
Geosci. Model Dev., 17, 2617–2640, 2024
https://doi.org/10.5194/gmd-17-2617-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperDecision Support System version 1.0 (DSS v1.0) for air quality
management in Delhi, India
Gaurav Govardhan1,2, Sachin D. Ghude1, Rajesh Kumar3, Sumit Sharma4, Preeti Gunwani5, Chinmay Jena5,
Prafull Yadav1,6, Shubhangi Ingle1, Sreyashi Debnath1,6, Pooja Pawar1,11, Prodip Acharja1,6, Rajmal Jat1,
Gayatry Kalita1, Rupal Ambulkar1,12, Santosh Kulkarni7, Akshara Kaginalkar7, Vijay K. Soni5,
Ravi S. Nanjundiah8,9, and Madhavan Rajeevan10

1Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, Maharashtra, India
2National Centre for Medium-Range Weather Forecasting, Ministry of Earth Sciences, Noida, Uttar Pradesh, India
3NSF National Center for Atmospheric Research, Boulder, CO, United States of America
4The Energy and Resources Institute, Delhi, India
5India Meteorology Department, Ministry of Earth Sciences, Delhi, India
6Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
7Centre for Development of Advanced Computing, Innovation Park, Pune, Maharashtra, India
8Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
9Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
10National Centre for Earth Science Studies, Thiruvananthapuram, Kerala, India
11Department of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneshwar, India
12Department of Environmental Sciences, Savitribai Phule Pune University, Pune, India

Correspondence: Gaurav Govardhan (gaurav.govardhan@tropmet.res.in) and Sachin D. Ghude
(sachinghude@tropmet.res.in)

Received: 13 December 2022 – Discussion started: 12 April 2023
Revised: 22 January 2024 – Accepted: 22 January 2024 – Published: 10 April 2024

Abstract. This paper discusses the newly developed Deci-
sion Support System version 1.0 (DSS v1.0) for air qual-
ity management activities in Delhi, India. In addition to
standard air quality forecasts, DSS provides the contribu-
tion of Delhi, its surrounding districts, and stubble-burning
fires in the neighboring states of Punjab and Haryana to the
PM2.5 load in Delhi. DSS also quantifies the effects of local
and neighborhood emission-source-level interventions on the
pollution load in Delhi. The DSS-simulated Air Quality In-
dex for the post-monsoon and winter seasons of 2021–2022
shows high accuracy (up to 80 %) and a very low false alarm
ratio (∼ 20 %) from day 1 to day 5 of the forecasts, espe-
cially when the ambient air quality index (AQI) is > 300.
During the post-monsoon season (winter season), emissions
from Delhi, the rest of the National Capital Region (NCR)’s
districts, biomass-burning activities, and all other remain-
ing regions on average contribute 34.4 % (33.4 %), 31 %
(40.2 %), 7.3 % (0.1 %), and 27.3 % (26.4 %), respectively,

to the PM2.5 load in Delhi. During peak pollution events
(stubble-burning periods or wintertime), however, the contri-
bution from the main sources (farm fires in Punjab–Haryana
or local sources within Delhi) could reach 65 %–69 %. Ac-
cording to DSS, a 20 % (40 %) reduction in anthropogenic
emissions across all NCR districts would result in a 12 %
(24 %) reduction in PM2.5 in Delhi on a seasonal mean basis.
DSS is a critical tool for policymakers because it provides
such information daily through a single simulation with a
plethora of emission reduction scenarios.

1 Introduction

The national capital of India, Delhi, is one of the most pop-
ulated capitals in the world, with an estimated count of more
than 18.7 million (Census Of India 2011, 2020). Immense
population density, urbanization, and industrialization within
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the city have resulted in many urban issues, including air
pollution (Molina and Molina, 2004; Chopra, 2016; Zhang
et al., 2022). The primary sources of pollutants are vehicles,
industries, power plants, waste-burning practices, construc-
tion and demolition activities, and road dust. On top of this,
the post-monsoonal (October–November) harvesting of the
paddy crops and the associated burning of the paddy residue
in the neighboring states of Haryana and Punjab also con-
tribute to the degradation of air quality in Delhi and the
surrounding region (Bikkina et al., 2019; Bray et al., 2019;
Chowdhury et al., 2019; Kulkarni et al., 2020; Nair et al.,
2020). Besides, the geographical location and the local me-
teorological conditions, especially during the winter months,
aggravate the pollution levels in the city (Guttikunda and
Gurjar, 2012; Tiwari et al., 2014; Kumar et al., 2020. The pol-
lution in the city is at its peak during the post-monsoon and
the winter seasons, though the summer (April–June) months
also bring severe dust storms and the associated degrada-
tion of Delhi’s air quality (Banerjee et al., 2021; Chakravarty
et al., 2021; Parde et al., 2022). The air quality in Delhi is so
poor that it occasionally (especially during the post-monsoon
and winter seasons) crosses the national air quality standards
by more than 10 times (Kanawade et al., 2020; Jena et al.,
2021; Roozitalab et al., 2021). Owing to the ever-increasing
pollution, Delhi has been topping the list of the most polluted
national capital cities in the world (Meteosim, 2019). It has
been estimated that the air pollution in Delhi is causing more
than 7000 premature mortalities every year (Guttikunda and
Goel, 2013; Ghude et al., 2016; Saini and Sharma, 2020).
The loss of average life expectancy in the city is also esti-
mated to be around 2 years in Delhi (Ghude et al., 2016; Guo
et al., 2018).

The primary solution to this problem lies in the reduction
in the anthropogenic emissions happening in and around the
city. However, permanent mitigation of emissions is a long-
term objective due to the involvement of multiple socioe-
conomic factors (Riahi et al., 2017). A short-term and ef-
fective solution to this problem could be related to creating
awareness in the public about air pollution, releasing early
warnings about the air pollution episodes that are likely to
happen, and imposing temporary emission controls so that
the exposure of the common people to acute levels of air
pollution could be avoided. With this motivation, the Gov-
ernment of India, in the year 2018, directed the Ministry of
Earth Sciences (MoES) to develop an early-warning system
for air pollution events happening in Delhi. With this man-
date, the Indian Institute of Tropical Meteorology (IITM),
Pune, and the India Meteorological Department (IMD) de-
veloped the Air Quality Early Warning System (AQEWS)
in collaboration with the National Center for Atmospheric
Research (NCAR), USA, in 2018. AQEWS is a dynamical
modeling system that simulates air quality over the entire In-
dia with a special focus on Delhi (Ghude et al., 2020; Kumar
et al., 2020; Jena et al., 2021; Sengupta et al., 2022). The
forecasting for Delhi is carried out with a spatial grid spac-

ing of 400 m× 400 m. The system is capable of delivering
forecasts for 3 d and at a slightly coarser resolution (10 km)
for the next 10 d. The skill of these forecasts has been found
to be excellent, especially when the air quality is beyond
the “very poor” category (Jena et al., 2021; Sengupta et al.,
2022). The forecast has been found to be very useful to pol-
icymakers and has helped them manage the air quality in the
city, especially when severe air pollution episodes are pre-
dicted (Ghude et al., 2022).

However, the governing authorities require more specific
information about the emission sources contributing to forth-
coming air pollution events occurring in the near future (be-
sides the actual forecasts). They also want to obtain solutions
for how to reduce the impact of an air pollution event fore-
casted to affect the city. These requirements were put forth by
the Commission for Air Quality Management (CAQM) in the
National Capital Region and Adjoining Areas, constituted by
the honorable Supreme Court of India in 2021. While there
exist some recent source-apportionment-related studies on
air pollution in Delhi (e.g., Gadi et al., 2019; Guo et al., 2019;
Shivani et al., 2019; Rai et al., 2020; Tobler et al., 2020; Ya-
dav et al., 2020; Hama et al., 2021; Lalchandani et al., 2021),
there does not exist a system that can provide source appor-
tionment information about the city’s pollution either in near-
real time or 72 h in advance. Even globally, very few such
systems exist (Denby et al., 2020; Colette et al., 2022) that
give real-time forecasts of a region-wise source apportion-
ment of air pollution. Such a capability is highly essential
to suggest possible short-term, immediate-relief-based solu-
tions to the pollution menace happening in Delhi, especially
during the post-monsoon and winter seasons. Responding to
this requirement from the CAQM, we have come up with
a dynamical modeling system named the Decision Support
System (DSS) for air quality management in Delhi. The DSS
is a new armor in our AQEWS that has already been provid-
ing neighborhood-scale forecasts in Delhi (Jena et al., 2021)
and provides quantitative information about the following:

a. the contribution of emissions from 20 districts of the
National Capital Region (NCR) (including Delhi) to the
air pollution (PM2.5 and CO) in Delhi;

b. the contribution of eight different emission sectors
within Delhi to the air pollution in the city;

c. the contribution of emissions from the biomass-burning
activities happening in the neighboring states of Punjab
and Haryana to the degradation of air quality in Delhi;
and

d. the efficacy of the possible emission source-level inter-
ventions on the forecasted air pollution event occurring
in Delhi.

The DSS was operationalized during the post-monsoon
and the winter seasons of the year 2021. It has been found

Geosci. Model Dev., 17, 2617–2640, 2024 https://doi.org/10.5194/gmd-17-2617-2024



G. Govardhan et al.: DSS v1.0 for air quality management in Delhi, India 2619

to be very helpful for the governing authorities and the pol-
icymakers. It has been estimated that the governing authori-
ties avoided a severe air pollution event in Delhi by improv-
ing the air quality index (AQI) in the city by 20 %–22 %
and taking guidelines from the AQEWS and DSS (Ghude
et al., 2022). Keeping in mind the usefulness of DSS, the
CAQM has recommended that DSS must be an integral part
of the decision-making process for reducing air pollution in
the NCR (CAQM, 2022).

