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Abstract. Deep learning (DL) methods have recently gar-
nered attention from the climate change community for be-
ing an innovative approach to downscaling climate vari-
ables from Earth system and global climate models (ES-
GCMs) with horizontal resolutions still too coarse to repre-
sent regional- to local-scale phenomena. In the context of the
Coupled Model Intercomparison Project phase 6 (CMIP6),
ESGCM simulations were conducted for the Sixth Assess-
ment Report (AR6) of the Intergovernmental Panel on Cli-
mate Change (IPCC) at resolutions ranging from 0.70 to
3.75◦. Here, four convolutional neural network (CNN) archi-
tectures were evaluated for their ability to downscale, to a
resolution of 0.1◦, seven CMIP6 ESGCMs over the Iberian
Peninsula – a known climate change hotspot, due to its in-
creased vulnerability to projected future warming and drying
conditions. The study is divided into three stages: (1) evaluat-
ing the performance of the four CNN architectures in predict-
ing mean, minimum, and maximum temperatures, as well as
daily precipitation, trained using ERA5 data and compared
with the Iberia01 observational dataset; (2) downscaling the
CMIP6 ESGCMs using the trained CNN architectures and
further evaluating the ensemble against Iberia01; and (3) con-
structing a multi-model ensemble of CNN-based downscaled
projections for temperature and precipitation over the Iberian
Peninsula at 0.1◦ resolution throughout the 21st century un-
der four Shared Socioeconomic Pathway (SSP) scenarios.
Upon validation and satisfactory performance evaluation, the
DL downscaled projections demonstrate overall agreement
with the CMIP6 ESGCM ensemble in magnitude for tem-
perature projections and sign for the projected temperature
and precipitation changes. Moreover, the advantages of using
a high-resolution DL downscaled ensemble of ESGCM cli-

mate projections are evident, offering substantial added value
in representing regional climate change over Iberia. Notably,
a clear warming trend is observed in Iberia, consistent with
previous studies in this area, with projected temperature in-
creases ranging from 2 to 6 ◦C, depending on the climate sce-
nario. Regarding precipitation, robust projected decreases are
observed in western and southwestern Iberia, particularly af-
ter 2040. These results may offer a new tool for providing
regional climate change information for adaptation strategies
based on CMIP6 ESGCMs prior to the next phase of the Eu-
ropean branch of the Coordinated Regional Climate Down-
scaling Experiment (EURO-CORDEX) experiments.

1 Introduction

The Sixth Assessment Report (AR6) of the Intergovernmen-
tal Panel on Climate Change (IPCC) was released in Au-
gust 2021, dramatically calling for urgent action to reduce
global greenhouse gas emissions (GGEs) due to the scale of
the projected changes for the climate system from the mean
state to extremes (IPCC, 2021). The results in the report
are based on the Coupled Model Intercomparison Project
phase 6 (CMIP6) simulations, which were performed using
Earth system and global climate models (ESGCMs), and in-
cluded runs with a spatial resolution in the range of 0.70 to
3.75◦. The IPCC report projects worrying changes in global-
scale extreme events, such as significant increases in the fre-
quency and intensity of heat waves, droughts, and extreme
precipitation. Although based on global simulations, the AR6
showed particularly pronounced changes on a regional level
in some climate change hotspots, like the Mediterranean
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region (Turco et al., 2015; Cos et al., 2022; Lionello and
Scarascia, 2018).

It is widely accepted that most resolutions used by ES-
GCMs are still too coarse to represent many regional- to
local-scale processes that define the local climate (Randall
et al., 2007; Soares et al., 2012; Rummukainen, 2016). This
disadvantage highlights the necessity for downscaling meth-
ods, at a higher resolution, which often provide regional
to local fine-scale information, which is crucial for impact
and adaptation studies. There is a plethora of downscal-
ing methods, including dynamical ones using regional cli-
mate models (RCMs), statistical ones using statistical down-
scaling methods (SDMs), and, recently, an umbrella group
of the latter, designated as artificial intelligence (AI) ap-
proaches, which include machine-learning (ML) and deep-
learning (DL) methods.

RCMs are forced at the boundaries by ESGCMs (Dick-
inson et al., 1989; Giorgi and Bates, 1989; Giorgi and
Mearns, 1991; McGregor, 1997; Christensen et al., 2007),
using higher resolutions (∼ 10 km) in limited area domains,
which significantly improve the description of regional to lo-
cal climates (Giorgi and Mearns, 1999; Laprise, 2008; Rum-
mukainen, 2010, 2016; Feser et al., 2011; Soares et al., 2012,
2017a, b; Rios-Entenza et al., 2014; Giorgi et al., 2016;
Lucas-Picher et al., 2017; Cardoso et al., 2019). Neverthe-
less, considering local and, especially, sub-daily climate fea-
tures, RCMs still present limitations in capturing sub-grid
processes such as convection (Prein et al., 2013). In order
to bridge this gap, RCMs are running at very high resolu-
tions, usually described as convective-permitting resolutions
(approximately 1 km), where deep convection is explicitly re-
solved by the grid mesh at grid spacing below 3 km (Prein et
al., 2015; Coppola et al., 2020; Pichelli et al., 2021; Soares
et al., 2022).

SDMs are based on the establishment of empirical rela-
tionships between large-scale atmospheric predictors and lo-
cal observed predictands describing local climate (Wilby and
Wigley, 1997; Fowler et al., 2007; Nikulin et al., 2018; Her-
tig et al., 2019; Maraun et al., 2019; Gutiérrez et al., 2019a;
Rössler et al., 2019; Soares et al., 2019; Widmann et al.,
2019). Subsequently, projections of future regional to local
climate variables are determined from future large-scale at-
mospheric conditions. SDMs include model output statis-
tics and perfect-prognosis approaches (Maraun et al., 2010,
2017). However, when compared to dynamical downscaling,
the model formulation of SDMs lacks physical constraints
and, in general, does not ensure a full multivariate consis-
tency (Le Roux et al., 2018). Since SDMs use observations
for training, they are able to overcome the systematic bi-
ases often displayed by RCMs. Additionally, since SDMs are
not computationally demanding, the need for large computa-
tional infrastructures is avoided.

There is a continuous improvement in SDMs, and new AI
approaches are being proposed for climate applications, with
deep learning (DL) being one of the most promising. DL is

a subdomain of machine learning (ML). In ML, the mod-
els learn the optimal value of their parameters automatically.
Since parameter tuning is based on the input data fed to the
model, the model is able to make predictions when forced by
new data (see Alzubi et al., 2018, for an overview of ML).
Unlike “shallow” learning models (e.g., random forests and
support vector machines), DL models learn non-linear re-
lationships between data due to their “deep” layered struc-
ture. DL has become a common approach in research over
the past decade (Schmidhuber, 2015), including in Earth sci-
ences in the last few years (Reichstein et al., 2019), thanks to
advances in computational power and data availability. For
example, the European Centre for Medium-Range Forecasts
(ECMWF) features DL as the main showcase in its Destina-
tion Earth project (Bauer et al., 2021), which will attempt to
create digital twins of the Earth system in the next decade.

The most common DL model type is the artificial neu-
ral network (ANN), an attempt to design an artificial ana-
log to the biological neural networks that exist in the human
brain. One of the most used types of ANNs is convolutional
neural networks (CNNs). These models are widely used in
the field of computer vision, as they extract information and
identify objects in images (LeCun and Bengio, 1995). How-
ever, the value of CNNs is not restricted to computer vision,
as CNNs have been used in other research areas, including
in Earth sciences, for example, in model parameterization
(Chantry et al., 2021a) and ensemble postprocessing (Rasp
and Lerch, 2018), showing promising results. Climate down-
scaling is another promising area benefitting from the im-
plementation of CNNs. Early attempts at downscaling us-
ing simple ANN structures were not compelling due to lim-
ited input data, computational resources, and scarcer obser-
vations (e.g., Wilby et al., 1998; Trigo and Palutikof, 1999).
Recent studies have shown more favorable results, equalling
and even surpassing classic SDMs (e.g., Baño-Medina et al.,
2020; Hernanz et al., 2022; Baño-Medina et al., 2022). Re-
cently, and for the first time, Baño-Medina et al. (2022) were
able to downscale climate projections with the aid of DL for
precipitation and temperature, based on a set of global cli-
mate models (GCMs) from the Coupled Model Intercompar-
ison Project phase 5 (CMIP5). These authors showed that
DL reduced the biases in the historical period when com-
pared to an ensemble of RCMs with 0.44◦ resolution from
EURO-CORDEX (European branch of the Coordinated Re-
gional Climate Downscaling Experiment). In addition, the
resulting climate change signals have similar spatial patterns
to those obtained from the RCMs, and when looking at the
uncertainty, the DL preserves the uncertainty of the climate
change signal for temperature and reduces it for precipita-
tion.

