

Supplement of

Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China

Chao Gao et al.

Correspondence to: Xuelei Zhang (zhangxuelei@iga.ac.cn) and Aijun Xiu (xiuaijun@iga.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

- 1 Supplement
- 2 S1. Evaluations of other meteorological variables
- 3 S1.1. Ground-based observations

For Q2, RMSEs between WRF-CMAQ, WRF-Chem, and WRF-CHIMERE 4 simulations and surface observation were consistently below 3 g kg⁻¹, as illustrated in 5 Table S3 and Fig. S2. Most models exhibited a tendency to underestimate annual and 6 seasonal Q2, with MBs ranging from -0.57 to -0.18 g kg⁻¹ and -1.16 to +0.20 g kg⁻¹ 7 in WRF-Chem and WRF-CHIMERE, respectively. The more obvious underestimations 8 9 appeared in summer. In the MICS-Asia III project, Gao et al. (2018) reported that all the seven included two-way coupled models produced slightly positive values for Q2 10 during January 2010 over the North China Plain. In contrast to simulations without 11 enabling aerosol feedbacks, the negative biases in annual and seasonal Q2 simulated by 12 WRF-CMAQ ARI and WRF-CHIMERE ARI were amplified, and the WRF-13 CMAQ ARI simulations exhibited bigger negative biases (see Fig. 3 and Table S3). 14 The changes in annual, summer, and autumn MBs for WRF-Chem ARI were consistent 15 with the trend of WRF-CMAQ ARI, except for spring and winter. 16

17 The annual and seasonal correlation coefficients of precipitation were 0.56–0.69, 0.46-0.63, and 0.25-0.55 for WRF-CMAQ, WRF-Chem, and WRF-CHIMERE, 18 respectively (Table S3 and Fig. S5). All simulated results presented the highest 19 correlations in winter and the lowest in summer and the possible reasons are due to the 20 much more convective activities in summertime, which are not accurately captured in 21 all coupled models. WRF-CMAQ and WRF-CHIMERE exhibited underestimation and 22 23 overestimation in annual and seasonal precipitation, respectively. At the annual and seasonal scales, WRF-Chem and WRF-CHIMERE overestimated the daily 24 precipitation magnitude by more than 1 mm day⁻¹, and WRF-CMAQ underestimated it 25 by approximately 0.5 mm day⁻¹. A similar conclusion was obtained for North America 26 during 2010, with the magnitude of precipitation MBs being higher in WRF-Chem 27 compared to WRF-CMAQ (refer to Fig. 11 in Makar et al., 2015). The largest 28 29 precipitation MBs simulated by the three models occurred in summer and varied from 30 -0.70 to +1.39 mm day⁻¹. The RMSE was highest in WRF-CHIMERE, followed by WRF-Chem, and WRF-CMAQ, and all models had the largest (> 10 mm day⁻¹) and 31 smallest (approximately 2.5 mm day⁻¹) values in summer and winter, respectively. 32 Considering the ARI effects, WRF-CMAQ ARI simulations amplified the 33 underestimations of annual and seasonal precipitation in eastern China. In contrast, 34 WRF-Chem ARI (except for autumn) and WRF-CHIMERE ARI simulations 35 mitigated the overestimations of precipitation. The effects of ARI on summer MBs were 36 larger in all three coupled models compared to other seasons. When ACI effects were 37 further included, WRF-Chem BOTH demonstrated only marginal improvement in 38 overestimation compared WRF-Chem NO, while precipitation to WRF-39 CHIMERE BOTH gave out certain enhancement of precipitation overestimation. This 40 can be interpreted as follows: WRF-CHIMERE has the ability to simulate the activation 41 42 of aerosol particles into cloud ice via heterogeneous ice nucleation and homogeneous freezing, whereas WRF-Chem lacks this capability. 43

44

Overall, the PBLH was not well simulated by any of the three coupled models,

which may be a result of the adoption of low resolution sounding data in evaluations 45 (Brunner et al., 2015) and the different settings of Richardson number thresholds in the 46 calculation of observed PBLH (Guo et al., 2016). At 08:00 and 20:00 local time (LT), 47 the simulated PBLHs in WRF-CMAQ have lower correlations only ranging from 0.21 48 to 0.40 and largest negative MBs varying from -400 to -133 m. These poor 49 performances were mainly caused by: 1) different configurations of the PBL scheme 50 were employed in this study, namely, WRF-CMAQ adopted the ACM2 scheme with 51 hybrid local-nonlocal closure, while WRF-Chem and WRF-CHIMERE adopted the 52 YSU scheme with non-local closure (Table 1); 2) Richardson number threshold was set 53 to different values for unstable atmospheric conditions, i.e., the YSU and ACM2 54 55 schemes using the thresholds of 0 and 0.25, respectively (Xie et al., 2012); 3) different to the YSU scheme, the ACM2 scheme considers the entrainment layer in the PBLH 56 57 calculations (Xie et al., 2012).

Meanwhile, all correlations of PBLH simulated by the three coupled models at 58 20:00 LT (R = 0.3-0.4) were better than those at 08:00 LT (R = 0.1-0.2), which 59 indicated that the PBL schemes in these model were able to calculate PLBH after PBL 60 collapsing a little better than before PBL developing and more observation with better 61 spatiotemporal resolutions are needed to further evaluate the models' performance. In 62 addition, the RMSEs of PBLH in autumn (369.89-388.79 m) and winter (347.48-63 392.38 m) were smaller than those in spring (405.61-622.37 m) and summer (348.80-64 570.16 m) for all three models. 65

As shown in Fig. 3 and Table S3, the changes of MB and RMSE of simulated 66 67 PBLH induced by the effects of aerosol feedbacks were greater than those of R. Meanwhile, the MBs were further analyzed. For WRF-CMAQ, ARI effects induced an 68 increase (-1.93 m) and decrease (+6.66 m) in the annual underestimations of PBLH at 69 8:00 and 20:00 LT, respectively (Table S3). The negative MBs for WRF-Chem ARI 70 and WRF-Chem BOTH showed an enhancement (08:00 LT: -25.25 m, 20:00 LT: 71 -25.60 m) and reduction (08:00 LT: +19.65 m, 20:00 LT: +14.09 m) compared to those 72 73 for WRF-Chem NO and WRF-Chem ARI, respectively. Both the ARI (-6.17 and 74 -3.34 m) and ACI (-0.65 and -1.11 m) effects further underestimated annual PBLH at 08:00 and 20:00 LT for WRF-CHIMERE. Note that the variations in MBs induced by 75 aerosol feedbacks for the three coupled models at the annual scale were similar to those 76 at the seasonal scale. 77

- 78
- 79 S1.2. Satellite-borne observations

As indicated in Table 3, the three coupled models demonstrated good performance 80 in simulating the shortwave radiation at the top of the atmosphere (SRTOA) and 81 longwave radiation at the top of the atmosphere (LRTOA). The annual MBs for SRTOA 82 and LRTOA are ranging from -4.40 to +5.42 W m⁻² and -2.14 to 0.66 W m⁻², 83 respectively. Seasonal SRTOA was also well simulated by all three models, especially 84 85 in winter (Figure S10). For seasonal LRTOA, the WRF-CMAQ and WRF-Chem model performances were better than that of WRF-CHIMERE for all seasons except autumn 86 87 (Figure S11). No matter whether ARI and/or ACI effects were enabled or not, simulations by WRF-CMAQ exhibited negative MBs in all seasons and WRF-88

CHIMERE displayed negative MBs in all seasons except for spring. For WRF-Chem,
 it produced underestimations and overestimations of SRTOA in spring-summer and
 autumn-winter, respectively.