In this paper, we describe DSS by explaining its underly-
ing modeling system, the various input datasets needed for
the simulations, and the chemical data assimilation occur-
ring in the system in Sect. 2. In Sect. 3, we first evaluate the
performance of DSS in capturing air pollution load in Delhi
during the post-monsoon and the winter seasons of the year
2021–2022. This is followed by the source-apportionment-
related results from DSS for both the seasons of interest. We
further discuss the findings from the scenarios of emission
reductions from DSS. In Sect. 4, we summarize the main re-
sults from the paper.

2 Details of the modeling system

2.1 Domain and meteorological formulation

The DSS holds the fully coupled regional chemistry trans-
port model, Weather Research and Forecasting coupled with
Chemistry (WRF-Chem) (Grell et al., 2005), in its core.
The model version 3.9.1 has been used. The model do-
main is centered in Delhi, with a horizontal grid spacing of
10 km× 10 km, with 50 vertical levels with 8 levels in the
first 1 km from the surface, and the model top is set at 50 hPa.
The simulation uses a time step of 1 min for temporal inte-
gration with radiation calculations done every 12 min. The
model domain mainly covers the north Indian region span-
ning from 21–36° N to 62–93° E (see Fig. S1 in the Supple-
ment). We use the rapid radiative transfer model for global
circulation models (RRTMG) scheme (Mlawer et al., 1997;
Iacono et al., 2000, 2008; Clough et al., 2005) to parameter-
ize the shortwave and longwave radiative interactions. The
choice of the scheme for the parameterization for boundary
layer turbulence is vital for the simulations of atmospheric
particulate pollutants (Govardhan et al., 2015, 2016, 2019;
Sengupta et al., 2022, and references therein). The bound-
ary layer processes in the DSS modeling framework are pa-
rameterized using the Mellor–Yamada–Nakanishi–Niino 2.5
(MYNN2.5) scheme (Nakanishi and Niino, 2006), which
is a turbulent kinetic-energy-based scheme that puts a lo-
cal closure of level 1.5 on the turbulent fluxes. For the pa-
rameterization of the microphysical processes, we use the
WRF single-moment six-class microphysics scheme (Hong
and Lim, 2006). The scheme includes six prognostic wa-
ter substances, including cloud water, rain, snow, graupel,
water vapor, and cloud ice. We parameterize the subgrid-

scale convective processes using the Grell–Freitas scheme
(Grell and Freitas, 2014). A recent study (Debnath et al.,
2022) highlights the ability of the Grell–Freitas scheme in
capturing rainfall characteristics over the Indian region. The
DSS uses Noah land surface model (Ek et al., 2003; Niu
et al., 2011) to parameterize land surface processes with the
Monin–Obukhov scheme to take into account the surface
layer physics (Jiménez et al., 2012). The DSS utilizes the
IITM Global Forecast System model (GFS) to generate the
meteorological initial and boundary conditions for the study
domain every 3 h. This is a global atmospheric model of
IITM, Pune, based on the Global Forecast System of the Na-
tional Centers for Environmental Prediction (NCEP), USA.
The IITM GFS runs in an operational forecasting frame-
work at a horizontal grid spacing of 12 km employing en-
semble Karman filtering for assimilating observational data
(Mukhopadhyay et al., 2019). The IITM GFS provides the re-
quired conditions of the atmospheric state variables like pres-
sure, temperature, winds, and specific humidity to the model
domain. The stationary geographic fields like topographical
height, surface albedo, land use, and leaf area index are in-
terpolated from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) dataset to the model’s grid.

2.2 Anthropogenic emissions

We use version 2.2 of the Emissions Database for Global
Atmospheric Research Hemispheric Transport of Air Pollu-
tion (EDGAR-HTAP) (Janssens-Maenhout et al., 2015) for
the prescription of anthropogenic emissions of aerosols and
trace gases in the DSS. This global emissions inventory has
been constructed by combining multiple regional emission
inventories like the Environmental Protection Agency (EPA)
for the USA, the European Monitoring and Evaluation Pro-
gramme (EMEP), and the Netherlands Organisation for Ap-
plied Scientific Research (TNO) for Europe, the EPA collab-
oration with Environment Canada for Canada, and the Model
Inter-Comparison Study for Asia (MICS-Asia phase III) for
China, India, and other Asian countries. The inventory also
provides sector-wise emissions for the five main sectors, in-
cluding transport, industrial, power, residential, and agricul-
tural. The emissions are provided at a spatial resolution of
0.1° in latitude and longitude in space. The emissions are
available for the aerosols and their precursor gases, includ-
ing sulfur dioxide (SO2), nitrogen oxides (NOx), carbon
monoxide (CO), non-methane volatile organic compounds
(NMVOCs), ammonia (NH3), black carbon (BC), organic
carbon (OC), PM2.5, and PM10.

For Delhi and the surrounding 19 districts of the National
Capital Region (NCR), including Jhajjar, Rohtak, Sonipat,
Panipat, Bagpat, Muzaffarnagar, Meerut, Gautam Buddh Na-
gar, Faridabad, Ghaziabad, Alwar, Bharatpur, Bulandsha-
har, Gurgaon, Rewari, Mahendragarh, Jind, and Karnal, we
use the anthropogenic emissions inventory prepared by The
Energy and Resources Institute (TERI) for the year 2016.
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This fine-gridded (4 km× 4 km) emissions inventory (TERI
and ARAI, 2018) provides anthropogenic emissions of SO2,
NOx , NMVOCs, CO, PM10, and PM2.5. The PM2.5 has been
further speciated in OC, BC, sulfates, ammonium, chlorides,
and nitrates. The inventory also provides emissions on a
sectoral basis. The sectors could be broadly classified into
eight major sectors, including transport, residential, indus-
tries, waste burning, construction, road dust, energy, and oth-
ers (which include the emissions from the sectors like cre-
matoria, airports, restaurants, non-energy solvent use, and
diesel generator sets). Moreover, the inventory also includes
a monthly variation in emissions from all the aforementioned
sectors. For this study, we have re-gridded this emission in-
ventory to a horizontal grid spacing of 0.1°× 0.1° and have
subsequently replaced the EDGAR emission fields with this
inventory over the NCR region. In general, for Delhi NCR,
there is an increasing trend in the anthropogenic emissions
in recent years. Sahu et al. (2023) reports changes in sec-
toral emissions over Delhi in 2020 in comparison with 2010.
The study suggests that for PM2.5, the emissions from trans-
port sector and industries have increased by 37 % and 25 %,
respectively. On the other hand, the residential sector emis-
sions show a slight decrease (1 %–2 %). However, due to lack
of any such data for the period 2016 to 2022, we have stick
to the original inventory of the year 2016 for this study.

For the emissions from agricultural burning activities, we
use a combination of the Fire INventory from NCAR (FINN)
database (Wiedinmyer et al., 2011) and the active fire count
data from the Visible Infrared Imaging Radiometer Suite (VI-
IRS) instrument (Schroeder et al., 2014) on-board the Suomi
National Polar-Orbiting Partnership (Suomi NPP) satellite.
We have prepared a daily climatology for year-long fire emis-
sions using the FINN dataset for the years 2002 to 2018.
On each day of the forecast, we superimpose the near-real-
time daily active fire count data from the VIIRS instrument
on board the Suomi NPP satellite on the climatological fire
emissions file for that day. For day 1 of the forecast, the fire
emissions only over those grids are activated, where we get
non-zero active fire counts on that day with a confidence level
greater than 70 %. The other points in the domain are sup-
plied with no fire emissions. For day 2–day 5 of the forecast,
the climatological fire emissions over only those grids are ac-
tivated, where we get non-zero values in the climatological
VIIRS fire count data for that day. This dataset is prepared
using the VIIRS data the years 2011–2018. Thus, while the
day 1 fire emission forecasts are generated by amalgamation
of near-real-time fire count and climatological fire emissions,
the day 2–day 5 fire emission forecasts are generated using
the climatological information about the fire emissions and
the active fire counts. In Fig. S2 in the Supplement, we com-
pare the prescribed emissions of OC from fires in the DSS
framework with the corresponding emissions from the long-
term climatological data from FINN and from the Coperni-
cus Atmosphere Monitoring Service (CAMS) Global Fire
Assimilation System (GFAS) (Kaiser et al., 2012) for the

period of October 2021–November 2021. It may be noted
that the fire emissions employed in the DSS framework do
show day-to-day variability. They are not overly driven by
long-term FINN climatology. However, the peak in the ab-
solute magnitudes of the emissions in DSS looks to arrive a
week earlier compared to that in GFAS. The fire emissions
in DSS and GFAS show a good agreement with the availabil-
ity of VIIRS fire count information. It is particularly evident
around 19 and 28 October when VIIRS fire counts are zero
and the corresponding prescribed fire emissions in the DSS
and GFAS are also zero.

2.3 Chemical boundary conditions and the mechanism
employed

The boundary conditions for the chemistry variables in DSS
are set using the climatological data from the global chem-
istry transport model named as the Model for Ozone and
Related chemical Tracers version 4 (MOZART-4; Emmons
et al., 2010). The climatologies are specifically used as
the real-time forecast from MOZART-4 is not available. In
the future, we plan to replace these climatological bound-
ary conditions using global atmospheric composition fore-
casts such as the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) and the Whole Atmosphere Community Cli-
mate Model (WACCM). Dynamic chemical lateral boundary
conditions are essential for capturing air pollution events re-
lated to dust storms originating outside our domain. The gas
phase chemistry in DSS is simulated using the MOZART-4
chemical mechanism. This mechanism takes into account 85
gas phase species with 39 photolysis and 157 gas phase reac-
tions (Emmons et al., 2010). The aerosol processes are sim-
ulated by employing the Goddard Chemistry Aerosol Radia-
tion and Transport (GOCART) model that includes five ma-
jor tropospheric aerosol species, namely sulfate, organic car-
bon (OC), black carbon (BC), dust, and sea salt (Chin et al.,
2000, 2002; Ginoux et al., 2001). While sulfate, BC, and OC
are simulated as bulk aerosol species, dust and sea salts are
resolved into five and four size bins, respectively. The car-
bonaceous aerosols (BC and OC) are assumed to be present
in both the hydrophobic and hydrophilic modes. The conver-
sion of hydrophobic to hydrophilic is assumed to take place
with an e-folding lifetime of 2.5 d. The aerosols are assumed
to be deposited down by dry deposition (for all aerosols) and
wet deposition (for hydrophilic aerosols) pathways. While it
is noted that the GOCART mechanism does not take into ac-
count the secondary organic aerosols and the nitrate aerosols,
we stick to it, as it is computationally less expensive and thus
useful in an operational air quality forecasting setup.

