAP values in the mid-
latitudes, while positive CFI biases contribute to moderately
negative SHAP values. Similarly, the IWP SHAP values are
negative in the polar and sub-polar regions and positive in the
mid-latitudes. The IWP biases are strongly positive in the po-
lar region, positive in the sub-polar region, and a mixture of
positive and negative values for the mid-latitude depending
on proximity to landmasses.

Negative SHAP values are associated with positive IWP
and CFI values where too much ice is resulting in too much
SWCRETOA being reflected out to space. The broad similar-
ity in SHAP patterns between LWP and CFL, as well as IWP
and CFI, implies that the underestimation of liquid clouds is a
key driver of the SWCRE bias, while the underestimation of
ice clouds is actually having a compensating effect. These re-
sults suggest that modelling efforts to simply shift water mass
from the liquid to the ice phase (e.g. by changing ice nucle-
ation temperatures or slowing crystal growth rates) may not
entirely solve the problems in radiative properties. Instead,
we suggest that these two phase types may need to be tack-
led independently, with consideration of the INP availability
explicitly included in future model development.

The TauI SHAP values present an almost cubic function
compared to the TauI bias in Fig. 4s, which is, on average,
positive. The weaker the positive TauI bias (i.e. the thinner
the cloud), the more positive the SHAP values (less sun-
light being reflected out to space). Interestingly, the weak-
est TauI biases occur in the polar region (Fig. 4l) despite
strongly overestimated IWP (and to some degree CFI). We
suggest that the ice water may be dispersed through the over-
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Figure 4. (a–g) The time-averaged SHAP values for each cloud feature over the SO domain. (h–n) The time-mean biases (ACCESS-AM2
– MODIS) for each of the cloud features. (o–u) Scatter plot distributions (darker colours indicate greater density) showing the relationship
between the bias in each cloud feature and the SHAP values. Note that the scatter plots have been limited along the x and y axis to better
show the behaviour of the majority of the distribution.

estimated cloud fraction, resulting in lower biases in optical
thickness. However, the positive SHAP value (rather than a
simply weak negative value) indicates the non-linearity of
this system and possibly a process that we do not yet un-
derstand. For TauL, we see a similar relationship where the
thinner the cloud (e.g. negative biases), the more sunlight is
allowed to pass through the cloud (positive SHAP values).
Positive SHAP values are found in the polar and sub-polar
regions, while this transitions to negative SHAP values in the
mid-latitude region (Fig. 4f).

Finally, CTP presents the only zonally asymmetric cloud
SHAP values in the sub-polar and polar region, with nega-
tive SHAP values in the Pacific sector and west Antarctic re-
gion. The relationship between SHAP values and CTP bias is
non-linear (Fig. 4n), where positive and negative CTP values
can correspond to both positive and negative SHAP values.
What is causing the difference in SHAP values is difficult to
discern at this broad scale, as meridional differences such as
these have not been previously identified in this study. As dis-
cussed earlier (Sect. 3), the XGBoost model does a poor job
of capturing the asymmetry of the SWCRETOA bias. While
CTP does contribute a small amount, it is the weakest pre-
dictor of all the fields examined. We speculate that this field

is providing some measure of the cloud type, which is sup-
ported by the strongly linear relationship with the cloud types
derived previously (with total cloud optical depth and cloud-
top pressure).

The results presented in this section have provided us with
an overall understanding of what the relationships of the
SHAP values are with the respective biases. In most cases,
the relationships presented make physical sense, aligning
with our understanding of how cloud biases may influence
radiative biases.

4.2.1 Evaluating feature dependence

While our conclusions above make physical sense, the SHAP
values presented do not tell us about how individual pairs of
features may interact with each other to provide these results.
Our linear regressions and clustering analysis have suggested
that each of these features have little dependence on one an-
other; however, our knowledge of the physical world would
suggest that some interaction exists. To explore this further,
we use the SHAP interaction values, which provide a quan-
titative value of the interaction, as well as the “main” com-
ponent from an individual feature alone. As Fig. 3 indicated,
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the main SHAP component for each feature is the dominant
driver of the overall SHAP values. We have explored this fur-
ther by reproducing Fig. 4 but for the main component alone.
This plot is shown in the Appendix (Fig. A4) and shows very
little difference from that of Fig. 4 in terms of pattern but
does show slightly increased SHAP values. With this result,
we can be confident that the relationships we are deriving are
attributable to the individual feature and that the interactions
between features do not make up the majority of the “infor-
mation” provided.

