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Abstract. The processes responsible for methane (CH4)
emissions from boreal wetlands are complex; hence, their
model representation is complicated by a large number of
parameters and parameter uncertainties. The arctic-enabled
dynamic global vegetation model LPJ-GUESS (Lund–
Potsdam–Jena General Ecosystem Simulator) is one such
model that allows quantification and understanding of the
natural wetland CH4 fluxes at various scales, ranging from
local to regional and global, but with several uncertainties.
The model contains detailed descriptions of the CH4 produc-
tion, oxidation, and transport controlled by several process
parameters.

Complexities in the underlying environmental processes,
warming-driven alternative paths of meteorological phenom-
ena, and changes in hydrological and vegetation conditions
highlight the need for a calibrated and optimised version
of LPJ-GUESS. In this study, we formulated the parameter
calibration as a Bayesian problem, using knowledge of rea-
sonable parameters values as priors. We then used an adap-
tive Metropolis–Hastings (MH)-based Markov chain Monte
Carlo (MCMC) algorithm to improve predictions of CH4
emission by LPJ-GUESS and to quantify uncertainties. Ap-
plication of this method on uncertain parameters allows for
a greater search of their posterior distribution, leading to a
more complete characterisation of the posterior distribution
with a reduced risk of the sample impoverishment that can
occur when using other optimisation methods. For assimila-
tion, the analysis used flux measurement data gathered dur-
ing the period from 2005 to 2014 from the Siikaneva wet-

lands in Southern Finland with an estimation of measure-
ment uncertainties. The data are used to constrain the pro-
cesses behind the CH4 dynamics, and the posterior covari-
ance structures are used to explain how the parameters and
the processes are related. To further support the conclusions,
the CH4 flux and the other component fluxes associated with
the flux are examined.

The results demonstrate the robustness of MCMC meth-
ods to quantitatively assess the interrelationship between ob-
jective function choices, parameter identifiability, and data
support. The experiment using real observations from Si-
ikaneva resulted in a reduction in the root-mean-square er-
ror (RMSE), from 0.044 to 0.023 gC m−2 d−1, and a 93.89 %
reduction in the cost function value. As a part of this work,
knowledge about how CH4 data can constrain the parame-
ters and processes is derived. Although the optimisation is
performed based on a single site’s flux data from Siikaneva,
the algorithm is useful for larger-scale multi-site studies for a
more robust calibration of LPJ-GUESS and similar models,
and the results can highlight where model improvements are
needed.
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1 Introduction

Methane (CH4) is the second most important long-lived
greenhouse gas after carbon dioxide (CO2) (Ciais et al.,
2013; Kirschke et al., 2013). It has been reported that the
global atmospheric CH4 concentration has been growing
since the pre-industrial period. In 2021, it reached a value
of 1908 ppb (parts per billion), nearly 2.62 times greater than
its estimated value in 1750 (Dlugokencky, 2021). This in-
crease in the atmospheric concentration of CH4 is responsi-
ble for around 16.5 % of the total effective radiative forcing
(in W m−2) of the well-mixed greenhouse gases (IPCC AR6:
Forster et al., 2021).

Among the biogenic sources, wetlands contribute around
19 %–33 % of current global terrestrial CH4 emissions and
are the largest and the most uncertain (Kirschke et al., 2013;
Saunois et al., 2020; Bousquet et al., 2006). Wetlands occupy
around 3.8 % of the Earth’s land surface and are mainly lo-
cated in high-latitude regions. There is approximately 455 Pg
of carbon stored in boreal and subarctic wetland peat/His-
tosol soils. Under long-term anaerobic soil situations, this
carbon will be metabolised by the anaerobic microorganisms
(called methanogens) and will eventually be emitted as CH4
back to the atmosphere (Aurela et al., 2009).

In the future, climate change may cause a positive feed-
back on CH4 emissions from wetlands due to a warmer
and wetter climate (Johansson et al., 2006; Bridgham et al.,
2008). According to Zhang et al. (2017), at the end of the
21st century, 38 %–56 % of the CH4 production from the
wetlands will be climate change induced. Increased uncer-
tainty in CH4 emission from boreal wetlands (Christensen
et al., 2007) is also predicted, partly due to expected spatio-
temporal changes in wetland extent (Saunois et al., 2016).
Considering the fragility of boreal wetlands in a changing
environment (Jacob et al., 2007), one way to quantify their
carbon budget is to model their carbon dynamics, including
CH4 emission. Realistic and optimised process-based vege-
tation models can be used to reach a more precise estima-
tion of emission variability and trends. However, representa-
tion of the complex biogeochemical processes, including soil
carbon turnover, vegetation dynamics, hydrology, soil ther-
mal dynamics, and defining wetland boundaries are complex;
therefore, estimating the contribution from multiple path-
ways for CH4 production, consumption, and release compli-
cates wetlands CH4 modelling (Ahti et al., 1968; Wania et al.,
2010, 2013; Susiluoto et al., 2018).

The Lund–Potsdam–Jena General Ecosystem Simulator
(LPJ-GUESS) (Smith et al., 2014) is one of a few available
process-based dynamic global vegetation models (DGVMs)
that simulate local to global vegetation dynamics and soil
biogeochemistry (Smith, 2001; Sitch et al., 2003). Using in-
formation about the climate and the concentration of CO2 in
the atmosphere, it predicts the structural, compositional, and
functional properties of the native ecosystems of major cli-
mate zones of the Earth. Considering the complexity of LPJ-

GUESS, with its large number of uncertain process parame-
ters, the model requires a mathematically robust framework
for parameter optimisation (Wramneby et al., 2008). Data as-
similation using Bayesian statistics can be seen as a way of
combining observations with prior information (i.e. model
process formulation and prior model parameter values) to
derive posterior parameter and emission estimates (Susilu-
oto et al., 2018; Ghil and Malanotte-Rizzoli, 1991; Dee,
2005; Carrassi et al., 2018). The Markov chain Monte Carlo
(MCMC) method (Metropolis et al., 1953b) is a powerful and
convenient Bayesian framework (Tarantola, 1987) for data
assimilation, as it can combine prior information with ob-
servations to sample from the posterior distributions in com-
plex models. This study has developed an adaptive MCMC
Metropolis–Hasting (AMCMC-MH) framework (Hastings,
1970b; Tarantola, 1987) with “Rao-Blackwellised” adapta-
tion (transformation of estimators using the Rao–Blackwell
theorem) of the multivariate Gaussian random walk propos-
als (Andrieu and Thoms, 2008). The algorithm minimises the
model–data misfit (i.e. a cost function) by sampling from the
probability density function (PDF) of the posterior parame-
ters. The adaptation allows the algorithm to learn the shape
of the posterior, thereby improving sampling efficiency. The
main objective of this paper is to evaluate the capabilities and
limitations of the AMCMC-MH framework to optimise CH4
wetland emissions simulated by the LPJ-GUESS model by
analysing the posterior parameter distributions, the parame-
ter correlations, and the processes they control.

2 Data and methodology

2.1 Siikaneva wetland and measurements

The Siikaneva wetland is located at 61°49′ N, 24°12′ E, and
160 m a.s.l., and it is the second largest undrained wetland
complex in Southern Finland (Ahti et al., 1968; Rinne et al.,
2007). This boreal wetland complex has an area of 12 km2,
including minerotrophic and ombrotrophic sites with over
6 m of peat deposition under the surface (Mathijssen et al.,
2016; Aurela et al., 2007; Rinne et al., 2007). The estimated
average annual total precipitation is about 707 mm. The av-
erage temperatures for January and July are approximately
−7.2 and 17.1 °C, respectively. The estimated mean annual
temperature is around 4.2 °C (Korrensalo et al., 2018). Total
annual CH4 emissions from the Siikaneva wetland vary be-
tween 6.0 and 14 gC m−2, while net CO2 fluxes vary between
−96 and 27 gC m−2 (Rinne et al., 2018).

The CH4 flux data were obtained from https://doi.org/
10.23729/bcc98726-ead8-45d4-ac39-1e4b1bf5e243 (Alek-
seychik et al., 2019a). Daily measurements of incom-
ing short-wave radiation (swr), precipitation, and air tem-
perature collected at the wetland were used as input
to the model. As the meteorological data measured di-
rectly at the Siikaneva wetland have several significant
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gaps, which made them unsuitable as input for the
model, we used precipitation and temperature data col-
lected at a nearby station called Juupajoki – Hyytiälä (https:
//en.ilmatieteenlaitos.fi/download-observations, last access:
5 February 2024), located approximately 5.5 km from Si-
ikaneva. The swr data collected at the Hyytiälä weather
station, situated around 6 km from Siikaneva, were ob-
tained from https://doi.org/10.23729/23dd00b2-b9d7-467a-
9cee-b4a122486039 (Aalto et al., 2022). Given the short
distances between these sites and Siikaneva, we assumed
that the meteorological variables were representative of Si-
ikaneva. To verify this assumption, we analysed the available
data from Siikaneva and the datasets collected from the Ju-
upajoki and Hyytiälä sites. The air temperature and precip-
itation from the Juupajoki and Siikaneva sites showed Pear-
son correlation values of 0.998 and 0.706, respectively. The
swr data collected at Hyytiälä and Siikaneva showed a cor-
relation of 0.98. However, there were some minor gaps in
the swr data collected at Hyytiälä that were gap-filled us-
ing the available data collected at Siikaneva, which were ob-
tained from https://doi.org/10.23729/371cd3e4-26ae-41c9-
96d7-69acccc206f7 (Alekseychik et al., 2019b) for the cor-
responding periods.

Additional inputs to the model are the atmospheric
CO2 concentration, as described by McGuire et al. (2001)
and updated until recent years using data from https://
gml.noaa.gov/ccgg/trends (last access: 5 February 2024).
Daily water table depth (wtd) and soil temperature at
a 5 cm depth collected from the Siikaneva site are ob-
tained from https://doi.org/10.23729/371cd3e4-26ae-41c9-
96d7-69acccc206f7 (Alekseychik et al., 2019b) and are used
to evaluate the modelled values.

2.2 CH4 model description in LPJ-GUESS

Compared with version 4 of LPJ-GUESS described by Smith
et al. (2014), version 4.1, which we used for this study, has
more detailed representations of plant functional type (PFT)
characteristics and processes in wetlands. This includes im-
proved descriptions of peatland-specific PFTs, peatland hy-
drology, soil temperature estimation, and CH4 emissions.
Brief descriptions of the important wetland processes in LPJ-
GUESS version 4.1 are given below and in Sect. S1 in the
Supplement. For a more detailed description, the reader is
referred to Gustafson (2022).