2.4 Chemical data assimilation

DSS improves the initialization of aerosol species and thus
PM2.5 field via assimilation of satellite observations of
aerosol optical depth (AOD), using the three-dimensional
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Figure 1. The life cycle of a regular chemical species and a tracer chemical species is illustrated. The main difference lies in the feedback
and the chemistry sections. The tracer species does not have feedback on the radiation processes in the model, and it does not affect the
chemistry of regular species in the model. Two such examples of non-interactive chemistry are given. The CO tracer species gets oxidized
by OH− radical, but it does not change the mass budget of the OH− radical in the model. Similarly, the tracer hydrophobic BC (BC1_tracer)
species gets aged into the tracer hydrophilic BC species (BC2_tracer), while keeping the mass of the regular hydrophilic BC in the model
intact.

variational (3DVAR) scheme of the community Gridpoint
Statistical Interpolation system (version 3.5). The system as-
similates the observations into the model by minimizing the
cost function J (x) (Eq. 1), which is the sum of the deviation
of the final state of the model from its background state and
the observations. The cost function takes the following form:

J (x)=
1
2
(x− xb)

TB−1(x− xb)+
1
2
(H(x)− y)T

×R−1(H(x)− y). . ., (1)

where x is the state vector, which is composed of aerosol
chemical composition and meteorological parameters needed
for AOD calculation. xb is the information about x available
prior to the assimilation (also known as background infor-
mation). B is the background error covariance (BEC) ma-
trix. H is the forward operator that calculates AOD from the
WRF-Chem aerosol chemical composition, following Liu
et al. (2011). y is the AOD retrieved by MODIS. R is the ob-
servational error covariance matrix. More details about each
of the terms in Eq. (1) can be found in Kumar et al. (2020).
The assimilation of MODIS AOD (from both TERRA and
AQUA satellites) in the model is done at 09:00 UTC every
day in the DSS. In addition to assimilation of satellite data,
we also assimilate surface measurements of PM2.5 into the
model at 09:00 UTC. The data come from 43 stations of the
Central Pollution Control Board (CPCB) and the Delhi Pol-
lution Control Committee (DPCC) spanning across Delhi.
The exact names and the locations of the stations can be
found in the supplement (their Fig. 1) of Sengupta et al.
(2022).

2.5 Tagged tracers in DSS

We have added a variety of passive tagged tracers in WRF-
Chem, which assist us in understanding the region- and
source-specific contribution to PM2.5 mass concentration
over Delhi. The passive tracer of a regular species is that
species introduced in the model which undergoes all physic-
ochemical processes identical to a regular chemical species
(e.g., emissions, transport, chemical transformation, and de-
position) without providing feedback to the model (Bhardwaj
et al., 2021; Kumar et al., 2015). In other words, the tracer
species does not take part in radiation or droplet formation
processes, as its effect in such feedback processes is already
taken into account by the parent regular species. The differ-
ence between a regular chemical species and a tracer chemi-
cal species is illustrated in Fig. 1.

Since PM2.5 is not a prognostic species in the model,
we employ tracers for hydrophobic black carbon (BC1), hy-
drophilic black carbon (BC2), hydrophobic organic carbon
(OC1), hydrophilic organic carbon (OC2), non-speciated pri-
mary PM2.5 (P25), and carbon monoxide (CO). The GO-
CART scheme employed in the WRF-Chem model used in
this study calculates PM2.5 as follows:

PM2.5 = BC1+BC2+ (OC1+OC2)× 1.8+P25

+DUST1+SEAS1+ (0.286×DUST2)

+ (0.942×SEAS2)+ 1.375× sulfate . . ., (2)

where DUST1 is the mineral dust aerosol species falling in
the first bin with the effective radii equal to 0.73 µm. DUST2
is the mineral dust aerosol species falling in the second bin
with the effective radii equal to 1.4 µm. SEAS1 is the sea salt
aerosol species falling in the first bin with the effective radii
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equal to 0.3 µm. SEAS2 is the sea salt aerosol species falling
in the second bin with the effective radii equal to 1.0 µm.
Sulfate is the sulfate aerosol species.

In this study, we employ tracers for 5 of the 10 species
involved in the calculation of PM2.5 in the GOCART scheme
(equation 2). In Fig. 2, we examine the contribution of those
10 species to the simulated PM2.5 in the model.

It may be noted that the chosen five species (BC1, BC2,
OC1, OC2, and P25) together contribute around 85 %–90 %
of the total PM2.5 in the model. Thus, our five tracers would
together represent, on an average, 85 %–90 % of the cor-
responding PM2.5 mass concentrations. Therefore, practi-
cally we can interpret those five tracers together as a PM2.5
tracer. Adding tracers for SO−4 , DUST1, DUST2, SEAS1,
and SEAS2 would not drastically affect the overall results,
as their contribution to PM2.5 over Delhi, specifically dur-
ing the winter season, is negligible, especially in the model
simulations (however, the fractional contribution of differ-
ent species during April–September could be different due to
dust storms and monsoon circulation affecting this region).
Moreover, since the forecasting system is operational on a
daily basis, one needs to limit the computational load and
thus the total number of species in the model configuration
to keep the daily runtime as short as possible. Keeping all
these constraints in mind, we chose to put tracers only for
the five selected species.

2.5.1 Tracers for anthropogenic PM2.5 in the model

We introduce regional tracers for the total emitted anthro-
pogenic PM2.5 from Delhi and the 19 districts surrounding
it. These districts, along with Delhi, form the NCR. The
following are the districts included: Delhi, Jhajjar, Sonipat,
Bagpat, Ghaziabad, Gautam Buddha Nagar, Faridabad, Gur-
gaon, Rohtak, Jind, Panipat, Karnal, Muzaffarnagar, Meerut,
Bulandshahr, Bharatpur, Alwar, Mahendragarh, Rewari, and
Bhiwani. In Fig. 3, we show the locations of these 20 dis-
tricts.

In addition to those 20 districts, we also trace PM2.5 from
eight broad source-based categories exclusively in Delhi.
These individual broad categories are a group of several sub-
categories put together. The broad categories and the in-
cluded subcategories are listed in Table 1. As mentioned
in Sect. 2.2, the emissions inventory provides extensive in-
formation on the subcategories for the entire NCR domain.
However, version 1.0 DSS does not trace the PM2.5 emis-
sions from the individual broad categories from the NCR dis-
tricts, other than Delhi. Even for Delhi, the emissions from
the individual subcategories are not traced. All these ensure
the computational speed and cost for the operational DSS
system. Moreover, the tagged sources fulfill the current re-
quirements of the policymakers with regards to the air quality
management in the city.

2.5.2 Tracers for biomass-burning activities

Along with the anthropogenic emissions of PM2.5, we also
trace the biomass-burning-generated emissions of PM2.5.
Similar to the anthropogenic PM2.5, we introduce tracers for
biomass-burning-generated BC1, BC2, OC1, OC2, and P25.
These tracers hold significant importance in DSS, as the post-
monsoonal harvesting of paddy rice generates a large amount
of stubble which gets burned and generates a thick layer of
smoke in the upwind regions of Delhi, which eventually trav-
els to Delhi. So, the tracers representing those burning activ-
ities help us identify the contribution of biomass burning to
the PM2.5 load in Delhi and thus are critical for air quality
management in Delhi.

2.5.3 Scenario tracers for anthropogenic PM2.5

Apart from tracing the anthropogenic and the biomass-
burning-generated PM2.5, DSS offers a very unique feature,
which we term scenario tracers. The scenario tracers are very
similar to the other anthropogenic PM2.5 tracers, with the
main difference lying in the emission magnitudes of these
tracers. In DSS, a scenario tracer of a regular species has
its emission 20 % or 40 % lesser than the regular species.
Therefore, the scenario tracer represents a scenario in which
the emissions of the corresponding regular species are re-
duced by 20 % or 40 %. We have introduced these scenario
tracers for all the 20 districts and all the eight broad source
categories in Delhi. These scenario tracers play a vital role
in guiding the authorities about the possible effects of the
source-level interventions. The advantage of scenario tracers
is that it gives an opportunity to generate numerous emission
reduction scenarios, which would guide the policymakers in
finalizing the intervention targets. The use of these tracers for
air quality management purposes will be shown in Sect. 3.

2.5.4 Chemical data assimilation for tracers

Another important feature of DSS is chemical data-
assimilation applied for the tracer species. In DSS, for ev-
ery grid point in the model domain, we identify the ratio
by which the regular species like BC1, BC2, OC1, OC2,
and P25 are modified due to the assimilation of satellite and
ground-based data. We multiply all the corresponding tracers
species by the same ratios to get them closer to reality.

2.6 Post-processing of the output

With the aforementioned tracers of different categories, we
introduce a total of 470 new tracers in WRF-Chem for the
purpose of DSS. Upon running DSS in an operational fore-
casting setup, we generate an enormous amount of data that
needs to be processed to get meaningful information. In the
post-processing and analysis of the output, we extract the
surface-level data for all the tracers and the main regular
species. Since our focus of analysis is Delhi, we mask out all
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Figure 2. Speciation of the WRF-Chem simulated near-surface PM2.5 mass concentration over Delhi during January 2021. Contribution
from SEAS1 and SEAS2 to PM2.5 in Delhi is negligible during the study period, and thus, it is not shown in the figure.