4.3 Cloud-scale dependence

In the remaining analysis, we use the F22 MODIS-derived
cloud types to summarise the SHAP values and biases to
determine if a cloud-type-dependent relationship exists. Fig-
ure 5 shows a scatter plot of SHAP values versus the cloud
feature bias, similar to the bottom row of Fig. 4. How-
ever, in Fig. 5, the points represent the mean SHAP ver-
sus bias value relationship for each of the MODIS-derived
cloud types, shown by the colours, with the shapes represent-
ing the three regions of interest and sized by their frequency
of occurrence. The cloud types are arranged from the high-
est, thinnest clouds (thin cirrus, TC; cirrus, Ci) to optically
thick mid–high clouds (convective, Cv; frontal, Fr) and op-
tically thick mid–low-level clouds (mid-level, ML; stratocu-
mulus, StC) through to optically thick low-level clouds (ma-
rine stratiform, MS; cloud decks, CD) and less optically thick
low clouds (shallow cumulus, ShC). Finally, the Antarctic
(Ant) clouds represent mid-level, very optically thin clouds.
More details about the properties, frequencies and distribu-
tion of these clouds can be found in F22.

Figure 5 offers a new, quantitative insight as to how the
biases for each cloud type are contributing to the overall
SWCRETOA bias. Firstly, it is clear that there is a depen-
dence on cloud type for the role played by the cloud bi-
ases in the radiative bias. For most cloud features shown,
the cloud types are grouped by height/thickness. For exam-
ple, Fig. 5a, LWP, shows that the mid-level, stratocumulus
and marine stratiform clouds in the polar region contribute
most to the SWCRETOA bias, with SHAP values of up to
15.8 W m−2 associated with large negative LWP biases. For
the sub-polar and mid-latitude regions, lower LWP biases
correspond to lower SHAP values for these same cloud types
despite their continued dominance (indicated by size), indi-
cating that for these regions, these optically thick, mid–low-
level clouds are not driving the SWCRETOA bias but rather
CFL is. The remainder of the cloud types exhibit the opposite
trend, where both the higher clouds (e.g. convective, frontal)
and the lower, less optically thick clouds (e.g. cloud decks,
shallow cumulus) are characterised by positive LWP biases
and negative SHAP values. These cloud types are much more
dominant in the sub-polar and mid-latitude regions, indicat-
ing a regional dependence with respect to the role that LWP
path plays in radiative bias.

CFL, shown in Fig. 5b, shows a similar trend to that of
LWP, where the polar mid–low-level, optically thick clouds
demonstrate the largest SHAP values and biases. With this
figure, we can also begin to understand the conditions where
negative CFL biases result in negative SHAP values, where
the optically thinner shallow cumulus, frontal and convective
cloud types of the sub-polar region and, interestingly, cloud
decks of the mid-latitudes are the major contributors.

For CFI, Fig. 5c, clear groupings of cloud types are found
with less dependence on region. Higher clouds, including
cirrus, convective and frontal clouds, are primarily respon-
sible for driving positive SHAP values associated with nega-
tive biases. Most other mid-latitude clouds, in addition to the
mid-level polar and sub-polar clouds, show little bias and/or
low SHAP values, while the majority of low-level polar and
sub-polar clouds are associated with too much CFI, resulting
in negative SHAP values. Interestingly, less clear trends are
found for IWP.

The two optical depth cloud features show a larger re-
gional dependence where points are grouped more so by re-
gion than by cloud type. The SHAP values of all cloud types
for the optical depths are small (regardless of bias) compared
to the other cloud features. This may indicate that how the
optical depth biases interact with radiation biases is much
less dependent on the cloud type than other physical charac-
teristics (e.g. latitude).