The active wetland peat in the LPJ-GUESS is represented
by a 1.5 m deep column that is further divided into 15 layers
of 0.1 m thickness each (see Fig. 1). The uppermost three lay-
ers comprise the acrotelm, within which the water table can
vary. The underlying 12 layers of catotelm are permanently
saturated with water (Wania et al., 2009a). The decomposed
organic carbon on each day (explained in Sect. S1.4) is dis-
tributed vertically in different peat soil layers in proportion
to an assumed static root distribution (see Eq. 1). This car-
bon pool is considered to be the “potential carbon pool” for

methanogenic archaea and is the basic concept behind the
CH4 model in LPJ-GUESS. The total available carbon is de-
composed into two components – CO2 and CH4 – depending
on the availability of O2 in the soil. The dissolved CH4 con-
centration and the gaseous CH4 fraction are calculated based
on the estimated CH4 content in each layer. A portion of the
estimated CH4 is oxidised by soil O2, whereas the remain-
der is transported to the atmosphere by diffusion, ebullition,
or plant-mediated transport. Apart from being the key factor
in estimating the potential carbon pool, root biomass in each
soil layer also plays a role in the transport of O2 and CH4
into and out of each layer, as this transport is mediated by
the plants. From different studies of various wetland PFTs,
Wania et al. (2010) observed an exponential decrease in the
root biomass with depth that was proportional to the degree
of anoxia, which is expressed by the following equation, also
used in LPJ-GUESS:

froot = Croote
z/λroot , (1)

where froot is the fraction of root biomass at a certain depth
z, λroot = 0.2517 m is the decay length, and Croot = 0.025
is a normalisation constant. This distribution ensures that
approximately 60 % of the roots are distributed within the
acrotelm, and the root fraction in the lowest soil layer is ad-
justed to achieve a total root distribution of 1 across all 15
soil layers.

2.2.1 CH4 production

Due to its wide range, the CH4/CO2 ratio from decompo-
sition is challenging to predict. For example, Segers (1998)
observed high variation in the CH4-to-CO2-production molar
ratio of between 0.001 and 1.7 under anaerobic conditions.
Hence, it is defined in the model as an adjustable parameter
weighted by the degree of anoxia (α): α = 1− (Fair+ fair),
where Fair is the fraction of air in the soil layers and fair is
the fraction of air in peat (Wania et al., 2009a) (see Sect. S1
for details).

The production of CH4 on each day in each layer is deter-
mined as follows:

CH4prod = α(z)× froot(z)×CH4/CO2×Rh, (2)

where α(z) is the degree of anoxia at depth z, froot(z) is
the fraction of roots in the peat at depth z, CH4/CO2 =

0.085 (prior value in the model) is the tuning parameter
for the CH4-to-CO2-production ratio, and Rh is the daily
heterotrophic respiration. Note that the model is set to
CH4prod = 0 when Fwater < 0.1, assuring no CH4 production
in frozen and/or dry soils (i.e. the model assumes there is no
water when the water is frozen and, hence, Fwater is 0).

2.2.2 CH4 oxidation

As mentioned above, the CH4 fraction that is oxidised (rep-
resented by the parameter foxid = 0.5 as the prior value in
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Figure 1. Schematic representation of the CH4 model in LPJ-GUESS with the CENTURY soil organic model implemented. Carbon for
methanogens is allocated to soil layers based on the distribution of roots in each layer. The root density decreases from the top of the peat to
the bottom. The assigned carbon in each layer is divided into CH4 and CO2. Oxygen (O2) either directly diffuses or is transported through
plants. The availability of O2 determines the amount of CH4 in the soil, as it oxidises a fraction of CH4. Similarly, CH4 can also either
directly diffuse or be transported to the atmosphere in bubbles or it can be transported by vascular plants. The equilibrium between gaseous
bubbles of CH4 and dissolved CH4 in water is controlled by the maximum solubility of CH4. Any CH4 that exists in gaseous form will
escape to the atmosphere via ebullition.

the model) depends on the availability of O2 in the soil. A
part of the O2 transported to the soil will be consumed by the
plant roots and non-methanotrophic microorganisms. The re-
maining part is then used to oxidise CH4. The oxidised CH4
is added to the CO2 pool, and the remainder stays in the CH4
pool.

2.2.3 Total CH4 flux

Diffusion, ebullition, and plant-mediated transport are the
three pathways via which CH4 is transported to the at-
mosphere. The total CH4 flux from high-latitude wetland
patches in the model is represented as follows:

FCH4 = CH4diff+CH4plant+CH4ebul, (3)

where CH4diff is the CH4 flux component from diffusion,
CH4plant is the CH4 flux component from plant-mediated
transport, and CH4ebul is the CH4 flux component from ebul-
lition. As the daily CH4 production in each layer is dependent
on Rh (Eq. 2), FCH4 is subtracted from Rh before saving the
daily heterotrophic respiration. Any CO2 generated, whether

from heterotrophic respiration or CH4 oxidation, is released
into the atmosphere.

Diffusion

The fractions of CH4, CO2, and O2 that are transported to
the atmosphere and from the atmosphere through diffusion
are calculated by solving the gas diffusion equation within
the peat layers using a Crank–Nicolson numerical scheme
with a time step of 15 min. The molecular diffusivities of
these gases in soil depend on temperature, soil porosity, and
the water and air content of the soil. Diffusivity in water
is derived by fitting a quadratic curve to observed diffusiv-
ities at different temperatures, as described in Broecker and
Peng (1974); diffusivity in the air and its temperature depen-
dency are derived from the values taken from Lerman (1979);
and diffusivity in soil and its temperature dependency are es-
timated from the Millington–Quirk model, as described in
Millington and Quirk (1961). A detailed description can be
found in Wania et al. (2010).
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At the water–air surface, the gas diffusivities change by a
minimum of 4 orders of magnitude; hence, at the water–air
boundary, the flux is calculated by the following equation:

J =−ψ
(
Csurf−Ceq

)
, (4)

where Csurf is the surface water gas concentration; Ceq is the
concentration of gas in equilibrium with the atmospheric par-
tial pressure, estimated using Henry’s law; and ψ is the gas
exchange coefficient, also called the piston velocity, which is
usually difficult to estimate for different gases. In this case,
the piston velocities of CH4, CO2, and O2 are calculated by
relating them to the known piston velocity of SF6 via the fol-
lowing equation:

ψ∗ = ψ600

(
Sc∗

600

)n
, (5)

where ψ600 = 2.07+ 0.215×U1.7
10 is the piston velocity of

SF6 normalised to a Schmidt number of 600 (subjected to the
wind speedU10 at 10 m from the ground, which is considered
to be 0 in the model), Sc* represents the Schmidt number of
the gas under consideration, and n=−1/2 (see Wania et al.,
2010, for details).

As mentioned above the diffusion through the soil is af-
fected by soil porosity, i.e. by the value of Fair(t,z). When
Fair ≤ 0.05 in a given soil layer, the diffusivity values of wa-
ter are used; otherwise (Fair > 0.05), the diffusivity values
of air, which are 4 orders of magnitude larger than those of
water, are used. At each daily time step, before diffusion is
calculated, the gas flux J at the boundary is used to update
the dissolved gas content. The surface concentration Csurf of
CH4 will mostly be greater than Ceq; hence, J will be nega-
tive, denoting a flux to the atmosphere, although it is possible
for CH4 to diffuse into the soil in small amounts if the con-
centrations at the surface are suitable. The resulting daily flux
of CH4 is determined as the total CH4diff.

Ebullition

Ebullition depends on the solubility of CH4 at a given
temperature and pressure and occurs when the water table
reaches the surface during periods of high CH4 emission.
Following Wania et al. (2010), in LPJ-GUESS, the best-fitted
curve is represented as follows:

SB = 0.05708− 0.001545T + 0.00002069T 2, (6)

where SB is the Bunsen solubility coefficient (i.e. the volume
of gas dissolved per volume of liquid at atmospheric pressure
and a given temperature).

The CH4 in each layer is converted to a maximum allow-
able dissolved mass, and this limit is used to separate the CH4
in the form of dissolved and gaseous components. If there is
any CH4 that exceeds the maximum solubility of a layer, it
will be released into the atmosphere. The CH4ebul is calcu-
lated by adding the ebullition fluxes from all layers.

Plant-mediated transport

Plant-mediated transport of CH4 occurs via the aerenchyma
(the gas-filled tissues) of vascular plants, either through con-
centration gradient or active pumping from the soil to the
atmosphere. Only the passive mechanism (through a con-
centration gradient) is considered in the model, as it is the
most dominant one (Cronk and Fennessy, 2016). Abundance,
biomass, phenology, and the rooting depth of aerenchyma-
tous plants are considered to calculate this. Only the flood-
tolerant C3 graminoids are considered for plant-mediated gas
transport in the model (see Table S2 in the Supplement);
hence, plant-mediated transport of O2 and CH4 can only oc-
cur when C3 graminoids are present in a simulated patch.

The transport depends on the cross-sectional area of plant
tillers (all of the secondary shoots produced by grasses like
Poaceae or Gramineae) in each soil layer, assuming that a
significantly high percentage of CH4 is oxidised in the highly
oxic zone near the roots, where methanotrophs flourish, be-
fore they enter into the plant tissue.

The mass of the tiller is calculated as follows:

mtiller = bgraminoid×P(leaf), (7)

where bgraminoid is the leaf biomass of graminoids, and P rep-
resents the daily phenology, which is the fraction of potential
leaf cover that has reached full development. To calculate the
number of tillers (ntiller), the total weight of tillers (mtiller) is
divided by the average weight of an individual tiller (wtiller).
The cross-sectional area of tillers (Atiller) can then be ob-
tained as follows:

Atiller = ntiller×φtiller×πr
2
tiller, (8)

where rtiller is the tiller radius and φtiller is the tiller porosity.
Based on the optimisation of McGuire et al. (2012), Tang
et al. (2015), and Zhang et al. (2013), the value of rtiller is
estimated as 0.0035 m, and based on Wania et al. (2010), the
values of φtiller and Wtiller are estimated as 70 % and 0.22 gC
per tiller, respectively. Each soil layer is allocated a fraction
of the total cross-sectional area of tillers based on the root
fraction estimated in that layer. The CH4plant is estimated by
adding the plant-mediated CH4 fluxes from all layers.