Despite their promising results, DL methods are viewed
with caution in the scientific community due to their black-
box nature. DL models usually have thousands (if not mil-
lions) of trainable parameters that hinder a physically based
explanation for the quality of their results. There have been
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attempts to improve the understanding of models’ reason-
ing (e.g., Carter et al., 2018), building an overall framework
for DL studies in Earth sciences, including weather/climate
modeling and postprocessing, and generating consistent in-
tercomparable studies (Reichstein et al., 2019; Chantry et al.,
2021b; Haupt et al., 2021). As a result, the first benchmark
dataset for data-driven weather forecasting has been created
(Rasp et al., 2020). DL presents other general limitations, in-
cluding the need for hardware (graphics processing units or
GPUs accelerate the model training, while the more com-
mon central processing units or CPUs can be computation-
ally costly; Chantry et al., 2021a). Other DL limitations con-
cern the climate research field. Lack of explicit physics in
the DL models and the need to split the data in a way that in-
cludes long-term patterns and trends (e.g., El Niño–Southern
Oscillation or ENSO and global warming) in both training
and test phases for long-term datasets (Schultz et al., 2021)
are examples of said limitations.

The Iberian Peninsula, within the Mediterranean basin, is
a known climate change “hotspot” (Planton et al., 2012; Dif-
fenbaugh and Giorgi, 2012; Turco et al., 2015; Russo et al.,
2019; Cos et al., 2022) due to its high vulnerability to warm-
ing and drying conditions (Argüeso et al., 2012; Cardoso
et al., 2019; Soares et al., 2017a, b; Lima et al., 2023a, b;
Soares and Lima, 2022), leading to high occurrence of ex-
treme events, such as droughts, heat waves, and wildfires
(Hoerling et al., 2012; Bento et al., 2022, 2023; Soares et al.,
2023a). Future projections point to a warming trend that is
stronger for daytime values during summer and autumn than
in other seasons, resulting in an amplification of the daily
and annual temperatures (Cardoso et al., 2019; Lima et al.,
2023a). Also, a significant reduction in the mean precipita-
tion is projected throughout the entire year (Argüeso et al.,
2012; Lima et al., 2023a; Soares et al., 2017a). Concomitant
with the projected warming and drying trends, the occurrence
of hot and dry extreme events is expected to become more
frequent, intense, and longer (Hoerling et al., 2012; Lima et
al., 2023b), which may have significant impacts on human
and natural sectors, such as agriculture (Bento et al., 2021),
forests (Palma et al., 2015, 2018), coastal areas (Pereira and
Coelho, 2013), and water resources (Soares and Lima, 2022).
The Iberia01 regular gridded product (hereafter Iberia01) is
the highest-resolution observational daily dataset including
mean, maximum, and minimum temperatures and precipi-
tation, covering the full domain of continental Iberia (Her-
rera et al., 2019). Iberia01 is commonly used for assessing
the performance of ESGCMs (Soares et al., 2022), RCM re-
sults (Herrera et al., 2020; Careto et al., 2022a, b), building
of multi-model ensembles for climate change assessments
(Soares et al., 2023a; Lima et al., 2023a, b), and other stud-
ies, such as those related to water availability (Soares and
Lima, 2022) and droughts (Páscoa et al., 2021; Soares et al.,
2023a).

The most consistent and widely used high-resolution cli-
mate change dataset for Iberia remains the EURO-CORDEX

and CORDEX-Core runs (Jacob et al., 2014, 2020). These
regional climate simulations were forced by the previous
CMIP5 global climate simulations and are becoming less
useful after the recent release of the CMIP6 results forced
by the Shared Socioeconomic Pathway (SSP) and Represen-
tative Concentration Pathway (RCP) greenhouse gas emis-
sions scenarios. At present, the new EURO-CORDEX simu-
lations protocol, forced by CMIP6 runs, is being finished, and
widespread availability of new simulations and results for the
scientific community and society is not expected before 1–2
years’ time. Additionally, the building of new multi-model
and multi-approach ensembles is highly beneficial to assess
the robustness and uncertainty of future climate projections
(Lima et al., 2023a). The increasing need for exploring and
updating regional climate information for Iberia requires and
benefits from the use of other approaches to downscale the
current CMIP6 runs.

In the present study, a DL methodology based on the
work of Baño-Medina et al. (2022) is used to downscale,
in a consistent manner, the CMIP6 runs at high resolution
for Iberia. A matrix of plausible futures is used to select
the CMIP6 models considered to be in agreement with the
EURO-CORDEX evaluation study (Sobolowski et al., 2023).
The DL algorithm is trained using ERA5 and compared to
the high-resolution regular gridded dataset Iberia01 (Her-
rera et al., 2019) for the current climate, covering the period
1979–2014, and is then used to downscale future projections
in agreement with four SSP–RCP scenarios, namely SSP1–
RCP2.6, SSP2–RCP4.5, SSP3–RCP7.0, and SSP5–RCP8.5
(O’Neill et al., 2016), for three future periods throughout the
21st century, namely the beginning of the century (2015–
2040), middle of the century (2041–2070), and end of the
century (2071–2100). First, different architectures of DL
are trained and evaluated for the present climate and then
multi-model projections are performed, based on a simple-
averaged multi-model ensemble approach. This study is fo-
cused on four of the main climate variables and their ex-
tremes: minimum, mean, and maximum temperatures and
precipitation. The main goals of this study are to understand
the accuracy of downscaling CMIP6 GCMs to a much finer
spatial resolution using DL and to take advantage of the ad-
vancing AI methods to compile information that may be cru-
cial to timely assist mitigation and adaptation plans being
developed at the national, regional, and local levels within
Iberia.

2 Data and methods

2.1 Study area

The Iberian Peninsula (IP) is located in the southwestern tip
of Europe (Fig. 1), bordered by the Atlantic Ocean and the
Mediterranean Sea. The IP sits in a climate transition zone
between the arid and semiarid climates of subtropical re-
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Figure 1. Consideration of western Europe and northwestern Africa
topography (m) and of the domains of the Earth system and global
climate model predictors (dashed red line) and predictands (full or-
ange line).

gions and the humid temperate climates of northern Europe.
Despite having a surface area of smaller than 600 000 km2,
it shows a diverse climate, with significant regional varia-
tions. In fact, while the northern and northwestern regions are
marked by long rainy seasons and temperate summers, the
south and southeast are characterized by long and hot sum-
mers and a clear dry season. The interior regions are defined
by a continental climate, with hot summers and cold winters.
Additionally, local and regional topographic features play a
significant role in modulating climate features throughout the
IP. Here, the IP domain is considered to be the land area be-
tween 36 and 44◦ N and ◦W and 4◦ E (Fig. 1; inside the or-
ange line). The predictor domain (Fig. 1; dashed red line) is
a larger region than the IP domain to ensure that large-scale
phenomena are included in the information provided by the
predictors to train the DL models.

2.2 ERA5 reanalysis

ERA5 is the latest European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (Hersbach et al.,
2020) produced within the Copernicus Climate Change
Service (C3S). ERA5 provides a comprehensive, high-
resolution record of the global atmosphere, land surface, and
ocean from 1950 onwards. Benefitting from advanced re-
search and model physics development, outputs are archived
at 0.25◦× 0.25◦ horizontal and 1 h time resolutions, consid-
ering 137 atmospheric levels up to 0.01 hPa. The ECMWF
Integrated Forecasting System (IFS) Cy41r2, used opera-
tionally for forecasting from March to November 2016, is
used to produce ERA5. Additional details are available in
Hersbach et al. (2020). Here, the period from 1 January 1979
to 31 December 2014 is considered. The original ERA5 re-
analysis data were interpolated to a 1◦× 1◦ horizontal reso-

lution, using a bilinear interpolation method, to build a com-
mon grid to the CMIP6 ESGCMs (Sect. 2.3).

2.3 CMIP6 Earth system global climate models

The ESGCMs selected for the current study closely fol-
low the model array built in Sobolowski et al. (2023) for
the ongoing CMIP6 dynamical downscaling that is being
performed (i.e., the regional climate model simulations of
EURO-CORDEX phase II). The authors thoroughly ana-
lyzed the ability of the CMIP6 ESGCMs to describe the most
important large-scale features that define the European cli-
mate, such as the storm track position, and that span the AR6
IPCC climate sensitivity range. The ESGCMs considered are
listed in Table 1; understandably, the list is additionally con-
strained by the availability of the predictors data. The predic-
tor data were extracted for the domain in Fig. 1 (inside the
dashed red line), limited by 30◦ N–50◦ N, 15◦W–7◦ E, and
then interpolated to a common grid at a 1◦× 1◦ resolution,
using the bilinear interpolation method.