92

93 S2. Evaluations of other air quality variables

94 According to the annual statistical results (Table 4 and Fig. S17), the NO₂ simulated by all three models had comparable correlations (0.50-0.60) with ground-95 based observations. WRF-CMAQ slightly overestimated NO2 (MBs of +2.74 to +3.26 96 μ g m⁻³, and NMBs of +8.77% to +10.44%). In contrast, WRF-Chem (MBs of -10.03) 97 to $-9.22 \ \mu g \ m^{-3}$, and NMBs of -32.14% to -29.55%) and WRF-CHIMERE (MBs of 98 -9.35 to $-8.96 \ \mu g \ m^{-3}$, and NMBs of -29.96% to -28.73%) tended to significantly 99 underestimate NO₂ in eastern China. For seasonal variations (Fig. 7), WRF-CMAO 100 101 showed the best performance in winter, and generally overestimated NO₂ in all seasons with the NMBs ranging from -2.21% to 34.34%. Both WRF-Chem and WRF-102 CHIMERE had maximum R and NMB values (0.42 to 0.50 and -13.09% to -3.23%, 103 respectively) in winter, and minimum values (0.57 to 0.62 and -41.57% to -38.05%, 104 105 respectively) in summer. The annual and seasonal positive biases of WRF-CMAQ are 106 partially caused by lack of incorporation of heterogeneous reactions of NO₂ that occurred on ground and aerosol surfaces (Spataro et al., 2013; Li et al., 2018; Liu et al., 107 2019). Recently, Zhang et al. (2021) addressed these gaps in CMAQ v5.3 but related 108 modules had not been integrated into the latest officially released version (version 5.4). 109 For WRF-Chem and WRF-CHIMERE, underestimations of NO₂ were consistent with 110 overestimations of O_3 , as the NO_x depletions were dominated by O_3 titrations. In 111 addition, subtle differences existed in the default settings of reaction rate constants for 112 specific chemical reactions referring to NO_x in WRF-CMAQ, WRF-Chem, and WRF-113 CHIMERE. More detailed information can be found in the source code files of 114 mech cb6r3 ae6 aq.def, module cbmz.F, and rates.F, respectively. With ARI 115 feedbacks enabled, the annual and seasonal R values of NO2 simulated by WRF-CMAQ 116 117 improved, but the NMBs worsened. In contrast, both WRF-Chem and WRF-CHIMERE presented improvements. Our results showed that ARI effects tended to amplify NO₂ 118 overestimations in WRF-CMAQ, and alleviate underestimations in WRF-Chem and 119 WRF-CHIMERE. This can be explained by the ARI-induced NO₂ reductions being 120 associated with slower photochemical reactions, strengthened atmospheric stability and 121 122 O3 titration, and vice versa. The inclusion of ACI effects in WRF-Chem and WRF-CHIMERE resulted in relatively limited improvements in model performances. 123

All models had the poorest performance in the annual and seasonal SO₂ and CO 124 simulations over eastern China (Table 4 and Fig. 6). For SO₂, annual correlations were 125 comparable for all models ranging from 0.39 to 0.41. All three models underestimated 126 SO₂. WRF-CMAQ showed the smallest MB of $-4.31 \ \mu g \ m^{-3}$, while WRF-Chem had 127 the largest of $-10.30 \ \mu g \ m^{-3}$. Gao et al. (2018) also demonstrated that all two-way 128 coupled models, except the WRF-Chem version from the University of Iowa modelling 129 group, tended to underestimate SO₂ (-54.77 to $4.50 \ \mu g \ m^{-3}$) over the North China Plain 130 during January 2013. The R values for all models were highest in autumn and winter 131 (0.31-0.46) and lowest in spring and summer (0.16-0.38), while NMBs showed the 132

opposite trend. As concluded by Liu et al. (2010), the larger underestimations of seasonal SO₂ concentrations were caused by the weaker solar radiation and lower amount of precipitation in winter compared to summer. These conditions slowed down the photochemical conversion of SO₂ to SO_4^{2-} , wet scavenging, and aqueous-phase oxidation rates of SO₂.

For CO (Table 4), WRF-CHIMERE (0.47-0.48) had higher correlation 138 coefficients than those of WRF-CMAQ (0.23-0.24) and WRF-Chem (0.21-0.22). All 139 three models underestimated CO concentrations, with MBs ranging from -0.52 to 140 -0.39 mg m^{-3} . These underestimations were partly attributed to uncertainties in the 141 vertical allocation of CO emissions (He et al., 2017). WRF-CMAQ and WRF-Chem 142 both produced spring-minimum (0.15) and winter-maximum (0.36) seasonal cycles of 143 R values (Fig. 6), while WRF-CHIMERE presented high (0.47) and low (0.26) 144 145 correlations in winter and summer, respectively. Negative seasonal NMBs varied from -56.94% to -33.18% in all coupled models. When ARI effects were considered, annual 146 and seasonal SO₂ and CO model performances in all three models showed slight 147 improvement (R increased approximately 0.01 and NMB enhanced from 0.98% to 148 149 1.71%). Moreover, the enhancements in the simulation accuracies of SO₂ and CO for the two-way coupled WRF-Chem and WRF-CHIMERE were dominated by ARI effects 150 rather than ACI effects. 151

152

153 S3. Statistical metrics

The correlation coefficient (R), mean bias (MB), normalized mean bias (NMB), normalized gross error (NGE) and root mean square error (RMSE) were adopted to assess the accuracy of coupled models in simulating meteorological and air quality parameters against the ground-based and satellite observations with the following equations:

159

160
$$R = \frac{\sum_{i=1}^{N} (p_i - \bar{p})(o_i - \bar{o})}{\sqrt{\sum_{i=1}^{N} (p_i - \bar{p})^2} \sqrt{\sum_{i=1}^{N} (o_i - \bar{o})^2}}$$
(S1)

161
$$MB = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)$$
(S2)

162
$$NMB = \frac{\sum_{i=1}^{N} (p_i - o_i)}{\sum_{i=1}^{N} (o_i)}$$
(S3)

163
$$NGE = \frac{\sum_{i=1}^{N} |p_i - o_i|}{\sum_{i=1}^{N} (o_i)}$$
(S4)

164
$$RMSE = \left[\frac{1}{N}\sum_{i=1}^{N} (p_i - o_i)^2\right]^{1/2}$$
(S5)

where p_i and o_i are the simulated and observed parameters, respectively, n is the total number of the values used for evaluation, and \bar{p} and \bar{o} are the averages of the simulation and observation, respectively.

Table S1. Summary of representations of cloud cover and cloud optical properties in 169 the Fast-JX scheme for WRF-CMAQ, WRF-Chem and WRF-CHIMERE. 170

Model	Cloud clover	Cloud optical properties			
		Optical properties	Effective Wavelength	Hydrometeor types	Method
WRF-CMAQ	 CF^a from WRF and CF calculated using RH and RH thresholds Exponential-random overlapping 	Extinction, single scattering albedo and asymmetry factor	294.6, 303.2, 310.0, 316.4, 333.1, 382.0 and 607.7 nm	Cloud liquid water, rain, snow, graupel and ice	The parameterizations proposed by Hu and Stamnes (1993) and Fu (1996)
WRF-Chem	1. CF=0 if CLWC ^b =0 2. CF=1 if CIC ^c >0	Cloud optical depth	300, 400, 600 and 999 nm	Cloud liquid water	Based on the empirical functions of relative humidity and cloud liquid water content
WRF-CHIMERE	1. CF=0 if CLWC or CIWC=0 2. CF=1 if CLWC or CIC>0	Cloud optical depth	200, 300, 400, 600, and 999 nm	Cloud liquid water and ice	Based on the functions of cloud effective <i>radii</i> and cloud liquid water/ice content
17	^a CF is cloud fraction. ^b CLWC is cloud	d liquid water content. °CIC is cloud ic	e content.		

- 172

Table S2. Summary of the treatments for aerosol size distributions and components in 173

each mode or bin for the coupled WRF-CMAQ, WRF-Chem and WRF-CHIMERE 174

models. 175

Model	Aerosol mechanism					Modal	approach				
			Aitk	en		Accum	nulation		Coa	arse	
WRF-CMAQ	AERO6	BC, OC, sulfate, metals	nitrate, ammonium,	PMOTHR ^d , PNCOM	M ^e water, BC PN	, OC, sulfate, nitrate, COM, water, metals, s	ammonium, PMOTHR, sea salt, dust	PMC ^f , sea salt, o	dust		
		Sectional approa	ch								
WRF-Chem	MOSAIC ^a	Bin 1		Bin 2		Bin 3		Bin 4			
		0.039–0.156 μm		0.156–0.625 μm		0.625–2.5 μm		2.5–10.0 μm			
		Black carbon (BC nitrate, sea salt ^d	C), OC, sulfate,	BC, OC, sulfate, 1	nitrate, sea salt	BC, OC, sulfate, ni	itrate, sea salt	Dust, sea salt,	OIN ^g		
WRF-CHIMERE	SAM ^b	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10
		0.039–0.078 μm	0.078–0.156 μm	0.156–0.312 μm	0.312–0.625 μm	0.625–1.25 μm	1.25–2.5 μm	2.5–5.0 μm	5.0–10.0 µm	10.0–20.0 μm	20.0-40
		BC, OC, sulfate,	BC, OC, sulfate,	BC, OC, sulfate,	BC, OC, sulfate,	BC, OC, sulfate,	BC, OC, sulfate, dust,	Dust, sea	BC, OC, PPM,	Dust, sea salt	Dust
		PPM ^c	PPM	PPM	PPM	PPM	sea salt	salt	dust, sea salt		
	176 •	MOSAIC is the Model	for Simulating Aerosol	Interactions and Chemis	stry, and the cbmz-mosa	ic emissions in "PNNL" fo	ormat (emiss inpt opt==101) wa	as used in WRF-Che	em simulations.		

_inpt_o 177 ^bSAM is the sectional aerosol mechanism. 178 °PPM is the primary particulate matter.

179 ^dPMOTHR is the remaining particulate matter that *can not be speciated into* fine mode, and more detailed information is at

180 $https://www.airqualitymodeling.org/index.php/CMAQv5.0_PM_emitted_species_list.$

181 ePNCOM is the primary non-carbon organic matter in fine mode and more detailed information is at https://www.airgualitymodeling.org/index.php/CMAQv5.0 PM emitted species list.