2.3 Parameters selected for optimisation

Parameter values related to the processes of CH4 emission in
LPJ-GUESS are mostly adopted from the parameter values
described in Wania et al. (2010). As Wania et al. (2010) had
difficulties finding the optimal parameter values for many
of the parameters, they performed some preliminary anal-
yses for seven uncertain parameters for which there were
little or no data available. They performed a simple initial
sensitivity test by taking four sets of values for each of the
seven parameters, followed by a parameter fitting exercise
with three sets of values for each of the seven parameters.
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They ran the model with all 2187 different combinations for
7 sites for 1 year. As a result, they got an RMSE range of
between 226.4 and 18.3 (mg CH4 m−2 d−1) for the different
sites, which clearly indicates loosely fitted parameters with a
high degree of uncertainty.

In this study, parameters for the optimisation are selected
based on their sensitivity to the model output (CH4) and ex-
pert opinion. We used a simple method to calculate the per-
centage difference in output (single simulation) when vary-
ing only one input parameter at a time from its permitted
minimum value to its maximum (Hoffman and Miller, 1983;
Bauer and Hamby, 1991). The “sensitivity index” (SI) is cal-
culated using the following equation:

SI=
Dmax−Dmin

Dmax
, (9)

whereDmin andDmax represent the model output values cor-
responding to the respective minima and maxima of the cor-
responding parameter range. The values are taken based on
expert opinion.

We considered 5 of the 7 parameters that Wania et al.
(2010) tested in their sensitivity analysis (2 parameters re-
lated to the root exudate decomposition are not used in LPJ-
GUESS) as well as 11 other parameters used in LPJ-GUESS.
Based on their high SI values, we chose 11 of them for the
optimisation (Fig. 2, Table 1).

Among the five eliminated parameters, agfrac is the frac-
tion of annual net primary production (ANPP) used to cal-
culate number of tillers, DTmin is the minimum temperature
(°C) for heterotrophic decomposition, pororg is the porosity
of organic material, Ccon is the carbon content of biomass,
and U10 is the possible constant value of wind speed at 10 m
height. Among the selected parameters related to the CH4
production, Rmoist and Rmoistan are the response of the soil
moisture content to the soil organic matter decomposition in
the acrotelm and catotelm, respectively (see Eq. 8 in Supple-
ment); CH4/CO2 is the CH4-to-CO2 ratio under the anaer-
obic conditions (Eq. 2); fair is the fraction of air in peat
(Sect. 2.2.1 and Eq. 2); poracro and porcato are the porosity
in the acrotelm and catotelm, respectively (see Sect. S1); and
λroot is the decay length of root biomass in peat (Eq. 1).
Among the selected parameters related to the CH4 trans-
portation, foxid is the fraction of oxidised CH4 (Sect. 2.2.2)
related to the CH4 oxidation, wtiller is the average weight of
an individual tiller, rtiller is the tiller radius, and φtiller is the
tiller porosity (Eq. 8).

2.4 Parameter optimisation framework

We assumed Gaussian PDFs to depict both the prior distri-
butions of the parameters and the deviation between model
and observations. The resulting model can be formulated as
follows:

Y |x ∼N(M(x),R),

x ∼N(xp,B). (10)

Figure 2. Tested parameters for the optimisation and their SI values.
Red and blue colours indicate an increase or decrease in the total
CH4 flux, respectively, when the value of the parameter increases.

Here, Y represents the observations; M(x) is the LPJ-
GUESS output given parameters x; xp represents the prior
values of the parameters; and R and B are error covariance
matrices describing the uncertainty in observations and pri-
ors, respectively.

The prior uncertainties (B) are based on expert opinion
and were kept relatively large to reduce the prior’s influence
on the posterior parameter estimates. We have assumed prior
variance for each parameters as 40 % of their expected range
(see Table 1). The parameters are also assumed to be a prior
uncorrelated, due to the lack of good and consistent expert
opinions regarding dependence.

2.4.1 Cost function

Using the Bayesian framework, the posterior for the parame-
ters becomes

P(x|Y )=
P(Y |x)p(x)

p(Y )
∝ P(Y |x)p(x), (11)

which, on a log scale, results in the following quadratic cost
function (Tarantola, 1987):

logP(x|Y )=−J (x)+ const.

J (x)=
1
2
(Y −M(x))tR−1(Y −M(x))

+
1
2
(x− xp)

tB−1(x− xp), (12)

where “const.” represents normalising constants not depend-
ing on the unknown parameters. The two terms in J (x) rep-
resent model–data misfit and the prior information on the pa-
rameters. A number of experiments aim to achieve the small-
est cost function values to locate the optimal parameter set
within the parameter space.

2.5 Adaptive Metropolis–Hastings (MH) algorithm

To search for the optimal posterior parameters, we used an
MCMC-MH algorithm (Metropolis et al., 1953a; Hastings,
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Table 1. Selected model parameters for the assimilation. The prior values, units, prior standard deviation (SD), and parameter description
are given.

No. Parameter Prior value Prior SD Unit Description

1 Rmoist 0.4 0.396 – Moisture response in acrotelm
2 CH4/CO2 0.085 0.236 – Anaerobic CH4 / CO2 ratio
3 foxid 0.5 0.36 – Fraction of oxidised CH4
4 φtiller 70 36 % Tiller porosity
5 rtiller 0.0035 0.004 m Tiller radius
6 fair 0 4 % Fraction of air in peat
7 poracro 0.98 0.06 – Porosity in acrotelm
8 porcato 0.92 0.076 – Porosity in catotelm
9 Rmoistan 0.025 0.04 – Moisture response in catotelm
10 wtiller 0.22 0.24 gC Tiller weight
11 λroot 25.17 12 cm Decay length of root biomass

1970a). A standard MH algorithm generates samples from a
target distribution by, in each iteration, drawing from a pro-
posal distribution and then either accepting the new state or
copying the old state. For a Gaussian random walk, propos-
als (̂x) are generated by adding a mean-zero normal random
variable to the current value (xt ):

x̂ = xt + ε, ε ∼N(0,λ6), (13)

where λ6 is a scaling and covariance matrix describing the
spread of the added random variable. The new value is ac-
cepted with a probability that compares the likelihood (or
cost function) of the proposed and old sample:

α =min
(

1,
P (̂x|Y )

P (xt |Y )

)
=min(1,exp(−J (̂x)+ J (xt ))) . (14)

If the value is accepted, set xt+1 = x̂, otherwise keep the pre-
vious value, xt+1 = xt . The resulting sequence of states will
represent dependent samples from the target distribution.

The adaptive MH algorithm used here contains three key
concepts that are explained in the following sections: trans-
formed proposals, providing a natural way of including limits
on the parameters; the adaptive random walk, allowing the al-
gorithm to estimate λ and 6 from the target distribution; and
tempering of the target distribution, to reduce the effects of
local maxima and allow better exploration of the target.

2.5.1 Transformed proposals

The standard proposal in Eq. (13) does not include any re-
strictions on the parameters. To handle parameter limits, we
transformed the parameters, resulting in an adjusted random
walk proposal:

zt = g
−1(xt ),

ẑ= zt + ε, ε ∼N(0,λ6),
x̂ = g (̂z) . (15)

Table 2. Summary of transformations and corresponding adjust-
ments to the acceptance probability for the three cases of variables
with a lower limit, variables with an upper limit, and variables con-
strained to an interval.

Constrain Functions Acceptance

g(x) g−1(x) q (xt | x̂)/q (̂x | xt )

x > a exp(x)+ a log(x− a) x̂−a
xt−a

x < a a− exp(x) log(a− x) a−x̂
a−xt

x ∈ [a,b]
bexp(x)+a
exp(x)+1 log

(
x−a
b−x

)
(̂x−a)(b−x̂)
(xt−a)(b−xt )

A list of possible limits and corresponding functions are
given in Table 2. Note that different functions can be applied
to each parameter in x.

Having a transformed proposal requires an adjustment of
the acceptance probability (Hastings, 1970a) in Eq. (14) to

α =min

1,
p(̂x|Y )

p(xt |Y )

∏
i

q
(
x
(i)
t | x̂

(i)
)

q
(
x̂(i) | x

(i)
t

)
=

=min(1,exp(−J (̂x)+ J (xt )

+

∑
i

log

q
(
x
(i)
t | x̂

(i)
)

q
(
x̂(i) | x

(i)
t

)
 . (16)

Here, x(i)t denotes the ith parameter in the xt vector, and the
q terms are given in Table 2. Note that each transformation
results in one adjustment for that parameter and that all ad-
justments have to be multiplied together.

2.5.2 Adaptive random walk

It has been shown that the optimal MH algorithm behaviour
is obtained when about 20 %–30 % of samples are accepted
(Gelman et al., 1996; Roberts et al., 1997). For the proposal
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in Eq. 13, this is achieved when 6 corresponds to the poste-
rior covariance matrix of the target distribution, P(x|Y ), and
the scaling is λ= 2.382/d , where d is the number of param-
eters in x. The key idea of the adaptive algorithms suggested
in Andrieu and Thoms (2008) is to recursively estimate both
6 and λ from previous samples. An important note for the
transformed proposal in Eq. (15) is that 6 and λ relate to the
transformed variable zt and not xt .

A Rao-Blackwellised update of the covariance matrix will
consider both the proposal, ẑ, and the previous value, zt ,
weighted according to the acceptance probability, α, com-
puted in Eq. (16). The expectation and covariance matrix are
updated recursively as follows:

µt+1 = (1− γt+1)µt + γt+1 (α̂z+ (1−α)zt ) , (17a)

6t+1= (1− γt+1)6t + γt+1

[
α (̂z−µt+1) (̂z−µt+1)

>

+ (1−α)(zt −µt+1)(zt −µt+1)
>

]
, (17b)

where γt is an adaptation factor and we have used γt =

t−0.51.
The global adaptive scaling then updates the scaling factor

λ as follows:

logλt+1 = (1− γt+1) logλt + γt+1
(
α−αtarget

)
. (18)

The update is on a log scale to ensure that λt stays positive;
the second part of the equation compares the current accep-
tance probability with a target probability, αtarget = 0.234,
and adjusts λt to obtain this desired overall acceptance prob-
ability.

To limit the effect of initial values, we first ran 5000 steps
of the chain without adaptation and with 6 as 10−3 times an
identity matrix (i.e. very small initial steps). Thereafter, a co-
variance matrix6 was estimated based on the initial samples,
and the chain was run for a further 15 000 steps adapting only
λ and not 6. Finally, for the last 80 000 steps, both λ and 6
were updated as described in Andrieu and Thoms (2008). We
call the resulting framework the global Rao-Blackwellised
adaptive metropolis (GRaB-AM) algorithm.

2.5.3 Tempering the target distribution

For large numbers of data, the cost function J (x) can have
very deep local minima, causing the MH algorithm to get
stuck, even with the two already outlined adjustments. To
reduce the scale of the cost function, we temper the target
distribution (Jennison, 1993).