2.4 Iberia01 observational regular gridded dataset

The Iberia01 regular gridded product is the highest-
resolution observational daily dataset including mean, maxi-
mum, and minimum temperatures and precipitation that cov-
ers the full domain of continental Iberia (Herrera et al.,
2019). This observational dataset was built using an un-
precedented number of ground station observations, 275
for temperatures and 3486 for daily accumulated precipita-
tion, resulting in a high-quality regular gridded dataset at
0.1◦× 0.1◦ horizontal resolution. Here, the Iberia01 product
is used both to calibrate and evaluate the deep learning ap-
proach for the period 1979–2014 (same as ERA5).

2.5 Deep learning methodology

Convolutional neural networks (CNNs) are deep learning
(DL) model structures specializing in extracting features au-
tomatically from geospatial data. The architecture of a CNN
model includes convolutional layers that perform feature
identification and extraction using filters that apply the math-
ematical operation of cross-correlation to the data (LeCun
and Bengio, 1995; see Fig. 3 of Baño-Medina et al., 2020).
The general outline of one epoch, i.e., a full cycle of the train-
ing phase, is as follows:

– The 2D filters in a convolutional layer “scan” the set of
predictor variables, computing a set of filter maps based
on each filter, highlighting different features/patterns of
the original data. These filter maps are then used as in-
put for the following convolution layer.

– The output of the final convolutional layer is flattened
(reshaped to 1D) before being fed to the fully connected
(dense) layer that follows.
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Table 1. CMIP6 Earth system global climate models. Note that “Hor. and vert. res.” stands for horizontal and vertical resolution.

ESGCM (CMIP6) Institute Reference Hor. and vert. res. atmosphere Hor. and vert. res. ocean

ACCESS-CM2 CSIRO/BOM Bi et al. (2013) 1.25◦× 1.875◦, L85 1.00◦× 1.00◦, L50

MPI-ESM1-2-HR MPI Müller et al. (2018);
Gutjahr et al. (2019)

0.90◦× 0.90◦, L95 0.40◦× 0.40◦, L40

IPSL-CM6A-LR IPSL Boucher et al. (2020) 1.25◦× 2.50◦, L79 0.5–1.00◦× 1.00◦, L75

MIROC6 AORI/NIES/JAMSTEC Tatebe et al. (2019) 1.40◦× 1.40◦, L81 1.00◦× 1.00◦, L62

NorESM2-MM NCC Seland et al. (2020) 0.90◦× 1.25◦, L32 1.00◦× 1.00◦, L53

UKESM1-0-LL UKMO Sellar et al. (2019) 1.25◦× 1.875◦, L85 1.00◦× 1.00◦, L75

CNRM-ESM2-1 CNRM Séférian et al. (2019) 1.40◦× 1.40◦, L91 1.00◦× 1.00◦, L75

– The units in a dense layer are connected to every unit in
the previous and following layers, allowing the network
to learn potential relationships between all units in suc-
cessive layers. The final dense layer must have the size
of the target data in order to generate the predictions.

– The predictions are compared with the observations by
calculating the loss, according to the loss function de-
fined by the user.

– Finally, the model attempts to lower the loss by the
use of the stochastic gradient descent optimization al-
gorithm, tuning the parameters of each model layer ac-
cording to the direction of the gradient that minimizes
the loss the fastest. This process begins in the output
layer, computing the gradients on that layer, and back-
tracks all the way to the first convolutional layer in what
is known as the back-propagation algorithm.

The model then repeats the training until it reaches a con-
vergence mark defined by the user (usually a set number of
epochs after the loss stops decreasing). While the learnable
parameters are optimized automatically by the model, there
is a set of hyperparameters that is defined by the user, includ-
ing the following:

– the maximum number of epochs that the model can run;

– the batch size of observations used to tune the model in
each training cycle; and

– the learning rate at which the model incorporates new
information after each epoch.

The main goal of DL is to achieve generalization; i.e., the
ability to make quality predictions when given new, never-
before-seen data (extrapolation). Such a feature is particu-
larly important when training DL models for climate stud-
ies, due to global warming and other long-term trends. The
model structures considered in this study were retrieved from
the Baño-Medina et al. (2020) and are described in Table 2.

Although all models have similar structures, differing only in
the small details, they are designed in such a way that every
model is slightly more complex than the previous one. All
models comprise the following:

– three convolutional layers (the first two layers have 50
and 25 filters each);

– a final dense layer that outputs the predictions; and

– the same hyperparameters (batch size= 100 and learn-
ing rate= 0.0001).

The differences among the models are as follows:

– The third convolutional layer has 1 filter in BMlinear
and BM1 architectures and 10 filters in BM10 and BM-
dense architectures.

– BMdense presents two additional dense layers, both
with 50 units, prior to the output layer.

– The activation function in every layer of every model is
the rectified linear unit (ReLU), a non-linear function,
except in BMlinear, in which the function is linear.

The loss function used for the temperature predictions is
based on the mean squared error. For precipitation, however,
the DL models feature a multi-output structure (see Fig. 3 in
Baño-Medina et al., 2020). Instead of predicting precipita-
tion directly, the model attempts to obtain three parameters:
the shape (alpha) and scale (beta) of the gamma distribution
and the probability of precipitation (p). This is achieved by
applying a custom loss function that computes the negative
log likelihood of the Bernoulli–gamma distribution (Can-
non, 2008), following the methodology presented in Baño-
Medina et al. (2020). The precipitation value is obtained by
multiplying the alpha and beta parameters.

2.6 Selection of predictors, training, and evaluating

The predictors selected follow the Baño-Medina et al. (2022)
study and are included in Table 3. The data were pre-
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Table 2. CNN architectures used in this study (adapted from Baño-Medina et al., 2022). The architecture is divided into one input and
one output layer and several hidden layers in between. Numbers represent the units in each hidden layer, with convolutional layers in bold;
otherwise, dense layers are given. The input format is lat× long× 15 (five predictors times three pressure levels), and the output is a 6523× 1
vector (the number of 0.1◦ land grid points over Iberia).

Model Architecture Activation function Rationale

BMlinear Input – 50 – 25 – 1 – output Linear Using convolutions to perform the downscaling
BM1 Input – 50 – 25 – 1 – output ReLU Add non-linearity to the model structure
BM10 Input – 50 – 25 – 10 – output ReLU Increase the number of filters in the last convolution layer
BMdense Input – 50 – 25 – 10 – 50 – 50 – output ReLU Deepen the model structure

processed before being used to train and evaluate the DL
models. The ERA5 variables, used as predictors, were stan-
dardized to facilitate the training of the DL models. Grid
points with missing data in the CMIP6 ESGCMs were filled
with an average of the surrounding grid points. If the sur-
rounding grid points had missing data as well, then a domain
average was applied. Afterwards, the dataset was standard-
ized (with the same parameters used for ERA5). The ES-
GCMs were bias-corrected in relation to ERA5 through a
simple mean-variance scaling method. The climate change
trend was removed in the future scenarios before the bias cor-
rection and reintroduced afterwards (Vrac and Ayar, 2017).

Two stages were pursued with the aim of training and eval-
uating the four architectures (Fig. 2). The first stage was
to train them using ERA5 predictors (Table 3), consider-
ing the 1979–2004 period, validating their performance be-
tween 2005 and 2009, and finally testing the architectures
for the period 2010–2014. This process was performed to
obtain each of the four predictands, namely daily mean tem-
perature (T ), daily minimum temperature (Tmin), daily max-
imum temperature (Tmax), and daily accumulated precipita-
tion (Pr) (Table 3). The results of the DL downscaled pre-
dictands from ERA5 were then compared with the Iberia01
reference data. In this case, since the DL used ERA5 reanal-
ysis predictors, the evaluation was performed with daily syn-
chronized climate data. This evaluation, conducted between
2010 and 2014, was based on error metrics such as the bias,
the root mean squared error (RMSE), the standard deviation
ratio (SDR), the Perkins’ skill score (PSS), and the relative
operating characteristic skill score (ROCSS).

The mean bias, used for temperature and precipitation is
defined as

Bias=
1
N

∑N

k=1
(mk − ok) , (1)

where ok andmk are, respectively, the observed and modeled
time series, and N is the total number of grid points.