182 ^fPMC is the primary particulate matter in coarse mode and more detailed information is at https://www.airqualitymodeling.org/index.php/CMAQv5.0_PM_emitted_species_list. 183 ^gOIN is the other inorganic matter.

184

Table S3. Statistical metrics (R, MB, NMB, NGE, and RMSE) between simulated and 185 observed annual SSR, T2, RH2, Q2, WS10, WD10, precipitation, and PBLH at 08:00 186 and 20:00 LT) in eastern China. The best results are in bold, while mean simulations 187 and observations are in italics. 188

Variables	Statistics	WRF-CMAQ_NO	WRF-CMAQ_ARI	WRF-Chem_NO	WRF-Chem_ARI	WRF-Chem_BOTH	WRF-CHIMERE_NO	WRF-CHIMERE_ARI	WRF-CHIMERE_BOTH
SSR	Mean_sim	191.12	171.14	194.52	180.04	191.71	197.88	188.63	189.54
(155.22 W	R	0.88	0.89	0.88	0.89	0.88	0.85	0.85	0.85
m ~)	MB	35.89	15.91	39.30	24.82	36.48	42.65	33.41	34.32
	NMB (%)	23.12	10.25	25.32	15.99	23.50	27.48	21.52	22.11
	NGE (%)	206.62	170.85	202.41	170.70	208.05	242.53	221.67	226.29
	RMSE	133.05	120.60	134.16	123.94	134.45	154.71	147.73	148.57
T2	Mean_sim	12.81	12.61	12.99	12.84	12.96	11.84	11.68	11.69
(13.68 °C)	R	0.97	0.97	0.97	0.97	0.97	0.96	0.96	0.96

	MB	-0.86	-1.06	-0.68	-0.83	-0.71	-1.83	-2.00	-1.98
	NMB (%)	-6.33	-7.76	-4.97	-6.09	-5.21	-13.39	-14.60	-14.50
	NGE (%)	10.58	10.76	10.79	10.95	10.86	17.00	17.65	17.60
	RMSE	2.88	2.94	3.05	3.07	3.05	3.87	3.94	3.97
Q2	Mean_sim	8.69	8.51	8.57	8.54	8.58	8.35	8.30	8.30
(8.87 g kg ⁻¹)	R	0.90	0.90	0.89	0.89	0.89	0.88	0.88	0.88
	MB	-0.18	-0.35	-0.30	-0.32	-0.28	-0.52	-0.57	-0.56
	NMB (%)	-2.00	-3.98	-3.36	-3.66	-3.19	-5.84	-6.37	-6.35
	NGE (%)	16.80	16.85	19.70	19.66	19.77	20.55	20.65	20.62
	RMSE	2.93	2.95	3.09	3.09	3.10	3.17	3.18	3.18
RH2	Mean_sim	71.03	70.51	70.01	70.33	70.13	70.41	70.58	70.46
(67.48 %)	R	0.73	0.73	0.68	0.68	0.68	0.65	0.65	0.65
	MB	3.55	3.03	2.53	2.85	2.64	2.93	3.10	2.97
	NMB (%)	5.26	4.49	3.74	4.22	3.92	4.34	4.59	4.41
	NGE (%)	19.90	19.91	23.45	23.71	23.71	24.77	24.88	24.90
	RMSE	18.92	18.98	19.78	19.79	19.84	20.81	20.82	20.84
WS10	Mean_sim	3.27	3.23	3.30	3.29	3.30	3.85	3.83	3.83
(2.81 m s ⁻¹)	R	0.62	0.61	0.60	0.59	0.59	0.47	0.47	0.47
	MB	0.45	0.42	0.49	0.48	0.49	1.04	1.02	1.02
	NMB (%)	16.16	14.98	17.45	17.11	17.53	36.98	36.27	36.34
	NGE (%)	96.20	95.00	100.16	100.09	100.55	136.55	135.59	135.75
	RMSE	1.89	1.88	1.92	1.92	1.93	2.46	2.45	2.45
WD10	Mean_sim	177.13	176.62	177.87	177.82	178.11	171.97	171.53	171.68
(175.27°)	R	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02
	MB	1.85	1.35	2.60	2.55	2.83	-3.31	-3.74	-3.60
	NMB (%)	1.06	0.77	1.48	1.45	1.62	-1.89	-2.14	-2.05
	NGE (%)	94.30	94.00	101.16	101.09	101.55	126.75	125.79	125.85
	RMSE	149.57	149.45	149.45	149.38	149.57	148.70	148.47	148.71
Precipitation	Mean_sim	2.46	2.31	3.24	3.19	3.26	3.31	3.24	3.21
(PREC)	R	0.59	0.59	0.50	0.50	0.50	0.35	0.34	0.34
(2.72 mm d-	MB	-0.27	-0.42	0.51	0.46	0.53	0.59	0.52	0.48
1)	NMB (%)	-9.80	-15.35	18.86	16.83	19.43	21.46	18.96	17.63
	NGE (%)	310.71	283.10	442.60	428.11	445.89	573.24	565.36	557.56
	RMSE	8.03	7.96	10.32	10.26	10.33	10.87	10.85	10.93
PBLH00	Mean_sim	253.54	251.61	288.41	263.16	282.81	276.45	270.28	269.63
(432.13 m)	R	0.21	0.21	0.17	0.17	0.17	0.17	0.17	0.17
	MB	-178.59	-180.52	-143.72	-168.97	-149.32	-155.68	-161.85	-162.50
	NMB (%)	-41.33	-41.77	-33.26	-39.10	-34.55	-36.03	-37.45	-37.61
	NGE (%)	58.89	58.75	54.37	56.96	54.51	57.20	57.63	57.28
	RMSE	380.23	378.79	371.27	379.72	372.14	373.78	375.85	374.52
PBLH12	Mean_sim	230.14	236.80	358.05	332.45	346.54	363.47	360.13	359.03
(547.02 m)	R	0.40	0.40	0.39	0.40	0.39	0.34	0.35	0.35
	MB	-316.88	-310.22	-188.97	-214.57	-200.48	-183.55	-186.89	-188.00
	NMB (%)	-57.93	-56.71	-34.55	-39.22	-36.65	-33.56	-34.16	-34.37

NGE (%)	65.84	65.23	59.55	59.05	59.49	59.65	59.32	59.66
RMSE	505.64	502.24	459.64	460.51	459.50	470.39	467.90	469.19

Surface observations		WRF-CMAQ_ARI	WRF-Chem_ARI	WRF-Chem_ACI	WRF-Chem_BOTH	WRF-CHIMERE_ARI	WRF-CHIMERE_ACI	WRF-CHIMERE_BOTH
SSR	Annual	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Spring	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Summer	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Autumn	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Winter	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
T2	Annual	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$
	Autumn	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$
SH2	Annual							
5112	Spring	$R(\downarrow), MB(\downarrow), RMSE()$	$R(), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE()$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(\downarrow), RMSE()$
	Summer	$R(\downarrow), MB(\downarrow), RMSE()$	$R(), MB(\downarrow), RMSE()$ $P(\uparrow) MP(\downarrow) PMSE(\uparrow)$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(), RMSE()$	$R(), MB(\downarrow), RMSE()$	$R(\downarrow), MB(), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE()$
	Autumn	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(), MD(\downarrow), RMSE()$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MD(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE()$	$R(\downarrow), MD(\downarrow), RMSE()$	$R(\downarrow), MD(\downarrow), RMSE()$
	Winter	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	w miter	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
Q2	Annual	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
	Autumn	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(↓), MB(↑), RMSE(-)	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Winter	$R(\downarrow), MB(\downarrow), RMSE(-)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
WS10	Annual	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Autumn	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$

Table S4. Effects of aerosol feedbacks (ARI and/or ACI) considered in different coupled models on *statistical* metrics between annual and seasonal meteorological and air quality simulations and observations in eastern China.

