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Abstract. Vegetation phenological shifts impact the terres-
trial carbon and water cycle and affect the local climate
system through biophysical and biochemical processes. Dy-
namic global vegetation models (DGVMs), serving as piv-
otal simulation tools for investigating climate impacts on ter-
restrial ecosystem processes, incorporate representations of
vegetation phenological processes. Nevertheless, it is still a
challenge to achieve an accurate simulation of vegetation
phenology in the DGVMs. Here, we developed and imple-
mented spring and autumn phenology algorithms into one
of the DGVMs, LPJ-GUESS. The new phenology modules
are driven by temperature and photoperiod and are param-
eterized for deciduous trees and shrubs by using remotely
sensed phenological observations and the reanalysis data
from ERA5. The results show that the LPJ-GUESS with
the new phenology modules substantially improved the ac-
curacy in capturing the start and end dates of growing sea-
sons. For the start of the growing season, the simulated
RMSE for deciduous trees and shrubs decreased by 8.04 and
17.34 d, respectively. For the autumn phenology, the simu-
lated RMSE for deciduous trees and shrubs decreased by
22.61 and 17.60 d, respectively. Interestingly, we have also
found that differences in the simulated start and end of the
growing season also alter the simulated ecological niches and
competitive relationships among different plant functional
types (PFTs) and subsequentially influence the terrestrial car-
bon and water cycles. Hence, our study highlights the impor-
tance of accurate phenology estimation to reduce the uncer-

tainties in plant distribution and terrestrial carbon and water
cycling.

1 Introduction

Vegetation plays a pivotal role within the terrestrial ecosys-
tem as the interplay between vegetation and climate exerts
significant influence on the mass and energy cycles across a
broad range of temporal and spatial scales (Zhu et al., 2016;
Piao et al., 2019; Chen et al., 2022a). In recent years, with
the increase in carbon dioxide concentration and land sur-
face temperature, significant vegetation greening has been
reported worldwide, and the annual growth dynamics of veg-
etation have undergone significant changes, especially the
spring and autumn phenological changes (Zhu et al., 2016).
A large amount of research evidence has indicated that cli-
mate change results in the advancement of spring phenology
and the postponement of autumn phenology, exerting a pro-
found influence on the carbon and water cycles within ter-
restrial ecosystems (Piao et al., 2019; Badeck et al., 2004;
Zhou et al., 2020) and the geographic distribution of species
(Chuine, 2010; Fang and Lechowicz, 2006; Huang et al.,
2017). Under conditions of sufficient water supply and no
radiation constraints, the extension of the growing season re-
sulting from vegetation phenological shifts will contribute
additional carbon sinks to terrestrial ecosystems (Zhang et
al., 2020; Keenan et al., 2014). Longer growing seasons also
lead to greater evapotranspiration, mainly in early spring and
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autumn, which in turn reduces watershed runoff (Huang et
al., 2017; Kim et al., 2018; Chen et al., 2022b; Geng et al.,
2020). Nevertheless, it is still a challenge to achieve an ac-
curate simulation of vegetation phenology in dynamic global
vegetation models (DGVMs), especially in the context of cli-
mate change (Richardson et al., 2012). We urgingly caution
that improving the vegetation phenology module of DGVMs
and taking the response of vegetation phenology to climate
change into consideration is a necessary development to im-
prove model simulation accuracy and reduce model uncer-
tainty.

The DGVMs generally include phenology modules in
vegetation submodels, but the implementations vary widely,
which include the following:

1. Fixed and prescribed seasonal dynamics are used to
characterize phenology, and the models using this
method include the SiB model, SiBCASA model, and
ISAM (Sellers et al., 1986; Schaefer et al., 2008; Jain
and Yang, 2005).

2. Remote sensing data or in situ observations directly de-
scribe the vegetation growth dynamics instead of the
process-based simulation, and SiB2, BEPS, and ED2
are all based on this method to describe the vegetation
growth dynamics (Sellers et al., 1996; Deng et al., 2006;
Medvigy et al., 2009).

3. The vegetation phenology algorithm is used, which
takes the response of vegetation biophysiology to en-
vironment factors into account to simulate vegetation
growth dynamics.

In comparison to the first two methods, the third approach
offers the advantage of depicting the responses of vegeta-
tion to the external environment grounded in a plant phys-
iological process and can trace the dynamics of vegeta-
tion growth amidst changing environmental conditions, so
it is adopted by several DGVMs, e.g., Biome-BGC, OR-
CHIDEE, and LPJ-GUESS (Thornton et al., 2002; Krinner
et al., 2005; Sitch et al., 2003). With the evolving com-
prehension of the intricate response mechanisms of vege-
tation to external environment, vegetation phenological al-
gorithms have experienced substantial advancements in re-
cent decades, which encompass shifts from single-process to
multi-process mechanisms and from single-variable to multi-
factor model constraints (Liu et al., 2018a; Fu et al., 2020;
Piao et al., 2019). For spring phenological algorithms, in the
early stage, temperature was the only factor considered, re-
sulting in relatively simplistic model processes, which were
also commonly adopted by DGVMs (growing degree days,
or GDD, and Unified, etc.; Sarvas, 1972; Chuine, 2000).
With deepening understanding of spring phenological mech-
anisms, factors such as radiation and photoperiod have been
introduced into the phenological algorithm, and the corre-
sponding complex regulatory mechanisms have also been