The root mean squared error (RMSE), used for tempera-
ture and precipitation, is defined as

RMSE=

√
1
N

∑N

k=1
(mk − ok)

2. (2)

The standard deviation ratio, used only for temperature, is
expressed as

σn =
σm

σo
=

√
1
N

∑N
k=1

(
mk −m

)2√
1
N

∑N
k=1

(
ok − o

)2 , (3)

where σo and σm are standard deviations of the observed and
modeled time series, respectively, while o and m represent
the respective mean values.

The Perkins’ skill score (PSS; Perkins et al., 2007) quanti-
fies the model’s ability to reproduce the observed probability
distribution functions (PDFs) as follows:

S = 100×
∑B

i=1
min

[
Em,i,Eo,i

]
, (4)

where Em and Eo are, respectively, the modeled and ob-
served empirical PDFs, and min[Em,iEo,i] is the minimum
between the two values. B is the total number of bins used to
compute the PDF.

Finally, the relative operating characteristic skill score
(ROCSS) is given by

ROCSS= 2×Area under the ROC curve− 1. (5)

For the extreme values, the 2nd and 98th percentiles of T , the
10th (90th) percentile of Tmin (Tmax), and the 98th percentile
of Pr were computed and compared with those from Iberia01
(bias).

The second stage consisted in training the DL architec-
tures with ERA5; this time, the complete 1979–2014 period
was used. These architectures were then used to downscale
the individual CMIP6 ESGCMs for the same period for each
of the four predictands. The resulting DL downscaled ES-
GCMs, at 0.1◦ horizontal resolution (ESGCM-DL), are non-
synchronized with the Iberia01, and consequently, only a sta-
tistical comparison was performed. Therefore, Julian years
with 365 multi-year daily means were computed for each
ESGCM-DL and for the Iberia01, and a performance eval-
uation based on the same error metrics as in the first stage
was conducted. Finally, a simple average ensemble was built
for each architecture, containing seven ESGCM-DL models,
and compared to the 1◦ ESGCM ensemble, the 1◦ ERA5 re-
analysis, and the interpolated 0.1◦ ERA5 reanalysis.
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Table 3. ERA5 and CMIP6 predictors and predictands and the respective atmospheric levels.

Levels 850–700 hPa–500 hPa

Predictors
(daily)

Temperature (ta) Humidity (hus) Geopotential height
(zg)

Zonal wind speed
(ua)

Meridional wind
speed (va)

Levels Surface

Predictands
(daily)

Mean temperature
(tas)

Minimum tempera-
ture (tasmin)

Maximum temper-
ature (tasmax)

Precipitation (pr)

Figure 2. Summary of the two phases of the methodology (detailed
in Sect. 2.6) describing the predictors and training and projections
periods considered in each phase.

2.7 Future climate projections

The present climate historical period considered here cor-
responds to 1981–2010. The future climate projections are
focused on three periods: 2015–2040 (beginning of the 21st
century), 2041–2070 (middle of the 21st century), and 2071–
2100 (end of the 21st century), encompassing four CMIP6
SSPs (Rozenberg et al., 2014; O’Neill et al., 2016), namely
SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. These sce-
narios range from a strong mitigation level, resulting in low
greenhouse gas emissions (GGEs), with CO2 emissions cut
to net zero around 2075 (SSP1–2.6); an intermediate trajec-
tory of future GGEs, with CO2 emissions maintaining cur-
rent levels until 2050 and then reducing, but not achieving,
net zero by 2100 (SSP2–4.5); and, finally, two scenarios with
increasing GGEs with SSP3–7.0 and SSP5–8.5, where the
former considers that CO2 emissions double by 2100, and
the latter considers a 3-fold increase by 2075. In this study,
results of future climate projections correspond to anomalies
(differences) between the future and the historical climato-
logical values, as given by a simple averaged multi-model
ensemble consisting of all ESGCM-DL outputs. It should be
noted that the projected temperature increase depends on the
chosen historical period. Downscaling using the four DL al-
gorithms is performed for each ESGCM considered in this
study (Table 1) for the disclosed future periods. As reference,
the change signal linked to all ESGCMs is also computed.

The future ESGCM-DL-projected climate of Iberia is ana-
lyzed in terms of mean climate and extreme values. Anomaly
maps for the annual projected changes for Iberia are pre-
sented for all variables, where the differences between the 1◦

ESGCMs and 0.1◦ ESGCM-DL projections are highlighted.
Box plots summarizing the projected changes (median, in-
terquartile range, and variability) are also presented for the
four predictands.

3 Results

3.1 Evaluation of DL forced by ERA5

The four DL architectures are trained and validated with
ERA5 for the 1979–2004 and 2005–2009 periods, respec-
tively, and finally tested during 2010–2014 against Iberia01
considering minimum, mean, and maximum temperatures
and precipitation. The performance evaluation metrics are
shown in Fig. 3 (T ), Fig. 4 (Tmin), Fig. 5 (Tmax), and Fig. 6
(Pr). The comparison between the ERA5 (interpolated to 0.1◦

horizontal resolution; iERA5 from here on) and Iberia01 is
also shown as a reference for all fields (dark gray box plot).

Considering T (Fig. 3), the following three main out-
comes emerge: (1) all of the DL approaches display rather
small errors and even slight improvements in comparison
with iERA5, such as concerning RMSE and the PSS; (2)
the DL architectures present less variability in accuracy met-
rics (bias) than iERA5, but in some cases, the error distribu-
tion of the latter is more closely centered around zero than
for the DL outcomes; and (3) the four architectures present
small biases for extreme values. When considering the total
bias, the four architectures show somewhat interchangeable
results, with median values slightly below zero for BMlin-
ear, virtually zero for BM1, and slightly over zero for BM10
and BMdense. The small warm bias found for the 2nd per-
centile of T is observed both in the DL outcomes and in the
iERA5. However, the cold bias found in the 98th percentile
of T is only found in the DL outcomes, with values close to
zero for the iERA5. Regarding the RMSEs, DL results show
lower variability ranges than iERA5 and overall lower me-
dian values with increasing DL complexity. The interquartile
range for the RMSEs of the DL results encompasses values
from 1.25 to 1.5 ◦C. In terms of SDR, in relation to Iberia01,
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the iERA5 shows the median value closest to 1; however, it
also shows the largest interquartile distance and largest vari-
ability range (from ∼ 0.90 to ∼ 1.08 when compared with
∼ 0.93 to ∼ 1.04 for the DL outcomes). Finally, regarding
the PSS, the four architectures show more similarity between
distributions of T with Iberia01 than the iERA5. A distinc-
tion between the DL outcomes for this error metric is rather
unnoticeable.

Regarding Tmin (Fig. 4), the overall results show the fol-
lowing: (1) the DL architectures present better results in com-
parison to Iberia01 than the simple interpolation of ERA5,
showing lower RMSEs, biases closer to zero, and larger
PSS values; and (2) the four architectures show, to some ex-
tent, similar results between them. Following a more detailed
analysis, the median biases presented by the four architec-
tures are all near-zero, while the iERA5 shows a median bias
larger than 1 ◦C. Furthermore, when comparing the bias of
the architectures to the interpolated ERA5, a lower interquar-
tile range (circa 1 ◦C) is observable in the first range com-
pared to the latter (∼ 2 ◦C). Additionally, a narrower extreme
bias variability range (about 2.5 ◦C versus about 4 ◦C, respec-
tively) is seen. Results for extreme low temperatures (bias
p10) are in line with the total bias; nevertheless, these results
show a slight tendency to lower median biases as the com-
plexity of the architecture increases. This is also noticeable in
the precision metric, with reduced RMSEs for increasing DL
architecture complexity. However, here, BM10 and BMdense
show very similar results. All architectures present median
RMSEs below 2 ◦C, which is the third quartile of the three
more complex ones below this value as well. The maximum
RMSE does not surpass 3 ◦C. On the other hand, the iERA5
shows a median RMSE slightly above 2 ◦C, the third quartile
close to 3 ◦C, and a maximum value above 4.5 ◦C. Similar
to the T results in Fig. 3, the median SDR is closer to 1 for
the iERA5; nevertheless, the DL architectures show greater
variability ranges for Tmin in comparison to T . Among the
architectures, BMdense is the one with a standard deviation
ratio median closer to 1. Finally, considering the PSS values,
it is once again noticeable that the distributions of the down-
scaled ERA5 using DL and Iberia01 tend to match better with
the increase in complexity of the architectures.

