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Abstract. Two recently proposed variants of CD-type dis-
cretizations of sea ice dynamics on triangular meshes are
implemented in the Finite-VolumE Sea ice–Ocean Model
(FESOM version 2). The implementations use the finite el-
ement method in spherical geometry with longitude–latitude
coordinates. Both are based on the edge-based sea ice ve-
locity vectors but differ in the basis functions used to rep-
resent the velocities. The first one uses nonconforming lin-
ear (Crouzeix–Raviart) basis functions, and the second one
uses continuous linear basis functions on sub-triangles ob-
tained by splitting parent triangles into four smaller triangles.
Test simulations are run to show how the performance of
the new discretizations compares with the A-grid discretiza-
tion using linear basis functions. Both CD discretizations are
found to simulate a finer structure of linear kinematic fea-
tures (LKFs). Both show some sensitivity to the represen-
tation of scalar fields (sea ice concentration and thickness).
Cell-based scalars lead to a finer LKF structure for the first
CD discretization, but the vertex-based scalars may be ad-
vantageous in the second case.

1 Introduction

The emergence of several global ocean models formulated
on unstructured (triangular or hexagonal) meshes, such as
the Finite-VolumE Sea ice–Ocean Model (FESOM) (Wang
et al., 2014; Danilov et al., 2017), MPAS-Ocean (Ringler
et al., 2013; Petersen et al., 2019) and ICON-O (Korn, 2017),
triggered the development of sea ice models tailored to such
meshes. Very recently, the sea ice components of FESOM

(FESIM; Danilov et al., 2015), MPAS-Ocean (MPAS-Seaice;
Turner et al., 2022 and Capodaglio et al., 2022) and ICON-O
(Mehlmann and Korn, 2021; Mehlmann and Gutjahr, 2022)
have been documented. FESIM (Danilov et al., 2015) is
based on the finite element method and the piecewise lin-
ear P1−P1 collocated discretization. In this case, the dis-
crete sea ice velocities and scalar quantities (concentration
and thickness) are placed at mesh vertices, and the discrete
fields are assumed to be linear functions on triangles. This
is an example of an A-grid discretization, in the terminol-
ogy of Mehlmann et al. (2021). The original formulation of
MPAS-Seaice of Turner et al. (2022) follows the B-grid dis-
cretization. In this case, the discrete sea ice velocities are
placed at the vertices of the hexagons, and scalars are placed
at the hexagon centers. This corresponds to the cell (trian-
gle) placement of the velocity and the vertex placement of
the scalars on dual triangular meshes. Several variants of dis-
cretization are proposed by Turner et al. (2022), based ei-
ther on variational principles or on the finite volume method.
The new MPAS-Seaice variational discretization developed
by Capodaglio et al. (2022) places sea ice velocity vectors
at mesh edges. The same staggering is used by Mehlmann
and Korn (2021) to discretize the sea ice module of ICON-O
on triangular meshes. The discretization by Mehlmann and
Korn (2021) uses linear nonconforming (Crouzeix–Raviart)
finite elements, while the approximation by Capodaglio et al.
(2022) uses either Wachspress (Dasgupta, 2003) or piecewise
linear (PWL) representation on sub-polygons into which the
mesh cells are additionally subdivided. The discretizations
with velocity at the edges are called CD-grid discretizations
(Mehlmann et al., 2021).
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On triangular meshes, the A, B and CD placements of
the discrete sea ice velocity result in different numbers of
discrete degrees of freedom (DOF), with a ratio of 1 : 2 : 3.
The CD placement implies 3 times more degrees of free-
dom than the A-grid discretization used by FESOM (Danilov
et al., 2015) and thus finer effective resolution. An elemen-
tary Fourier analysis of the accuracy of the discrete stress
divergence operator on triangular A, B and CD grids (see
Danilov et al., 2022) also shows that the accuracy correlates
with the number of DOF. This is the main motivation for con-
sidering CD-type discretizations for sea ice dynamics. How-
ever, the numerical efficiency, robustness and the ability to
resolve sea ice leads of a particular placement depend on the
implementation details.

This paper presents the new implementation of two
CD-grid discretizations in the sea ice component of FE-
SOM. Both are based on the standard Hibler viscous–
plastic (VP) rheology (Hibler, 1979) and use the modi-
fied elastic–viscous–plastic (mEVP) method (Bouillon et al.,
2013; Kimmritz et al., 2015). The first, hereafter referred to
as CD1, follows Mehlmann and Korn (2021) but is formu-
lated in longitude–latitude coordinates. This formulation in-
cludes additional metric terms but does not need to trans-
form velocities between local tangent coordinate systems
(Mehlmann and Gutjahr, 2022). CD1 discretization is based
on the nonconforming linear (Crouzeix–Raviart) finite ele-
ments. These elements require stabilization when applied to
problems with full stress divergence (Falk, 1991). The sta-
bilizing term in the sea ice momentum equation used by
Mehlmann and Korn (2021) is similar to that proposed in
Hansbo and Larson (2003). The strength of the stabilization
is well defined in the case of the VP method but requires ad-
justments in the case of the mEVP method.