P̃ (x|Y )= P(x|Y )1/T = exp(−J (x)/T ), (19)

where T is a suitably large value.
Having run an MH algorithm for N samples, the first Nb

samples are discarded as “burn-in”, and expectations or vari-
ances can be computed as averages of the remaining samples.

However, with a tempered target distribution, we have
samples from P̃ (x|Y ) and need to use importance sampling
to adjust for the difference in distributions (Jennison, 1993),
resulting in weighted averages

E(x|Y )≈

N∑
i=Nb

wixi,

V (x|Y )≈

N∑
i=Nb

wi(xi −E(x|Y ))
2,

where the weights are given by

wi =
exp

(
−
T−1
T
(J (xi)− Jmin)

)
∑N
i=Nb

exp
(
−
T−1
T
(J (xi)− Jmin)

)
and Jmin =miniJ (xi). The subtraction by Jmin is for numer-
ical stability to avoid cases of 0/0 when all J (xi) are very
large. For the case of no tempering, i.e. T = 1, the weights
simplify to wi = 1/(N −Nb), resulting in unweighted aver-
ages.

2.6 Experimental design

We have designed a set of twin experiments and a real-data
experiment. For both the twin and real-data experiments, we
generated MCMC chains with a length of 100 000 samples,
as mentioned in Sect. 2.5.2. MCMC approaches are compu-
tationally intensive and time-consuming. In this study, each
model simulation took approximately 9 s to complete (us-
ing an AMD Ryzen Threadripper processor). As a result, for
the 100 000 iterations, it consumed nearly 250 computational
hours. However, it should be noted that this study involves
the model running for a single site, and the computational
speed is highly dependent on the performance of the proces-
sors being used.

Twin experiment

Twin experiments are designed to assess the performance
of the developed GRaB-AM and its ability to recover the
parameter values. The daily CH4 output simulated by LPJ-
GUESS using randomly chosen true parameter values (Ztrue)
within their permitted range of variation is used as the syn-
thetic observation. As the synthesised observation conforms
completely to the model, any potential errors in the model
have not influenced the parameter optimisation process, en-
suring unbiased posteriors. The observations have been as-
signed uncertainties to resemble the real-data experiment, as
described below. It is expected that the assimilated parame-
ters will converge to the true values as the MCMC chain pro-
gresses in time. To freely recover the Ztrue values, the prior
parameter values (xp) in the cost function (Eq. 12) are set
as Ztrue. Two scenarios are considered for the twin experi-
ment to test the identifiability of the parameters under dif-
ferent conditions: scenario 1, which has a shorter temporal
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Figure 3. An example of posterior PDFs from the twin experiment. Prior and posterior distributions are illustrated with solid black and solid
green lines, respectively. True parameter values (Ztrue), the prior mean, the posterior mean, and the MAP are shown in red, black, lime, and
orange colours, respectively.

scale from 2005 to 2014 (10 years), and scenario 2, which
has a longer temporal scale from 1901 to 2015 (115 years).
Scenario 1 is more realistic and is chosen to mimic the real
data at Siikaneva, whereas scenario 2 constitutes an ideal, hy-
pothetical case with observations over the entire simulation
period. In each set of the scenarios, the optimisation started
from a different initial point in the parameter space that was
randomly selected from their prescribed ranges.

Real-data experiment

To estimate the posterior parameter values, an experiment
using the real observation from Siikaneva is designed. The
observed daily averages are compared with the model simu-
lation in the cost function only when more than 90 % of the
hourly observation are available each day. When there are
gaps in the daily observation, we eliminate them and their
corresponding modelled values from the cost function cal-
culation. In principle, the error covariance matrix R should
include both observation uncertainties and their correlations.
As the latter is difficult to estimate, we neglected them, and
the observation uncertainties are estimated as 30 % for the
daily observations greater than 0.01 gC m−2 d−1 and a floor
value of 0.3 for the observations less than 0.01 gC m−2 d−1.

2.7 Parameter value estimation

For all of the experiments conducted in this study, the first
75 % of the GRaB-AM chains are discarded as the burn-

in. The PDFs generated after the burn-in are used to es-
timate each parameter’s maximum a posteriori probability
(MAP), posterior mean, and standard deviation (SD). Fol-
lowing the idea used in Braswell et al. (2005), the param-
eter distributions are grouped into three categories: “well-
constrained”, “poorly constrained”, and “edge-hitting” pa-
rameters. The well-constrained parameters are those that ex-
hibit a well-defined unimodal distribution with a low SD. The
poorly constrained parameters are those that exhibit a rela-
tively flat multi-modal distribution with a large SD. To be
more precise with the estimation, for posterior parameter dis-
tributions that appeared multi-model, if the SD of the distri-
bution was greater than 20 % of the total range, we classified
them as poorly constrained. The edge-hitting parameters are
those that cluster near one of the edges of their prior range.

2.8 Posterior resampling experiment

To examine the effect of parameter optimisation on flux
components, we designed a resampling experiment from the
posterior parameter distributions. From the experiment con-
ducted using site observations, 1000 sets of parameters were
randomly selected and used to run the model to simulate the
CH4 flux components. The outputs from each simulation of
the experiment were used to analyse the process correlations
and process–parameter relationships.
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3 Results

3.1 Twin experiment using GRaB-AM

We ran a set of four different twin experiments for each of
the scenarios mentioned in Sect. 2.6. Each of them shows a
reasonably good convergence, regardless of their chosen ini-
tial values. In scenario 1, all parameters except for CH4/CO2
and λroot showed good convergence (see Fig. S1 in the Sup-
plement; posterior parameter correlations of the first experi-
ment shown in Fig. S1 are provided in Fig. S2). The results
of scenario 2 are not shown, as they followed the same pat-
tern. The resulting PDFs of experiment 1 in scenario 1 after
the burn-in are represented in Fig. 3, which shows the mean
and MAP values as well as the SD of the parameters. The
parameter values and related statistics are given in Table 3.

The parameter retrieval capacity of the GRaB-AM algo-
rithm is estimated as the “retrieval score” by dividing the
posterior mean estimates of the parameters from all of the
chains in each scenario by the Ztrue parameter values. The
idea behind the retrieval score is that, in an ideal case of
complete recovery, the posterior parameter estimate and the
Ztrue value are the same; hence, the retrieval score would be
1. Figure 5 shows the retrieval scores obtained for each pa-
rameter and their 1σ value. In scenario 1, the φtiller, poracro,
porcato, wtiller, and λroot are well retrieved with a low SD.
Scenario 2 performed better in parameter retrieval compared
with scenario 1. In scenario 2, the majority of the parameters
except the CH4/CO2, rtiller, wtiller, and λroot showed good re-
trieval scores but with comparatively high SDs (see Fig. 5).
The overall mean retrieval score estimation is based on the
ratio of the estimated and true values, given a value of 0.95
with an SD of 0.19 for scenario 1 and a value of 1 with an
SD 0.21 for scenario 2 (see Fig. 5).

In general, the twin experiments have resulted in well-
constrained and poorly constrained parameter classes. Ex-
amples of the different classes of the distributions for experi-
ment 1 of scenario 1 are shown in Fig. 3. Based on the poste-
rior distributions estimated from all four GRaB-AM chains,
the parameters Rmoist, CH4/CO2, foxid, rtiller, fair, poracro,
porcato, and λroot are well constrained in scenario 1, whereas
the parameters Rmoist, CH4/CO2, foxid, rtiller, fair, poracro,
porcato, wtiller, and λroot are well constrained in scenario 2
(see Table 3).

The reduced posterior cost function values and their χ2

values are given in Table 4. Here, the reduced χ2 values are
calculated by dividing twice the cost function by the num-
ber of observations used in the assimilation. Overall, the χ2

values indicate a statistically robust reduction in the cost
function in all of the experiments, although a systematic be-
haviour of being below 1 is observed.

3.2 Real-data experiments and optimised parameters

For the experiment with the real data, the observations col-
lected at the Siikaneva wetland are assimilated using the
GRaB-AM algorithm. The MCMC trace plots are exempli-
fied in Fig. 6.

3.2.1 Optimised parameter values and distributions

The posterior parameter PDFs are shown in Fig. 7. In con-
trast to the twin experiments, the parameters fell into three
categories: well-constrained, poorly constrained, and edge-
hitting parameters. The classifications are given in Table 5.
The PDFs for the Rmoist, CH4/CO2, φtiller, fair, poracro,
wtiller, and λroot parameters are classified as well-constrained
distributions; the PDFs for rtiller, porcato, and Rmoistan are
classified as poorly constrained distributions; and that for
foxid is classified as an edge-hitting distribution. In both
the well-constrained and poorly constrained parameters, high
kurtosis is observed. The values of foxid, which is the edge-
hitting parameter, lay near the higher bound of the edges of
the prior range, and most of the retrieved values were clus-
tered near this edge. This parameter also exhibited large pos-
itive kurtosis and negative skewness. The posterior parame-
ter values and their 1σ SDs along with the prior values are
shown in Table 5. The MAP and posterior mean estimates
agree on the value for the CH4/CO2, fair, and poracro param-
eters. For foxid, φtiller, and rtiller, both the MAP and posterior
mean estimates stayed out of one-third of the 1σ range of the
posterior distribution, which we consider a large difference.
For the remaining parameters, the MAP and posterior mean
estimates stayed within one-third of the 1σ of their poste-
rior distribution; hence, we consider this a small difference.
For the Rmoist and CH4/CO2 parameters, the posterior val-
ues appeared close to but below the prior values. The pos-
terior values of Rmoistan appeared very close to but above
the prior values. For the φtiller parameter, the MAP estimate
appeared very close to but above the prior value, whereas
the posterior mean estimate appeared very close to but below
the prior value. For these four parameters, the posterior mean
stayed within one-third of the 1σ range of the assumed prior
uncertainty. The posterior values of the foxid, rtiller, and fair
parameters appeared slightly above the prior values but out-
side of one-third of the 1σ range of the prior uncertainty. The
prior and posterior values of the poracro parameter remained
the same. In contrast, the porcato, wtiller, and λroot parameters
appeared very distant from and below the prior values, out
of one-third of the 1σ range of prior uncertainty, but stayed
within the prior range (see Sect. 4.2 for details).

3.2.2 Posterior parameter correlation

The 2-D distributions of the posterior parameters and their
correlations are illustrated in Fig. 9. Overall, the majority
of the parameters showed weak positive or negative corre-
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Figure 4. Time series estimates of the twin experiments in scenario 1. The simulations, using four sets of posterior parameter values obtained
from the twin experiments, are plotted against the twin observation used.

Table 3. The posterior mean, MAP, and SD of retrieved parameters for selected twin experiments in scenario (Sc) 1 and 2 and the parameter
classes estimated from analysing the distributions of all four chains. The parameter classes include well-constrained (WC) and poorly
constrained (PC) parameters.