perfected, e.g., sequential algorithm, parallel algorithm, and
DORMPHOT algorithm (Hänninen, 1990; Kramer, 1994;
Caffarra et al., 2011). As for the autumn phenological algo-
rithm, the early algorithm form was also relatively simple (a
cold temperature-driven CDD algorithm) but widely used in
DGVMs, and some DGVMs used a fixed leaf longevity for
the determination of autumn phenological dates. The devel-
opment of relatively complex autumn phenological mecha-
nism algorithms is relatively late, and these advanced au-
tumn phenological algorithms take photoperiod and carbon
accumulation into account in the algorithm process, such
as the temperature-photoperiod bioclimatic (DM) algorithm
and the photosynthesis-influenced autumn phenology (PIA)
algorithm (Zani et al., 2020; Delpierre et al., 2009). Many
studies have pointed out that early phenological algorithms
tend to be overly simplistic and result in biased predictions,
which indicates that the vegetation phenological algorithms
of DGVMs need to be updated urgently (Kucharik et al.,
2006; Ryu et al., 2008). The use of more accurate pheno-
logical algorithms covering more complex mechanisms is
of great significance in reducing the simulation errors in
DGVMs and improving the simulation reliability under fu-
ture climate warming.

In this study, we used the remote-sensing-based phenology
data and the threshold and maximum change rate methods
to parameterize the spring DORMPHOT algorithm and au-
tumn DM algorithm. This was explicitly applied for the bo-
real needleleaved summergreen tree (BNS), shade-intolerant
broadleaved summergreen tree (IBS), shade-tolerant temper-
ature broadleaved summergreen tree (TeBS), and summer-
green shrub plant function types (PFTs). The new phenol-
ogy module with these parameters was coupled into the LPJ-
GUESS model. The objectives of this study are as follows:
(1) to couple more mechanistic phenology modules into the
LPJ-GUESS model to improve the accuracy of spring and
autumn phenology simulations and (2) to assess the impacts
of different vegetation phenological algorithms on the carbon
and water process simulations.

2 Materials and methods

2.1 Datasets

2.1.1 GIMMS NDVI4g

The normalized differential vegetation index (NDVI) is com-
monly used as a proxy for vegetation canopy greenness and
growth condition. In the study, we used the fourth-generation
NDVI dataset of GIMMS, which provides biweekly NDVI
records with a spatial resolution of 1/12° (∼ 8 km) during
1982–2017 to extract the start and end of the growing sea-
son (Pinzon and Tucker, 2014; Tucker et al., 2005; Cao et
al., 2023). This NDVI dataset has been refined and corrected
for orbital drift, calibration, viewing geometry, and volcanic
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aerosols, which can accurately reflect the accurate growth dy-
namics of surface vegetation (Kaufmann et al., 2000).

2.1.2 Climate forcing field data

We used CRU-NCEP V7 data with a horizontal spatial res-
olution of 0.5× 0.5° as the forcing field data for driving
the LPJ-GUESS model during 1901–2015. The forcing field
data include monthly air temperature (1901–1978) and pre-
cipitation, wind speed, wet days, incoming shortwave ra-
diation, and relative humidity measurements over the pe-
riod 1901–2015, which can be downloaded from https://
rda.ucar.edu/datasets/ds314.3/ (last access: 28 March 2024
). The ERA5-Land daily air temperature dataset has been
used to parameterize spring and autumn phenological al-
gorithms and force the LPJ-GUESS model. The dataset
is a global reanalysis dataset developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF),
which utilizes advanced data assimilation techniques by
combining observations from various sources, such as satel-
lites, weather stations, and weather balloons, with numeri-
cal weather prediction models. We downloaded the ERA5-
Land and daily air temperature at a 0.5° spatial resolution
(consistent with the CRU NCEP V7 data from 1979–2015)
from their official website (https://cds.climate.copernicus.
eu/apps/user-apps/app-c3s-daily-era5-statistics; last access:
28 March 2024). Due to a possible bias between different
datasets, we calculated the monthly average of the ERA5-
Land daily air temperature and calculated its climatology as
well as the climatology of the CRU NCEP V7 monthly air
temperature data, and we corrected the bias of the ERA5-
Land data according to the deviation.

2.1.3 GLC2000 land cover data

Satellite remote sensing can capture the collective informa-
tion from mixed pixels comprised of various plants and also
information from dominant vegetation. The data acquired
through satellite remote sensing can be regarded as repre-
sentative of a particular vegetation type only when the plant
functional types within a grid cell exhibit a relatively ho-
mogeneous composition. Based on the GLC2000 land cover
types data, which are designated according to PFTs ascribed
to satellite images and ground truth by regional analysts
with a 1 km spatial resolution (Bartholome and Belward,
2005), we calculated the proportion of different PFTs in the
0.5× 0.5° grid cell to identify pixels dominated by a specific
plant functional type (the proportion of a specific plant func-
tion type is greater than 50 %; Figs. 1 and S1).