When assessing Tmax (Fig. 5), the following three main
results may be highlighted: (1) all the error metrics are im-
proved by the DL methods when compared with iERA5; (2)
the DL architectures show much less variability in the bi-
ases and RMSEs in comparison to iERA5 (having Iberia01
as reference); and (3) the four architectures show, to some ex-
tent, similar results between them. In terms of bias, and con-
sidering the four architectures, neither Tmax nor the extreme
Tmax show cold or warm biases, as both are centered around
zero. Conversely, iERA5 shows a cold bias in both cases.
Once again, the precision tends to be larger with more com-
plex DL architectures, with BMdense showing lower RM-
SEs. The Tmax SDR between BM10 and Iberia01 seems to
indicate a better agreement than BMlinear, BM1, and BM-

dense. Nevertheless, the four architectures present SDR val-
ues closer to 1 when compared with iERA5. Finally, the
matching between the four DL architectures outcomes dis-
tributions and Iberia01 is greater than for iERA5. The high-
quality DL results for temperatures with regard to iERA5
are rather promising, since those variables are assimilated by
ERA5.

For Pr, the error metrics from the comparison between the
DL downscaled ERA5, iERA5, and Iberia01 are shown in
Fig. 6. In this case, between the four architectures, BMdense
is the most accurate and precise one, also surpassing iERA5.
While the iERA5 shows an overall slightly negative bias (me-
dian of −8 mm), the DL outcomes show generally positive
values (between 1 and 10 mm). Considering the extreme Pr
(98th percentile), all approaches show an underestimation,
performing slightly worse than the iERA5, despite the lower
error variability ranges. The distributions of the RMSEs of
iERA5 and BMlinear, BM1, and BM10 show somewhat sim-
ilar results for the median and overall variability. In this case,
BMdense presents the best results. Finally, the ROCSS shows
that all four DL architectures have better skill at representing
Pr over the Iberian Peninsula, in comparison with iERA5,
with median values ranging between 0.82 and 0.86, which
contrasts with 0.67 for iERA5.

The results from Figs. 3 to 6 show that the four DL archi-
tectures are successful in downscaling temperature and pre-
cipitation from ERA5 at high resolution, presenting, in the
vast majority of instances, a better performance than iERA5.
Given the similar behavior of the four architectures, choos-
ing the “best” one is not straightforward. BM10 and BM-
dense show the best precision (RMSEs) for the four variables
(with BMdense being the most precise). However, consider-
ing the biases, BMdense produces the best results for 10th
percentile Tmin, BMlinear comes first for the 2nd percentile
of T , and BM10 produces more accurate results for Tmax. Re-
garding Pr, BMdense and BM1 retain the best performance
for the mean and 98th percentile. Therefore, a clear distinc-
tion between architectures for all variables is not meaningful.
Therefore, and assuming that all DL architectures are able to
partially contribute to the overall performance of the down-
scaled datasets, the ensemble-building process considers all
DL downscaling equally for each ESGCM.

3.2 Evaluation of DL forced by the ESGCMs

In this section, the error metrics comparing the DL down-
scaling of the CMIP6 ESGCMs and Iberia01 are displayed
for the four analyzed variables (T , Tmin, Tmax and Pr) and
evaluated in the context of the baseline dataset errors, like
the CMIP6 ESGCMs at 1◦ and ERA5 (interpolated at both
1 and 0.1◦, henceforth iERA5-1 and iERA5-0.1 or simply
iERA5). Note that, for each DL downscaled ESGCM, a four-
member ensemble, comprising the results from the four DL
architectures, is considered.
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Figure 3. Error measures of the DL downscaling of ERA5 for the
daily mean temperature (2010–2014) in relation to the Iberia01 ob-
servations. The errors considered are bias, bias of the 2nd and 98th
percentiles, root mean square error (RMSE), standard deviation ra-
tio (SDR), and Perkins’ skill score (PSS). As reference, the errors in
ERA5 interpolated to 0.1◦ are also shown. Each box plot represents
the value of all grid points of the output of each CNN model forced
with ERA5. The box represents the interval between the 25th and
75th percentiles. The orange line is the median value, and the lower
(upper) whisker represents the 10th (90th) percentile.

Figure 4. Error measures of the DL downscaling of ERA5 for the
daily minimum temperature (2010–2014) in relation to the Iberia01
observations. The errors considered are bias, bias of the 10th per-
centile, root mean square error (RMSE), standard deviation ratio
(SDR), and Perkins’ skill score (PSS). As reference, the errors in
ERA5 interpolated to 0.1◦ are also shown. Each box plot represents
the value of all grid points of the output of each CNN model forced
with ERA5. The box represents the interval between the 25th and
75th percentiles. The orange line is the median value, and the lower
(upper) whisker represents the 10th (90th) percentile.
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Figure 5. Error measures of the DL downscaling of ERA5 for daily
maximum temperature (2010–2014) in relation to the Iberia01 ob-
servations. The errors considered are bias, bias of the 90th per-
centile, root mean square error (RMSE), standard deviation ratio
(SDR), and Perkins’ skill score (PSS). As reference, the errors in
ERA5 interpolated to 0.1◦ are also shown. Each box plot represents
the value of all grid points of the output of each CNN model forced
with ERA5. The box represents the interval between the 25th and
75th percentiles. The orange line is the median value, and the lower
(upper) whisker represents the 10th (90th) percentile.

In general, for T (Fig. 7), the DL ESGCMs show a much
better performance in comparison to the ESGCMs, even with
regard to the ERA5, at 0.1◦. All biases for the DL ESGCM
results are around zero and show small variabilities (be-
low 0.3 ◦C). The forcing ESGCMs display both positive and

Figure 6. Error measures of the DL downscaling of ERA5 for daily
precipitation (2010–2014) in relation to the Iberia01 observations.
The errors considered are bias, bias of the 98th percentile, root
mean square error (RMSE), and relative operating characteristic
skill score (ROCSS). As reference, the errors in ERA5 interpolated
to 0.1◦ are also shown. Each box plot represents the value of all grid
points of the output of each CNN model forced with ERA5. The box
represents the interval between the 25th and 75th percentiles. The
orange line is the median value, and the lower (upper) whisker rep-
resents the 10th (90th) percentile.

negative median values for the three biases (total, 2nd, and
98th percentiles), ranging in general between −1 and 2 ◦C,
but some rise to 3 ◦C. The medians for iERA5 are gener-
ally closer to zero (below 0.3 ◦C). Regarding the RMSE, the
DL downscaled ESGCMs show similar values, below 0.5 ◦C,
while the iERA5 values are typically below 1 ◦C, and most of
the ESGCMs reach almost 4 ◦C, except for MIROC6, which
exceeds this threshold. The SDR of all models is around 1;
nevertheless, the DL ensembles for each ESGCM present
less variability. Finally, the PSS metric shows that the DL
ESGCMs are able to represent the Iberia01 PDFs remarkably
well, yielding scores above 0.93. The ESGCMs display me-
dian PSS values between 0.8 and 0.9 and are characterized
by large variability.

Considering Tmin (Fig. 8), the biases for the DL ESGCMs
results are around zero (ranging no more than 0.5 ◦C), while
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the forcing ESGCMs and iERA5 show mainly positive val-
ues, with medians reaching 4.5 and 2 ◦C, respectively. The
error variability range for the DL ESGCMs is considerably
smaller than for the ESGCMs counterparts. For the extreme
Tmin values (10th percentile), a similar pattern is visible;
however, there are slightly greater biases for the ESGCMs.
Regarding RMSEs, the DL ESGCM ensemble shows a great
improvement with values around 1 ◦C, whereas the medians
of ESGCMs and ERA5 exceed 4 ◦C and reach ∼ 2 ◦C, re-
spectively, accompanied by much larger variability ranges.
In terms of SDR, all DL downscaling medians are near 1 and
with rather small interquartile ranges when compared with
ESGCMs and iERA5, reaching 0.3 units. Finally, the PSS
metric consistently reveals the added value of the DL ensem-
ble in representing the PDFs with values∼ 0.94 that compare
with values in the range of 0.70 and 0.87 of the ESGCMs.

Regarding Tmax (Fig. 9), the DL ensemble shows a clear
improvement with regard to the forcing ESGCMs, with me-
dian biases less than −0.2 ◦C, compared with a general un-
derestimation of median values that reach 4 ◦C for Tmax and
its 90th percentile. The MIROC6 is the only model overesti-
mating Tmax in ∼ 1 ◦C. The RMSE values display a striking
reduction given by the DL approaches, with median RMSE
values ranging from 4 and 1.5 ◦C to less than 0.5 ◦C. The
SDRs are closer to 1 than the ESGCM counterparts and
iERA5. Considering the PSS, similarly to what was previ-
ously shown, the DL downscaled inter-member variability
ranges between 0.92 and 0.97, contrasting with the forcing
ESGCMs and iERA5 (although the median PSS values for
iERA5 are also high at above 0.9).