Parameter

Rmoist CH4/CO2 foxid φtiller rtiller fair poracro porcato Rmoistan wtiller λroot

Sc 1

Ztrue 0.30 0.1 0.40 0.60 0.005 0.10 0.95 0.90 0.05 0.30 18.0
MAP 0.42 0.086 0.31 0.63 0.006 0.094 0.93 0.89 0.051 0.32 17.4
Posterior mean 0.40 0.087 0.33 0.60 0.006 0.096 0.94 0.90 0.057 0.30 17.2
SD ± 0.16 0.002 0.07 0.16 0.001 0.003 0.004 0.02 0.02 0.10 0.70
Class WC WC WC PC WC WC WC WC PC PC WC

Sc 2

Ztrue 0.30 0.1 0.40 0.60 0.005 0.10 0.95 0.90 0.05 0.30 18.0
MAP 0.22 0.079 0.24 0.64 0.006 0.09 0.94 0.89 0.064 0.29 13.9
Posterior mean 0.28 0.08 0.26 0.63 0.006 0.10 0.95 0.89 0.053 0.26 14.1
SD ± 0.07 0.002 0.05 0.18 0.001 0.0008 0.0009 0.006 0.01 0.01 0.42
Class WC WC WC PC WC WC WC WC PC WC WC

lations with a few exceptions with extreme correlations (the
values and corresponding colour code in the triangle above
depict this). For example, Rmoistan showed a high negative
correlation with Rmoist, and poracro showed a high positive
correlation with fair. The 2-D marginal distributions (scat-
terplots), illustrated in the lower triangle, showed a general
tendency toward high clustering within the 1σ range for all
of the parameters; in general, the 1-D histograms (on the di-
agonal; also shown in Fig. 7) appeared as well-constrained
unimodal distributions. For further details, the reader is re-
ferred to Sect. 4.2.1.

3.2.3 Cost function reduction

The prior and posterior cost function values corresponding
to the prior and posterior parameter values are listed in Ta-
ble 5. The prior cost function value calculated with the de-
fault model parameters showed a high-cost value of 48424.4,
with a model overestimation of around 4 times the observed
flux. After the optimisation, the cost function value was re-
duced to 2959.8 (reduced χ2

= 3.82) with the MAP estimate
of parameters and to 3002.6 (reduced χ2

= 3.88) with the
posterior mean estimate of parameters.
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Table 4. Cost function reduction observed in scenario (Sc) 1 and 2
of the twin experiments. The prior and posterior cost function val-
ues obtained from four sets of experiments for each scenario are
provided. The misfit between observed and expected (zero) cost
function values are represented as the reduced χ2 value.

Experiment Prior Posterior χ2

Sc 1

Set 1 12486.4 301.6 0.17
Set 2 49 674.0 759.6 0.422
Set 3 29 535.6 294.0 0.17
Set 4 8476.8 428.0 0.24

Sc 2

Set 1 86 140.0 6170.0 0.31
Set 2 619 172.0 8040.0 0.38
Set 3 68 792.0 3372.4 0.16
Set 4 109 888.0 8646.0 0.41

Figure 5. Twin experiment results in terms of the mean retrieval
score based on the ratio of the estimated and Ztrue values of the pa-
rameters. The horizontal red lines indicate a complete retrieval, and
the error bar shows the SD obtained from different chains in differ-
ent scenarios. Sc1 and Sc2 indicate the two respective scenarios.

3.2.4 Flux components of the CH4 simulation and
parameter values

To understand how and the magnitude to which each opti-
mised parameter influences the flux components and the total
flux, the result of the resampling experiment (see Sect. 2.8)
is examined using correlation and regression analyses. The
Pearson correlation coefficients and regression slopes are cal-

culated for all 1000 parameter sets and their corresponding
sums of the flux components and total flux. Figure 8a shows
a schematic summary of the correlation coefficients and re-
gression slopes between the 11 parameters, the flux compo-
nents, and the total flux. For both the total flux and diffu-
sion, all parameters, except foxid and φtiller, showed a similar
regression pattern, although with slight differences in mag-
nitude. This similarity is not surprising, as diffusion is the
most dominant among the process components. The total flux
showed the highest correlations with CH4/CO2 and λroot and
the lowest correlation with foxid. A detailed discussion of the
process–parameter relations can be found in Sect. 4.2.1.

Figure 8b shows the correlations between the sums of flux
components resulting from the resampling experiment. The
2-D distributions in the lower triangle show a strong positive
relation between diffusion and total flux. Almost all of the
parameter residuals are observed within 3σ deviation without
many outliers. Except for the correlation between diffusion
and total flux, the analysis showed no other strong positive
or negative correlations between the components, as can be
seen in the correlation plot illustrated in the top triangle of
the aforementioned figure panel.

Yearly variations in the fractional contributions of flux
components simulated using prior and posterior parameter
estimates are examined to understand the impact of the op-
timisation on the composition of the inter-annual emissions.
The time series of the annual sums of flux components as
a function of their total flux (in %) are shown in Fig. 10a.
The result shows that, among the flux components, diffusion
contributes the most to the total CH4 flux both in prior and
posterior estimates, with a slightly higher contribution in the
posterior estimate, followed by plant-mediated transport (see
Sect. 4.2.3 for detailed discussion).

The time series model–observation mismatch of prior and
posterior estimates for the annual total fluxes can be seen in
Fig. 10b; the values are displayed as a percentage of the ob-
served CH4 flux. The prior estimate showed a mismatch of
around 600 % for the first 2 years. Furthermore, a consider-
ably high mismatch is observed in the years 2011, 2012, and
2014. The MAP estimate remained near 0, while the poste-
rior mean estimate exhibited slightly negative values, indi-
cating an underestimation of the flux. Interestingly, the MAP
followed the same pattern as the prior estimation by show-
ing an increase whenever the prior increased and a decrease
whenever the prior decreased; however, the posterior mean
estimate did not show this relation.

The percentage fractions of the annual errors in the flux
components are shown in Fig. 11. The effect of optimisa-
tion on the individual contributions of each component can
be seen from the annual means (solid dots) of their frac-
tional contribution to the total flux. Among the prior esti-
mates of flux components, the prior plant-mediated trans-
port showed the largest error (22.5 %), whereas the ebulli-
tion showed the smallest error (9.1 %). In the MAP estimate,
ebullition showed the highest error, with a value of 12.3 %,
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Figure 6. An example of the GRaB-AM chains for the experiment with real observations showing all 100 000 values in the chain. The first
75 % of values were discarded as burn-in and are greyed out in the figures. The remaining 25 % (from the red vertical lines) of values were
used for the analyses.

Table 5. Parameter values estimated after the GRaB-AM real-data optimisation. The prior values, MAP, posterior mean, posterior SD,
and parameter classes are shown. The parameter classes include well-constrained (WC), poorly constrained (PC), and edge-hitting (EH)
parameters. The cost function values corresponding to the parameter values obtained with the prior, MAP, and posterior mean estimates are
also shown.

Parameter

Rmoist CH4/CO2 foxid φtiller rtiller fair poracro porcato Rmoistan wtiller λroot Cost value

Prior values 0.4 0.085 0.5 0.7 0.0035 0.0 0.98 0.92 0.025 0.22 25.17 48424
MAP 0.37 0.055 0.98 0.74 0.0087 0.032 0.98 0.87 0.029 0.0061 10.47 2959.8
Posterior mean 0.39 0.055 0.96 0.68 0.0079 0.032 0.98 0.88 0.033 0.0082 10.58 3002.6
SD ± 0.15 0.0046 0.046 0.17 0.0011 0.007 0.008 0.038 0.016 0.0037 0.45
Class WC WC EH WC PC WC WC PC PC WC WC

followed by diffusion and ebullition, with similar error val-
ues of 6.9 % and 6.8 %, respectively. For the estimate using
posterior mean values, diffusion and plant-mediated trans-
port showed around the same errors, 7.5 % and 7.4 %, and
ebullition showed the least error (2.6 %). On the right-hand
side of the aforementioned figure, the fourth column displays

the mean and errors for the inter-annual variation in the total
fluxes obtained by prior parameter values and posterior es-
timates. The prior total estimate showed an error of 4.2 %,
while the mean and MAP showed an error of 0.66 % and
0.72 %, respectively.
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Figure 7. Posterior PDFs of parameters from the GRaB-AM real-data experiment. The green curves shown are the smoothed Gaussian kernel
estimates of the posterior distribution on the posterior histograms, whereas the black curves are the prior distributions. The dotted vertical
black, lime, and orange lines represents the prior mean, posterior mean, and MAP, respectively. The shaded green area of the distributions
represents the 1σ error estimate of the PDFs.

Figure 8. Schematic summery of the resampling experiment. Panel (a) shows the process–parameter correlation and regression slope. Three
different flux components of CH4 as well as the total flux are labelled on the vertical axis, whereas the parameters are labelled on the
horizontal axis. The different colours of the circles represent the regression slopes (β) scaled between −1 and 1 (in 11 steps). The blue
colour indicates a steeper negative slope (and hence a strong decrease) in CH4 fluxes with the increasing parameter value, whereas the red
colour indicates steeper positive slopes (and hence a strong increase) in CH4 fluxes with the increasing parameter value. The coefficient of
determination (R2) scaled between 0.05 and 1 (in 11 steps) is represented by the size of the circles, with larger circles indicating higher R2

values. Panel (b) shows the process–process correlations. Numeric labels on the upper triangle correspond to Pearson’s correlation coefficient
values. The diagonal of the matrix shows the 1-D histogram for each flux component and the total flux. The 2-D marginal distributions of the
sum of the processes and total flux are represented in the lower triangle with contours to indicate the 1σ , 2σ , and 3σ confidence levels. The
black dots in the plots indicate the sums of flux components. Ranges of the distributions are labelled on the left and bottom of the panel.
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Figure 9. A posteriori correlations between the parameters from the GRaB-AM real-data optimisation. The blue and red colours in the
upper triangle represent strong negative and positive correlations, respectively. The numerical labels on the upper triangle are the Pearson’s
correlation coefficient values. The panels on the diagonal show the 1-D histogram for each model parameter with a dashed red vertical
line to indicate the mode. The vertical blue lines are the 0.16, 0.5, and 0.84 quantiles of the distributions. The lower triangle represents the
2-D marginal distributions of each parameter with contours to indicate the 1σ , 2σ , and 3σ confidence levels, whereas the blue dots on the
marginal distributions are the posterior parameter values. The ranges of the distributions are labelled on the left and bottom of the figure.