2.1.4 VPM GPP and REA ET data

We used the vegetation photosynthesis model (VPM) gross
primary productivity (GPP) (Zhang et al., 2017a) and REA
ET (reliability ensemble averaging; Lu et al., 2021a) to com-

pare the simulation results of carbon and water fluxes with
the LPJ-GUESS model.

The VPM GPP dataset is constructed upon an en-
hanced light use efficiency theory, utilizing satellite data
from MODIS and climate data from NCEP Reanal-
ysis II. It incorporates an advanced vegetation index
(VI) gap-filling and smoothing algorithm, along with
distinct considerations for C3/C4 photosynthesis path-
ways. The VPM GPP product can be downloaded from
https://doi.org/10.6084/m9.figshare.c.3789814.v1 (Zhang et
al., 2017b).

REA ET is a combination of three existing model-based
products: the fifth-generation ECMWF reanalysis (ERA5),
the Global Land Data Assimilation System Version 2
(GLDAS2), and the second Modern-Era Retrospective anal-
ysis for Research and Applications (MERRA-2), which uses
the reliability ensemble averaging (REA) method, minimiz-
ing errors using reference data, to combine the three products
over regions with high consistencies between the products
using the coefficient of variation (CV). The REA ET data
can be accessed at https://doi.org/10.5281/zenodo.4595941
(Lu et al., 2021a, b).

2.2 Phenology dates extraction

We used five phenological extraction methods, which in-
clude three threshold-based methods (i.e., Gaussian mid-
point, spline midpoint, and TIMESAT-SG methods) and
two change-rate-based methods (i.e., the HANTS maximum
and polyfit maximum methods), following previous studies
(Cong et al., 2012; Savitzky and Golay, 1964; Chen et al.,
2023a), to retrieve spring (start of growing season, SOS) and
autumn (end of growing season, EOS) phenological events
(Fig. S2). Phenological extraction based on multiple methods
consists of three steps: (1) smoothing and interpolating the
NDVI date to obtain the smooth and continuous NDVI daily
time series, (2) using the threshold value (0.5 for SOS and 0.2
for EOS) or the maximum rate of change to extract the vege-
tation phenology from each single method (Reed et al., 1994;
White et al., 1997; White et al., 2009; Piao et al., 2006), and
(3) averaging the phenological results obtained by different
extraction methods to reduce uncertainties associated with a
single method (due to the different fitting methods, interpo-
lation methods, and threshold settings of different extraction
methods; Fu et al., 2021, 2023).

2.3 Model description

LPJ-GUESS is a process-based dynamic global vegetation
model that can simulate vegetation dynamics and soil bio-
geochemical processes across different terrestrial ecosys-
tems. At the grid cell level, the model simulates vegeta-
tion growth, allometry competition, mortality, and distur-
bances (Sitch et al., 2003; Morales et al., 2005; Hickler et al.,
2004). The PFTs within the framework of the LPJ-GUESS
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Figure 1. The spatial distributions of 11 detailed regional land cover types in the GLC2000 products. BNS (boreal needleleaved summergreen
tree): deciduous needle forest. IBS–TeBS trees (shade-intolerant broadleaved summergreen tree and shade-tolerant temperate broadleaved
summergreen tree): open deciduous broadleaf forest and closed deciduous broadleaf forest. Shrubs (summergreen shrubs): sparse herbaceous
or sparse shrub cover and deciduous shrubs.

model encapsulate the extensive spectrum of structural and
functional attributes that are characteristic of potential plant
species. Within a given area or patch (corresponding in size
approximately to the maximum area of influence of one large
adult individual on its neighbors), plant growth is governed
by the synergistic interplay of bioclimatic constraints and in-
terspecific competition for spatial dominance, access to light,
and vital resources. In a grid cell (stand), it is typically sim-
ulating multiple such patches to represent different distur-
bance histories within a landscape, and across these patches,
the modeled properties tend to coalesce towards a singular,
overarching average value (Smith et al., 2001).

In the LPJ-GUESS model, the spring phenology is cal-
culated based on spring heat and winter cold requirements
(Sykes et al., 1996). Plants have certain energy requirements
for budburst, which are expressed by using growing degree
days above 5 °C (GDD5), while growing degree days to bud-
burst are also related to the length of the chilling period. An
increase in chilling periods can reduce the requirement for
growing degree days to budburst; in other words, budburst
can be delayed long enough to minimize the risk that the
emerging buds will be damaged by frost (Eq. 1):

GDD= a+ b× e−k×C, (1)

where a, b, and k are PFT-specific constants and C is the
length of the chilling period. GDD represents the growing
degree days requirement of a specific PFT at a chilling period
length of C. Growing degree days are defined as the accumu-
lation of temperatures above the base temperature (generally
5 °C), and the length of the chilling period is defined as the
days that the daily mean temperature is below 5 °C.

For autumn phenology, leaf longevity was used as a thresh-
old in the LPJ-GUESS model for the simple prediction of
senescence. It is assumed in the model that autumn phenol-
ogy occurs when the cumulative complete leaf longevity is
greater than 210 d or the daily average temperature is below
5 °C in autumn.