Finally, for precipitation (Fig. 10), the performance of
the DL ensembles for each ESGCM is less remarkable than
for temperatures. Nevertheless, the DL downscaling outper-
forms the forcing counterparts in all the error metrics, pre-
senting lower errors and variability ranges. Biases, both for
Pr and its 98th percentile, point to a general underestima-
tion, ranging between −25 % and 10 %, yet corresponding
to much lower overall differences in comparison to Iberia01
than the ESGCMs and iERA5. For the RMSE, the DL ES-
GCMs and iERA5 are relatively equivalent, with median
values of about 10 mm d−1. However, the ESGCM RMSEs
show values above 70 mm d−1 but with medians between 18
and 35 mm d−1. A similar behavior is identifiable for the
ROCSS, with good results for both the DL ESGCMs and
iERA5, with most median values above 0.95, while the ES-
GCMs median ROCSS values are in the range of 0.7 and
0.9 and extreme values reach −0.2. In contrast, the PSS val-
ues of the DL downscaled ESGCMs show lower values, with
medians around 0.5, which are smaller than the∼ 0.72 of the
ESGCMs. In some sense, this is not that surprising since we
are comparing the ESGCM and Iberia01 precipitation at 1◦,
which has a much smoother spatial pattern than at 0.1.

3.3 Iberian future mean climate

The evaluation of the ability of the DL architectures to
downscale both the ERA5 and the ESGCMs during the his-
torical climate provided the necessary confidence to apply
this method to downscale the future ESGCMs climate sim-
ulations. Therefore, here, the projected changes from the
DL downscaled ESGCM ensemble are shown, as obtained
from the comparison of three future time slices (2015–2040,
2041–2070, and 2071–2100) with the 1981–2010 historical
period, in terms of anomalies (i.e., future minus historical).
The four SSP–RCP pairs are analyzed (SSP1–2.6, SSP2–
4.5, SSP3–7.0, and SSP5–8.5) for each of the four variables.
The simple-averaged unweighted ensembles were built con-
sidering all ESGCMs and DL architectures. Therefore, the
DL ESGCM ensembles are composed of 28 members (seven
models times four architectures). Figures 11 to 14 refer to
the projections for T , Tmin, Tmax and Pr, respectively. If
fewer than two-thirds of the ESGCMs members agree on
the change signal, then the grid point is signalized with a
gray dot, which reveals the lack of robustness of the pro-
jected change. A spatial comparison between the projected
changes from the 1◦ ESGCMs ensemble, the 0.1◦ DL down-
scaled ESGCM ensemble, and the interpolated version of
the latter, at 1◦ (to offer a fair comparison with the original
datasets), is conducted to highlight the differences and added
value brought by the DL downscaled ensembles.

The future projected changes for T are displayed in Fig. 11
for the forcing 1◦ ESGCMs (labeled “1◦ GCM” in the pan-
els) and for the DL downscaled ESGCM ensemble (labeled
“DL-MM_01” in the panels) for the three future time slices
under the four scenarios. Overall, the results show a projected
increase in T , starting from the 2015–2040 period and con-
tinuing towards the end of the 21st century (Fig. 11a). Natu-
rally, the SSP1–2.6 (SSP5–8.5) scenario depicts the smallest
(greatest) changes. Under SSP1–2.6, projected changes of up
to 2.5 ◦C are discernible, and the patterns exhibit analogous
characteristics when comparing the ensemble of ESGCM to
the downscaled ensembles generated using DL (Fig. 11a).
This similarity is also evident in the remaining scenarios, al-
though with the additional advantage of DL downscaled ES-
GCM ensembles displaying more detailed patterns of warm-
ing. Both DL and ESGCM ensembles demonstrate tempera-
ture increases of up to 1.5, 3.5, and 6 ◦C during the periods
2015–2040, 2041–2070, and 2071–2100, respectively, under
the SSP5–8.5 scenario. But the corresponding median warm-
ing values for Iberia are around 1.23, 2.5, and 5 ◦C. In the
case of SSP2–4.5 and SSP3–7.0, there is less pronounced
warming, although it may still reach up to 3.5 and 4.5 ◦C,
respectively. These results are more easily observed by con-
densing the spatial information into box plots (Fig. 11b).
Overall, differences between DL and ESGCM ensemble are
more pronounced from the middle of the century onwards,
especially for the two worst-case scenarios (SSP3–7.0 and
SSP5–8.5).
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Figure 7. Error measures of the DL downscaling of CMIP6 ESGCMs for daily mean temperature (1979–2014) in relation to the Iberia01
observations. The errors considered are bias, bias of the 2nd and 98th percentile, root mean square error (RMSE), standard deviation ratio
(SDR), and Perkins’ skill score. As reference, the errors in ERA5 interpolated to 1 and 0.1◦ and the errors in CMIP6 ESGCMs at 1◦ are also
shown. Each box plot represents the value of all grid points of the output of all CNN models pooled together and forced with each CMIP6
ESGCM. The box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper)
whisker represents the 10th (90th) percentile.

Considering Tmin (Fig. 12), the results present similar fea-
tures to those from T . Within SSP1–2.6, projected changes
between 0.5 and 2 ◦C are visible, with more pronounced
warming in the end of the century. The behavior is similar
between the ESGCM ensemble and the downscaled one. Lo-
cal variations in the patterns of Tmin projected changes are
visible for all time slices and scenarios in the outcomes from
the DL downscaled ensemble, which is compatible with the

results from higher-resolution models and able to describe
local phenomena in greater detail (contrary to a simple inter-
polation method). For the SSP5–8.5 scenario, results for the
2041–2070 (2071–2100) period are similar between ensem-
bles, with projected increases from 2 to 3.5 ◦C (3 to 5.5 ◦C).
Note, however, that the DL ensemble projects local increases
of up to 6 ◦C in the central Iberian Peninsula, which are not
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Figure 8. Error measures of the DL downscaling of CMIP6 ESGCMs for daily minimum temperature (1979–2014) in relation to the Iberia01
observations. The errors considered are bias, bias of the 10th percentile, root mean square error (RMSE), Perkins’ skill score (PSS), and
standard deviation ratio (SDR). As reference, the errors in ERA5 interpolated to 1 and 0.1◦ and the errors in CMIP6 ESGCMs at 1◦ are
also shown. Each box plot represents the value of all grid points of the output of all CNN models pooled together forced with each CMIP6
ESGCM. The box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper)
whisker represents the 10th (90th) percentile.

present in the ESGCM ensemble projections. This behavior
is also depicted in the box plots of Fig. 12b.
Tmax (Fig. 13) presents similar characteristics to T and

Tmin. At the beginning of the 21st century (2015–2040), the
magnitude of the projections from both the ESGCM and DL
ensemble ranges from 0.5 to 2 ◦C in most of the Iberian
Peninsula (Fig. 13a), independently of the scenario. In the
mid-21st century (2041–2070), projections from both the
ESGCM and DL downscaled ensembles represent a similar
range of projected changes (up to 3.5 ◦C, depending on the

scenario; Fig. 13b). By 2071–2100, warming values are al-
most 2-fold those of the middle of the century, surpassing
6.5 ◦C in the worst-case scenario. It should be highlighted
that the DL downscaled ensemble shows different areas of
extreme projected increases in Tmax (towards south) that
are not present in the ESGCM ensemble (where the largest
warming is found towards more central and northeastern re-
gions).

Figure 14 shows the Pr projected changes for the fu-
ture time slices and scenarios, which, in this case, consider
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Figure 9. Error measures of the DL downscaling of CMIP6 ESGCMs for daily maximum temperature (1979–2014) in relation to the Iberia01
observations. The errors considered are bias, bias of the 90th percentile, root mean square error (RMSE), standard deviation ratio (SDR),
and Perkins’ skill score. As reference, the errors in ERA5 interpolated to 1 and 0.1◦ and the errors in CMIP6 ESGCMs at 1◦ are also shown.
Each box plot represents the value of all grid points of the output of all CNN models pooled together and forced with each CMIP6 ESGCM.
The box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker
represents the 10th (90th) percentile.