Finally, CTP shows the clearest separation of the SHAP–
bias relationship by cloud type of all the cloud features.
The cloud types are clearly grouped together, with the low-
est clouds having negative CTP biases/SHAP values and
the higher clouds having positive CTP biases/SHAP values.
CTP, in earlier analysis, was characterised as the weakest
contributor of the radiative bias, but these results show that if
appropriately grouped, it has a similar importance as that of
CFI. This finding indicates that CTP (or cloud vertical struc-
ture) may be of greater importance for the radiative bias than
currently acknowledged in the literature.

These results offer a new perspective on how different
cloud properties for different clouds and regions may af-
fect the radiative bias. The SHAP analysis allows us to con-
sider many properties at once in a meaningful and quanti-
tatively comparable way. Most previous work, including the
work preceding this analysis (F22), has been unable to pro-
vide such an all-inclusive and yet quantitative analysis of the
cloud radiative bias to date. For example, while F22 was able
to highlight the importance of stratocumulus and mid-level
clouds for the SO cloud radiative bias, as well as the com-
pensating effects of lower, thinner clouds such as shallow
cumulus clouds, the analysis was far more qualitative than
what has been presented in this work.
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Figure 5. The mean SHAP values (y axis) versus bias (x axis) for each cloud feature (a–g) averaged by MODIS cloud type (colours) for
the three regions of interest indicated by upwards triangle – mid-latitudes; square – sub-polar; downwards triangle – polar. The size of the
shape indicates the frequency of occurrence of each cloud type; a larger shape indicates a more dominant cloud type. The cloud types are as
follows: thin cirrus, TC; cirrus, Ci; convective, Cv; frontal, Fr; mid-level, ML; stratocumulus, StC; marine stratiform, MS; cloud decks, CD;
shallow cumulus ShC; Antarctic, Ant.

5 Using SHAP analysis to understand model
perturbations

We have demonstrated the usefulness of the SHAP method in
quantitatively understanding drivers of biases. This method
has provided useful insights into the mean drivers of the
SWCRETOA bias as well as into cloud-specific influences.
We now want to test if this method is useful in understanding
how perturbations applied to a model may change the results.
To do this, we have performed a second nudged simulation
where we have altered the ice crystal capacitance following
the work of Varma et al. (2020). We refer to the new sim-
ulation as the “ice” simulation (compared to the “control”).
In the ice simulation, we have changed the capacitance from
1 in the control, which assumes a spherical crystal, to 0.5,
which assumes an oblate ice crystal. The effect of this change
is to slow down ice crystal growth rates. Overall, reducing
the ice crystal growth rates reduces the radiative bias by
−1.0 W m−2 for the entire region (−1.2 W m−2 for polar re-
gion, −1.0 W m−2 for sub-polar region and −0.8 W m−2 for
mid-latitudes) in our simulations. This difference is smaller
on average and noisier than that found in Varma et al. (2020)
(and not statistically significant), which we expect is a result
of the nudging of the model. Similar constraints on meteo-
rology were found in Fiddes et al. (2021) when nudging was
applied during model perturbation experiments. This study
compared perturbed nudged simulations to perturbed free-
running simulations. The nudged simulations had a smaller
overall response with a lot of seemingly random variation,
which we refer to as “noise”. Regardless, this small perturba-
tion experiment provides an opportunity to test the usefulness
of the SHAP method, even if the changes are very small.

With this second simulation, we have re-trained (and
re-tuned) our XGBoost model. The performance of the
XGBoost-ice model is very comparable to that of the control,
explaining between 54 %–55 % of the variance. The mean
difference in the predicted bias from the control is similar to
that of the true bias of 0.9 W m−2. Once again, LWP is the
most important cloud feature, and the order of importance
for each cloud feature has not changed.

Figure 6 shows the changes in SHAP values (ice-control)
for each cloud field along the top row and the changes in
the fields themselves along the middle row (also ice-control).
The noisiness introduced by the nudging is clear in these
plots, and we note that none of the changes are statistically
significant. Nevertheless, some interesting features can been
seen in these results.