Within each stand, 50 different patches (in this study) were
applied to represent different disturbance histories within a
landscape. The simulations over the study areas included 23
PFTs, which consist of five grass, three bryophytes, eight
shrubs, and seven tree PFTs, and the summergreen PFTs in-
volved in the improvement of the vegetation phenological
simulation contain BNS, IBS, and TeBS trees and decidu-
ous shrubs (hereafter called Shrubs); see detailed description
in Tang et al. (2023) and Rinnan et al. (2020).

2.4 LPJ-GUESS phenology module extension

We improved the spring and autumn phenological modules
of the LPJ-GUESS model by coupling the DORMPHOT al-
gorithm and DM algorithm into LPJ-GUESS according to
the phenological module extension flow chart (Fig. 2).

The spring phenological algorithm in LPJ-GUESS was re-
placed by the DORMPHOT algorithm, which introduces the
effect of photoperiod on dormancy. This algorithm refines the
spring phenological algorithm into three stages: dormancy
induction, dormancy release, and growth resumption (Caf-
farra et al., 2011). The dormancy induction process is trig-
gered by a short daily photoperiod (DRP) and a low temper-
ature (DRT), and it finishes when the cumulant of the prod-
uct of DRP and DRT reaches a specific threshold (DS>Dcrit;
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Figure 2. Flowchart of spring and autumn phenological module ex-
tension in LPJ-GUESS. Dotted boxes represent independent work,
gray boxes represent different datasets or intermediate process re-
sults, and yellow boxes represent different calculation methods or
model modules. CDD represents cooling degree day.

Eqs. 2, 3, and 4):

DS=
t∑
t0

DRT×DRP, (2)

DRT =
1

1+ eaD×(T−bD) , (3)

DRP =
1

1+ e10×(DL−DLcrit)
, (4)

where t0 is the start date of dormancy induction defined on
1 September of the year preceding budburst, DS represents
the state of dormancy induction (the cumulant effect of DRP
and DRT), T is the daily mean temperature, and DL is the
day length on day t . The algorithm parameters aD, bD, and
DLcrit regulate the effect of photoperiod and temperature.

Dormancy release and growth resumption start after dor-
mancy induction is complete (td), which represent a paral-
lel chilling and forcing process, respectively. The total daily
rate of chilling (SC) is defined as the accumulation of daily
chilling (RC), as seen in Eq. (5), and the daily forcing (Rf)
is determined by both photoperiod and SC (Eqs. 6, 7, and 8).
The effects of photoperiod and chilling onRf counteract each
other. The increase in photoperiod will decreaseRf, while the
increase in chilling will reverse the effect:

SC =

t∑
td

RC =

t∑
td

1

1+ eaC×(T−cC)2+(T−cC)
, (5)

DL50 =
24

1+ ehDL×(SC−Ccrit)
, (6)

T50 =
60

1+ egT×(DL−DL50)
, (7)

Sf =

t∑
td

Rf =

t∑
td

1
1+ edF×(T−T50)

, (8)

where aC, cC, and Ccrit are the algorithm parameters of the
chilling process, and hDL, gT, and dF are the algorithm pa-
rameters of the forcing process. When the total daily rate of
forcing (Sf) reaches a critical value Fcrit, vegetation com-
pletely resumes growth and spring phenological events oc-
cur. Note that gT and hDL must be greater than zero to limit
the monotonicity of Eqs. (6) and (7).

Since there is a lack of process-based submodule to simu-
late autumn phenology in the LPJ-GUESS model, and only
a fixed leaf longevity is used to define the occurrence date
of autumn phenology, we introduced an autumn phenology
process that considers photoperiod and cold temperature ef-
fects by coupling the DM algorithm into the LPJ-GUESS
model (Delpierre et al., 2009). The DM algorithm assumes
that plants will respond to low temperature (below base tem-
perature, Tb) only when the photoperiod is below a critical
value (DLcrit), and the daily rate of senescence (Rsen) on
that day is determined by a cold temperature and photope-
riod (Eqs. 9, 10, and 11):

f (DL)= αpn×
DL

DLcrit
+ (1−αpn)×

(
1−

DL
DLcrit

)
,

αpn ∈ {0,1} (9)

Rsen =

{
0, DL≥ DLcrit
0, DL< DLcrit and T ≥ Tb
(Tb− T )

x
× f (DL)y , DL< DLcrit and T < Tb

, (10)

Ssen =

t∑
t0

Rsen, (11)

where αpn is a parameter that determines that a photoperiod
shorter than the DLcrit threshold weakens (αpn equal to 1) or
strengthens (αpn equal to 0) the cold-degree sum effect. In
the formula, x and y are the indices of the temperature and
photoperiod terms, which are used to adjust the degree of
influence of temperature and photoperiod on Rsen, respec-
tively.