The second CD-grid discretization, referred to as CD2, is
similar to that used by Capodaglio et al. (2022), but it differs
in a systematic finite element derivation based on piecewise
linear basis functions defined on sub-triangles obtained by
splitting the mesh triangles into four equal smaller triangles
and the reconstruction of velocities at vertex locations based
on edge velocities. The option of Capodaglio et al. (2022) us-
ing the Wachspress basis is not pursued. Some other (minor)
differences are due to our use of locally flat triangles.

We use the test case proposed by Mehlmann et al. (2021)
to compare the performance of the CD1 and CD2 discretiza-
tions and the existing A-grid discretization of FESOM. In
fact, the results of FESOM simulations based on CD1 were
already presented in Mehlmann et al. (2021), but the descrip-
tion of the implementation in FESOM was missing. Since
CD discretizations use 3 times more discrete velocities than
the A grid, we also compare the performance of CD1 and
CD2 discretizations with the performance of a

√
3 finer A

grid.
The following sections describe main equations (Sect. 2),

the implementation and the Fourier analysis (Sect. 3), and

test simulations (Sect. 4). They are followed by Discussion
(Sect. 5) and Conclusions (Sect. 6).

2 Equations of sea ice dynamics

The sea ice momentum equation is written as

m(∂t +f×)u= aiceτ − aCdρo(u−uo)|u−uo| +F −mg∇H. (1)

Here, m= ρicehice+ ρshs is the total mass of ice and snow
per unit area, with ρice and ρs the sea ice and snow densities
and hice and hs the respective mean thicknesses (volumes per
unit area). Cd is the ice–ocean drag coefficient, ρo is the wa-
ter density, aice is the sea ice concentration, u= (u,v) and
uo are the sea ice and ocean velocities, τ is the wind stress
applied to sea ice, H is the sea surface elevation, g is the ac-
celeration due to gravity, and F =∇ ·σ is the force from the
internal stresses in ice (Hibler, 1979),

σ = 2ηε̇+ (ζ − η)Itrε̇−
1
2

IP0
1

1+1min
, (2)

where

ε̇ =
1
2

(
∇u+ (∇u)T

)
(3)

is the strain rate tensor; η and ζ are the viscosities,

12
= (ε̇2

11+ ε̇
2
22)(1+e

−2)+4ε̇2
12 e
−2
+2ε̇11ε̇22(1−e−2); (4)

I is the identity matrix, and P0 is the ice strength. Here,
ε̇11, ε̇12 and ε̇22 are the components of the symmetric tensor
ε̇ in Eq. (3) with respect to the orthogonal basis given by unit
zonal (with index 1) and meridional (with index 2) vectors
and

P0 = hicep
∗e−C(1−aice), ζ =

P0

2(1+1min)
, η =

ζ

e2 . (5)

The default parameters are e = 2, C = 20, 1min = 2 ·
10−9 s−1 and p∗ = 27500 N m−2. 1min regularizes plastic
behavior if 1 is very small, replacing it with a viscous flow.
To suppress sea ice motion in the absence of forcing, the last
term in Eq. (2) contains an additional factor (after P0), i.e.,
the replacement pressure (Hibler and Ip, 1995).

The modified elastic–viscous–plastic method (mEVP) is
used to solve for the sea ice dynamics in the same form as
in Danilov et al. (2015) and Koldunov et al. (2019b). This
method is a reformulation of the original EVP method de-
scribed by Hunke and Dukowicz (1997), and it is preferred
here because it removes the association of the sub-cycling
time step of the standard elastic–viscous–plastic method with
numerical stability (Lemieux et al., 2012; Bouillon et al.,
2013; Kimmritz et al., 2015). The stability is governed by
additional dimensionless parameters, α and β. The product
αβ should be sufficiently large compared to π2P01t(1+

1min)
−1m−11x−2 (Bouillon et al., 2013; Kimmritz et al.,

Geosci. Model Dev., 17, 2287–2297, 2024 https://doi.org/10.5194/gmd-17-2287-2024



S. Danilov et al.: CD sea ice discretization in FESOM 2289

2015) for numerical stability of the iterative procedure. Even
though the number of iterations, NEVP, should be formally
larger than α, β to ensure convergence to VP, it has been
demonstrated by, e.g., Kimmritz et al. (2017) and Koldunov
et al. (2019b) that much smaller NEVP is often sufficient in
practice. Simulations reported below use NEVP = 100, and
α, β are adjusted to ensure stability for the resolution and
discretization used.