Table 1. The source-based PM2.5 tracers employed only for Delhi in this version of DSS. It is to be further noted that we employ tracers for
the eight broad source categories (column 1) in Delhi. We do not employ tracers for the individual subcategories in this version of DSS.

Broad categories Included subcategories

Transport Diesel vehicles, gasoline vehicles, and compressed natural gas (CNG) vehicles
Industries Industries, stone crushers, brick industry, and refineries
Construction Construction activities
Road dust Dust emissions from paved roads
Waste burning Refuse burning, landfill fires, and incinerators
Energy Power plants in NCR, Badarpur Thermal Power Station in Delhi, and fly ash ponds
Residential Domestic biomass and other fuels
Others Crematoria, airport, restaurant, non-energy solvent use, and diesel generator sets

other regions from the variable fields. By doing this, we esti-
mate the contribution of PM2.5 emitted from all the regions of
interest to PM2.5 in Delhi. Moreover, we also get to know the
contribution from the sources in Delhi to PM2.5 in Delhi. The
change in PM2.5 due to the emission reduction scenarios is
subsequently found. All the analysis is made publicly avail-
able on a daily basis at https://ews.tropmet.res.in/dss/ (last
access: 1 April 2024).

2.7 Overall flow of DSS

Figure 4 depicts the operational functioning of DSS. The in-
put data needed for the chemistry part (white boxes; Fig. 4),
i.e., the anthropogenic and biomass-burning emissions and
chemical boundary conditions, are generated using the utili-

ties like anthro, FINN, and mozbc, as explained in Sect. 2.2
and 2.3. Note that biomass-burning emissions are generated
using FINN and the VIIRS active fire count data. The me-
teorological input component (white boxes with a circle in
their upper-left corner; Fig. 4) consists of the meteorologi-
cal boundary forcing data (IITM GFS model output) and the
stationary geographical data, both of which are processed by
the WRF Preprocessing System (WPS) to create the model-
compatible input and boundary forcing. Both the chemistry
and meteorological input data are then processed by the core
part of the DSS (gray boxes; Fig. 4) to create the initial
and the boundary condition files. Subsequently, DSS carries
out the chemical data assimilation using the CPCB and the
satellite data (gray blocks with a circle in their upper-right
corner; Fig. 4). After this step, the actual WRF-Chem run
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Figure 3. The locations of the 20 districts of NCR whose anthropogenic PM2.5 emissions are tagged in DSS.

with 400 tracers is carried out for the next 5 d. Upon the
completion of the simulation, the outputs are suitably post-
processed to generate two main results (gray boxes with a
rectangle in their upper-right corner; Fig. 4): (a) source ap-
portionment of PM2.5 in Delhi to understand the contribution
of the surrounding 19 districts and the 8 sectors in Delhi and
(b) the effects of the various emission reduction scenarios on
PM2.5 in Delhi. The results are then sent to the governing
and decision-making authorities, which could take certain
policy-level decisions in order to manage the air quality in
Delhi. If the decision-making authorities decide to carry out
certain source-level interventions (e.g., Ghude et al., 2022),
then those interventions are then incorporated into the DSS
through the feedback section (gray block with a triangle in
its upper-right corner; Fig. 4).

3 Results and discussion

3.1 Performance evaluation for DSS

We examine the DSS-simulated near-surface PM2.5 mass
concentration against the corresponding observations carried
out at the CPCB and DPCC stations in Delhi. We divide the
entire period of 5 months into the post-monsoon (October–
November) and winter (December–February) seasons, as the
stubble-burning activities are prevalent mainly during the
post-monsoonal season, while the winter season pollution is
primarily governed by the local and distant anthropogenic
emissions, as well as the pollution-conducive meteorology.
Thus, such a division is essential to help us understand the
performance of DSS in capturing the season-specific emis-
sion sources and the associated pollutants’ concentrations.
We evaluate the performance of DSS for day 1 to day 5
of every day’s forecasts. During the post-monsoonal period
(Fig. 5a), the simulated daily mean PM2.5 closely matches
the measurements for the month of October 2021. The sharp
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Figure 4. Block diagram for DSS. The white boxes denote input data needed for the chemistry part, the white boxes with a circle in their
upper-left corner stand for the input data related to the meteorological component. The gray blocks represent the core part of DSS, which is
mainly related to the running of the WRF-Chem model. The gray blocks with a circle in their upper-right corner denote the input data needed
for chemical-data-assimilation purposes. The gray boxes with a rectangle in their upper-right corner stand for the standard outputs from the
DSS, which are communicated to the decision-makers (white block with a rectangle in its upper-right corner). The feedback (gray block
with a triangle in its upper-right corner) from the decision-makers and the model’s post-processed output are analyzed, and accordingly, the
emissions of the anthropogenic activities are modified. A more detailed explanation of the working principle of each block can be found in
Sect. 2 and 2.6.

reduction in the PM2.5 during mid-October (17–20 October)
is well captured by the model for all the lead times (i.e.,
day 1 to day 5). In the first week of November (black cir-
cles; Fig. 5a and c), the model shows a large underestima-
tion with respect to the observations. This period was mainly
associated with the peak of stubble-burning activities (Go-
vardhan et al., 2023) and the Diwali festival in 2021. Both
of these events result in emissions of a significant amount of
particulate pollutants and their precursor gases (Singh et al.,
2010; Parkhi et al., 2016; Cusworth et al., 2018; Chowdhury
et al., 2019; Kulkarni et al., 2020; Saxena et al., 2020). The
large uncertainty associated with both these emission sources
(Vadrevu et al., 2015; Liu et al., 2020; Mukherjee et al., 2020;
Kumar et al., 2020) results in the underestimated PM2.5 mass
concentrations by DSS. The improvements in emission in-
ventories such as the use of Fire Radiative Power (FRP) for
estimating and temporally allocating fire emissions for the
incorporation of emissions from fire crackers would help im-
prove the estimates. On the contrary, the model simulations
overestimate PM2.5 during the following week. Owing to the
persistent severe air pollution days and a forecast of a sim-
ilar scenario from 15–19 November 2021, the Government
of Delhi and CAQM issued certain restrictions on the traf-

fic in the city, banned construction activities, ordered remote
schooling and working guidelines, and banned the entry of
the heavy vehicles into the city (CAQM, 2022). As a result,
the PM2.5 concentration in the city showed a reduction in the
following week. The simulations did not implement such re-
strictions in the modeling framework and thus overestimated
the PM2.5 concentration during this week. We further note
that the fire activity in the neighboring states of Punjab and
Haryana during that period was also on a declining trend
(Fig. 1; Govardhan et al., 2023), so the associated fire emis-
sions may not be completely responsible for this behavior
of the model. For the entire duration, the mean overestima-
tion is found to be 21.94 %. This overestimation is consistent
with the previous estimation put forth by Ghude et al. (2022).
Towards the end of November, the model captures the day-
to-day variations in the observed PM2.5 but underestimates
the actual magnitudes. Such a behavior could be associated
with the coarse grid spacing of the model (10 km), which lim-
its its ability to simulate higher PM concentrations. For the
AQIPM2.5 (Fig. 5b), the model has more of a tendency to gen-
erate AQI up to 300 (barring the episode of 15–19 Novem-
ber 2021). The disagreements with observations in PM2.5 get
reflected in the AQI as well. It may well be noted that the
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Figure 5. Performance of the DSS in simulating near-surface PM2.5 mass concentration (µgm−3) over Delhi in comparison with the ob-
servations averaged over the 39 observational locations across the city. (a) Model vs. observation comparison for the simulated daily mean
PM2.5 mass concentration during the post-monsoonal season of 2021. The error bars on the black line indicate the 1 standard deviation range
for the observations. (b) Model vs. observation comparison for the daily mean AQI associated with PM2.5 during the post-monsoonal period.
(c) Similar comparison to panel (a) for the winter season. (d) Similar to panel (b) for the winter period. The black circles mark the days of
the Diwali festival during the post-monsoon period of 2021.

model’s performance does not drastically degrade from day 1
to day 5. A detailed analysis of the model’s ability to capture
PM2.5 and the associated AQI has been shown in Tables 2–5,
which will be discussed further.

For the winter period (Fig. 5c), DSS shows a better agree-
ment with the observation up to the middle of December,
beyond which the model starts to underperform in com-
parison with the observations. The model simulations are
capable of simulating the PM2.5 concentrations as high as
200 µgm−3; however, they are not able to simulate the higher
values. Improvements in the emission inventory would be
vital in this regard. This issue is likely to be related to
the coarser grid spacing in the simulations, unrealistic sim-
ulations of meteorological parameters (like the planetary
boundary layer height and near-surface winds) (Govardhan
et al., 2015, 2016), limitations associated with the chem-
istry scheme in the model which may not adequately repre-
sent the ambient air pollution chemistry in Delhi (Jena et al.,
2020; Pawar et al., 2023), and an underrepresentation of the
emission sources in the region due to the unavailability of
the real-time dynamic emissions inventory (Sengupta et al.,
2022). The current emissions inventory used in the model
though does have some information about the sources, like
open waste burning and brick kilns in and around Delhi,
but this information is likely to be underestimating the real-
ity in 2021. The emissions inventory employed in this study
was compiled using surveys done in 2016. There are signifi-

cant changes that have occurred in the emissions magnitudes
from 2016 to 2021. We note that these uncertainties will af-
fect the model simulations. Moreover, during the month of
January, the temperatures of the region fall down. The resi-
dents of Delhi burn biomass or solid wood for space heating
purposes. Such sources are missing in the employed emis-
sions inventory. Additionally, such burning activities occur
at a very fine spatial scales, which can not be identified by
remote sensing techniques. Thus, part of the underestimation
during the month of January would be related to these fac-
tors. In addition to this, the lower temperatures bring foggy
conditions into the picture. Such weather conditions promote
a large number of atmospheric chemical reactions, result-
ing in gas-to-particle conversion of volatile gas phase species
into secondary aerosols. Such processes are currently miss-
ing the model’s chemical mechanism. This further enhances
the underestimations in the model. All these factors put to-
gether result in the underestimated PM2.5 in the model vis-
à-vis the measurements. Nonetheless, DSS does a better job
in the month of February when the ambient PM2.5 concen-
tration is mostly below 200 µgm−3. The AQIPM2.5 is also
better captured in the winter season (Fig. 5d) compared to
the post-monsoon period (Fig. 5b). The model does capture
some events of very poor AQI conditions (300 < AQI≤ 400).
However, the severe AQI values (AQI > 400) are missed by
the model. Overall, the model captures the air quality condi-
tions up to the very poor AQI category, but it can not quan-
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titatively capture the severe air pollution events. However, it
is also to be noted that during an observed severe air pol-
lution event (AQI > 400), the simulated AQI lies only one
category below (i.e., in the very poor AQI category). Thus,
the model does show signatures of severe air pollution but
fails to capture the actual magnitudes. It may also be noted
that whenever the modeled AQI is in or above the very poor
category, the observed AQI almost always lies in or above
the very poor category; i.e., our system is able to capture ex-
treme events very well. This point is illustrated further in Ta-
bles 4 and 5. Figure S3 in the Supplement clearly shows that
the simulated AQI captures the overall trend of the observed
AQI; however, the magnitudes of AQI are not captured by
the model.