3.3 Fit to the observation

Figure 10b illustrates the percentage model–data misfit, and
Fig. 12 shows the time series of the assimilated observa-
tions as well as the model prior and posterior estimates with
their uncertainties. The total RMSE estimated between the
prior and observations was 0.044 gC m−2 d−1, which was re-
duced to a value of 0.023 gC m−2 d−1 for the posterior case.

This result indicates that most of the mismatch between the
prior model estimates and observations was contributed by
the large overestimation in the initial years. This overestima-
tion disappeared in the posterior, showing a better agreement
with the observation. There are years for which the obser-
vations show large peaks during the summer (such as 2010,
2012, and 2013), and the posterior estimates succeeded in
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Figure 10. Flux component fractions and the model–data difference (in %). Panel (a) shows the proportions of annual flux components
plotted as a function of the total yearly flux. The different flux components are represented with solid lines of different colours, and the
symbols on the lines correspond to each flux component. Panel (b) shows the annual model–observation mismatch (in %) with respect to the
yearly total CH4 observation.

Figure 11. The first three columns of the figure show the fractions of the annual fluxes from process components of the total fluxes. The
vertical solid lines represent the 1σ error bars of each component, whereas the dots represent the mean of the annual fluxes. The fourth
column (which corresponds to the right y axis) shows the annual mean and annual errors for the inter-annual variation in the total fluxes.

capturing these peaks to a large extent, although not com-
pletely (see Sect. 4.5 for details).

4 Discussion

4.1 Twin experiment

A common problem with the adaptive MH algorithm is its
inability to widely explore the target distribution if the set-
up is not well tuned. This can then result in a poor approx-
imation of the target distribution and, hence, poor adapta-
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Figure 12. Total CH4 simulation from the LPJ-GUESS model (red dots) after optimising with the GRaB-AM algorithm. The black dots
are the real CH4 observations from Siikaneva with prior observation error (grey shading). The light red shading around the posterior model
simulation is the 95 % confidence interval (CI) of the simulations. The blue dots are the prior simulation with the prior default model
parameters. A few outliers above 0.3 gC m−2 on the vertical axis have been removed from the figure for better visualisation. While most of
the observations fall within the confidence intervals, it is important to note that the effects of parameter variations in the posterior are part of
these confidence intervals.

tion. The resulting trace plots shown in Figs. 6 and S1 depict
a set of well-explored parameters in their permitted space
ranges during the progression of the random walk, indicating
a well-tuned assimilation set-up. The use of adaptive Rao-
Blackwellised learning of the posterior distribution appeared
beneficial during the transients of the chains whenever the
acceptance probability was dropped to low values in low-
probability regions of the parameter space.

Even though twin experiments have retrieved all true pa-
rameters in different experiments, individual experiments re-
veal instances where one or two parameters may not fully
converge to their true values due to factors such as parameter
correlation or equifinality (Figs. 5 and S1). Given the com-
plexity and non-linearity of the model, it is unsurprising that
not all parameters converged completely. It is also unsurpris-
ing that different chains estimated slightly different posterior
solutions for the parameters. However, most poorly retrieved
parameters still have their true values within the 1σ range of
the Gaussian PDFs of the optimised values. Even when the
parameters are slightly off from theZtrue values, Fig. 4 shows
the capability of the twin experiments with respect to captur-
ing the structure of the observations, including the observed
spikes.

The occasional lack of convergence mentioned above
likely introduces a slight bias in the posterior estimates,
i.e. compensating effects due to the equifinality in subse-
quent real-data analyses, leading to suboptimal parameter es-
timates. This equifinality is essentially based on the high non-
linearity of the model and a missing observational data con-
straint that would help distinguish between certain parameter

combinations. Nevertheless, in contrast to other similar stud-
ies, like Santaren et al. (2014), which have encountered chal-
lenges in achieving complete recovery of many true param-
eter values, our GRaB-AM algorithm showed better perfor-
mance with respect to recovering true parameter values. The
analysis of the cost function reduction (Table 4), the ability
to constrain the parameters (Fig. 3), the ability to capture the
structure of the model (Fig. 4), and the parameter retrieval
ability of the twin experiments (Fig. 5) showed that the devel-
oped GRaB-AM algorithm is still capable of optimising the
process parameters related to CH4 emissions in LPJ-GUESS,
given the caveats mentioned above on the equifinality.

Similarly, the systematic low χ2 values observed for the
twin experiment do not necessarily affect the framework’s
ability to be set up for the real-data experiment (Sect. 3.1).
As the twin experiments here are under the assumption of an
“idealised model”, meaning that the model perfectly repro-
duces the observations without any errors or uncertainty, and
“error-free data”, where the data perfectly represent the en-
vironmental conditions without any random errors, it is ex-
pected to have χ2 values systematically below 1. Further-
more, the χ2 value is highly sensitive to the number of ob-
servations and parameters. Having 3650 observations in sce-
nario 1, 41 610 observations in scenario 2, and only 11 pa-
rameters can lead to low χ2 values. However, the compara-
tively smaller χ2 values for sets 1 and 3 in scenario 1 and set
3 in scenario 2 indicate a tendency toward overfitting the re-
sults and being overconfident in the estimated posterior val-
ues and uncertainties.
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4.2 Parameter estimation using real observations

As described in Sect. 3.2.1, the experiment using real-data re-
sulted in three poorly constrained parameters and one edge-
hitting parameter. Poorly constrained or edge-hitting param-
eters, however, are not uncommon in MH parameter searches
and are somewhat expected with a complex and highly non-
linear model such as LPJ-GUESS. The correlation of param-
eters with other parameters can affect the result, i.e. the num-
ber of parameters that can be optimised within this data as-
similation framework is limited. Although the twin experi-
ments showed good parameter retrieval capabilities, the as-
similation of real-world observations into a complex ecosys-
tem model like LPJ-GUESS is expected to have parameter
retrieval and equifinality problems. This is another reasons
for selecting a small subset of the parameters associated with
wetland CH4 flux simulations for this study. Considerable
changes have occurred in the prior parameter values after op-
timisation. Here, it should be considered that, in this study,
the assimilation aims to reduce the magnitude of the prior
CH4 flux simulation to minimise its misfit with the observed
data, which is nearly half of the prior model estimate (see
Table 6).

4.2.1 Posterior correlation estimates

The following discusses the possible impact of the poste-
rior parameters (shown in Table 5) on CH4 flux simula-
tion, the interactions between the optimised parameters and
the component fluxes (shown in Fig. 8), and the parameter–
parameter correlations (shown in Fig. 9). (We distinguish be-
tween strong,> 0.5, and weak,< 0.2, parameter correlations
but focus on the strong ones here.)

The very slight reduction, i.e. within one-third of the 1σ
error, observed in the posterior mean estimate of Rmoist (Ta-
ble 5) indicates a slight decrease in the moisture response un-
der aerobic conditions, which would likely result in a slower
soil carbon turnover time with a slight decrease in CH4 emis-
sion. The weak R2 value and the weak positive β value of
Rmoist with all of the flux components indicate that a de-
crease in this parameter value decreases the emission and ex-
plains some of the variances in the flux components (Fig. 8).

In contrast, Rmoistan obtained a higher posterior value
compared with the prior (Table 5) with a slightly asymmetric
multi-modal distribution (see Fig. 7), indicating an increase
in the moisture response in the anaerobic catotelm. Together
with this, the strong negative correlation (−0.8) observed be-
tween Rmoist and Rmoistan (Fig. 9) indicates reduced de-
composition in the acrotelm and increased decomposition in
the catotelm. Rmoistan had a positive effect on diffusion and
a negative effect on plant-mediated transport (Fig. 8). An
increase in Rmoistan could enhance CH4 production in the
catotelm. As the catotelm has a low plant root abundance,
this increase would lead to more diffusion and a reduction in
total plant-mediated transport. The increase in Rmoistan con-

tributed very little to ebullition. This is most likely due to the
negligible contribution of ebullition to the overall flux, with
no contribution most of the time.

The posterior CH4/CO2 parameter, which is the CH4-to-
CO2 ratio in an anaerobic environment, was found to be
lower compared with the prior (Table 5). This indicates a
high fraction of CO2 production from the peat compared with
CH4 production. The very high R2 value of CH4/CO2 for
diffusion and plant-mediated transport (which represent the
two diffusive pathways) indicates that a significant portion
of the variance in these pathways can be explained by this
parameter (Fig. 8). Similarly, the high, positive β value for
diffusion and plant-mediated transport indicates a substantial
linear increase in emissions via these pathways if the param-
eter is increased. The increase in ebullition is marginally less
than the other fluxes, most likely because ebullition is limited
by the availability of the gaseous fraction of CH4. The dis-
solved CH4 will first emit via diffusive fluxes; hence, there
could be very little CH4 left in the gaseous phase for ebul-
lition. The CH4/CO2 ratio is negatively correlated with the
Rmoistan and λroot parameters (Fig. 9). This indicates a lower
CH4 fraction produced by decomposition in deep soil.

The prior parameter value for fair was 0, which means
that there is no “permanent” gas fraction in peat (Table 5).
The posterior value of fair was slightly positive (0.032), in-
dicating a small air fraction in the peat. fair showed a very
high positive correlation with poracro, which can simply be
explained by the fact that more porous soil allows for more
air in the soil (Fig. 9). An increase in the fair value would in-
crease all of the flux components, with a notably larger effect
on diffusion (Fig. 8). As stated in Sect. 2.2.3, the diffusivity
of CH4 in air is 4 orders of magnitude greater than that in wa-
ter, indicating that a higher fraction of air in the soil results in
the rapid and easy transport of CH4 to the atmosphere. The
larger increase in diffusion can be directly attributed to fair,
as this parameter directly controls diffusion.

The fraction of available oxygen utilised for CH4 oxida-
tion is determined by the foxid parameter, which has a higher
value after optimisation (Table 5). The high values of foxid
and fair, indicating a high available air fraction and, hence,
high O2 concentration in the soil, result in the conversion of
most of the available carbon into CO2. This could explain
the above-mentioned reduction in CH4/CO2 as a balancing
effect (Eq. 2). foxid showed a negative β value for diffusion
and ebullition and a slight positive β value with a compar-
atively high R2 value for plant-mediated transport (Fig. 8).
A decrease in ebullition can be explained by the increased
availability of oxygen for CH4 oxidation, resulting in less
CH4 being emitted via ebullition. A significant decrease oc-
curs in diffusion because the diffusive flux cannot bypass the
top layer, into which oxygen diffuses. Directly explaining the
increase in plant-mediated transport is difficult due to the
complex process formulation in the model; however, it can
be assumed that the aerenchyma could transport a part of the
oxygen deep down to the soil layers where it plays less of a
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role in oxidation but contributes more to the total gas pres-
sure, which can escalate the passive plant-mediated transport
to the atmosphere.