2.5 Phenological algorithm parameterization

Utilizing the spatial distribution of predominantly homoge-
neous pixels corresponding to distinct vegetation types, we
partitioned the remote sensing phenological dataset and fi-
nally obtained the phenological dataset of BNS, IBS, and
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TeBS trees and Shrub PFTs for the parameterization of the
DORMPHOT and DM algorithms. We divided the phenol-
ogy dataset into two parts according to the odd or even num-
ber of years; the odd-numbered years represent the algo-
rithm parameter internal calibration and the even-numbered
years represent the algorithm external calibration. The parti-
cle swarm optimization (PSO) algorithm was applied to pa-
rameterize the DORMPHOT and DM algorithm for differ-
ent PFTs, which used the mixed function that comprehen-
sively considers multiple evaluation indicators as the objec-
tive function (f (mixed), Eq. 12) and sets the upper limit of
iteration to 5000 times to find the global optimal parameter
(Marini and Walczak, 2015; Poli et al., 2007). The param-
eters of the DORMPHOT algorithm and DM algorithm ap-
plicable to BNS and IBS–TeBS trees and Shrub PFTs were
found by the PSO algorithm (Tables S1 and S2).

f (mixed)= 100× (1−R2)+ 100× (1−NSE)

+ 10×RMSE, (12)

where R2 is the coefficient of determination, NSE is the
Nash–Sutcliffe efficiency, and RMSE is the root mean square
error. The coefficients in front of each term of the formula are
used to adjust the weights of different evaluation indicators.
The smaller the objective function the closer the simulated
value of the algorithm is to the observed value.

2.6 Simulation setup

To compare the simulation performance of LPJ-GUESS,
which employs the original phenological module and mod-
ified phenological module (the extended LPJ-GUESS), we
first ran the model using CRU NCEP V7 gridded climate
data over the period 1901–1978 with a 500-year spin-up,
and we saved all model state variables at the end of 1978
(when we used the original phenological module, the status
variables associated with the extended phenological module
were also updated and saved concurrently); we avoided the
differences in the simulated vegetation and soil state vari-
ables outside the study period, i.e., 1979–2015 (Viovy, 2018).
Then we restarted the model simulations (applying the orig-
inal phenological module and extended phenological mod-
ule) with the saved model state variables at the last day of
1978 and ERA5-Land daily air temperature (note that other
forcing data were still from CRU NCEP V7 dataset) and
printed start (end) of growing season of summer green PFTs,
monthly grid level GPP, and actual evapotranspiration (AET)
of each PFT and foliage projection cover (FPC) for investi-
gating the simulation difference which was induced by phe-
nological simulation differences. All the data processing and
analysis in this study were completed in MATLAB 2020b
(https://www.mathworks.com, last access: 28 March 2024).

3 Results

3.1 Phenology simulation performance

For spring phenology, the DORMPHOT algorithm has the
best simulation performance in the IBS–TeBS region (R2

=

0.62 and NSE= 0.62), followed by the regions dominated by
BNS (R2

= 0.52 and NSE= 0.52) trees and Shrubs (R2
=

0.47 and NSE= 0.47; Table 1) PFTs. For autumn phenol-
ogy, the simulation performance was generally worse than
that of spring phenology. The DM algorithm has the best
simulation performance in the Shrubs region (R2

= 0.39 and
NSE= 0.39), followed by the regions dominated by BNS
(R2
= 0.33 and NSE= 0.32) trees and IBS–TeBS (R2

=

0.47 and NSE= 0.47; Table 1) trees.
Compared with the remote-sensing-based vegetation phe-

nological indices, LPJ-GUESS, with the original phenologi-
cal module, estimated an earlier spring onset and an autumn
leaf senescence. The simulated spring phenology matches
better than that of autumn phenology. The extended LPJ-
GUESS model has greatly improved the estimation accuracy
in regions dominated by BNS and IBS–TeBS trees and Shrub
PFTs (Figs. 3 and S3). For spring phenology, the simulated
R2 (RMSE) values of the extended LPJ-GUESS model for
regions dominated by BNS and IBS–TeBS trees and Shrub
PFTs were 0.53 (7.84), 0.61 (7.92), and 0.46 (11.21), re-
spectively, which increased (decreased) by 0.26 (5.55), 0.12
(17.34), and 0.25 (10.53) compared with the original pheno-
logical module.

We found that PFTs with larger R2 increases in the spring
phenological simulation also had smaller RMSE reductions
for the extended model, indicating the improvements in cap-
turing interannual change and the multiyear mean value. The
autumn phenology simulation performance was greatly im-
proved by integrating the DM algorithm for regions domi-
nated by BNS and IBS–TeBS trees and Shrub PFTs, and the
simulated R2 (RMSE) values of the extended LPJ-GUESS
model were 0.31 (10.70), 0.31 (14.69), and 0.41 (10.42), re-
spectively, which increased (decreased) by 0.11 (15.66), 0.31
(17.60), and 0.27 (27.50). By comparing the LPJ-GUESS
simulated daily leaf area index (LAI) before and after cou-
pling the DM algorithm, we also found that the autumn LAI
values simulated by the extended LPJ-GUESS no longer sud-
denly decreased to zero over a day but rather smoothly de-
creased with the sigmoid function according to the control of
cold temperature and photoperiod (Fig. S4).