PBLH_00	Annual	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$
	Summer	R(\uparrow), MB(\downarrow), RMSE(\downarrow)	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	R(\downarrow), MB(\uparrow), RMSE(\downarrow)	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$
	Winter	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\downarrow), RMSE(\uparrow)	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
PBLH_12	Annual	R(\uparrow), MB(\uparrow), RMSE(\downarrow)	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	R(\downarrow), MB(\uparrow), RMSE(\downarrow)	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	R(†), MB(\downarrow), RMSE(\downarrow)	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	R(\uparrow), MB(\downarrow), RMSE(\downarrow)
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\downarrow), RMSE(\uparrow)	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(\uparrow), MB(\downarrow), RMSE(\downarrow)	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(\uparrow), MB(\downarrow), RMSE(\uparrow)
	Summer	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	R(†), MB(\downarrow), RMSE(\downarrow)	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	R(\uparrow), MB(\downarrow), RMSE(\downarrow)
	Autumn	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\downarrow), RMSE(\uparrow)	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(\uparrow), MB(\downarrow), RMSE(\downarrow)	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(\uparrow), MB(\downarrow), RMSE(\downarrow)
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\downarrow), RMSE(\uparrow)	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
Precipitation	Annual	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Summer	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Autumn	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	R(\uparrow), MB(\downarrow), RMSE(\downarrow)	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
PM _{2.5}	Annual	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Spring	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Summer	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\uparrow), RMSE(\uparrow)	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	R(\uparrow), MB(\uparrow), RMSE(\uparrow)	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	R(\uparrow), MB(\uparrow), RMSE(\uparrow)
O ₃	Annual	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Spring	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Autumn	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
NO ₂	Annual	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
	Spring		$\mathbf{D}(\mathbf{A})$ $\mathbf{M}\mathbf{D}(\mathbf{A})$ $\mathbf{D}\mathbf{M}\mathbf{C}\mathbf{E}(\mathbf{A})$	$\mathbf{D}(1)$ $\mathbf{M}\mathbf{D}(1)$ $\mathbf{D}\mathbf{M}\mathbf{S}\mathbf{E}(\mathbf{A})$	$\mathbf{D}(\mathbf{A})$ MD(\mathbf{A}) DMSE(\mathbf{A})	$D(\uparrow)$ MD(\uparrow) DMSE(1)	$\mathbf{P}(1)$ M $\mathbf{P}(1)$ PMSE(1)	$\mathbf{D}(\mathbf{t}) \mathbf{M} \mathbf{D}(\mathbf{t}) \mathbf{D} \mathbf{M} \mathbf{S} \mathbf{E}(\mathbf{t})$
	1 0	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	K(), MB(), KMSE()	$\mathbf{K}(\downarrow), \mathbf{WD}(\downarrow), \mathbf{KWSE}(\downarrow)$	$\mathbf{K}(1), \mathbf{W}(\mathbf{D}(1), \mathbf{K})$	$\mathbf{K}(1), \mathbf{W}(\mathbf{D}(1), \mathbf{K})$	$\mathbf{K}(\mathbf{J}), \mathbf{W} \mathbf{D}(\mathbf{J}), \mathbf{K} \mathbf{W} \mathbf{D}(\mathbf{J})$	$\mathbf{K}(), \mathbf{WD}(), \mathbf{KWSE}()$
	Summer	R(), MB(), RMSE() $R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$ $R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$ $R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$ $R(\downarrow), MB(\uparrow), RMSE(\uparrow)$

	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
SO ₂	Annual	$R(\uparrow)$ MB(\uparrow) RMSE(\uparrow)	$R(1)$ MB(\uparrow), RMSE(1)	$R(\uparrow)$ MB(1) RMSE(\uparrow)	$R(\uparrow)$ MB(1), RMSE(\uparrow)	$R(\uparrow)$, MB(\uparrow), RMSE(\uparrow)	$R(I)$, MB(\uparrow), RMSE(\uparrow)	$R(\uparrow)$ MB(\uparrow) RMSE(\uparrow)
	Spring	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	R(1), MB(1), RMSE(1)
	Summer	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(), MB(\uparrow), RMSE()$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow) MB(\downarrow), RMSE(\uparrow)$	$R(), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow)$ MB(), RMSE()	$R(), MB(\uparrow), RMSE(\downarrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$ $R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
СО	Annual			π(), mb(ψ), πmbD()	n(), n(\), n	n(), n, n		n(),
	Spring	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Summer	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
		$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
Satellite observations		WRF-CMAO ARI	WRF-Chem ARI	WRF-Chem ACI	WRF-Chem BOTH	WRF-CHIMERE ARI	WRF-CHIMERE ACI	WRF-CHIMERE BOTH
SSR	Annual							
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Summer	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Autumn	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Winter	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
CL D		$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
SLR	Annual	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Summer	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	R(\uparrow), MB(\uparrow), RMSE(\downarrow)	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	R(\uparrow), MB(\uparrow), RMSE(\downarrow)
	Autumn	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Winter	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
TSR	Annual	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Autumn	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$

TLR	Annual	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
	Spring	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
	Summer	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
	Winter	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
Precipitation	Annual	R(1) MB(1) RMSF(1)	$R(\uparrow)$ MB(1) RMSE(1)	$\mathbf{R}(1)$ MB(\uparrow) RMSE(\uparrow)	$R(I)$ MB(\uparrow) RMSE(\uparrow)	$R(I) MB(I) RMSF(\uparrow)$	$R(\uparrow)$ MB(\uparrow) RMSF(\uparrow)	$\mathbf{R}(1)$ MB(1) RMSE(†)
	Spring	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(), MB(), RMSE()	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE()$	$R(\uparrow)$ MB(), RMSE()	$R(\uparrow)$ MB(\downarrow), RMSE(\downarrow)
	Summer	$R(\downarrow), MD(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MD(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MD(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MD(\uparrow), RMSE(\uparrow)$	$R(), MB(), RMSE(\downarrow)$ $P(), MD(), PMSE(\uparrow)$	$R(), MB(\downarrow), RMSE(\downarrow)$	$R(), MB(\downarrow), RMSE(\downarrow)$
	Autumn	$R(\downarrow), MD(\downarrow), RWSE()$	$R(), MD(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MD(\downarrow), RMSE()$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\downarrow), MB(\downarrow), RMSE()$	$R(), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(), RMSE()$	$R(), MB(\downarrow), RMSE()$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(), RMSE()$
CE	A	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
CF	Annual	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Autumn	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
LWP	Annual	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$
	Summer	R(1), MB(1), RMSE(1)	$R(1)$ MB(1) RMSE(\uparrow)	$R(1)$ MB(1) RMSE(\uparrow)	R(1) MB(1) RMSE(1)	R(1), MB(1), RMSE(1)	R(I) MB(I) RMSE(1)	$R(1)$, MB(1), RMSE(\uparrow)
	Autumn	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow)$ MB(\downarrow), RMSE(\uparrow)	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow)$ MB(\uparrow) RMSE(1)	$R(\downarrow)$ MB(\downarrow) RMSE(\downarrow)	$R(\downarrow)$ MB(\downarrow) RMSE(\downarrow)
	Winter	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$ $R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
AOD	Annual							
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Autumin	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	winter	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
O3 VCDs	Annual	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Spring	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Summer	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	R(↓), MB(↑), RMSE(↑)	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$

	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
NO ₂ VCDs	Annual	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(1), MB(†), RMSE(†)
	Spring	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Autumn	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(), MB(\uparrow), RMSE()$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$
	Winter	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$
SO ₂ VCDs	Annual	$\mathbf{D}(1)$ $\mathbf{MD}(\uparrow)$ $\mathbf{DMSE}(1)$	$\mathbf{D}(1)$ $\mathbf{MD}(\mathbf{f})$ $\mathbf{DMSE}(1)$	$\mathbf{P}(1)$ $\mathbf{MP}(1)$ $\mathbf{PMSE}(1)$		$\mathbf{D}(\mathbf{t}) \mathbf{M} \mathbf{D}(\mathbf{t}) \mathbf{D} \mathbf{M} \mathbf{S} \mathbf{E}(\mathbf{t})$	$\mathbf{D}(1) \mathbf{M} \mathbf{D}(1) \mathbf{D} \mathbf{M} \mathbf{S} \mathbf{E}(1)$	$\mathbf{D}(1) \mathbf{M} \mathbf{D}(1) \mathbf{D} \mathbf{M} \mathbf{S} \mathbf{E}(1)$
	Spring	$R(\downarrow), MD(\uparrow), RWISE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MD(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MD(\downarrow), RMSE(\downarrow)$	R(), MD(), RWSE()	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$
	Summer	R(), MB(), RMSE()	$R(\downarrow), MD(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MD(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MD(\downarrow), RMSE(\downarrow)$	R(), MD(), RMSE()	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(), RMSE()$
	Autumn	R(), MB(), RMSE()	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(), RMSE()$	$R(\downarrow), MB(), RMSE()$
	Winter	$R(\downarrow), MB(), RMSE()$	R(), MB(), RMSE()	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE()$	R(), MB(), RMSE()	$R(), MB(\downarrow), RMSE(\downarrow)$	R(), MB(), RMSE()
CO VCD-	A	$K(\downarrow), MB(), KMSE()$	$R(\downarrow), MB(), RMSE()$	$K(), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$K(\downarrow), MB(), KMSE()$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(), RMSE()$
COVCDS	Annual	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\uparrow), RMSE(\downarrow)	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	R(\uparrow), MB(\uparrow), RMSE(\downarrow)	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$
	Autumn	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\downarrow)$	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$
	Winter	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\downarrow)$	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$	R(↓), MB(↑), RMSE(↑)
NH ₃ VCDs	Annual	$\mathbf{R}(1)$ MB(\uparrow) RMSF(\uparrow)	$\mathbf{R}(\mathbf{I}) \mathbf{M} \mathbf{R}(\mathbf{I}) \mathbf{R} \mathbf{M} \mathbf{S} \mathbf{F}(\mathbf{I})$	$R(\uparrow)$ MB(1) RMSE(\uparrow)	$R(\uparrow) MB(\downarrow) RMSF(\uparrow)$	N/A	N/A	N/A
	Spring	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(), MB(\downarrow), RMSE(\uparrow)$	R(), MB(), RMSE()	N/A	N/A	N/A
	Summer	$R(\downarrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE(\downarrow)$	$R(\downarrow), MB(\downarrow), RMSE()$	N/A	N/A	N/A
	Autumn	$\mathbf{P}(1)$ MD(1), RMSE(1)	$R(\downarrow), MD(\downarrow), RMSE(\downarrow)$	$P(\uparrow)$ MD(\downarrow), RMSE(\downarrow)	$P(\uparrow), MD(\downarrow), RMSE(\downarrow)$	N/A	N/A	N/A
	Winter	$R(\uparrow), MB(\uparrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\downarrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\uparrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	$R(\uparrow), MB(\downarrow), RMSE(\uparrow)$ $R(\uparrow), MB(\downarrow), RMSE(\uparrow)$	N/A	N/A	N/A

- 1 Table S5. Radiation variables used in the two-way coupled WRF-CMAQ, WRF-Chem
- 2 and WRF-CHIMERE models with only enabling ARI compared to without aerosol
- 3 feedbacks.