Firstly, we can see that changing the ice crystal shape,
which slows ice growth and increases LWP in the polar and
sub-polar regions (Fig. 6h), reduces the overall bias in the
polar region (which is negative – see Fig. 4h). In the mid-
latitudes, the change is much less coherent. The resulting
change in SHAP values indicates that in the polar region,
the increased LWP has overall reduced the SHAP values, al-
though results are quite noisy. Figure 6o demonstrates that
polar and sub-polar stratocumulus clouds are associated with
the largest increase in LWP and reduction in SHAP values.
Interestingly, shallow cumulus clouds, despite showing only
small increases in LWP, are also associated with larger SHAP
values for all regions.

CFL (Fig. 6i) shows a varied and very small response to
the change in ice crystal growth. CFI (Fig. 6j), on the other
hand, shows a clear and consistent increase in fraction. This
increase in CFI may be caused by an increase in cloud life-
time as the ice crystal growth rate slows down, which is sup-
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Figure 6. (a–g) The time-averaged difference in SHAP values (ice-control) for each cloud feature over the SO domain. (h–n) The time-mean
changes (ice-control) for each of the cloud features.

ported by a small decrease in snowfall rates over the polar
region (not shown). The change in SHAP values for CFL is
predominantly negative in the polar regions and positive in
the sup-polar to mid-latitudes. For CFI, the changes in SHAP
values are harder to differentiate.

Considering these changes are grouped by cloud type,
some interesting patterns are apparent, though we note the
magnitudes of these values in cloud fraction are again very
small. For CFL, higher clouds (cirrus, convective and frontal)
are found to be associated with a reduction in CFL and an
increase in SHAP values. In the case of mid-latitude con-
vective clouds, we suggest this is caused by the associated
increase in LWP converting into an increase in rainfall, re-
sulting in an overall reduction of cloud lifetime. For the re-
maining cloud types, the picture is less clear with very little
change in rainfall. Polar marine stratiform and cloud decks
exhibit a stronger positive change in CFL associated with a
decrease in SHAP values, while the remaining cloud types
(for all regions) show a much more neutral response. For
CFI, all cloud types, for all regions, experience on average

an increase in fraction, but this increase results in a pos-
itive change in SHAP values for the lower, thicker clouds
and a negative change in SHAP values for the higher, thinner
clouds. The varying behaviour of higher/thinner clouds com-
pared to lower/thicker clouds for CFI and CFL, with respect
to both the cloud properties themselves and their resulting
SHAP values, highlights that a “one-size-fits-all” approach
to reducing cloud radiative biases in models is not appropri-
ate.

We will not discuss the changes in optical depth or IWP for
brevity. We will, however, touch on CTP in Fig. 6g, n and u.
Consistent reductions in CTP are found for the entire region,
which act to increase in magnitude the already negative bias
(Fig. 4n). The changes to SHAP values on average are small.
However, if we consider these values separated by cloud
type/region, we can see a strong separation in behaviour be-
tween cloud types. Thinner, higher clouds, which were on av-
erage overestimating CTP, are found to have larger decreases
in CTP. The lower, thicker cloud types exhibit a smaller mag-
nitude decrease, only minimally exacerbating the CTP bias
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(see Fig. 4u). These two groups of clouds types are also as-
sociated with different SHAP values, where the lower/thicker
clouds decrease in CTP (increase in cloud height), resulting
in more positive SHAP values. The higher/thinner clouds,
despite also decreasing in CTP, are found to have negative
changes in SHAP values.

The results presented in this section indicate very small,
insignificant changes to cloud properties when ice crystal
growth rates are slowed within a nudged model framework.
Nevertheless, these changes have resulted in the expected de-
crease in radiation bias and are of use to us within the con-
text of this analysis: can we use SHAP values to examine
changes in model parameterisations? Here, the behaviours of
cloud types/regions, with respect to changes in cloud prop-
erties/SHAP values, are of greater interest to this work for
a number of reasons. Firstly, these results highlight that de-
spite the averages presented in the top two rows of Fig. 4,
cloud radiative interactions are much more complex. Impor-
tantly, this analysis has been able to condense and analyse
a large amount of information in a more succinct way than
previously possible, with many prior studies only concentrat-
ing on one region and/or one cloud type (typically low-level
stratiform). Secondly, this analysis clearly demonstrates in-
stances of compensating radiative errors between different
cloud properties, types and regions. While spatial compen-
sating errors have previously been identified, few prior stud-
ies have examined them with respect to cloud type. To our
knowledge, no other study has been able to directly associate
changes in cloud properties to changes in the radiative bias
(though we stress that the results here do not present a casual
relationship).