We further compute the relevant statistical parameters,
namely mean bias (MB), mean error (ME), root mean square
error (RMSE), normalized mean bias (NMB), normalized
mean error (NME), fractional bias (FB), and fractional er-
ror (FE) for the model–observation comparison of the near-
surface PM2.5 mass concentration for post-monsoon 2021
(Table 2) and winter 2021–2022 (Table 3). We report the
statistics individually for moderate (100 < AQI≤ 200), poor
(200 < AQI≤ 300), and very poor and above (AQI > 300)
AQI categories for day 1 to day 5 forecasts. The formulae
used for calculating the statistical parameters are listed in
Sect. S4 in the Supplement. For the post-monsoon season
(Table 2), DSS shows the least MB under poor AQI condi-
tions. As expected, ME and RMSE are higher for very poor
and above AQI category. Moreover, they gradually increase
from day 1 to day 5 forecasts for all the scenarios. Never-
theless, the change in ME or RMSE from day 1 to day 5
is within 30 % of the ME or RMSE of day 1 forecasts, espe-
cially for the very poor and above AQI conditions. This signi-
fies the accuracy of the forecasts over a longer time horizon.
The NMB and NME values are limited to± 0.30 and± 0.50,
suggesting that DSS depicts an acceptable accuracy for the
simulated PM2.5 mass concentrations (Emery et al., 2017)
for all the AQI categories through day 1 to day 5 forecasts.
Specifically, NMB (NME) values do not cross 0.1 (0.37) for
the poor AQI category, highlighting the accuracy of DSS and
its ability to match the best model in the community (Emery
et al., 2017). Like MB and NMB, FB is the least for the poor
AQI conditions. The DSS tends to overpredict (underpredict)
the PM2.5 with positive (negative) MB, NMB, and FB val-
ues during moderate (poor and above conditions) AQI con-
ditions. Nevertheless, the system can simulate the observed
PM2.5 during the post-monsoonal months with an acceptable
deviation (Emery et al., 2017), especially when the observed
AQI is in the poor or above category.

For the winter season of 2021–2022, the MB values for
the moderate category (Table 3) are twice that of the post-
monsoonal period, indicating a higher overestimation of the
moderate AQI conditions in the model in the winter period.
On the other hand, the MBs for poor and very poor and above
AQI scenarios are comparable to that in the post-monsoonal

months. The ME, RMSE, and NME remain roughly the
same for day 1 through day 5 forecasts, which increases the
trustworthiness of the forecasts on short to medium-range
timescales. Similar to the post-monsoon season, the NMB
and NME values for the winter season are lesser than ± 0.3
and 0.5, respectively, underscoring the ability of the system
to capture the observed PM2.5 mass concentrations very ade-
quately (Emery et al., 2017). Similarly, for the poor AQI cate-
gory, the NMB and NME values are less than± 0.1 and 0.35,
respectively, suggesting an outstanding performance by DSS
in this category (Emery et al., 2017). It is noteworthy that
the NMB values for the very poor and above scenarios are
higher compared to the poor scenario. This is likely because
the very poor and above category holds a broader range of
AQI values (AQI > 300) compared to the poor AQI bracket
(200 < AQI≤ 300), which results in the higher NMB in the
former compared to the latter. Similar to the post-monsoonal
period, the system has a tendency to overestimate (under-
estimate) the PM2.5 under moderate (very poor and above)
AQI conditions, which is reflected in the positive (negative)
MB, NMB, and FB values. Overall, the performance of the
DSS is improved in the winter season compared to the post-
monsoonal season (indicated by the lower values of the rele-
vant statistical parameters in Tables 2 and 3).

We have also examined the ability of DSS to capture the
AQI associated with PM2.5 mass concentration values in
comparison with the corresponding observations. To assess
the model’s performance, we have computed the statistical
parameters, namely accuracy, false alarm ratio (FAR), prob-
ability of detection (POD), critical success index (CSI), suc-
cess ratio (SR), and bias. These parameters are calculated
for the individual AQI categories using the contingency ta-
ble and the formulae presented in Sect. S5 in the Supple-
ment. From Table 4, it can be seen that, during the post-
monsoon season, the accuracy is generally high for all the
AQI scenarios. For the poor and moderate categories, this
could be an artifact of the correct forecasts of the non-events,
while for the very poor and above AQI category, this behav-
ior could be attributed to the correct forecasts for both the
events and the non-events (Fig. 5b). Please note that here
the term event (non-event) refers to the occurrence (non-
occurrence) of the observed AQI in the desired AQI range.
The probability of detection (POD) comprehends the ability
of the model to give a correct forecast for occurrence of an
event. On the other hand, the term accuracy, describes the
ability of the model to give the correct forecast of an event
or a non-event too. Thus, the term accuracy encompasses
the event and non-event space, while POD covers only the
event space. For the poor AQI category, it may be noted,
during the post-monsoonal season (Fig. 5b) after 27 Octo-
ber 2021, that the observed AQI is always greater than 200,
i.e., above the poor category. Thus, as far as the poor AQI
category is concerned, all of those instances are recognized
as non-events. The model-simulated AQI on most of those
instances (if not all) is seen to be greater than 200, thus cor-
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Table 2. The statistical parameters associated with the model evaluation for the simulated near-surface PM2.5 mass concentration for the
post-monsoonal season of 2021. The ideal value for all the statistical parameters is zero. The units of mean bias (MB), mean error (ME),
root mean square error (RMSE) are in micrograms per cubic meter, while the other parameters of normalized mean bias (NMB), normalized
mean error (NME), fractional bias (FB), and fractional error (FE) are unitless.

AQI category Day MB ME RMSE NMB NME FB FE
(µgm−3) (µgm−3) (µgm−3)

Moderate Day 1 16.34 18.48 25.18 0.23 0.26 0.20 0.23
Day 2 13.37 17.24 23.87 0.19 0.24 0.17 0.22
Day 3 17.61 20.93 27.70 0.23 0.28 0.22 0.26
Day 4 24.52 27.51 36.60 0.30 0.33 0.29 0.33
Day 5 24.02 26.84 33.73 0.27 0.30 0.28 0.32

Poor Day 1 −19.97 31.99 38.61 −0.17 0.28 −0.19 0.31
Day 2 −17.27 27.85 37.18 −0.15 0.24 −0.16 0.26
Day 3 −20.49 27.18 36.51 −0.18 0.24 −0.20 0.26
Day 4 −10.53 27.25 37.00 −0.09 0.24 −0.10 0.25
Day 5 −1.20 29.20 40.08 −0.01 0.26 −0.01 0.26

Very poor and above Day 1 −65.59 76.10 101.26 −0.31 0.36 −0.37 0.42
Day 2 −67.11 79.76 110.05 −0.32 0.38 −0.38 0.45
Day 3 −72.82 86.71 115.57 −0.34 0.41 −0.42 0.49
Day 4 −67.02 85.77 107.39 −0.32 0.40 −0.38 0.48
Day 5 −68.11 85.06 112.84 −0.32 0.40 −0.38 0.48

Table 3. Similar to Table 2 but for the winter period of 2021–2022.

AQI category Day MB ME RMSE NMB NME FB FE
(µgm−3) (µgm−3) (µgm−3)

Moderate Day 1 22.25 32.66 44.25 0.29 0.43 0.26 0.37
Day 2 20.43 32.56 42.38 0.27 0.43 0.24 0.38
Day 3 25.78 36.70 49.92 0.34 0.48 0.29 0.41
Day 4 24.29 35.50 47.93 0.32 0.47 0.28 0.40
Day 5 22.31 34.92 44.73 0.29 0.46 0.26 0.40

Poor Day 1 4.50 27.20 34.50 0.04 0.26 0.04 0.26
Day 2 6.75 29.95 40.25 0.06 0.29 0.06 0.28
Day 3 7.40 33.96 44.84 0.07 0.33 0.07 0.32
Day 4 3.75 33.58 42.16 0.04 0.32 0.04 0.32
Day 5 4.84 34.70 44.99 0.05 0.33 0.05 0.33

Very poor and above Day 1 −58.66 75.54 97.63 −0.28 0.36 −0.33 0.42
Day 2 −60.70 76.96 101.21 −0.29 0.37 −0.34 0.43
Day 3 −65.98 83.00 107.70 −0.32 0.40 −0.38 0.47
Day 4 −67.49 80.42 106.76 −0.32 0.39 −0.39 0.46
Day 5 −65.21 80.20 106.45 −0.31 0.39 −0.37 0.46

rectly giving forecasts of non-events. This correct forecasts
of non-events mainly results in the respectable value of ac-
curacy for the model forecasts as far as the poor AQI cate-
gory is concerned. On the other hand, from 27 October 2021
to 30 November 2021, the POD for the poor AQI does not
exist, as the observed AQI does not exist in poor category.
Prior to 27 October, the observed AQI does exist in the poor
category, and the model forecasts for day 4 and day 5 fail
to capture that on certain occasions. This failure results in

a lesser POD for day 4 and day 5 forecasts when capturing
AQI in the poor category.