Model	SW/LW radiation	Turning off feedback	Turning on ARI feedback	
	schemes	-	Direct effects	Semi-direct effects
WRF-CMAQ	RRTMG/RRTMG	Aerosol optical properties	Aerosol extinction, single scattering	 Solar uv and ir fluxes
		are not calculated	albedo (ω_0), and asymmetry factor	2. Radiative heating rate for the
			(g) 14 shortwave bands and 5	tten1d variable
			longwave bands (Wong et al., 2012)	
WRF-Chem	RRTMG/RRTMG	Aerosol optical properties	ω_0 (300 nm, 400 nm, 600 nm, 999	 Solar uv and ir fluxes
		are not calculated	nm), g (300 nm, 400 nm, 600 nm,	2. Radiative heating rate for the
			999 nm), AOD (τ) (300 nm, 400 nm,	tten1d variable
			600 nm, 999 nm, 16 bands 3400 nm	
			to 55600 nm) (Zhao et al., 2011)	
WRF-CHIMERE	RRTMG/RRTMG	Aerosol optical properties	ω_{0} (400 nm, 600 nm), g (400 nm,	 Solar uv and ir fluxes
		are not calculated	600 nm), AOD (300 nm, 400 nm,	Radiative heating rate for the
			999 nm, 16 bands 3400 nm to 55600	tten1d variable
			nm) (Briant et al., 2017)	

5 Table S6. Description of refractive indices and radiation schemes used in the WRF-6 CMAQ, WRF-Chem and WRF-CHIMERE models.

Model	Refractive indices of aerosol species groups	
-	SW	LW
WRF-CMAQ	1. Water (1.408+1.420×10 ⁻² i, 1.324+1.577×10 ⁻⁴ i, 1.277+1.516×10 ⁻³ i, 1.302+1.159×10 ⁻³ i, 1.312+2.360×10 ⁻⁴ i, 1.321+1.713×10 ⁻⁴ i, 1.323+2.425×10 ⁻⁵ i, 1.327+3.125×10 ⁻⁶ i	1. Water (1.160+0.321i, 1.140+0.117i, 1.232+0.047i, 1.266+0.038i, 1.300+0.034i) 2. Water soluble (1.570+0.069i, 1.700+0.055i, 1.800+0.128i, 2.233+0.334i, 1.220+0.066i)
	1 221+2 405×10%; 1 224+1 620×10%; 1 240+2 955×10%; 1 240+1 625×10%;	2. PC (1 570±2 200; 1 700±2 200; 1 800±2 200; 2 222±2 200; 1 220±2 200;)
	1.351+3.403×10 1, 1.354+1.035×10 1, 1.340+2.555×10 1, 1.345+1.055×10 1,	4. Incoluble (1.482+0.006); 1.600+0.107); 1.720+0.163); 1.508+0.117); 1.175+0.042))
	2. Water caluble $(1.442\pm5.719\times10^3; 1.420\pm1.777\times10^2; 1.420\pm1.060\times10^3;$	 San calt (1 410+0.010; 1 400+0.014; 1 560+0.017; 1 600+0.020; 1 402+0.012;) in terms of 5
	1 420±2 268×103; 1 462±1 621×102; 1 510±2 108×102; 1 510±1 020×102;	thermal windows at 12 240, 11 20, 0, 72, 8 870, 7, 820, um
	1.520+1.564×10-1, 1.50+1.021×10-1, 1.510+2.196×10-1, 1.510+1.529×10-1,	inemia windows at 15.240, 11.20, 9.75, 8.670, 7.650 µm
	$1.520+1.504\times10^{-1}$, $1.530+7.000\times10^{-1}$, $1.530+5.000\times10^{-1}$	
	3 BC (2.089+1.070); 2.014+0.039; 1.962+0.843; 1.950+0.784; 1.940+0.760;	
	1 930+0 749i 1 905+0 737i 1 870+0 726i 1 850+0 710i 1 850+0 710i 1 850+0 710i	
	1.850+0.710i, 1.850+0.710i, 2.589+1.771i)	
	4. Insoluble (1.272+1.165×10 ⁻² i, 1.168+1.073×10 ⁻² i, 1.208+8.650×10 ⁻³ i, 1.253+8.092×10 ⁻³ i,	
	1.329+8.000×10 ³ i, 1.418+8.000×10 ³ i, 1.456+8.000×10 ³ i, 1.518+8.000×10 ³ i,	
	$1.530 + 8.000 \times 10^{3}i, 1.530 + 8.000 \times 10^{3}i, 1.530 + 8.000 \times 10^{3}i, 1.530 + 8.440 \times 10^{3}i, 1.530 \times 10^$	
	1.530+3.000×10 ⁻² i, 1.470+9.000×10 ⁻² i)	
	5. Sea-salt (1.480+1.758×10 ³ i, 1.534+7.462×10 ³ i, 1.437+2.950×10 ³ i, 1.448+1.276×10 ³ i,	
	$1.450 + 7.944 \times 10^{4} i, 1.462 + 5.382 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.462 + 5.382 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.469 + 3.754 \times 10^{4} i, 1.470 + 1.498 \times 10^{4} i, 1.470 \times $	
	$1.490 + 2.050 \times 10^{.7} i, 1.500 + 1.184 \times 10^{.8} i, 1.502 + 9.938 \times 10^{.8} i, 1.510 + 2.060 \times 10^{.6} i, 1.510 \times 10^{$	
	1.510+5.000×106i, 1.510+1.000×102i) in terms of 14 wavelengths at 3.4615, 2.7885,	
	2.325, 2.046, 1.784, 1.4625, 1.2705, 1.0101, 0.7016, 0.53325, 0.38815, 0.299, 0.2316, 8.24	
	μm	
WRF-Chem	1. Water (1.35+1.524×10 ⁻⁸ i, 1.34+2.494×10 ^{.9} i, 1.33+1.638×10 ^{.9} i, 1.33+3.128×10 ^{.6} i)	1. Water (1.532+0.336i, 1.524+0.360i, 1.420+0.426i, 1.274+0.403i, 1.161+0.321i, 1.142+0.115i,
	2. Dust (1.55+0.0031, 1.550+0.0031, 1.550+0.0031, 1.550+0.0031)	1.232+0.04/11, 1.266+0.0391, 1.296+0.0341, 1.321+0.03441, 1.342+0.0921, 1.315+0.0121,
	3. BC (1.95+0.79i, 1.95+0.79i, 1.95+0.79i, 1.95+0.79i)	1.330+0.0131, 1.339+0.011, 1.350+0.00491, 1.408+0.01421)
	4. OC (1.45+0i, 1.45+0i, 1.45+0i, 1.45+0i) 5. Source In (1.51) 9. (Control?: 1.51:7.0100:108: 1.51:1.1940:108: 1.47:1.50:104:)	2. Dust (2.34+0.7), 2.904+0.8571, 1.748+0.4621, 1.508+0.2631, 1.911+0.3191, 1.822+0.261,
	5. Sea sait (1.51+8.00×10°1, 1.5+7.019×10°1, 1.5+1.184×10°1, 1.47+1.5×10°1)	2.91/+0.031, 1.55/+0.3/31, 1.242+0.0931, 1.44/+0.1031, 1.452+0.0011, 1.4/3+0.02431,
	o. Sunate (1.52+1.00×10 ⁻¹ , 1.52+1.00×10 ⁻¹ , 1.52+1.00×10 ⁻¹ , 1.52+1.75×10 ⁻¹) in terms of 4	1.495 TO.0111, 1.5 TO.0001) 2 DC (1.05±0.70; 1.05±0.70; 1.05±0.70; 1.05±0.70; 1.05±0.70; 1.05±0.70; 1.05±0.70;
	spectral intervals in 0.25%.55, 0.55%0.45, 0.55%0.05, 0.558%1.000 µm	1 95+0 79i)
		4 OC (1 86+0 5i 1 91+0 268i 1 988+0 185i 1 439+0 198i 1 606+0 059i 1 7+0 0488i
		1.888+0.11i, 2.489+0.3345i, 1.219+0.065i, 1.419+0.058i, 1.426+0.0261i, 1.446+0.0142i,
		1.457+0.013i, 1.458+0.01i)
		5. Sea salt (1.74+0.1978i, 1.76+0.1978i, 1.78+0.129i, 1.456+0.038i, 1.41+0.019i, 1.48+0.014i,
		$1.56 \pm 0.016i, 1.63 \pm 0.03i, 1.4 \pm 0.012i, 1.43 \pm 0.0064i, 1.56 \pm 0.0196i, 1.45 \pm 0.0029i, 1.485 \pm 0.0017i, 1.485$
		1.486+0.0014i)
		6. Sulfate (1.89+0.22i, 1.91+0.152i, 1.93+0.0846i, 1.586+0.2225i, 1.678+0.195i, 1.758+0.441i,
		$1.855 \pm 0.696 i, 1.597 \pm 0.695 i, 1.15 \pm 0.459 i, 1.26 \pm 0.161 i, 1.42 \pm 0.172 i, 1.35 \pm 0.14 i, 1.379 \pm 0.12 i, 1.375 \pm 0.14 i, 1.379 \pm 0.12 i, 1.375 \pm 0.14 i, 1.379 \pm 0.12 i, 1.375 \pm 0.14 i, 1.375 \pm 0.1$
		1.385+0.122i) in terms of 16 spectral intervals in 10-350, 350-500, 500-630, 630-700, 700-820,
		820-980, 980-1080, 1080-1180, 1180-1390, 1390-1480, 1480-1800, 1800-2080, 2080-2250,
		2250-2390, 2390-2600, 2600-3250 cm ⁻¹
WRF-CHIMERE	1. Water $(1.35+2.0\times10^{10}, 1.34+2.0\times10^{10}, 1.34+1.8\times10^{10}, 1.33+3.4\times10^{10}, 1.33+3.9\times10^{-7})$	1. Water (1.42+0.021, 1.35+0.004/1, 1.34+0.00851, 1.33+0.0151, 1.32+0.011, 1.32+0.131,
	2. Dust (1.53+0.00551, 1.53+0.00551, 1.53+0.00241, 1.53+8.9-41, 1.53+7.6-41)	1.32 ± 0.0321 , 1.3 ± 0.0341 , 1.2 ± 0.0391 , 1.23 ± 0.0471 , 1.15 ± 0.11 , 1.16 ± 0.321 , 1.27 ± 0.41 , 1.41 ± 0.431 , 1.52 ± 0.237 , 1.65 ± 0.55
	3. BC (1.95+0.791, 1.95+0.791, 1.95+0.791, 1.95+0.791, 1.95+0.791)	1.52+0.57(, 1.05+0.551)
	4. OC (1.55±0.091, 1.55±0.0081, 1.55±0.0051, 1.55±0.00051, 1.52±0.0101) 5. Samuelk (1.22±0.7×1073; 1.22±2.5×1073; 1.27±6.6×1083; 1.25±1.2×1085; 1.25±2.6×1063)	2. BC (1.95+0.791, 1.95+0.791,
	5. Sea sait (1.58+6.7×10-1, 1.58+5.5×10-1, 1.57+0.0×10-1, 1.50+1.2×10-1, 1.55+2.0×10-1) 6. PPM (1.53+0.008; 1.52+0.008; 1.52+0.008; 1.51+0.008; 1.51+0.008; 1.5+0.008; 1.55+0.	1.95±0.791, 1.95±0.791, 1.95±0.791, 1.95±0.791, 1.95±0.791, 1.95±0.791, 1.95±0.791, 1.95±0.791,
	7 SOA (1 56+0.003i 1 56+0.003i 1 56+0.003i 1 56+0.003i 1 56+0.003i)	3 OC (1.43+1.42); 1.46+1.43); 1.46+1.25); 1.46+2.67); 1.45+1.89); 1.42+1.71); 1.43+1.71);
	8. H ₅ SO ₄ (1.5+1.0×10 ^s i, 1.47+1.0×10 ^s i, 1.44+1.0×10 ^s i, 1.43+1.3×10 ^s i, 1.42+1.2×10 ^s i)	1.25+0.007i, 2.67+0.005i, 1.89+0.01i, 1.71+0.013i, 1.43+0.014i, 1.46+0.025i, 1.46+0.062i
	9. HNO ₃ (1.53+0.006i, 1.53+0.006i, 1.53+0.006i, 1.53+0.006i, 1.53+0.006i)	1.46+0.064i, 1.45+0.031i)
	10. NH3 (1.53+0.0005i, 1.52+0.0005i, 1.52+0.0005i, 1.52+0.0005i, 1.52+0.0005i) in terms of	4. Salt (1.43+0.019i, 1.37+0.0043i, 1.36+0.0084i, 1.36+0.011i, 1.34+0.01i, 1.35+0.083i,
	5 wavelengths at 0.2, 0.3, 0.4, 0.6, 0.999 µm	1.34+0.029i, 1.31+0.03i, 1.33+0.037i, 1.29+0.042i, 1.2+0.09i, 1.2+0.27i, 1.3+0.34i, 1.47+0.37i,
		1.56+0.03i, 1.51+0.09i)
		5. PPM (1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.05i, 1+0.5i,
		1+0.2i, 2.6+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i)
		6. SOA (1.56+0.003i, 1.56+0.003i, 1.56+0.003
		1.56+0.003i, 1.56+0.003i, 1.56+0.003i, 1.56+0.003i, 1.56+0.003i, 1.56+0.003i, 1.56+0.003i,
		1.56+0.003i, 1.56+0.003i, 1.56+0.003i)