The optimisation of plant-related parameters depends on
the specific plant species present in the wetland. A slight
reduction in the posterior mean estimate of φtiller suggests
that the tillers may be slightly more compact, with reduced
porosity for CH4 transport. A considerable reduction, more
than one-third of the prior uncertainty, is observed in wtiller,
indicating lower leaf biomass (Table 5). This reduction in
potential leaf cover would lead to less carbon added to the
potential carbon pool for methanogens, resulting in lower
CH4 emissions. A decrease in tiller weight would add less
organic carbon to the soil, leading to a less-compact peat
accumulation in the bottom soil layers with more poros-
ity for water. This could explain the negative correlation
between wtiller and porcato (Fig. 9). In contrast to the val-
ues of the two above-mentioned CH4 transport-related pa-
rameters, rtiller, which represents the tiller radius of plants,
showed a value more than twice the prior value (Table 5).
This increase indicates more cross-sectional area of tiller for
a given biomass, resulting in an increase in plant-mediated
CH4 transport (see Eq. 8). These three parameters related to
plant-mediated transport showed strong positive correlation
with each other. They also exhibited positive β values in re-
lation to plant-mediated transport (Fig. 8). These parameters
can have two effects on emissions: on the one hand, hav-
ing aerenchyma cells with more porous space, radius, and
biomass enhances CH4 transport to the atmosphere; on the
other hand, via the same spacious aerenchyma cells, it is also
possible for plants to transport more O2 to the soil. This en-
hanced O2 transport to the soil could explain the slight re-
duction in diffusion and ebullition observed in the cases of
φtiller and wtiller.

The posterior value for the porosity in the catotelm
(porcato) was significantly lower than the prior (Table 5), sug-
gesting a more compact catotelm with less water (as it is as-
sumed to be saturated). This change could have a dual effect
on CH4. Variations in water content can slightly affect soil
temperature, potentially leading to an increase in the flux if
the temperature rises or to a decrease in the flux due to the
compact peat. As described in Sect. 3.2.1, poracro remained
unchanged, indicating no changes in acrotelm porosity (Ta-
ble 5). The positive kurtosis observed in the PDF of this pa-
rameter indicates a well-constrained single solution, while
the negative skewness indicates a more probabilistic region
below the posterior estimate. Similar to fair, poracro also ex-
hibited positive β values for all flux components, although
with a relatively low R2 value (Fig. 8). This positive relation-
ship may be attributed to the increased presence of air in the
acrotelm soil, which could facilitate CH4 emissions. In con-
trast, an increase in porcato could lead to a slight reduction in
ebullition. This could be because more water can potentially
occupy the pores of permanently saturated catotelm which

will indirectly affect ebullition through phase change and by
affecting soil temperature.

The posterior value for λroot is estimated to be much
smaller than the prior (higher than the value reported in Wa-
nia et al., 2010, and in Susiluoto et al., 2018), i.e. more than
one-third of 1σ of the prior estimate (Table 5). This small
posterior value for λroot indicates a low decay length of root
biomass in the soil, meaning that more of the decomposi-
tion and CH4 production occurs in the acrotelm and that
less occurs in the catotelm. The emission of CH4 produced
mainly by peat decomposition in the acrotelm would be fa-
cilitated by a low posterior value for λroot, with around 60 %
in the first layer of the acrotelm followed by 22 % and 8 % in
the respective second and third layers of the acrotelm. λroot
played a key role in this optimisation. Figure 8 shows that
λroot has a strong negative β value for diffusion and a weak
positive β value for plant-mediated transport, both with rela-
tively strong R2 values (Fig. 8). As most of the peat decom-
position activities are assumed to occur in the acrotelm, the
reduction in the magnitude of λroot could facilitate diffusion,
especially as it is the largest component. On the other hand,
plant-mediated transport may be reduced, as it limits the dis-
tribution of roots in soil depths.

4.2.2 Posterior flux components

In Fig. 13, the time series of process components is shown
for the posterior mean estimate. In general, the optimisation
of the model parameters leads to an approximately 50 % de-
crease in the production of CH4 compared with the prior,
with a significant reduction in the plant-mediated and ebul-
lition components, leaving diffusion as the dominant com-
ponent. Diffusion is reduced by around 30 %, and plant-
mediated transport is reduced by approximately 86 %.

The low contribution of plant transport is mainly due to the
reduced value of the root-depth-controlling parameter λroot,
which decreased from 25.17 to 10.58. This smaller propor-
tion of plant-mediated transport is somewhat surprising for
a fen wetland site like Siikaneva, which features a signifi-
cant aerenchymatous leaf area throughout the growing sea-
son. The result is contradictory to the results obtained from
optimising the HIMMELI model (Susiluoto et al., 2018), in
which the largest fraction of CH4 is contributed by the plant-
mediated transport. However, field experiments conducted to
estimate plant-mediated transport by Korrensalo et al. (2022)
have observed a smaller proportion of the ecosystem-scale
CH4 flux attributable to plant CH4 transport at the Siikaneva
fen site. This observation aligns well with the results that we
obtained.

The largest reduction, however, was for ebullition (by
around 92 %). This result is not surprising, as Wania et al.
(2010), who provide the basic foundation of the CH4 model
in LPJ-GUESS, also reported almost virtually no ebullition
to the surface at several sites. Figure 13 shows that no ebul-
lition is estimated during the years 2008, 2010, and 2012.
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Table 6. Total emissions from flux components estimated from the
MAP, posterior mean, and prior parameter values for all 10 years of
the optimisation, given in grams of carbon per square metre.

Component MAP Posterior Prior Observation
mean

Diffusion 49.5 49.6 70.7
Ebullition 0.15 0.28 4.1
Plant mediated 3.5 3.7 23.6

Total 53 53.5 98.5 56.0

Here, it should be considered that the representation of ebul-
lition in LPJ-GUESS is somewhat simplified using a curve-
fitting equation to calculate the solubility and using the ideal
gas law to convert the volume of CH4 per volume of wa-
ter into the corresponding number of moles. Due to this lack
of detail and its fast timescale occurrence (mostly depends
on the physical parameters such as temperature and pres-
sure) and with no relevant parameters in the control vector,
the optimisation could not alter the ebullition component di-
rectly. However, ebullition is indirectly controlled by param-
eters related to CH4 production and transport when there is
a high amount of saturated CH4 available in the soil wa-
ter. Thus, the optimisation can indirectly affect the ebulli-
tion. The total observed CH4 flux from Siikaneva during the
period of 2005 to 2014 was 56.0 gC m−2, while the prior
model estimate was 98.5 gC m−2 (Table 6). After the opti-
misation, with the posterior mean estimate of parameter val-
ues, the model estimated a flux of 53.5 gC m−2 with an es-
timated posterior uncertainty of ±4.82 gC m−2. This shows
a reduced model–data error after optimisation with a differ-
ence of only 2.5 gC m−2.

4.2.3 Posterior process–process correlation

After the optimisation, the air fraction in the peat was in-
creased, which is likely the cause of the enhanced diffusion.
Diffusion is estimated in the model based on the soil poros-
ity, water, temperature, and air fractions in the soil. Corre-
lating the diffusion with the ebullition showed a negative re-
sult, i.e. illustrating the dominance of diffusion over ebulli-
tion (see Fig. 8b). A larger air fraction in the soil can also
lead to an increase in plant-mediated emission, as the pas-
sive diffusion of air through the plant tissues depends on the
amount of air in the soil/peat water (see Sect. 2.2.3). This
can be seen in Fig. 8b as a comparatively high correlation be-
tween diffusion and plant-mediated transport. The increased
tiller radius (rtiller) in plants increases theAtiller value (Eq. 8),
thereby favouring faster diffusion through the aerenchyma
cells. Ebullition is positively correlated with plant-mediated
transport, indicating the occurrence of both of these compo-
nents when there is a high concentration of CH4 in the soil.
This occurs when the water table is located close to the sur-

face and when there is a higher density of graminoids. An
increase in plant-mediated transport of gases to the soil in-
creases the net pressure imposed by the gases in soil/peat
water, which could also lead to increased ebullition.

4.3 Model error and fit to the observation

Except for ebullition, all of the prior process components ex-
hibited larger variances in the annual errors compared with
the posterior estimates (Fig. 11). The plant-mediated trans-
port is the component with the largest error in the prior
estimate. The posterior error estimates for this component
showed nearly equal values, with a slightly higher value for
the posterior mean estimate. A similar pattern can also be
seen for diffusion. In contrast, the MAP error estimate for
ebullition showed a higher value compared with the poste-
rior mean error but interestingly also to the prior. The pos-
terior mean error estimate for ebullition showed the lowest
value.

The annual sums of flux components mentioned above are
illustrated in Fig. 10a. It is clear from this figure that the
prior process components had large inter-annual variance,
especially for the first 3 years and the last year. A consid-
erable reduction in variance is observed for both the MAP
and posterior mean estimates. The reduction in the variance
observed in posterior estimates is not proportional to the
prior; however, the posterior estimates showed a compara-
tively high variance in the first and last years. In Fig. 10b, as
described in Sect. 3.2.4, the posterior mean estimate shows
a comparatively high variance (with respect to the MAP es-
timate) for the annual errors with a negative bias through-
out the time period. In contrast, the MAP estimate showed a
positive bias throughout the time period. Compared with the
posterior mean estimate, the MAP estimate has considerably
larger parameter values for φtiller and rtiller; this could possi-
bly be interpreted as slightly more CH4 emission through the
increased tillers of plants and, hence, the reason for the posi-
tive bias in the MAP estimate. Figure 11 also indicates a high
percentage of annual plant-mediated emissions for the MAP
estimate. The negative bias in the posterior mean estimate
could be due to the additional wintertime emissions from the
real-world wetlands, which are not captured in the model. In
the model, the emissions start around early summer, once the
soil is not frozen anymore. In addition, the large daily vari-
ability in the observations of the summertime fluxes is also
not represented in the model. Overall, the posterior estimates
of the annual fluxes are in good agreement with the observa-
tions, leading to a small model–data mismatch for both MAP
and the posterior mean estimates.