3 Discretizations

3.1 Spherical geometry

In the discretization of the sea ice momentum equation,
spherical geometry is taken into account similarly to Danilov
et al. (2015) and is consistent with Turner et al. (2022) and
Capodaglio et al. (2022), apart from some modifications due
to the weak formulation in our case and the approximation of
locally flat triangles (vs. tangent plane). We use longitude–
latitude coordinates (φ, θ ). In realistic applications, these
coordinates are those of a rotated coordinate system with
the “North Pole” displaced to Greenland. The rotation ne-
cessitates the transform of forcing and redefines the Corio-
lis parameter but has no other implication for the numerical
method. To simplify the description, the rotation of the coor-
dinate system is ignored in the following. The distances 1x
and 1y on mesh triangles are computed with respect to the
first triangle vertex using the value of cosine at triangle center
as 1x = Re cosθc1φ and 1y = Re1θ . The index c implies
that the quantity is related to the cell (i.e., triangle), and Re
is Earth’s radius. These distances are used to compute arrays
of vertex or edge weights that define derivatives in zonal and
meridional directions on triangles (see Sect. 3.2 and 3.3). Ad-
ditional metric terms appear in computations of strain rates
and in computations of stress divergence. They are specified
below. Apart from these additional metric terms and cosines
used in computations of relative distances and derivatives, all
other computations look as if the geometry were flat. There-
fore, we use ∂x and ∂y to denote spatial derivatives as defined
in ∇ = (∂x,∂y)= (1/Re)((1/cosθ)∂φ,∂θ ) and local Carte-
sian coordinates on triangles. Under this convention the pre-
viously introduced indices 1 and 2 in Eq. (4) are x and y.
The FESOM simulations described below are carried out us-
ing a flat geometry which is achieved by setting the values of
cosθc to 1 and the metric factor to zero. The cosines and met-
ric factors are stored in arrays which are filled before the time
stepping, so switching between flat and spherical geometries
does not affect the code.

3.2 Case CD1: a CD discretization based on
nonconforming linear finite elements

For brevity, we will begin with the VP momentum, Eq. (1)
and then explain the modifications needed for the mEVP
method. The momentum equation is first projected on some

sufficiently smooth test functions, w. The internal stress is
integrated by parts to obtain a weak formulation,∫
mw · ∂tudS =

∫
w ·RdS−

∫
∇w : σdS−

∫
mgw · ∇HdS. (6)

Here,R combines all other terms except for those that are ex-
plicitly written, and the colon implies a tensor product. The
sea ice velocity is approximated by a series in nonconform-
ing (Crouzeix–Raviart) linear basis functions,

uh =
∑
e

ue(t)Ne(x,y).

Here, the summation is over all mesh edges, and Ne(x,y)
is the nonconforming linear basis function. It is equal 1 on
edge e and varies linearly to −1 on the vertex v opposite to
edge e. In Fig. 1, Ne1 = 1 on edge e1, is 0 at mid-points of
edges e2 and e3, and is −1 at v1, and similarly on the other
triangle opposite to the yellow one. Ne is zero outside two
triangles sharing edge e. Note that the nonconforming basis
function coincides with the standard linear function defined
on a small triangle formed by connecting mid-edge points
and then continued to the primary triangle. For this reason,
if the set of triangle edges {e1,e2,e3} is ordered so that e1
is opposite to v1 of the set of triangle vertices {v1,v2,v3}

(see Fig. 1), the derivatives of Ne can be obtained from the
derivatives (already available in the FESOM sea ice module)
of standard linear basis functions by multiplication with −2.
A lumped approximation is used for R,

Rh =
∑
e

ReNe.

We will further suppress the upper index h used to denote
discrete approximations. The components of strain rate ten-
sor are written as

ε̇11 = ∂xu− vmf, ε̇22 = ∂yv, ε̇12 = (1/2)(∂yu+ ∂xv+ umf),

where mf = tanθ/R is the metric factor. To simplify compu-
tations, we approximate metric terms by constants on trian-
gles. The discrete strain rates on triangle c become

(ε̇11)c =
∑
e∈E(c)

(ue∂xNe− (mf)cve/3), (7)

(ε̇22)c =
∑
e∈E(c)

ve∂yNe, (8)

(ε̇12)c = (1/2)
∑
e∈E(c)

(ue∂yNe+ ve∂xNe+ (mf)cue/3). (9)

They are constant on triangles. Here, E(c) is the set of edges
of triangle c.