The FAR is higher for moderate and poor categories, sug-
gesting false forecasts of the non-events; this could be partly
related to the fact that the model-simulated AQI does not
reach the very poor and above category as frequently as the
observations but remains in the poor category on more in-
stances as compared to the observations. This results in a
higher FAR for the poor category. On the other hand, the
FAR for the very poor and above AQI category is drastically
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Table 4. The statistical parameters associated with the evaluation of the simulated AQI associated with PM2.5 mass concentration for the
post-monsoonal season of 2021. Details about the formulae are mentioned in Sect. S5 in the Supplement. The ideal values for accuracy, false
alarm ratio (FAR), probability of detection (POD), and critical success index (CSI) are 100.0, 0.0, 100.0, and 100.0, respectively.

AQI category Day Accuracy (%) FAR (%) POD (%) CSI (%)

Moderate Day 1 75.62 50.99 39.87 28.18
Day 2 82.41 35.64 59.81 44.93
Day 3 79.86 41.20 53.70 39.02
Day 4 77.55 45.76 41.16 30.55
Day 5 74.61 55.56 23.15 17.96

Poor Day 1 67.67 86.76 59.79 12.16
Day 2 69.75 83.91 72.16 15.15
Day 3 63.35 87.80 62.89 11.38
Day 4 65.12 92.57 31.96 6.42
Day 5 60.88 95.35 21.65 3.98

Very Poor and above Day 1 80.86 0.36 69.48 69.31
Day 2 78.86 0.00 66.01 66.01
Day 3 72.07 0.00 55.09 55.09
Day 4 72.92 9.30 62.90 59.09
Day 5 70.06 13.46 61.41 56.06

Table 5. Similar to Table 4 but for the winter period of 2021–2022.

AQI category Day Accuracy (%) FAR (%) POD (%) CSI (%)

Moderate Day 1 82.35 65.39 53.13 26.51
Day 2 83.29 62.29 60.55 30.27
Day 3 84.46 62.18 46.09 26.22
Day 4 84.13 68.78 26.95 16.91
Day 5 84.41 65.98 32.03 19.76

Poor Day 1 69.34 63.43 46.22 25.65
Day 2 70.41 60.41 55.62 30.09
Day 3 60.86 70.01 53.17 23.72
Day 4 57.49 72.17 53.78 22.46
Day 5 59.55 70.23 56.44 24.21

Very Poor and above Day 1 76.03 15.47 73.44 64.74
Day 2 75.66 12.52 69.30 63.04
Day 3 68.49 17.40 60.08 53.33
Day 4 64.98 20.96 56.56 49.18
Day 5 66.01 19.36 56.95 50.10

low, which enhances the confidence in the simulated AQI in
the very poor and above category. The POD is low for the
poor and moderate, while it is relatively higher for the very
poor and above category. The CSI values, which indicate the
overall success of the forecasting system, are relatively high
for the very poor and above category and lower for the poor
category. Thus, during the post-monsoon season, DSS shows
a trustworthy performance for the AQI ranging beyond very
poor conditions.

For the winter season (Table 5), the model’s behavior
roughly remains the same as for the post-monsoon, with the
only difference occurring in the poor AQI category. The FAR

for the poor category drops with a consequent increase in
CSI. Nevertheless, the model still behaves the best when AQI
goes to very poor and above, with FAR being limited to as
high as 21 % and the POD and CSI crossing 60 %. Thus, the
analysis assures that the model-simulated AQI is trustworthy
for values beyond 300.

The Graded Response Action Plan (GRAP) includes a
variety of predefined temporary emission control measures
for all the PM2.5 and PM10 AQI categories. Expectedly, the
GRAP regulations become more stringent when the AQI
goes beyond very poor and above (CAQM, 2022). Starting
from October 2022, the GRAP in Delhi has been made oper-
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ational, based on the AQI forecast released by the air quality
forecasting models (CAQM, 2022). The low FAR for DSS in
the very poor and above category certainly increases the con-
fidence about the simulated AQI in this range and thus per-
mits us to use the model data to implement GRAP in the city.
Additionally, the FAR values for the very poor and above
category remain within 20 % for day 1 to day 5 forecasts for
both seasons. This further ensures that the use of short to
medium-range DSS forecasts for implementation of GRAP
when AQI goes beyond very poor conditions.

To shed more light on the model’s performance in the sim-
ulation of AQI, we have drawn the performance diagrams
(Fig. 6) for the model simulated AQI in different categories
for both seasons, using the SR, bias, CSI, and POD. The per-
formance diagram (Roebber, 2009; Sengupta et al., 2022)
provides a quick visualization of the model’s performance
for multiple statistical parameters. The category-wise statis-
tical parameters have been plotted for day 1 through day 5
forecasts for the post-monsoon (Fig. 6a) and winter (Fig. 6b)
seasons. In the performance diagram, an ideal model simu-
lation would fall in the upper-right corner. It is noteworthy
that the ideal value of bias is 1, which indicates that the POD
and SR match each other (Roebber, 2009; Sengupta et al.,
2022). This signifies that the probability of getting a false
forecast for a non-event from the model is equal to that of a
false forecast for an event from the same model. For the post-
monsoonal period, the forecasts for very poor and above AQI
fall relatively closer to the upper-right corner, with POD val-
ues going up to 70 % and SR reaching 100 %. The model is
highly (moderately) skillful in capturing the very poor and
above (moderate) air quality conditions. It depicts lower SR
values (and thus higher FAR and Bias) for the poor AQI con-
ditions; this is likely to be related to the underestimation of
the very poor AQI by the model, resulting in higher occur-
rences of the simulated AQI in the poor category (in compar-
ison with the observations), thus resulting in lower SR values
for poor conditions, as noted in Table 4.

For the winter season (Fig. 6b), the model’s performance
shows large improvements, especially for poor AQI condi-
tions (as noted in Table 5). The POD and SR for very poor
and above conditions cross the 80 % mark, indicating an ex-
cellent performance for day 1 through day 5 forecasts. Even
for the poor category, the model shows large improvements,
with greater SR (∼ 40 %) and POD (∼ 60 %) values com-
pared to the post-monsoon. Interestingly, as noted in Tables 4
and 5, for both seasons, the model shows the highest perfor-
mance ratings for the very poor and above AQI conditions.
The implications of this have already been discussed in the
analysis of Tables 4 and 5. It is noteworthy that, through-
out Sect. 3.1, we do not evaluate the model’s performance
for good (AQI≤ 50) and satisfactory (50≤AQI <100) cate-
gories, as the observed AQI hardly ever falls in these cate-
gories. Nonetheless, the ability of the model to capture AQI
in very poor and above conditions is encouraging, as the air
quality forecasting capabilities are mainly needed for such

air quality conditions and not when the air quality is in good
or satisfactory categories.

3.1.1 Region- and sector-wise source apportionment of
PM2.5 in Delhi

One of the main features of DSS is its ability to quantify
the contribution of the different NCR districts and emissions
sources to the PM2.5 pollution load in Delhi. The tagged
tracers employed in the system help achieve this objective.
To facilitate ease in visualization and understanding of these
contributions, we divide them in six broad categories as fol-
lows: (a) Delhi transport sector; (b) all other emission sectors
within Delhi; (c) bordering districts (which include Jhajjar,
Faridabad, Gurgaon, Gautam Buddha Nagar, Rohtak, Soni-
pat, Bagpat, and Ghaziabad districts of NCR); (d) other dis-
tricts of NCR (which include the remaining districts of NCR,
the details of which can be found from Fig. 3); (e) stubble
burning; and (f) all other remaining regions. In Fig. 7, we
show the daily mean and seasonal mean contribution of those
six broad source categories to the simulated PM2.5 in Delhi
for the post-monsoon and winter seasons of the year 2021.
For the post-monsoonal period (Fig. 7a and b), 34 % contri-
bution to PM2.5 in Delhi comes from Delhi’s own sources, in-
cluding the transport, peripheral industries, residential, con-
struction, waste burning, road dust, and energy sectors. The
next major contribution comes from the bordering districts
and the stubble-burning activities, with their seasonal mean
contributions going up to 25 % and 8 %, respectively. The
stubble-/biomass-burning activities impact the pollution load
in Delhi roughly for a month, i.e., from mid-October to
mid-November. The daily mean biomass-burning contribu-
tion goes as high as 37 % in the first week of November
when the biomass-burning activities in Punjab and Haryana
are recorded to be at their peak (Govardhan et al., 2023). It is
important to note that around 26 % of Delhi’s PM2.5 comes
from the other regions (excluding the biomass-burning activ-
ities), which are not included in the 20 districts considered
in this analysis. Within Delhi, the major contribution comes
from the transport sector, with a seasonal mean of 17 %.

During the winter season (Fig. 7c and d), Delhi’s own
contribution roughly remains the same (34 %). This estimate
is comparable to a previous study carried out by TERI and
ARAI (Automotive Research Association of India), which
reports the contribution to be around 36 % (TERI and ARAI,
2018). The contribution from the neighboring districts in-
creases to 20 % from 17 % in the post-monsoon season.
Within Delhi, the transport sector contributes the highest
(14 %). The industries in and around Delhi also contribute
around 9.5 %. The increased contribution of the industries
could be associated with the emissions coming from the
brick kilns located on the periphery of the city. The kilns
are not operational during the post-monsoon season, but
they become operational during the winter season (TERI
and ARAI, 2018). The contribution from the other regions
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Figure 6. Performance diagram for model simulations of air quality index for (a) post-monsoon season 2021 and (b) winter season 2021–
2022. The details about the calculation of the statistical parameters like bias and CSI can be found in Sect. S5 in the Supplement.