the mean daily accumulated values and their changes (in
mm d−1). In contrast, the changes depicted in Fig. 14 are
rather different from the ones in Figs. 11 to 13. While the
ESGCM ensemble projects a rather homogeneous decrease
in the mean daily precipitation for all future periods and sce-
narios, the DL downscaled ensemble shows mostly consis-
tent decreases in the western and northern areas of Iberia and
non-robust regional increases throughout central and eastern
Iberia, independently of the period and scenario. It is im-
portant to emphasize that most of these projected increases

are not robust (i.e., fewer than two-thirds of the ensemble
members agree on the signal), whereas almost all projected
decreases are robust (Fig. 14a). Negative Pr projections are
found mainly in the northern, western, and southwestern por-
tions of Iberia, increasing in area and robustness towards
2100 and with the SSP5–8.5 scenario. These features are in
overall agreement with the ESGCM ensemble; nevertheless,
there is much increased detail due to the enhanced horizontal
resolution. In fact, for the 2071–2100 time slice under the
SSP5–8.5, the ESGCM (DL downscaled) ensemble shows
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Figure 10. Error measures of the DL downscaling of CMIP6 ESGCMs for daily precipitation (1979–2014) in relation to the Iberia01
observations. The errors considered are bias, bias of the 98th percentile, root mean square error (RMSE), Perkins’ skill score, and relative
operating characteristic skill score (ROCSS). As reference, the errors in ERA5 interpolated to 1 and 0.1◦ and the errors in CMIP6 ESGCMs
at 1◦ are also shown. Each box plot represents the value of all grid points of the output of all CNN models pooled together and forced with
each CMIP6 ESGCM. The box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the
lower (upper) whisker represents the 10th (90th) percentile.

projected decreases of down to −0.75 mm d−1 (−1 mm d−1

in the northern and northwestern Iberia). The box plots in
Fig. 14b are largely affected by the compensating effect of
different signal projected changes, resulting in overall larger
ranges of projected change (even for the interpolated DL en-
semble, at 1◦) and median values closer to zero, in compari-
son with the ESGCM ensemble. Nonetheless, an overall de-
crease in the Iberian precipitation is visible in that the one
for the DL ensemble is smaller than the one shown by the
forcing ESGCM ensemble.

3.4 Iberian future climate extremes

Considering climate extremes, in this section, the projected
changes in the three climate extreme indices are compared
for both the ESGCM and the DL downscaled ESGCM en-
sembles, similar to Sect. 3.3. For Tmin and Tmax, the 10th and
90th percentiles were considered, respectively, while, for the
extreme precipitation, the 95th percentile of the daily mean
accumulated values was computed.

https://doi.org/10.5194/gmd-17-229-2024 Geosci. Model Dev., 17, 229–259, 2024



244 P. M. M. Soares et al.: High-resolution downscaling of CMIP6

Figure 11. Mean temperature relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for SSP1–2.6, SSP2–4.5,
SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2100. (a) Maps. Gray dots specify grid points
where fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal (no occurrences). (b) Box plots. The DL CMIP6
ESGCM multi-model ensembles were interpolated to 1◦, and the results are also displayed. As reference, the change signal linked to the
ESGCM ensemble at 1◦ is also shown in panels (a) and (b). Each box plot represents the value of all grid points of the output of all CNN
models pooled together and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th
percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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Figure 12. Minimum temperature relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for SSP1–2.6, SSP2–4.5,
SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2100. (a) Maps. Gray dots specify grid points where
fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal (no occurrences). (b) Box plots. The DL CMIP6 ESGCM
multi-model ensembles were interpolated to 1◦, and the results are also displayed. As reference, the change signal linked to the ESGCM
ensemble at 1◦ is also shown in panels (a) and (b). Each box plot represents the value of all grid points of the output of all CNN models
pooled together and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th percentiles.
The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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Figure 13. Maximum temperature relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for SSP1–2.6, SSP2–4.5,
SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2100. (a) Maps. Gray dots specify grid points where
fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal (no occurrences). (b) Box plots. The DL CMIP6 ESGCM
multi-model ensembles were interpolated to 1◦, and the results are also displayed. As reference, the change signal linked to the ESGCM
ensemble at 1◦ is also shown in panels (a) and (b). Each box plot represents the value of all grid points of the output of all CNN models
pooled together and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th percentiles.
The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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Figure 14. Daily mean precipitation relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for SSP1–2.6, SSP2–
4.5, SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2100. (a) Maps. Gray dots specify grid points
where fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal (no occurrences). (b) Box plots. The DL CMIP6
ESGCM multi-model ensembles were interpolated to 1◦, and the results are also displayed. As reference, the change signal linked to the
ESGCM ensemble at 1◦ is also shown in panels (a) and (b). Each box plot represents the value of all grid points of the output of all CNN
models pooled together and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th
percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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In general, the future 10th percentile of Tmin (Fig. 15)
reveals lower warming projections than for Tmin (Fig. 12)
and also different patterns. The most pronounced warmings
are located in the south-central and eastern regions of Iberia
(Fig. 14a), which may reach 2 ◦C (4 ◦C) in the 2041–2070
(2071–2100) period for the SSP5–8.5 scenario. The remain-
ing scenarios show lower warmings, reaching 1.5, 2.5, and
3.5 ◦C for SSP1–2.6, SSP2–4.5, and SSP3–7.0, respectively,
by the end of the century. As expected, the warming patterns
are much more detailed and localized when the DL ensemble
is considered.

Similar to extreme Tmin, the projections of extreme Tmax
(Fig. 16) exhibit comparable patterns to those of the mean
climate variable (Fig. 13), although with much more pro-
nounced warming values. In particular, over a significant por-
tion of Iberia, the warming reaches over 8 ◦C by the end of
the century for the SSP5–8.5 scenario. The use of a precise
and performance-evaluated technique to downscale a large
ensemble of ESGCM climate projections at a high resolution
provides substantial added value in capturing local climate
change for the 90th percentile of Tmax, as demonstrated in
Fig. 16a. For instance, when considering the 2071–2100 pe-
riod under SSP5–8.5, both the ESGCM and DL downscaled
ensembles project changes exceeding 8 ◦C. However, the DL
downscaled ensemble surpasses this threshold over a wider
area, locally exceeding 9 ◦C and even extending to the south-
ern coast of Iberia, where the projections from the ESGCM
ensemble do not surpass 6 ◦C.

Regarding the extreme Pr (Fig. 17), the DL projections
point to reductions in the extreme precipitation across south-
western Iberia, expanding eastward (for part of southern
Iberia) throughout the 21st century, and more pronounced
for the SSP3–7.0 and SSP5–8.5 scenarios. These decreases
can reach more than 3 mm d−1 in these regions. On the other
hand, essentially over central, southeastern, and northwest-
ern Iberia, DL projections show an intensification in extreme
precipitation in all scenarios and time periods, reaching in-
creases that surpass 3 mm d−1. The ESGCMs projections
mostly present decreases in extreme precipitation (for all
time slices and scenarios, except the SSP1–2.6 during 2015–
2040 and 2041–2070 in the northern half of the peninsula;
Fig. 17a). The spatial pattern of changes in extreme precip-
itation are dissimilar for the DL and ESGCMs projections.
The box plots in Fig. 17b summarize the differences between
the ESGCM and DL downscaled ensembles, being, neverthe-
less, slightly affected by the lack of robustness of some of the
outcomes, as the DL ensemble shows a larger variability than
the ESGCM ensemble.

4 Discussion and conclusions

The Iberian Peninsula, situated in the southwestern tip of the
European continent within the Mediterranean region is con-
sidered a climate change hotspot, due to the projected fu-

ture warming and drying conditions. These changes can sig-
nificantly impact the natural environment and human health
in the region (Giorgi, 2006; Soares et al., 2017a, b; Cramer
et al., 2018; Lionello and Scarascia, 2018; Cardoso et al.,
2019; Tuel and Eltahir, 2020; Soares and Lima, 2022; Lima
et al., 2023a, b; Soares et al., 2023a). Consequently, there is
an urgent need for accurate climate information to assist the
planning and development of adaptation strategies. Recent
climate change studies focusing on the Iberian Peninsula re-
lied on RCM simulations forced by CMIP5 GCMs (Soares
et al., 2017a, b; Cardoso et al., 2019; Lima et al., 2023a,
b; Soares et al., 2023a) to project future climate change
with increased resolution, accounting for regional features
not captured by coarse ESGCMs. However, following the
release of the improved CMIP6 global climate simulations
and projections (in the context of the most recent IPCC re-
port, AR6; IPCC, 2021), the need for an updated climate
change assessment in the Iberia Peninsula arose. The new
high-resolution CMIP6 EURO-CORDEX regional climate
simulations and projections will become available within the
next 1–2 years. In the interim, however, there is a need for
high-resolution climate information to accurately assess fu-
ture projections over Iberia. In this context, an opportunity
emerges to explore alternative approaches to downscale the
current CMIP6 simulations and projections. Therefore, this
study leverages innovative AI methods to evaluate the evolu-
tion of mean, minimum, and maximum temperatures, as well
as precipitation, across the Iberian Peninsula, throughout the
21st century. The analysis is based on a multi-model, multi-
architecture ensemble of CNN-based downscaled projections
derived from CMIP6 ESGCMs. The investigation encom-
passes three distinct future time slices (2015–2040, 2041–
2070, and 2071–2100) in line with four SSP–RCP scenarios
of SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5.