We believe that this last point is where the power of SHAP
analysis lies. In this work we can see that, for example, for
low/thick clouds in the polar region, the resulting changes in
LWP, CFL and IWP caused by the model perturbation work
to decrease the prediction of the radiative bias, while CFI and
CTP have the opposite effect. Our method is able to easily
account for individual and interacting, sometimes non-linear,
influences from each predictor, allowing us to interpret our
predictions with confidence.

6 Discussion and conclusions

The SO radiation bias has been a topic of considerable re-
search over the last decade, motivating a number of innova-
tive methods and studies to understand its controls. While
methods such as cloud regime clustering or cyclone track-
ing have become standard ways to evaluate the SO radiative
bias (e.g. as in Bodas-Salcedo et al., 2016), they do not ac-
count for the entirety of the SO and the range of biases found
across it. This narrower view has proven detrimental to some
model development studies, where some aspects of cloud mi-
crophysics, such as ice nucleation temperatures, have been
altered to target the worst of the radiative bias but have led

to unwanted changes in other regions (e.g. as in Varma et al.,
2020; Furtado et al., 2016).

In this study, we have proposed a new method for model
bias evaluation, employing modern machine learning and
taking advantage of the large amount of cloud and radia-
tion data available to us and facilitated by enhanced com-
puting resources. This method, where we use biases in cloud
properties to predict the SWCRETOA bias, considers the en-
tire SO, from the mid-latitudes to the polar regions, at a
daily timescale. This study has been made possible due to
our ability to perform a nudged climate model simulation,
an underutilised method in climate research without which
coincident in-time comparisons to satellite fields are not pos-
sible. This work provides a new perspective on the down-
welling shortwave radiation bias, which will help guide our
future model developments. Furthermore, we expect that this
method could be applied to a range of complex model biases
throughout the climate system beyond radiation.

We note that the cloud fields used in this work, includ-
ing the satellite products and the modelled products, each
contain inherent uncertainties. While the MODIS L3 prod-
uct has specifically been produced for model evaluation, we
must acknowledge that these products may not represent the
“truth”. Greater discussion on this can be found in F22. Sim-
ilarly, Pei et al. (2023) find an underestimation of shortwave
cloud radiative effect at the surface of 7.9 W m2 in CERES
compared to ground observations at Macquarie Island, indi-
cating that similar issues exist in the satellite radiative fields.
To add to this, despite satellite simulators such as COSP be-
ing designed to reduce the uncertainties between modelled
and satellite-retrieved products, we have found that some of
these simulated fields were of too poor a quality to be used
with confidence. This was the case for the LWP and IWP
fields, for which we used the raw modelled products instead.
While this decision adds to the uncertainty in our analysis,
we are nonetheless confident in our overall results (e.g. LWP
being a dominant driver of biases radiative biases).

Specifically, in this work we have continued our evalua-
tion of the ACCESS-AM2 model’s SO cloud and radiative
biases (from Fiddes et al., 2022). The ACCESS-AM2 SO
SWCRETOA bias is shown to be the largest in magnitude
over the polar region, while it weakens in the sub-polar and
mid-latitude regions. Of interest to this work in particular is
that the ACCESS-AM2 model lacks the zonal asymmetry of
the CERES-Syn1D SWCRETOA, with positive biases in the
Australian and Pacific sectors. This asymmetry has not pre-
viously been considered and is possibly a reflection of the
differences in SWCRETOA biases between cloud regimes or
other unaccounted for physical processes.

Importantly, the XGBoost model suggests that the
ACCESS-AM2 SO SWCRETOA bias cannot be completely
explained by the biases in several key cloud properties, in-
cluding LWP, IWP, CFL, CFI, TauL, TauI and CTP. Many
of these cloud biases have a non-linear relationship with the
radiative bias as well as weak collinearities amongst them,
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demonstrating the complexity of the system and the need
for a method that can take such complexities into account.
For this purpose, we have used a tuned and tested XGBoost
model to predict the SWCRETOA bias, using the biases from
these cloud fields as predictors.