We also used two calibration schemes to explore the phe-
nology simulation performance of the original phenological
module of LPJ-GUESS after parameterization. The first one
is based on the original LPJ-GUESS model to determine a
common parameter set of all deciduous tree PFTs, and the
second one is to determine a unique set of parameters for
each PFTs. The results show that the phenology simulation
performance of the original phenological module under the
two calibration schemes was inferior to that of the new phe-
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Table 1. Algorithm performances of the DORMPHOT and DM algorithms.

Algorithm Plant function type Internal calibration External calibration

R2 NSE RMSE R2 NSE RMSE

DORMPHOT BNS 0.54 0.53 7.71 0.52 0.52 7.96
IBS–TeBS 0.61 0.61 7.92 0.62 0.62 7.91
Shrubs 0.45 0.44 11.3 0.47 0.47 11.1

DM BNS 0.28 0.28 10.7 0.33 0.32 10.7
IBS–TeBS 0.29 0.28 14.9 0.32 0.31 14.4
Shrubs 0.42 0.42 10.4 0.39 0.39 10.5

R2 is the coefficient of determination, NSE is the Nash–Sutcliffe efficiency, and RMSE is the root mean square error.
BNS is the boreal needleleaved summergreen tree, IBS is the shade-intolerant broadleaved summergreen tree, TeBS is
the shade-tolerant temperate broadleaved summergreen tree, and Shrubs are the summergreen shrub plant function
types.

nological module based on the cooperative control of tem-
perature and photoperiod (Table S3)

3.2 Gross primary productivity simulation

Since the PFTs simulated in the LPJ-GUESS model include
not only BNS and IBS–TeBS trees and Shrub PFTs but also
evergreen plants and grasses (no development was made to
its phenological simulation in the present study), we found
that clear differences between two versions of the model
mainly appeared in the regions dominated by these decid-
uous PFTs with improved phenological modules. We only
found small differences in the regions dominated by ever-
green or grassland (Fig. 4c). It is also clear that the orig-
inal LPJ-GUESS generally simulated higher GPP than the
extended one over the study period, except for the IBS–
TeBS-dominated regions, where higher GPP from the orig-
inal model can only be found from 1979 to 2000 (Fig. 4d–f).
By comparing multiple years’ monthly mean GPP values, it
becomes evident that the extended phenology also influences
the seasonal dynamics of GPP. In regions dominated by BNS
trees, the differences in monthly GPP are primarily notice-
able during spring (using the extended phenological module
resulted in a −34.9 % lower GPP in May compared to the
original phenological module; when not specifically stated,
the value is that the extended model differs from the origi-
nal model, as can be seen in Fig. 4g). In regions dominated
by IBS–TeBS trees, the GPP differs in both spring (−2.8 %)
and autumn (−6.3 %), and the difference is larger in au-
tumn, which mainly contributes to an annual GPP difference
(Fig. 4h). In regions dominated by Shrub PFTs, we found
differences in GPP in all months (−43.9 %), especially in
the nongrowing season, indicating that some evergreen plants
still exist in the region when the original phenological mod-
ule is used and that changes in vegetation phenology seem
to substantially affect vegetation composition in this region
(Fig. 4i). Compared with VPM GPP products, we also found
that LPJ-GUESS simulated GPP overestimates, but the spa-
tial pattern is consistent with VPM GPP products, and the

extended LPJ-GUESS model could simulate GPP more ac-
curately during transition periods (Figs. S5 and S6).

The potential natural plant distribution also confirmed that
the grid cells with large differences in phenological simula-
tions between the original and the extended LPJ-GUESS also
have large differences in dominant vegetation types (Fig. S3).
We selected typical grid cells in BNS and IBS–TeBS trees
and Shrubs regions and compared their multiyear variation
pattern of FPC. We found that the phenological changes had
a clear influence on the FPC changes in the BNS and Shrubs
region (Fig. 5). However, in the IBS–TeBS region (the grid
cell dominated by IBS trees was selected here), although we
found that the difference in the phenological simulation af-
fects little in FPC components due to the close proportion of
IBS and BNE (boreal needleleaved evergreen) trees (fierce
competition), small changes in FPC components could also
lead to changes in dominant vegetation types (Fig. 5c, d).

3.3 Evapotranspiration simulation

By comparing the spatial patterns, we found that the LPJ-
GUESS-simulated AET spatial pattern is consistent with
REA ET products, and BNS trees dominated the regions with
large differences in the modeled AET under the two runs;
the simulation result using the original phenological mod-
ule was larger by 3.9 % compared with using the modified
module (Figs. 6c and S7). In the IBS–TeBS-dominated re-
gion, like GPP, we found that the scenario using the original
phenological module presented a larger AET during the pe-
riod 1979–2000, and the two scenarios that simulated AET
in the Shrub-dominated region were very close (Fig. 6e–f).
The seasonal dynamic patterns of AET in regions dominated
by BNS and IBS–TeBS trees and Shrub PFTs are similar.
The AET simulations become higher in spring and lower in
summer, and only in the Shrub-dominated region does the
AET simulation become lower in autumn when the original
phenology module is used (Fig. 6g–i).
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Figure 3. Comparison of the simulated performance of spring (SOS) and autumn (EOS) phenology between the original (left blue panels)
and the extended (right red panels) LPJ-GUESS. (a–d) Simulation performance of SOS using the original LPJ-GUESS. (e–h) Simulation
performance of SOS using the extended LPJ-GUESS. (i–l) Simulation performance of EOS using the original LPJ-GUESS. (m–p) Simulation
performance of EOS using the extended LPJ-GUESS. The blue and red boxes represent spring and autumn phenological simulations. The
spatial geographic map shows the difference between the simulation results of the LPJ-GUESS model and the remote sensing phenology,
with blue representing the model underestimation and red representing the model overestimation. The dotted lines in the subgraph are 1 : 1
lines.