Figure 7. Source apportionment of PM2.5 mass concentration in Delhi for (a) post-monsoon 2021 on a daily mean basis, (b) post-monsoon
2021 on a seasonal mean basis, (c) winter 2021–2022 on a daily mean basis, and (d) winter 2022 on a seasonal mean basis. The numbers
written on the pie charts indicate the percentage contribution of the particular source to PM2.5 in Delhi. Day 1 forecasts have been used to
generate this figure.

https://doi.org/10.5194/gmd-17-2617-2024 Geosci. Model Dev., 17, 2617–2640, 2024



2632 G. Govardhan et al.: DSS v1.0 for air quality management in Delhi, India

remains roughly the same (26 %) as in the post-monsoon
season. Overall, on the seasonal mean basis, for the post-
monsoonal season (winter season), contributions from the
different regions could be listed as follows: Delhi contributes
34.4 % (33.4 %), NCR districts contribute 33 % (40.2 %),
biomass burning contributes 7.3 % (∼ 0.1 %), and the other
regions contribute 27.3 % (26.4 %). Those bordering districts
of Delhi contribute to around 25 % in the post-monsoon sea-
son and 32 % in the winter season. Thus a majority of the
PM2.5 in Delhi comes from its immediate neighbors. Thus,
Delhi’s air pollution load does not look like a local issue,
but it seems to be a regional issue, and cooperation among
various stakeholders is required to address this problem ef-
fectively.

3.2 Impacts of emission reductions

The most unique feature of DSS is the availability of scenario
tracers. This feature estimates the impacts of reduction in the
individual source- and district-wise emissions on the PM2.5
load in Delhi. We include 50 such PM2.5 tracers, which carry
the reduced emissions from 25 different sources, including
19 surrounding districts and the 6 individual emission sec-
tors (namely transport, peripheral industries, waste burning,
construction, road dust, and energy) in Delhi. We form two
sets of scenario tracers with (a) emissions reduced by 20 %
and (b) emissions reduced by 40 %. Using the scenario trac-
ers, one can compute the changes in the PM2.5 mass con-
centration in Delhi upon a 20 % or 40 % reduction in one or
a combination of the 25 emissions sources (19 surrounding
districts and 6 sectors in Delhi). The reduction in PM2.5 mass
concentration in Delhi upon a 20 % and 40 % reduction in all
those emissions during the post-monsoon and the winter sea-
sons of 2021 have been plotted in Fig. 8. Similar to Fig. 7, we
have divided the sources in four different categories i.e., cat-
egories (a) to (d) from Sect. 3.2.

During the post-monsoon season, a 20 % reduction in all
the sources (Fig. 8a) results in a seasonal mean reduction of
∼ 12.1 % in PM2.5 Delhi. While around 5.7 % of it would
result from a 20 % reduction in the sources within Delhi,
the remaining 6.4 % would come from the reduction in the
neighboring districts of NCR. Similarly, a 40 % reduction in
all the concerned emissions sources (Fig. 8c) would result
in an overall 24.3 % reduction in the seasonal mean PM2.5
load in Delhi, of which 11.5 % come from the reduction in
the sources within Delhi, while the remaining 12.8 % would
result from a 40 % reduction in the emissions from other dis-
tricts of NCR. It is noteworthy that the change in PM2.5 in
Delhi roughly scales linearly from a 20 % reduction to a 40 %
reduction. During the period when biomass-burning activi-
ties are the highest (on 6 and 7 November 2021), the 20 %
(40 %) reduction in other sources of PM2.5 reduces the PM2.5
in Delhi only by 7 %–8 % (14 %–16 %). Thus, it is notewor-
thy that when such activities are at their peak, any control

measure on the anthropogenic emissions of PM2.5 will not
have a drastic effect on the air quality in Delhi.

For the winter season, the 20 % reduction scenarios re-
sult in a mean reduction of 13.8 % in PM2.5 in Delhi, of
which 5.8 % come from Delhi’s sources, while the remaining
8 % come from the neighboring districts of NCR. Similarly,
the 40 % reduction scenarios result in a mean reduction of
27.75 % in PM2.5 in Delhi. Out of this, 11.5 % come from
Delhi’s own sources, while the remaining 16.25 % come
from the other districts of NCR. In the winter season, the
improvements in Delhi’s PM2.5 by controlling the emissions
in the neighboring district of Jhajjar (see Fig. S4 in the Sup-
plement) are comparable to the improvements achieved by
controlling the transport sector emissions within Delhi. How-
ever, in the post-monsoon season, the emission reductions in
Jhajjar have a relatively lesser impact. This signifies the need
for change in the emission reduction strategy from season to
season for air quality management in Delhi. The same policy
for both seasons may not give the same results.

On a daily mean basis, the reduction scenarios can reduce
the PM2.5 in Delhi by as high as 16 % (for 20 % reduction
scenarios) and 32 % (for 40 % reduction scenarios) in either
of the seasons. These control measures, when operated dur-
ing severe air pollution events like the ones noticed during
the last week of December 2021, the first week of January
2022, and the third week of January 2022 would result in a
substantial reduction in Delhi’s PM2.5 value. The measure-
ments of daily mean PM2.5 suggest that the maximum values
of PM2.5 during those events were 334 µgm−3, 310 µgm−3,
and 362 µgm−3, respectively. The 40 % reduction scenario
for all the sources would result in ∼ 25 %–30 % reduction in
PM2.5 in Delhi during those days, which would roughly re-
sult in a reduction of 80–110 µgm−3 in PM2.5 in Delhi on
those days. This would result in the modulation of air quality
from the severe category to the very poor category. This is a
satisfactory gain, considering the already elevated air pollu-
tion level in the city. Thus, such information about the pos-
sible emission-reduction scenario would be critical from the
air quality management perspective. Moreover, since the per-
formance of the DSS in capturing the broad category of air
quality scenario does not drastically drop from day 1 to day 5
(Fig. 5; Tables 2–5), such information would certainly help
the decision-makers in managing the air quality in the city in
a timely manner.

A practical example of the use of DSS for air quality man-
agement purposes in Delhi was witnessed in the month of
November 2021. Based on the air quality forecast, source
attribution of PM2.5 in Delhi, and the associated scenario
analysis, CAQM and the Government of Delhi issued cer-
tain restrictions on transboundary and internal vehicular traf-
fic and construction activities in Delhi. This resulted in an
18 %–20 % reduction in PM2.5 and a 20 %–22 % reduction
in the AQI of Delhi (Ghude et al., 2022). This clearly sig-
nifies the role DSS played (and would play in the future) in
the short-term air quality management in Delhi. This is one
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Figure 8. Fractional reduction in the PM2.5 load in Delhi due to (a) a 20 % reduction in all the considered emission sources for the post-
monsoon season of 2021. (b) Same as panel (a) but for the winter season. (c) Same as panel (a) but with a 40 % reduction scenario. (d) Same
as panel (c) but for the winter season. Day 1 forecasts have been used to generate this figure.

of the rare air quality forecasting systems in the world that
offers a utility like the scenarios tool that would inform the
decision-makers about the efficacy of their source-level in-
terventions on the air pollution occurring in a city. With the
help of the scenario tool, users can create their own strategy
for emission reduction to get an idea of how to possibly avoid
the forecasted severe air pollution event for the city. We cer-
tainly note that DSS currently provides all such information
only for the city of Delhi; however, there is an equal demand
for such information from the neighboring towns of NCR like
Ghaziabad, Faridabad, Noida, and Gurgaon, as outlined in
the recently formed air pollution control policy for the NCR
(CAQM, 2022). In the next version of DSS, we plan to cater
to this requirement and explore machine-learning-based ap-
proaches to maximize computational efficiency. In the cur-
rent configuration, the DSS runs with a relatively coarser
resolution (10 km× 10 km). This is mainly due to the com-
putational cost it carries associated with a large number of
three-dimensional tagged tracers and the upper bound on the
daily runtime due to the daily forecasting requirements. Nev-
ertheless, in the next version, we are planning to increase the
spatial resolution of the simulations. Another artifact of the

coarse spatial resolution is the limited accuracy of the fore-
casts with respect to the observed PM2.5 values. However, in
the case of DSS, one is more interested in the relative con-
tributions of the sources to the PM2.5 load and the relative
reduction in the PM2.5 upon employing the various emis-
sion reduction scenarios. This focus on the relative contribu-
tion comes from the basic assumption that the contributions
would remain roughly similar, even when the DSS-simulated
PM2.5 matches the observations with a greater agreement.
However, we acknowledge that if the models underestimate
the absolute concentration of PM2.5, it is likely to present
erroneous source apportionment. Especially during a severe
air quality episode in the winter season, the contribution from
the local sources would be much higher, owing to the stable
atmospheric conditions. In such a situation, if the model fails
to capture the peak, it will certainly underestimate the con-
tribution from the local sources and overestimate the contri-
bution coming from the relatively distant sources. We agree
that the source apportionment in that situation would not be
correct. However, we would also like to mention that, in sit-
uations where the model has missed the observational peaks,
the modeled attribution for the local sources would represent
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a lower bound than the reality. Thus, any intervention, if ap-
plied to the local sources, will certainly result in an enhanced
reduction in PM2.5 in the city in reality than that suggested
by the model. Thus, in other words, in such situations, the
modeled source attributions and the scenario analysis would
represent a lower bound.