The XGBoost model can explain up to 55 % of the
SWCRETOA bias, more than any one of the cloud fields
alone or a linear combination could. While the general pat-
tern of the radiative bias is captured, the zonal asymmetry
is not, with the XGBoost prediction lacking the positive val-
ues found in the sub-polar region. This finding suggests that
the asymmetry may not be a function of the cloud properties
explored in this work but possibly some other environmen-
tal factor, such as a dynamical or thermodynamical property,
aerosol sources and interaction, or proximity to the polar
front. Other studies have found that environmental factors,
such as SSTs or dynamical predictors, are important for pre-
dicting cloud characteristics or radiation (Zipfel et al., 2022;
Mallet et al., 2023). Such factors may contribute to the miss-
ing 45 % of predictability, though this has not been tested
in this work. For this analysis, we have chosen not to ex-
plore additional parameters for three reasons: (1) to maintain
interpretability – the more parameters you have the less in-
terpretable your model becomes; (2) to maintain some level
of data homogeneity – we try to limit the number of sources
(e.g. different satellite products) our predictors are coming
from to limit inconsistencies in assumptions; and (3) to keep
our focus on the cloud radiative relationship, without com-
pounding it with other external factors. However, we sug-
gest that future work should explore how environmental fac-
tors may influence the SWCRETOA bias, including looking at
cloud condensation nuclei (CCN) availability, cloud droplet
number concentration, INP concentration, sea surface tem-
perature and vertical cloud overlap.

One of the benefits of using the XGBoost model is
that it can efficiently be interpreted and analysed with the
SHAP feature importance method. Our SHAP analysis has
shown that the biases in LWP are the main drivers of the
SWCRETOA bias (with CFL, CFI and IWP following). Fur-
ther exploration of the SHAP feature importance and the
cloud biases indicates that the relationships are still non-
linear, but for the most part, we can make physical sense
of them. In addition, we have shown that there are cloud-
type-specific behaviours that can be easily captured using
this type of analysis, including that for mid-latitude and sup-
polar mid-level stratocumulus and marine stratiform clouds,
CFL has higher SHAP values than LWP, indicating a greater
importance. This method allows us to evaluate cloud radia-
tive biases in a much more holistic way compared to isolat-
ing just one, often pre-designated, “important” cloud type.
Furthermore, we find distinct cloud-type behaviours in the
SHAP–bias relationship, which we expect can be leveraged
in future model development.

We have tested this by exploring a simple model pertur-
bation, previously described in Varma et al. (2020), where

we reduce the ice shape capacitance from 1.0 to 0.5, thereby
reducing the ice crystal growth rates, increasing LWP and re-
ducing the radiative bias by approximately 1 W m−2. We note
that Varma et al. (2020) saw much larger radiative changes
in response to this perturbation, which we suggest is due to
the free-running nature of their experiments. Although the
changes between this test run and our control were small
(and insignificant), we believe that our results demonstrate
the power of SHAP analysis, where complex changes within
a system can be evaluated and their impact quantified.

This finding is particularly relevant to methods used to
constrain models to observationally plausible values, such
as that done in Regayre et al. (2020, 2023). In these stud-
ies, perturbed parameter ensembles (PPEs) have been used
to sample distributions of many parameters, after which ob-
servations are used constrain the model to internally consis-
tent and plausible values. These studies, which provide an
efficient and comprehensive way to both evaluate and tune
model parameters, use huge arrays of data representing com-
plex changes in the model. While alternative methods to de-
termine feature importance have been implemented in these
studies, an approach such as the one presented in this work
would provide an efficient way to interpret the effects of the
parameter tuning. We further note recent developments in
SHAP in which multiple targets can be predicted and evalu-
ated, potentially providing a significant advantage for studies
using PPEs.