4 Discussion

4.1 Remote sensing phenology facilitates mixed-pixel
phenology modeling

Whether through dynamic global vegetation model simula-
tion or satellite remote sensing extraction, a key issue in
large-scale vegetation phenology research is the scale trans-
formation of phenology data in mixed pixels. For phenolog-
ical extraction based on satellite remote sensing, which is
a top-down approach, the spring phenology extracted from
the mixed pixel (without specific dominant vegetation types)
gives the information about the dates when the earliest plant
leaf out occurs in the pixel, while the autumn phenology
is the last one to experience senescence (Chen et al., 2018;
Reed et al., 1994; White et al., 2009; Fu et al., 2014). Fur-
thermore, previous studies have also detected temporal lags
between the phenology of NDVI, LAI, and GPP, especially
in tropical regions where the saturation of optical vegeta-

tion indices, such as NDVI and LAI, can limit the extrac-
tion of phenology; SIF (solar-induced chlorophyll fluores-
cence) data could overcome this issue (Guan et al., 2015; Li
et al., 2021; Hmimina et al., 2013). In addition, the green-
ness of understory phenology (low shrub or grass in forests)
further complicates the detection of overstory signals (Ahl et
al., 2006; Tremblay and Larocque, 2001). It is challenging to
separate remote sensing signals into different components by
filtering or decoupling methods. The more feasible method is
to detect phenological changes with a few mixed species at
a small spatial scale and conduct climate-controlled experi-
ments (Wolkovich et al., 2012).

The DGVM-based phenological simulation is based on
a bottom-up method, which is different from phenological
extraction based on remote sensing. Many studies have in-
vestigated phenological algorithms based on remote sensing
data and ignored the influence of mixed pixels (Keenan and
Richardson, 2015; White et al., 1997), which lacks extensi-
bility and robustness under changing circumstances, e.g., cli-
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Figure 4. Comparison of gross primary productivity (GPP) simulations between scenarios which used the original phenological module
and extended (DORMPHOT and DM) phenological module. (a) This scenario used the original phenological module. (b) This scenario
used the extended phenological module. Panel (c) shows the difference between the two scenarios mentioned above; blue represents a larger
simulation value for the LPJ-GUESS model using the original phenological module, and red represents a smaller simulation value. (d–f)
Annual average GPP for BNS and IBS–TeBS trees and Shrub PFTs from 1979 to 2015. (g–i) Multiyear mean monthly GPP for BNS and
IBS–TeBS trees and Shrub PFTs from 1979 to 2015.

mate change. DGVMs simulate plant individuals’ growth,
development, and senescence in the grid cell, which repre-
sents different signals in the mixed pixels and finally synthe-
sizes the vegetation signal of the whole grid cell (Sitch et al.,
2003). In this study, based on top-down remote sensing phe-
nology and parameter calibrations for several relatively pure
pixels with a clear dominance of BNS and IBS–TeBS trees
and Shrub PFTs, we integrated this newly calibrated phenol-
ogy module at a PFT level into the LPJ-GUESS to reproduce
the grid-cell-level vegetation phenology for the mixed pix-
els. The simulation of vegetation phenology for mixed pixels
enables the capture of phenological variability arising from
dynamic vegetation changes, as opposed to the predefined
approach reliant on specific pixel vegetation types; this also
partly explains why phenological algorithms based on pre-
defined vegetation types are difficult to generalize spatially
(Chen et al., 2018). By leveraging the advantages of wide-
ranging remote sensing phenological monitoring and stable
monitoring frequencies, analyzing the relationship between
pixel constituents and vegetation signals, especially in cases

where pixel constituents are relatively uniform, can enhance
the accuracy of the phenological simulation for mixed pixels.

4.2 Influence of phenological shifts on ecosystem
structure

Our results showed that the LPJ-GUESS model, which uses
the original phenological module, estimated earlier SOS in
regions dominated by BNS and IBS–TeBS trees and Shrub
PFTs than it did when using the extended phenological mod-
ule (Fig. 3). Earlier spring phenology, which is closely re-
lated to plant growth and development and has a strong in-
fluence on interspecific competition (Roberts et al., 2015;
Rollinson and Kaye, 2012), also leads to a larger dominant
area (Fig. S3). In the high-latitude regions, plants gain a com-
petitive niche through the advancement of spring phenology
if there is no damaged tissue and shoots that are induced by
late frost and the weight of late snowfall (Augspurger, 2009;
Bigler and Bugmann, 2018; Drepper et al., 2022; Liu et al.,
2018b). This advancement is mediated by the early snowmelt
synergistic changes in soil temperature and soil water con-
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Figure 5. Shifts in foliage projection coverage (FPC) of typical grid cells in the regions dominated by BNS and IBS–TeBS trees and Shrub
PFTs over the period 1979–2015. Typical grid cells of (a) BNS trees, (c) IBS–TeBS trees, and (e) Shrub PFTs that used the original LPJ-
GUESS model. Typical grid cells of (b) BNS trees, (d) IBS–TeBS trees, and (f) Shrub PFTs that used the extended LPJ-GUESS model.