First, the ability of four DL architectures to reproduce
the historical T , Tmin, Tmax, and Pr climates was evaluated
over Iberia during 2010–2014 (Figs. 3 to 6). During this pe-
riod, all DL architectures, trained using ERA5 data between
1979 and 2004, revealed a good agreement with observations
(Iberia01) for the predictand variables (using solely the pre-
dictors as input data). Although more complex architectures,
such as BMdense, revealed better performance for Pr (lower
overall biases and RMSEs and higher ROCSS), a clear dis-
tinction between architectures was not meaningful. The re-
sults showed that during the 1979–2014 historical period, the
DL downscaled ESGCMs were able to represent the Iberia01
reference climate with large increased performance in com-
parison with the forcing ESGCMs, even when compared with
the ERA5 and iERA5 datasets (Figs. 7 to 10). For Pr, never-
theless, the downscaled error metrics were shown to be sim-
ilar to the reanalysis ones, despite greater differences in the
overall variable distributions (as shown by the PSS values).
Such disagreement could be related to the singular behav-
ior of Pr, especially considering its extreme events, which
can occur under distinct atmospheric synoptic patterns (pre-
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Figure 15. Mean minimum temperature 10th percentile relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for
SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2010. (a) Maps. Gray dots
represent grid points where fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal (no occurrences). As reference,
the change signal linked to all ESGCMs at 1◦ is also shown. (b) Box plots. Each box plot represents the value of all grid points of the output
of all CNN models pooled together and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th
and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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Figure 16. Mean maximum temperature 90th percentile relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for
SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2010. (a) Maps. Gray dots
represent grid points where fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal (no occurrences). As reference,
the change signal linked to all ESGCMs at 1◦ is also shown. (b) Box plots. Each box plot represents the value of all grid points of the output
of all CNN models pooled together and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th
and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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Figure 17. Precipitation 95th percentile relative changes given by the DL CMIP6 ESGCM multi-model ensemble at 0.1◦ for SSP1–2.6,
SSP2–4.5, SSP3–7.0, and SSP5–8.5 (2015–2040, 2041–2070, 2071–2100 minus 1981–2010)/1981–2010. (a) Maps. Red dots represent grid
points where fewer than two-thirds of the DL CMIP6 ESGCM pairs agree on the change signal. As reference, the change signal linked to all
ESGCMs is also shown. (b) Box plots. Each box plot represents the value of all grid points of the output of all CNN models pooled together
and forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th percentiles. The orange line
is the median value, and the lower (upper) whisker represents the 10th (90th) percentile.
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dictor sets), thus becoming challenging for the DL architec-
tures to establish empirical relationships between the vertical
atmospheric structure and surface-level precipitation accu-
mulation. Overall, the evaluation of the DL downscaled ES-
GCMs showed a rather good performance in representing the
historical climate (mean, minimum, and maximum tempera-
tures and precipitation), providing the necessary confidence
to project the future climate change under different scenarios
using this new approach. It should be noted that the DL mod-
els trained with predictors from ERA5 were used to generate
the ESGCMs output for the historical and future periods. The
bias correction procedure applied to the ESGCM predictors
is an important asset that may allow their values to better
agree with those from ERA5. As a result, we believe that the
relationship between the predictors of both ERA5 and ES-
GCMs and Iberia01 are comparable.

The DL downscaled T projections revealed a projected in-
crease between 1 and 1.5 ◦C over Iberia (Fig. 11), for all sce-
narios, during the earliest future period (2011–2040). By the
end of the 21st century, however, the DL ensemble projected
changes were shown to become more heterogeneous between
scenarios and generally varied between 1.5 ◦C (SSP1–2.6)
and 5 ◦C (SSP5–8.5). In all instances, the DL downscaled T
projected changes showed a strong agreement with the orig-
inal CMIP6 ESGCM ensemble in both the signal and main
spatial patterns of climate change. Nevertheless, regional-to-
local features are clearly enhanced by the increased resolu-
tion. In fact, the most poignant difference between the DL
and the original ensembles is the horizontal discretization.
Local differences can be identified in the most inland areas
of the Iberian Peninsula in the DL results, which are not cap-
tured by the original ESGCMs, due to the coarse grid that ne-
glects valleys and other geographically enclosed areas, thus
fostering greater horizontal heterogeneities. Similar features
were found for Tmin (Fig. 12) and Tmax (Fig. 13) and for the
respective extreme values (10th percentile of Tmin and 90th
percentile of Tmax in Figs. 15 and 16, respectively). Between
those, Tmax showed larger projected increases than Tmin (ap-
proximately 2-fold), revealing greater intra-daily tempera-
ture ranges to be expected in the future. For the extreme Tmax
values, even under the SSP1–2.6 “optimistic” scenario, DL
downscaled projections revealed increases exceeding 3 ◦C by
the end of the 21st century. For the “less optimistic” ones
(SSP3–7.0 and SSP5–8.5), extreme Tmax projected changes
of up to 7 ◦C were shown for most of Iberia (Fig. 16). DL
downscaled projections for extreme Tmin, on the other hand,
were shown to be higher in the eastern and southern Iberia
(Fig. 15), locally surpassing 3.5 ◦C (for 2071–2100 under
SSP5–8.5). Overall, these projections are aligned with the
EURO-CORDEX ensemble projections for Iberia (Soares et
al., 2017a; Cardoso et al., 2019; Lima et al., 2023a; Amblar
et al., 2017) but with small value differences, which are also
linked to the dissimilarities regarding the emission scenarios.

The significance of DL downscaling techniques in the con-
text of Pr projections unveiled further intricacies when com-

pared to T , Tmin, and Tmax projections. Given that the be-
havior of daily mean accumulated precipitation is heavily
influenced by local topography and other phenomena, par-
ticularly owing to convective processes, which can result in
local, large precipitation accumulations, projecting Pr was
shown to be more complex for DL downscaling methods,
considering the widespread continental, mountainous areas
of the Iberian Peninsula. Therefore, for both Pr (Fig. 14) and
extreme Pr (95th percentile; Fig. 17), the original and DL
downscaled ESGCM ensemble projections showed greater
discrepancies. While the ESGCM projected changes showed
essentially negative values, corresponding to the future large-
scale expected drying over Iberia, the DL results revealed a
drying trend in western and southwestern regions of Iberia,
which are stronger for the upper-end scenarios, and local pro-
jected increases, mostly in the central and eastern continental
regions. The southern and western precipitation reductions
are consistent, with a significant reduction in the large-scale
precipitation from frontal activity, due to the northern dis-
placement of the storm tracks (Tamarin and Kaspi, 2017). In
fact, the northward expansion of the Hadley cell lead to a
northward shift in the storm tracks over the North Atlantic,
resulting in a reduction in the large-scale precipitation across
southern and western Iberia (Bengtsson et al., 2006; Harvey
et al., 2014; Kang and Lu, 2012; Ulbrich et al., 2008). The
projected local increases in the precipitation, although non-
robust, mostly with fewer than two-thirds of ensemble mem-
bers in agreement, may be consistent with local-to-regional
changes in convective precipitation that are not captured by
the original ESGCMs, highlighting potential applications of
DL techniques to long-term projections (or even short-term
forecasting).

The projected changes in the warming and drying over
Iberia, as reported in recent studies using previous CMIP
outputs (CMIP5) and in the most recent IPCC report (IPCC,
2021), are consistent with the multi-model, multi-scenario,
and multi-architecture DL downscaled ESGCM ensemble
projections presented in this study. This behavior is also in
accordance with the resulting DL climate change signals
from the Baño-Medina et al. (2022) report for Iberia, which
showed similar spatial patterns to those obtained from the
CMIP5 RCMs but with local-to-regional added value. Previ-
ous research has demonstrated that the warming and drying
trends over Iberia are more pronounced under high anthro-
pogenic emission scenarios, reflecting the influence of hu-
man activities on climate change, compared to the natural
variability in the climate system. Our results demonstrated
that in the CMIP6 context, within the new set of scenarios
encompassing socioeconomic and representative concentra-
tion pathways, AI-based DL methods are able to accurately
simulate the historical Iberian climate and produce high-
resolution scenario-based projections, consistent with each
other and with previous studies, using (coarse) GCM forc-
ing and a high-resolution training database. Thus, the present
study highlighted the substantial advantages of employing
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novel approaches based on DL to obtain efficiently up-to-
date, high-resolution climate information at a local scale that
is specifically for Iberia. This is crucial for supporting and
designing mitigation and adaptation strategies.
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