In this work, we find that the SHAP values for oppo-
site cloud phases do not balance out. Total liquid-phase val-
ues outweigh the total ice-phase values. This finding, along
with the non-linearities and cloud-type dependencies of the
system, suggests that changing our cloud parameterisations
to simply move mass from one phase to another in order
to balance the liquid and ice phases may not remove the
SWCRETOA bias entirely. We suggest that a concerted effort
is required to improve the individual representation of each
phase in a more physical way, which can take into consid-
eration different environmental conditions. We suggest that
the parameterisations of CCN and INP are a good place to
start as, unlike other changes to the model (e.g. changing the
freezing temperatures, detrainment temperatures, ice crystal
shape or growth rates: Varma et al., 2020; Furtado and Field,
2017; Kay et al., 2016), they are derived independently and
do not simply change phase partitioning. We are not suggest-
ing that improvements to microphysical representations are
futile (in fact the opposite). We do, however, suggest that
they may have a lesser impact or, in some cases, undesirable
impacts if not done with strong physical backing.

Vignon et al. (2021) have shown that empirically forc-
ing a model’s INP concentrations can result in significant
improvements in super-cooled liquid water fraction. Such
work has begun for the UM model family. Vergara-Temprado
et al. (2017) have explored the importance of marine organ-
ics and dust to INP concentrations in the SO and their sub-
sequent control on cloud reflectivity, but a more concerted
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effort is needed. Specifically, we need to ensure the chemi-
cal and aerosol pathways responsible for both INP and CCN
are (a) accurate and (b) coupled to the cloud scheme satis-
factorily (two-way coupling preferred). In ACCESS-AM2,
analysis has shown that CCN concentrations are significantly
underestimated in the SO (Fiddes et al., 2024), while INP
concentrations are not resolved by the aerosol scheme but
rather parameterised without consideration of the composi-
tional environment. This is a key area for development, a pro-
cess that has been started by Varma et al. (2021); however,
it still requires considerable work with a stronger connec-
tion to the aerosol scheme. We hope that future work in this
space can make use of the methods presented in this study
to holistically quantify how their changes to the model affect
the cloud radiative system.

To summarise, we have provided a new method for un-
derstanding model biases using a nudged climate simulation
and machine learning. We hope that this method can be ap-
plied to other fields to gain new insights into the complexity
and the drivers of modelling biases and how model perturba-
tions may improve or worsen such biases. When considered
as a whole, the SO SWCRETOA bias is shown to be complex,
with large non-linearities, cloud-type and regional dependen-
cies, and compensating errors. Our results suggest that the
liquid phase of clouds is the most important contributor to
the SWCRETOA bias, more so than the ice phase, and that
different higher/thinner clouds often behave in an opposing
manner to that of the lower/thicker cloud types, in some cases
having compensating effects on the radiative bias. We pro-
pose that we need to address the biases in the liquid and ice
phase of SO cloud properties individually (i.e. more phys-
ically) in order to reduce the SWCRETOA bias. We expect
that the best way to do this is to ensure the nucleating parti-
cles (CCN and INP) are resolved by an aerosol scheme and
fully coupled to the microphysics.
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Appendix A: Additional figures

Figure A1. The summertime (DJF) ocean SWCRETOA for the (a) CERES-Syn1Deg satellite product and (b) the ACCESS-AM2 model. All
units are in W m−2.

Figure A2. The mean SWCRETOA bias (y axis) versus the bias (x axis) for each cloud feature (a–g) averaged by MODIS cloud type
(colours) for the three regions of interest indicated by upwards triangle – mid-latitudes; square – sub-polar; downwards triangle – polar. The
size of the shape indicates the frequency of occurrence of each cloud type; a larger shape indicates a more dominant cloud type. The cloud
types are as follows: thin cirrus, TC; cirrus, Ci; convective, Cv; frontal, Fr; mid-level, ML; stratocumulus, StC; marine stratiform, MS; cloud
decks, CD; shallow cumulus ShC; Antarctic, Ant.
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Figure A3. Heat maps of the explained variance (R2) between each of the cloud bias features as well as the SWCRETOA bias.

Figure A4. (a–g) The time-averaged main SHAP values (as calculated via the interaction analysis) for each cloud feature over the SO
domain. (h–n) The time-mean biases (ACCESS-AM2 – MODIS) for each of the cloud features. (o–u) Scatter plot distributions (darker
colours indicate greater density) showing the relationship between the bias in each cloud feature and the respective main SHAP values. Note
that the scatter plots have been limited along the x and y axis to better show the behaviour of the majority of the distribution.
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