tent. It manifested in a wider window of high resource avail-
ability and low competition (Zheng et al., 2022). During this
window period, plants can get more light, water, and nutrient
resources and then carry out vegetative growth earlier. They
can then finally increase the leaf area in spring. As the com-
munity develops, changes in the competitive relations at the
species or functional group level in the spring will induce
changes in community composition (Morisette et al., 2009;
Forrest et al., 2010). In the context of climate change, dif-
ferences in the phenological responses of different species
may further affect the distribution of species, and the inaccu-
racy of future phenological dynamic simulations of different
vegetation types in DGVMs will introduce great uncertainty
to the estimation of future potential natural plant distribution
(Dijkstra et al., 2011); this further impacts the GPP simu-
lations, which are a key source of uncertainty for terrestrial
carbon cycle simulations (Ahlström et al., 2015).

4.3 Further development of phenological algorithms

Although we have substantially improved the accuracy of
LPJ-GUESS in simulating vegetation phenology by coupling
calibrated spring (DORMPHT) and autumn (DM) phenolog-
ical algorithms at PFT levels, we still see the discrepancy in
the grass-dominated regions, and because of this, we did not
employ the temperature and photoperiod phenological algo-
rithm for the grassland phenology simulation because many

studies indicate that grassland phenology is also regulated
by precipitation (Fu et al., 2021). Furthermore, the current
phenology algorithms only consider the synergistic effects
of temperature and photoperiod but can be further linked to
plant growth and physiology (Fu et al., 2020; Zohner et al.,
2023). In different regions (under different external condi-
tions), the driving mechanism and effective driving factors of
the vegetation phenology process can be different. Temper-
ature is an important factor regulating phenology in energy-
limited regions, while water supply (precipitation, soil mois-
ture, etc.) control cannot be ignored in water-limited regions
(Prevéy et al., 2017; Fu et al., 2022). On the one hand, for
further developing phenological modules in DGVMs, it is
necessary to carry out mechanism research of phenology
of different species through controlled experiments, to the
end of improving the existing mechanism algorithm. On the
other hand, it is necessary to introduce new methods, such
as machine learning, for the accurate generalization of some
complex key nonlinear processes (Fu et al., 2020; Dai et al.,
2023). Through the above two aspects of work, a comprehen-
sive phenological module can be provided in order to further
improve the accuracy of DGVMs in simulating the phenolog-
ical dynamics of different PFTs in different environments.

Geosci. Model Dev., 17, 2509–2523, 2024 https://doi.org/10.5194/gmd-17-2509-2024



S. Chen et al.: New phenology module in LPJ-GUESS model 2519

Figure 6. Comparison of actual evapotranspiration simulations between scenarios which used the original phenological module and the
extended (DORMPHOT and DM) phenological module. (a) This scenario used the original phenological module. (b) This scenario used
the extended phenological module. Panel (c) shows the difference between the two scenarios mentioned above; blue represents a larger
simulation value for the LPJ-GUESS model using the original phenological module, and red represents a smaller simulation value. (d–f)
Annual average AET for BNS and IBS–TeBS trees and Shrub PFTs from 1979 to 2015. (g–i) Multiyear mean monthly AET for BNS and
IBS–TeBS trees and Shrub PFTs from 1979 to 2015.

5 Conclusion

In this study, we parameterized and constructed spring
(DORMPHOT) and autumn (DM) phenology algorithms for
BNS and IBS–TeBS trees and Shrub PFTs based on the
remote-sensing-extracted phenology data. These parameter-
ized DORMPHOT and DM algorithms were further coupled
into the LPJ-GUESS model, and the results showed that LPJ-
GUESS, using the extended phenological module, substan-
tially improved in the accuracy of spring and autumn phe-
nology compared to the original phenological module. Fur-
thermore, we found that the differences in phenological es-
timations can have non-negligible effects on carbon and wa-
ter cycle processes by influencing plant annual growth dy-
namics and ecosystem structure functions. For the carbon
cycle, the influence of phenological differences on BNS-
dominated and Shrub-dominated regions was greater than
that of IBS–TeBS-dominated regions, and there were differ-
ences in the seasonality of monthly GPP simulations with
different PFTs. For the water cycle, the AET simulations
become higher in spring and lower in summer, and only in
the Shrub-dominated region does the AET simulation be-
come lower in autumn when the original phenology module
is used. We highlighted the importance of phenology esti-
mation and its process interactions in DGVMs and proposed

further developments in vegetation phenology modeling to
improve the accuracy of DGVMs in simulating the pheno-
logical dynamics and terrestrial carbon and water cycles.

Code and data availability. LPJ-GUESS is tested, refined, and de-
veloped by a global research community, but the model code is
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