$7. \ H_2 SO_4 \ (1.35 + 0.16 i, 1.4 + 0.13 i, 1.39 + 0.12 i, 1.38 + 0.12 i, 1.35 + 0.15 i, 1.42 + 0.18 i, 1.26 + 0.16 i, 1.42 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.$
1.15+0.44i, 1.57+0.73i, 1.83+0.7i, 1.71+0.46i, 1.68+0.2i, 1.59+0.21i, 1.87+0.48i, 1.89+0.27i,
1.86+0.31i)
8. HNO3 (1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.01i, 1.45+0.05i,
1+0.5i, 1+0.2i, 2.6+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i)
$9. \ \mathrm{NH_3} \ (1.45 + 0.01 i, 1.45 + 0.05 i, 1 + 0.5 i$
1+0.2i, 2.6+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i, 1.7+0.2i) in term of 16
wavelengths at 3.4, 4, 4.3, 4.6, 5.2, 6.1, 7.0, 7.8, 8.8, 9.7, 11.1, 13.2, 15.0, 17.7, 23.5, 55.6 µm

2 Table S7. Microphysics variables used in the two-way coupled WRF-CMAQ, WRF-

3 Chem and WRF-CHIMERE models with enabling ACI effects compared to those

4 without aerosol feedbacks.

Model	Microphysics	Turning off feedback	Turning on ACI feedback	
	scheme		First indirect effects	Second indirect effects
WRF-CMAQ	Morrison	1. Prescribed constant CDNC value of 250 cm ⁻³	None	None
WRF-Chem	Morrison	 Prescribed constant CDNC value of 250 cm⁻³ Constant cloud droplet effective radius with 10 μm Cloud droplet extinction coefficient, single scattering albedo, and asymmetry factor Prescribed ice nucleating particle (INP) concentration based on empirical formula (R asmussen et al. 2002) 	 Hygroscopicity Prognostic CDNC based on Köhler theory Prognostic cloud droplet effective radius Prognostic cloud droplet extinction coefficient, single scattering albedo, and asymmetry factor Prescribed INP 	1. Prognostic cloud-to-rain autoconversion rate
WRF-CHIMERE	Thompson	 Prescribed constant CDNC values of 300 cm³ Prescribed INP from heterogeneous ice nucleation in iceDeMott subroutine module_mp_thompson.F file using climatical dust concentration (dimeters > 0.5µm) (DeMott et al., 2015) and homogeneous freezing (Thompson and Eidhammer, 2014) with climatological hygroscopic aerosol concentrations (dimeters > 0.1µm) generated by QNWFA_QNIFA_Monthly_GFS file Prescribed cloud droplet and ice effective radius Prescribed extinction coefficient, single scattering albedo, and asymmetry factor of cloud droplet and ice 	 Hygroscopicity Prognostic CDNC based on Köhler theory Prognostic INP from heterogeneous ice nucleation based on online dust calculation (dimeters > 0.5 μm) and homogeneous freezing with prognostic hygroscopic aerosol concentrations (dimeters > 0.1 μm) (Tuccella et al., 2019) Prognostic cloud droplet and ice effective radius Prognostic extinction coefficient, single scattering albedo, and asymmetry factor of cloud droplet and ice 	1. Prognostic cloud-to-rain autoconversion rate

- 6 Table S8. Summary of download information on model output of each simulation
- 7 scenario.