4.4 Model inputs and uncertainty

As mentioned in Sect. 3.3, a somewhat pronounced system-
atic underestimation of emissions was observed in the years
2010, 2012, and 2013. None of the twin experiments exhib-

Geosci. Model Dev., 17, 2299–2324, 2024 https://doi.org/10.5194/gmd-17-2299-2024



J. T. Kallingal: Optimising CH4 simulations from LPJ-GUESS 2319

Figure 13. Time series for diffusion, ebullition, and plant transport using parameter values from the posterior mean estimate. A few outliers
above 0.08 gC m−2 on the vertical axis have been removed from the figure for better visualisation.

ited these systematic errors, which indicates that the issue
could be attributed to a structural model error (see Fig. 4).
While the CH4 module within LPJ-GUESS is relatively com-
prehensive when compared with many other similar models,
the model’s process description and parameterisation remain
incomplete. For instance, in the real world, wind plays a cru-
cial role in CH4 emissions and its atmospheric concentration;
however, wind speed is set to 0 for modelling convenience
in LPJ-GUESS, thereby presenting a significant limitation.
Similarly, the lack of the representation of air pressure, the
simplified representation of ebullition (see Sect. 4.2.2), and
the simplified representation of CH4 production (see Eq. 2)
are also a major limitations. Another reason for this mis-
match could be the variations in the input climate data. The
correlation plots of the input environmental variables of LPJ-
GUESS and the CH4 residuals (Fig. S3) indicate that, in these
years, CH4 emissions showed a comparatively high correla-
tion with swr and air temperature, although precipitation did
not show any significant relation. The results of the sensitiv-
ity study indicate that both the prior and posterior model esti-
mates are significantly sensitive to the input variables. How-
ever, the posterior model estimate exhibited a considerable
reduction in sensitivity, especially for swr and precipitation
(see Sect. S5 and Fig. S5).

As mentioned in Wania et al. (2010), the flux components
are determined by complex processes that depend on changes
in many environmental factors. The model is unable to rep-
resent peak emissions caused by these microenvironmental
changes. For instance, ebullition (one of the more complex
CH4 emissions processes in LPJ-GUESS, as explained in
previous sections) depends on the volumetric content of wind
and various gases as well as on hydrostatic and atmospheric
pressure. However, the model does not use them as forcing
variables. Ebullition is also affected by the concentration of
CH4 and the density of nucleation sites, which are difficult to
represent in the model.

It should be noted that the incomplete state vector used for
optimisation might have affected the optimised model result.
The process representations in LPJ-GUESS are complex and

interconnected, with a multitude of parameters directly or in-
directly linked to CH4 fluxes. Representing the indirect pa-
rameters can be intricate, as they may depend on other fluxes
or model components. For instance, the soil module in LPJ-
GUESS is intricately connected to the CENTURY model,
featuring 10 soil compartments. Introducing a parameter re-
lated to soil temperature or the wtd into the framework would
necessitate consideration of the intricacies of the CENTURY
model. Furthermore, it might require the inclusion of addi-
tional flux species, such as net primary production (NPP),
soil temperature profiles, or wtd. This would significantly in-
crease the complexity of the problem, exceeding the scope
of this paper. Given these caveats, the small negative biases
obtained for the posterior mean estimates when compared
against the observations (see Fig. 10b) are reasonable con-
sidering the quality and uncertainty in the input data used
(see Sect. 2.1) and the complexity and structural issues of
LPJ-GUESS.

4.5 Optimised simulation from LPJ-GUESS

A detailed time series distribution of prior and posterior
model simulations plotted against the observations is shown
in Fig. 12. The posterior model predictions were adjusted by
the optimisation to fit the observations with considerable ad-
justment to the summer peaks. For example, the large peaks
in the modelled emissions in 2005 and 2006, which largely
contributed to the prior cost function, disappeared in the
posterior emissions. In the following years, 2007 and 2008,
the prior model simulations underestimated the observation,
which also got corrected in the posterior. Furthermore, the
posterior emissions largely capture the comparatively high
peaks in the observations for the years 2010 and 2012, al-
though the model still underestimated the observations. In
2013, the observations were high and the optimisation failed
to capture this peak; rather, it tried to compensate for the un-
derestimation by releasing a sudden high spike at the end
of the summer that year. In winter months, the model sim-
ulated very low or almost zero fluxes (as discussed before),
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whereas, the observations showed a small emission (around
8.3 % of the assimilated total), often with some small spikes
(possibly from the ebullition). This inability of the model to
capture the wintertime emission has contributed to the poste-
rior model uncertainty and model–data misfit.

A significant mismatch in soil temperature and wtd has
been observed between the model and observations, espe-
cially during the wintertime (see Sect. S4 and Fig. S4). The
model tends to overestimate wintertime temperatures and un-
derestimate the wintertime wtd, indicating completely frozen
soil with a very low wtd. This discrepancy could be a reason
for the complete suspension of model CH4 emissions during
the winter. Observations show many days with a wtd above
ground level, both in summer and winter. As the wtd is a key
factor that can affect all flux components, this error could
contribute to the misfits observed after the optimisation, al-
though it cannot explain the systematic under estimation ob-
served in the posterior. It should be noted that there are no
considerable differences observed between the prior and pos-
terior soil temperature or wtd.

As discussed in Sect. 4.2.3, the contribution of ebullition
to the posterior estimate is comparatively negligible. Com-
pared with the posterior, there were many emissions spikes
observed in the prior estimate, especially during the begin-
ning and the end of the summer months. Apart from these
spikes, the prior CH4 estimates during the summer were a
bit low in most of the years. The posterior estimate has con-
siderably reduced these high spikes and adjusted the summer
peaks to match the observations better. On the other hand,
while compromising for the summer peaks in the observa-
tions, the model with the optimised parameters often failed
to capture the abrupt high fluxes in the daily observation and
simulated them at slightly wrong times. The spike shown at
the end of 2013 is an example of this mistiming. This is likely
caused by errors in the meteorological input data and missing
wind and pressure representations.

It can be seen from the Fig. 12 that the majority of the ob-
servations lie within the 95 % confidence interval of the pos-
terior estimate. Often, the observation uncertainty overlaps
the confidence interval, except for the summer peak times
of 2010, 2012, and 2013 in which the observations showed
strong peaks compared with the average values. The few out-
liers in the observations are not captured by the model; these
could likely be measurement artefacts and/or due to environ-
mental forcing not considered here, such as wind speed or air
pressure.

4.6 Merits and shortcomings of the GRaB-AM
framework

The advantages of the developed GRaB-AM framework in-
clude the ability of the MCMC method to escape local max-
ima or minima, making it more robust in this respect than
gradient-descent-based methods. Furthermore, the MCMC
method is derivative-free, thereby avoiding issues with com-

puting gradients for very rough (non-continuous) functions.
The adaptive part of the MCMC “learns” about parameter
correlations and utilises these dependencies in the proposal,
allowing it to better explore the parameter space. Potential
issues for the MCMC are that very uneven cost functions
can lead to the chain getting stuck (essentially, the local min-
ima is too deep for the algorithm to escape). Here, we have
alleviated this issue by tapering the cost function. We also
acknowledge that the cost function could be improved, as
the squared cost function essentially assumes Gaussian er-
rors with equal variance for all values and ignores any tem-
poral correlations. The observations are measured as time se-
ries, and concentration/flux observations are known to have
spatio-temporal error correlations. Adapting the cost func-
tion to account for these factors would be of interest and is
likely to have a larger impact on the posterior parameter un-
certainties than on the estimates of the parameters.

In principle, the twin experiment should be able to recover
all of the parameters completely. However, the twin exper-
iment in this study did not completely recover the true val-
ues of some parameters, especially the CH4/CO2 parameter.
This could be attributed to one or more of the following is-
sues: (1) due to the complex and extremely non-linear na-
ture of LPJ-GUESS, there is a high possibility of equifinal-
ity; (2) the high dimensionality of the problem and limited
variability in the data could be a reason for the poor con-
vergence of some parameters; and (3) the model is not fully
constrained by the limited dimensions in both the data and
the parameter space. Achieving complete convergence may
require incorporating (a) additional complementary obser-
vations capable of constraining additional model processes
and (b) additional parameters from different modules of the
model that represent different model processes.

The failure observed in convergence is expected to yield
suboptimal parameter estimates with overly optimistic pos-
terior uncertainty estimates due to the equifinality problems
in the real-data experiments. It may also result in slightly cor-
rupted relationships between variables, leading to changes
in the covariance structure of the posterior parameters es-
timated from the real data. Considering the high degree of
non-linearity in the model, a single type of twin flux from
a single site might not be sufficient to identify all of the
parameters. Therefore, additional sites spanning a large cli-
matic variability and/or different species of twin fluxes from
the same site may be necessary. For instance, regarding the
CH4/CO2 parameter, one reason for the poor recovery could
be that the study only optimises the CH4 component, leaving
the CO2 fluxes significantly off. Incorporating both CH4 and
CO2 fluxes to address both sides of the ratio would lead to a
more accurate convergence. However, a challenge in this ap-
proach would involve formulating cost functions for differ-
ent observations in a manner that properly weights them to
equally represent the information without diminishing their
significance. These considerations are beyond the scope of
this paper.
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5 Conclusions

This study represents an initial effort to optimise the model
process parameters controlling the simulation of wetland
CH4 fluxes within the LPJ-GUESS model using a Rao-
Blackwellised adaptive MCMC technique based on Bayesian
statistics. The assimilation framework has been shown to be
able to retrieve true parameter values within the uncertainty
limits discussed above by performing a set of twin experi-
ments. Furthermore, we used eddy-covariance flux measure-
ment data from a boreal wetland to calibrate the LPJ-GUESS
model parameters for a site-specific simulation. The results
demonstrate that the fit to the observation of the CH4 simu-
lation of a complex terrestrial DGVM like LPJ-GUESS can
be systematically enhanced with a Bayesian parameter cal-
ibration. The results also show that the modelled processes
and the estimated parameters were well constrained by the
observations, leading to a substantial reduction in the poste-
rior uncertainty in the simulated CH4 emissions. However,
we note here that, due to the equifinality problems identi-
fied in the identical twin experiments, the posterior parame-
ter values contain compensating effects caused by the non-
linearity of the model and the lack of an additional obser-
vational data constraint to uniquely identify each individual
parameter. The results of the resampling experiment and the
parameter and process correlations indicate that there are no
redundant processes in the model description.

The robustness of the assimilation framework developed in
this study calls for further application of the framework us-
ing observations from multiple sites in a simultaneous assim-
ilation. Further validation of the framework’s performance
is necessary to confirm its applicability to other sites with
diverse PFTs and climatic conditions. The relatively strong
roughness in the shape of the cost function observed in this
study is expected to be reduced in a multi-site assimilation
experiment, as has been observed by Kuppel et al. (2012);
this would provide additional observational data constraints
to allow the retrieval of the global minimum of the cost func-
tion more easily and reduce the equifinality problem. These
further applications are beyond the scope of this paper and
will be investigated in future studies.
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