Another reason for the underestimated PM2.5 in DSS is
the static nature of the emissions inventory. However, the
anthropogenic emission sources vary in a dynamic manner.
Any forecasting model which does not take those dynamic
changes into account is expected to miss the sudden rise in
PM2.5 associated with the dynamic changes in the emissions.
Even though the chemical data assimilation operational in
DSS bridges this gap at the start of the model run, it fails
to capture the sudden rise in emissions happening during the
other hours. The incursion of the dynamic emissions inven-
tory, though, remains a challenge; there are a few recent ef-
forts done on that front (Liu et al., 2020; Zhang et al.,2019;
Meng et al., 2020; Li et al., 2021). Using the daily Visible In-
frared Imaging Radiometer Suite (VIIRS) thermal anomaly
product, Zhang et al. (2019) and Li et al. (2021) have shown
the capability of generating dynamic emissions for industrial
sources. Meng et al. (2020) have utilized web-based traffic
maps and real-time traffic data to generate a dynamic inven-
tory of vehicular traffic emissions in China. Such techniques
could be used in future versions of DSS to get better esti-
mates of real-time traffic. The emissions inventory used in
this version of DSS does not take into account emissions as-
sociated with space heating. These emissions would be non-
negligible, especially in the winter months. Thus, in the next
version, we would explore the possibility of including such
sources of emissions.

Additionally, we do acknowledge that the model’s chem-
istry currently lacks the representation of the secondary
aerosols in the ambient air. There are several studies which
have focused on understanding the chemical composition
of PM2.5 in Delhi (Sharma et al., 2016; Sharma and Man-
dal, 2017; Jain et al., 2020; Yadav et al., 2022). A study by
Sharma and Mandal (2017) reports that, the particulate or-
ganic matter, soil/crustal matter, ammonium sulphate, am-
monium nitrate, sea salt, and light-absorbing carbon con-
tribute 27.5 %, 16.1 %, 16.1 %, 13.1 %, 17.1 %, and 10.2 %,
respectively, to the city’s PM2.5. The study was carried out
for a period of 2 years (January 2013 to December 2014).
Jain et al. (2020) reported the chemical composition of PM2.5
for the period of 4 years (January 2013 to December 2016).
The average PM2.5 mass concentration for post-monsoon
(winter) season was 186 (183) µgm−3, out of which sul-
fates were reported to be 18.1 (18.6) µgm−3, nitrates were
18.4 (20.2) µgm−3, and chlorides and ammonium were 11.4
(11) and 14.9 (16.6) µgm−3, respectively. The elemental car-
bon and organic carbon were measured to 11.4 (10.6) and
25.2 (23.6) µgm−3, respectively. Thus, it may be seen that
the missing aerosol species (mainly the nitrates, ammonium,
and chlorides) in the GOCART mechanism of WRF-Chem

contribute to around 24 %–30 % of PM2.5 in Delhi. Thus,
part of the underestimation in the model could be associated
with these missing species. An artifact of the missing sec-
ondary aerosols in the model is that the tracers are mainly
put on the primary species BC and OC. However, the sec-
ondary species are not tagged effectively. This results in un-
derestimated impacts of the source-level interventions on the
ambient PM2.5. For example, in reality, the traffic emission
reductions might lead to a significant reduction in nitrate
aerosols, but this is not captured by the model. Thus, the
model currently underestimates the impacts of source-level
interventions. In the next version, we are aiming to include
the missing secondary aerosols using a simple parameteriza-
tion (Hodzic and Jimenez, 2011). This would include nitrate
and secondary organic aerosols in the model setup without
hampering the model runtime drastically.

The biomass-burning emissions, on the other hand, have
even more uncertainties. The limitations associated with
satellite detection of stubble-burning fires due to the cloud
cover (Liu et al., 2020; Cusworth et al., 2018), the lim-
ited number of passes in a day (Liu et al., 2020; Kumar
et al., 2021), smarter burning practices (Kumar et al., 2021),
and unrealistic estimation of emissions from the fires (Ku-
mar et al., 2021), leading to multiple orders of uncertainty
in the emission estimates from fires. We have seen that
biomass-burning fires contribute as high as 37 % to the daily
mean PM2.5 load in Delhi during the peak burning peri-
ods; however, this number certainly represents a lower bound
due to the aforementioned uncertainties. Therefore, more
work is needed to constrain the estimates of the emissions
from biomass-burning activities in the region. Additionally,
stronger policies are needed to reduce the amount of stubble
that is being burned, especially in the post-monsoonal season
in this region. In DSS, we carry out the chemical data assim-
ilation only once in the forecasting cycle in this setup; in the
future, we can carry out assimilation at least twice to correct
the model concentrations even at nighttimes. This will help
the model capture higher PM concentrations which usually
occur during the night hours due to shallower mixed layers.
In the next version of DSS, we are planning to incorporate
a few new scenario tracers, like the odd–even scenario for
vehicular traffic, which allows only those vehicles with an
odd (even) number as the last digit of their registration num-
ber on odd (even) dates to be on the road. This policy has
been used by the Government of Delhi in the past to control
vehicular movement and the associated emissions (Sud and
Iyengar, 2016; Kumar et al., 2017; Chowdhury et al., 2019;
Tiwari et al., 2018). Thus, while the first version of DSS has
proven to be beneficial for the policymakers, we have identi-
fied its limitations as well, and we will attempt to overcome
those limitations in the next version.

Additionally, we understand the day 4 and day 5 forecasts
would be more useful for the policymakers. We acknowledge
that the implementation of source-level intervention may not
start from day 1, so in reality, one also needs to account for a
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time delay in implementing those. This is currently missing
in the framework. However, we would also like to mention
that including such time delays, even for the interventions
only on the major sources, if not all, would substantially in-
crease the number of tracers in the modeling framework. Cur-
rently, we have more than 400 three-dimensional tracers in
an operational forecasting setup. Keeping in mind our opera-
tional commitments, we will certainly include some sense of
the time delay for the scenario tracers in the next version of
DSS.

4 Conclusions

In order to assist the governing authorities in managing the
air quality in the capital of India, Delhi, we have designed
an operational air quality forecasting framework with certain
unique features that help the decision-makers to form poli-
cies for managing the air quality in the city. This newly de-
veloped Decision Support System (DSS) for air quality man-
agement in Delhi, besides forecasting the air quality in the
north Indian region for the next 5 d, quantifies the contri-
butions of the 19 surrounding districts, individual emission
sectors in Delhi, and the biomass-burning activities (occur-
ring primarily in the northwestern states of India in the post-
monsoon season) to the PM2.5 mass concentration in Delhi.
The system also quantifies the effects of emission source-
level interventions on the forecasted air pollution in the city.
Thus, with the help of DSS, the policymakers not only get
a warning about future severe air pollution events but also
understand the possible causes for the event and get a quanti-
tative idea about the efficacy of the source-level interventions
on the forecasted event. In this paper, we evaluated the per-
formance of DSS in simulating the near-surface PM2.5 mass
concentration and the associated air quality index in Delhi
for the post-monsoon and winter seasons of 2021–2022. We
also carry out the source apportionment of PM2.5 in Delhi
during the two seasons. The key results are listed as follows:

1. The performance of the model in simulating the air pol-
lution in Delhi noticeably improves from post-monsoon
to the winter season, owing primarily to the uncertainty
in the emission estimates from the biomass-burning ac-
tivities and the anthropogenic activities during the Di-
wali festival, which occur in the post-monsoon season.

2. For both seasons (post-monsoon and winter), the DSS
satisfactorily captures the observed air quality index
(AQI) in Delhi, especially when the AQI crosses the
very poor or above mark. Under such a situation, DSS
depicts a very low false alarm ratio (∼ 20 %), which in-
creases the trustworthiness of the simulated AQI. For
all the AQI categories (moderate, poor, and very poor
and above), DSS shows a very high accuracy (∼ 80 %).
However, the critical success index for the simulated
AQI is seen to be the highest for the very poor and

above category; i.e., extreme pollution events are cap-
tured very well.

3. The performance of the model does not deviate largely
from day 1 to day 5 forecasts, which highlights the ap-
plicability of the DSS forecasts in short- to medium-
range air quality management activities.

4. The region-wise source apportionment of PM2.5 mass
concentration in Delhi carried out with the help of DSS
suggests that during the post-monsoon season (win-
ter season), on average, Delhi itself contributes 34.4 %
(33.4 %) to its PM2.5 load. The NCR districts contribute
31 % (40.2 %). The emissions from the biomass-burning
activities on the seasonal mean basis contribute 7.3 %
(∼ 0.1 %) of the PM2.5 mass in Delhi, while the other
regions contribute around 27.3 % (26.4 %). The districts
of NCR, which share their border with Delhi (namely
Jhajjar, Gurgaon, Faridabad, Ghaziabad, Gautam Bud-
dha Nagar, Bagpat, and Sonipat), contribute about 22 %
in the post-monsoon season and 30 % in the winter sea-
son.

5. The scenario tracers employed for PM2.5 in DSS sug-
gest that a 20 % reduction in all the tagged sources in
Delhi and the NCR districts results in a seasonal mean
reduction of ∼ 12 %–14 % in PM2.5 mass in Delhi.
While around 5.8 % of that comes from controlling
Delhi’s own emission sources, the remaining comes
from control measures applied in the NCR districts. As
expected, during the peak biomass-burning events, such
control measures on the anthropogenic emissions yield
a relatively lesser gain.

6. The reduction in Delhi’s PM2.5 load scales roughly lin-
early with the magnitude of emission reductions; i.e.,
the reduction in Delhi’s PM2.5 for a 40 % control on
the anthropogenic emission sources within Delhi and
the NCR districts is roughly twice that of the reductions
associated with a 20 % cut on emissions.

In short, DSS is a highly effective tool for decision-makers
and the masses.

Code and data availability. The observational data for PM2.5
from Central Pollution Control Board, India, are available
from https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-
landing/caaqm-data-repository (Central Pollution Control Board,
2024). The model output is available on IITM high-performance
computer and may be downloaded upon request to the corre-
sponding authors. The model code employed in DSS is available
at https://doi.org/10.6084/m9.figshare.21655883.v1 (Govardhan,
2022). The user manual for installing and running the code is
available at https://doi.org/10.6084/m9.figshare.22335424.v1
(Govardhan, 2023).
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