Seemarie:			
Scenario	DOI	Link	Reference
WRF-CMAQ_NO	https://doi.org/10.5281/zenodo.7951404	https://zenodo.org/record/7951404	Gao et al., 2023i_part1
	https://doi.org/10.5281/zenodo.7951467	https://zenodo.org/record/7951467	Gao et al., 2023i_part2
	https://doi.org/10.5281/zenodo.7951475	https://zenodo.org/record/7951475	Gao et al., 2023i_part3
WRF-CMAQ_ARI	https://doi.org/10.5281/zenodo.7949895	https://zenodo.org/record/7949895	Gao et al., 2023j_part1
	https://doi.org/10.5281/zenodo.7950644	https://zenodo.org/record/7950644	Gao et al., 2023j_part2
	https://doi.org/10.5281/zenodo.7950830	https://zenodo.org/record/7950830	Gao et al., 2023j_part3
WRF-Chem_NO	https://doi.org/10.5281/zenodo.7943804	https://zenodo.org/record/7943804	Gao et al., 2023k_part1
	https://doi.org/10.5281/zenodo.7945383	https://zenodo.org/record/7945383	Gao et al., 2023k_part2
	https://doi.org/10.5281/zenodo.7946944	https://zenodo.org/record/7946944	Gao et al., 2023k_part3
	https://doi.org/10.5281/zenodo.7947169	https://zenodo.org/record/7947169	Gao et al., 2023k part4
WRF-Chem_ARI	https://doi.org/10.5281/zenodo.7947050	https://zenodo.org/record/7947050	Gao et al., 20231_part1
—	https://doi.org/10.5281/zenodo.7948216	https://zenodo.org/record/7948216	Gao et al., 20231 part2
	https://doi.org/10.5281/zenodo.7949410	https://zenodo.org/record/7949410	Gao et al., 2023l_part3
	https://doi.org/10.5281/zenodo.7949561	https://zenodo.org/record/7949561	Gao et al., 20231_part4
WRF-Chem_BOTH	https://doi.org/10.5281/zenodo.7939221	https://zenodo.org/record/7939221	Gao et al. 2023m_part1
—	https://doi.org/10.5281/zenodo.7943002	https://zenodo.org/record/7943002	Gao et al. 2023m part2
	https://doi.org/10.5281/zenodo.7943079	https://zenodo.org/record/7943079	Gao et al. 2023m_part3
	https://doi.org/10.5281/zenodo.7943323	https://zenodo.org/record/7943323	Gao et al. 2023m part4
WRF-CHIMERE NO	https://doi.org/10.5281/zenodo.7951775	https://zenodo.org/record/7951775	Gao et al. 2023n part1
_	https://doi.org/10.5281/zenodo.7951779	https://zenodo.org/record/7951779	Gao et al. 2023n part2
	https://doi.org/10.5281/zenodo.7951791	https://zenodo.org/record/7951791	Gao et al. 2023n_part3
	https://doi.org/10.5281/zenodo.7951793	https://zenodo.org/record/7951793	Gao et al. 2023n_part4
WRF-CHIMERE_ARI	https://doi.org/10.5281/zenodo.7952838	https://zenodo.org/record/7952838	Gao et al. 2023o_part1
_	https://doi.org/10.5281/zenodo.7952840	https://zenodo.org/record/7952840	Gao et al. 2023o_part2
	https://doi.org/10.5281/zenodo.7952842	https://zenodo.org/record/7952842	Gao et al. 2023o_part3
	https://doi.org/10.5281/zenodo.7952844	https://zenodo.org/record/7952844	Gao et al. 2023o_part4
WRF-CHIMERE_BOTH	https://doi.org/10.5281/zenodo.7952859	https://zenodo.org/record/7952859	Gao et al. 2023p_part1
_	https://doi.org/10.5281/zenodo.7952863	https://zenodo.org/record/7952863	Gao et al. 2023p_part2
	https://doi.org/10.5281/zenodo.7952865	https://zenodo.org/record/7952865	Gao et al. 2023p part3
	https://doi.org/10.5281/zenodo.7952867	https://zenodo.org/record/7952867	Gao et al. 2023p_part4

Figure S1. Statistical metrics (R, MB and RMSE) between simulated and observed annual T2 in eastern China.

5 6 7

Figure S2. The same as Fig. S1 but for Q2.

8
9 Figure S3. The same as Fig. S1 but for RH2.

5 6

8 9

Figure S6. The same as Fig. S1 but for PBLH at 08:00 LT.

Figure S8. Comparisons of model capacities between our study (red stars) and previous
literature (box plots) in terms of the surface T2, RH2, Q2, and WS10 in eastern China.
Note that red stars in the fifth column of each subgraph represent the statistical metrics
of WRF-CHIMERE in this study.

Figure S9. Spatial distributions of seasonal SLR between CERES observations and simulations from WRF-CMAQ, WRF-Chem, and WRF-CHIMERE with and without aerosol feedbacks in eastern China.

Figure S12. The same as Fig. S9 but for precipitation.

5 6 Figure S14. The same as Fig. S9 but for liquid water path.

2

Figure S15. Statistical metrics (R, MB and RMSE) between simulated and observed annual $PM_{2.5}$ concentrations in eastern China.

Figure S17. The same as Fig. S15 but for NO₂.

)

Figure S18. The same as Fig. S15 but for SO₂.

Figure S19. The same as Fig. S15 but for CO.

1 WRF-Chem WRF-CMAQ WRF-NAQPMS GRAPES-CUACE * This study 2 Figure S20. Comparisons of model capacities between our study (red stars) and 3 previous literature (box plots) in terms of surface PM_{2.5} and O₃ concentrations in eastern 4 China. Note that red stars in the fifth column of each subgraph represent the statistical 5 metrics of WRF-CHIMERE in this study.

11

Figure S25. Spatial distributions of seasonal total NH₃ column between MOPITT observations and simulations from WRF-CMAQ and WRF-Chem with and without aerosol feedbacks in eastern China.

Figure S26. Summary of the selected options of radiation and microphysics schemes in
 coupled WRF-CMAQ, WRF-Chem and WRF-CHIMERE in this study.

4

5 Reference

- Briant, R., Tuccella, P., Deroubaix, A., Khvorostyanov, D., Menut, L., Mailler, S., and
 Turquety, S.: Aerosol-radiation interaction modelling using online coupling
 between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistrytransport model, through the OASIS3-MCT coupler, Geoscientific Model
 Development, 10, 927–944, https://doi.org/10.5194/gmd-10-927-2017, 2017.
 Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A., Balzarini, A.,
- Baro, R., Bianconi, R., and Chemel, C.: Comparative analysis of meteorological
 performance of coupled chemistry-meteorology models in the context of AQMEII
 phase 2, Atmos. Environ., 115, 470–498,
 https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015.
- Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang,
 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF CMAQ without aerosol feedbacks in eastern China for January-April 2017,
 Zenodo [data set], https://doi.org/10.5281/zenodo.7951404, 2023i part1.
- Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang,
 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRFCMAQ without aerosol feedbacks in eastern China for May-August 2017, Zenodo
 [data set], https://doi.org/10.5281/zenodo.7951467, 2023i_part2.
- Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang,
 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRFCMAQ without aerosol feedbacks in eastern China for September-December 2017,
 Zenodo [data set], https://doi.org/10.5281/zenodo.7951475, 2023i part3.
- Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang,
 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRFCMAQ with enabling aerosol-radiation interactions in eastern China for JanuaryApril 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7949895,
 2023j part1.

Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRFCMAQ with enabling aerosol-radiation interactions in eastern China for MayAugust 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7950644, 2023j_part2.

Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang,
Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRFCMAQ with enabling aerosol-radiation interactions in eastern China for
September-December 2017, Zenodo [data set],
https://doi.org/10.5281/zenodo.7950830, 2023j part3.

Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 1 2 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-Chem without aerosol feedbacks in eastern China for January-March 2017, 3 Zenodo [data set], https://doi.org/10.5281/zenodo.7943804, 2023k part1. 4 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 5 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-6 7 Chem without aerosol feedbacks in eastern China for April-June 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7945383, 2023k part2. 8 9 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-10 Chem without aerosol feedbacks in eastern China for July-September 2017, 11 Zenodo [data set], https://doi.org/10.5281/zenodo.7946944, 2023k part3. 12 13 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-14 Chem without aerosol feedbacks in eastern China for October-December 2017, 15 Zenodo [data set], https://doi.org/10.5281/zenodo.7947169, 2023k part4. 16 17 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-18 19 Chem with enabling aerosol-radiation interactions in eastern China for January-March 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7947050, 20 20231 part1. 21 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 22 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-23 Chem with enabling aerosol-radiation interactions in eastern China for April-June 24 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7948216, 20231 part2. 25 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 26 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-27 Chem with enabling aerosol-radiation interactions in eastern China for July-28 September 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7949410, 29 20231 part3. 30 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 31 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-32 Chem with enabling aerosol-radiation interactions in eastern China for October-33 December 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7949561, 34 20231 part4. 35 36 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-37 Chem with enabling aerosol-radiation interactions and aerosol-cloud interactions 38 39 eastern China for January-March 2017. Zenodo [data in set]. https://doi.org/10.5281/zenodo.7939221, 2023m part1. 40 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 41 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-42 Chem with enabling aerosol-radiation interactions and aerosol-cloud interactions 43 China April-June 44 in eastern for 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7943002, 2023m part2. 45 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 46 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-47 48 Chem with enabling aerosol-radiation interactions and aerosol-cloud interactions China July-September 49 in eastern for 2017. Zenodo [data set]. https://doi.org/10.5281/zenodo.7943079, 2023m part3. 50

Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 1 2 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-3 Chem with enabling aerosol-radiation interactions and aerosol-cloud interactions China for October-December 4 in eastern 2017, Zenodo [data set]. https://doi.org/10.5281/zenodo.7943323, 2023m part4. 5 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 6 7 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-8 CHIMERE without aerosol feedbacks in eastern China for January-March 2017, 9 Zenodo [data set], https://doi.org/10.5281/zenodo.7951775, 2023n part1. Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 10 11 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-CHIMERE without aerosol feedbacks in eastern China for April-June 2017, 12 13 Zenodo [data set], https://doi.org/10.5281/zenodo.7951779, 2023n part2. 14 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 15 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-CHIMERE without aerosol feedbacks in eastern China for July-September 2017, 16 17 Zenodo [data set], https://doi.org/10.5281/zenodo.7951791, 2023n part3. Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 18 19 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-CHIMERE without aerosol feedbacks in eastern China for October-December 20 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7951793, 2023n part4. 21 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 22 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-23 CHIMERE with enabling aerosol-radiation interactions in eastern China for 24 January-March 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7952838, 25 2023o part1. 26 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 27 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-28 CHIMERE with enabling aerosol-radiation interactions in eastern China for April-29 30 June 2017. Zenodo [data set], https://doi.org/10.5281/zenodo.7952840, 20230 part2. 31 32 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-33 CHIMERE with enabling aerosol-radiation interactions in eastern China for July-34 September 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7952842, 35 36 2023o part3. Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 37 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-38 39 CHIMERE with enabling aerosol-radiation interactions in eastern China for October-December 40 2017. Zenodo [data set]. https://doi.org/10.5281/zenodo.7952844, 20230 part4. 41 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 42 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-43 CHIMERE with enabling aerosol-radiation interactions and aerosol-cloud 44 interactions in eastern China for January-March 2017, Zenodo [data set], 45 https://doi.org/10.5281/zenodo.7952859, 2023p part1. 46 47 Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, 48 Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-CHIMERE with enabling aerosol-radiation interactions and aerosol-cloud 49

1	interactions in eastern China for April-June 2017, Zenodo [data set], https://doi.org/10.5281/zenodo.7952863_2023p_part2
2	Chao Gao Xuelei Zhang Aijun Xiu Oingging Tong Hongmei Zhao Shichun Zhang
4	Guangyi Yang Mengduo Zhang Shengjin Xie. Simulation results from WRF-
5	CHIMERE with enabling aerosol-radiation interactions and aerosol-cloud
6	interactions in eastern China for July-September 2017. Zenodo [data set].
7	https://doi.org/10.5281/zenodo.7952865, 2023p part3.
8	Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang,
9	Guangyi Yang, Mengduo Zhang, Shengjin Xie: Simulation results from WRF-
10	CHIMERE with enabling aerosol-radiation interactions and aerosol-cloud
11	interactions in eastern China for October-December 2017, Zenodo [data set],
12	https://doi.org/10.5281/zenodo.7952867, 2023p_part4.
13	DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo,
14	Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.:
15	Integrating laboratory and field data to quantify the immersion freezing ice
16	nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393-409,
17	https://doi.org/10.5194/acp-15-393-2015, 2015.
18	Fu, Q.: An accurate parameterization of the solar radiative properties of cirrus clouds
19	for climate models, Journal of climate, 9, 2058–2082,
20	https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2, 1996.
21	Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., Li, J., Kang, J. E., Huang, K., Dong,
22	X., Zhuang, B., Li, S., Ge, B., Wu, Q., Cheng, Y., Wang, Y., Lee, H. J., Kim, C.
23	H., Fu, J. S., Wang, T., Chin, M., Woo, J. H., Zhang, Q., Wang, Z., and Carmichael,
24	G. R.: Air quality and climate change, Topic 3 of the Model Inter-Comparison
25	Study for Asia Phase III (MICS-Asia III)- Part 1: Overview and model evaluation,
26	Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018,
27	
28	Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., and
29	Bian, L.: The climatology of planetary boundary layer height in China derived
30	from radiosonde and reanalysis data, Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5104/son.16.12200.2016
31	1000000000000000000000000000000000000
32	Hu, Y. A. and Stammes, K.: An accurate parameterization of the radiative properties of
33 24	water clouds suitable for use in climate models, journal of climate, 0, $728-742$, https://doi.org/10.1175/1520.04/2(1002)006/0728:A A DOTD > 2.0 CO:2.1002
54 25	$\begin{array}{c} \text{Imps.//doi.org/10.1175/1520-0442(1995)000} \\ \text{Vis} & \text{Chan I Wang V Chan T Mallouki A Chan I and Wang W:} \end{array}$
35	Characteristics and sources of nitrous acid in an urban atmosphere of northern
37	China: Results from 1-yr continuous observations. Atmos Environ, 182, 296–306
38	https://doi.org/10.1016/j.atmoseny.2018.03.033.2018
39	Liu X -H Zhang V Cheng S -H Xing I Zhang O Streets D G Jang C Wang
40	W-X., and Hao, I-M.: Understanding of regional air pollution over China using
41	CMAO part I performance evaluation and seasonal variation Atmos Environ
42	44, 2415–2426, https://doi.org/10.1016/i.atmoseny.2010.03.035, 2010.
43	Liu, Y., Lu, K., Li, X., Dong, H., Tan, Z., Wang, H., Zou, O., Wu, Y., Zeng, L., and
44	Hu, M.: A comprehensive model test of the HONO sources constrained to field
45	measurements at rural North China Plain. Environ. Sci. Technol., 53, 3517–3525.
46	https://doi.org/10.1021/acs.est.8b06367, 2019.
47	Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R.,
48	Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S.,
49	Hirtl, M., Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M. D.,
50	Pabla, B., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang,

2 weather, Atmos. Environ., 115, 442-469, on https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015. 3 Rasmussen, R. M., Geresdi, I., Thompson, G., Manning, K., and Karplus, E.: Freezing 4 drizzle formation in stably stratified layer clouds: The role of radiative cooling of 5 cloud droplets, cloud condensation nuclei, and ice initiation, Journal of the 6 atmospheric sciences, 59, 837-860. https://doi.org/10.1175/1520-7 0469(2002)059<0837:FDFISS>2.0.CO;2, 2002. 8 Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., and Hu, M.: Occurrence 9 of atmospheric nitrous acid in the urban area of Beijing (China), Sci. Total 10 Environ., 447, 210–224, https://doi.org/10.1016/j.scitotenv.2012.12.065, 2013. 11 Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and 12 13 precipitation development in a large winter cyclone, Journal of the atmospheric sciences, 71, 3636-3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014. 14 Tuccella, P., Menut, L., Briant, R., Deroubaix, A., Khvorostyanov, D., Mailler, S., 15 Siour, G., and Turquety, S.: Implementation of Aerosol-Cloud Interaction within 16 17 WRF-CHIMERE Online Coupled Model: Evaluation and Investigation of the Indirect Radiative Effect from Anthropogenic Emission Reduction on the Benelux 18 Union, Atmosphere, 10, 20, https://doi.org/10.3390/atmos10010020, 2019. 19 Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., 20 Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with 21 aerosol feedback: software development and preliminary results, Geoscientific 22 Model Development, 5, 299–312, https://doi.org/10.5194/gmd-5-299-2012, 2012. 23 Xie, B., Fung, J. C. H., Chan, A., and Lau, A.: Evaluation of nonlocal and local

J., and Galmarini, S.: Feedbacks between air pollution and weather, Part 1: Effects

- Xie, B., Fung, J. C. H., Chan, A., and Lau, A.: Evaluation of nonlocal and local
 planetary boundary layer schemes in the WRF model, J. Geophys. Res. Atmos.,
 117, https://doi.org/10.1029/2011JD017080, 2012.
- Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu,
 Y., and Duan, F.: Improving the representation of HONO chemistry in CMAQ and
 examining its impact on haze over China, Atmos. Chem. Phys., 21, 15809–15826,
 https://doi.org/10.5194/acp-21-15809-2021, 2021.
- Zhao, C., Liu, X., Ruby Leung, L., and Hagos, S.: Radiative impact of mineral dust on
 monsoon precipitation variability over West Africa, Atmospheric Chemistry and
 Physics, 11, 1879–1893, https://doi.org/10.5194/acp-11-1879-2011, 2011.