The stresses are also considered to be constant on tri-
angles, which requires that the ice strength P0 is constant
too. If the scalar degrees of freedom are placed on cells,
which is one option in our implementation, the discrete P0
is constant on triangles without additional approximations. If
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scalar fields are linear on triangles with the discrete degrees
of freedom on vertices, as in Danilov et al. (2015), which is
the second option here, P0 is computed at the central quadra-
ture point, i.e., using mean aice and hice on triangles. Note
that because the concentration aice enters the exponent in P0
(Eq. 5), this may reduce P0 in places where the concentration
varies strongly.

The next step is to obtain the Galerkin approximation. The
above polynomial approximations are inserted in Eq. (6), and
the test function is taken as w =N j = wjNj , where j is the
edge index and wj is an arbitrary weight vector. The equa-
tions for sea ice velocity are obtained by requiring that the
result holds for any wj . However, since the nonconform-
ing function Ne(x,y) is discontinuous at edges other than
e (except for mid-points), one restricts the integration to tri-
angle interiors and adds penalty (stabilization) terms that ef-
fectively connect the triangles:∑
c,e∈E(c)

∫
c

(mN j · ∂tueNe−N j ·ReNe+∇N j : σ c

+mgN j · ∇H)dSc+ Sj = 0. (10)

As shown by Hansbo and Larson (2003) (see also Mehlmann
and Korn, 2021), the stabilization term is

Sj =
∑
e

(2Cζe/le)
∫
e

∫
[u] · [N j ]dl,

where C is an order 1 constant; le is the length of edge e;
[q] is the jump of quantity q across the edge; and ζe is the
estimate of viscosity ζ on edge e, which is taken as mean
over triangles sharing e.

The nonconforming functions are orthogonal on elements,
so
∫
c
NjNedSc = δjeSc/3 for j,e ∈ E(c) and is zero other-

wise. The edge value of mass is obtained as half the sum of
two vertex or two cell values depending on the discretiza-
tion of scalar fields. The computations of the third and fourth
terms on the left-hand side of Eq. (10) are similar to the com-
putations in Danilov et al. (2015), but we repeat them here for
completeness. In spherical geometry, there are metric terms
in ∇N j , leading to∫
c

(∇N j )c : σ cdSc = Scwj · ((σ11)c∂xNj + (σ12)c∂yNj

+ (σ12mf)c/3, (σ12)c∂xNj + (σ22)c∂yNj − (σ11mf)c/3). (11)

The metric contributions initially contained Nj , which left
Sc/3 after integration over the cell area. Note that, compared
to the case when the stresses are differenced directly, some
metric terms are absent in the weak formulation. The reason
is that they originate from the differentiation of cosθ , which
is hidden in dSc in Eq. (11). Even if we used a linear repre-
sentation for cosθ on triangle c, the result would be the mean
cosine on the triangle (absorbed in Sc on the right-hand side

of Eq. 11) because stresses are constant on triangles for linear
basis functions.

Computations of ∇H in the fourth term on the left-hand
side of Eq. (10) do not involve differentiation of metrics.
In FESOM, H is known at vertices. The mass at edge j , as
above, is the mean of two vertex values for the vertex-based
scalars and two cell values for the cell-based scalars. The re-
sult is∫
c

mg∇HN jdSc = gmj (Sc/3)wj · ∇H, (12)

where ∇H =
∑
v∈V (c)Hv∇Mv ,Mv is the standard linear ba-

sis function on triangle c and V (c) is the set of vertices of
triangle c.

The integration over edges in the stabilization term in-
volves

∫
e
(2l/le−1)2dl = le/3 so that le drops out of the final

result. The stabilization term is computed through two cy-
cles over triangles, similar to Mehlmann and Korn (2021).
The first cycle collects the contributions from the velocity on
the triangle into the edge velocity differences, and the second
one adds these contributions to the equations for edge j . The
presence of the stabilization term is critical. As shown by the
elementary Fourier analysis (Danilov et al., 2022), there is
no approximation for the eigenvalues of discrete divergence
of stresses if this term is absent.

The extension of this discretization to the mEVP method
requires empirical adjustment of the strength of the stabi-
lization. The point is that stresses in this method are itera-
tive EVP approximations to the VP stresses. The stabiliza-
tion term is the contribution to the stress divergence, and
it does not appear in the iterative sub-cycling of stresses in
the mEVP method. It has been empirically found that the
stabilization pre-factor has to be essentially smoother than
2Cζe/le of the VP method and that its amplitude has to be
tuned for numerical stability of the mEVP method. Instead
of 2Cζe we take CP0Se/1t , where Se = (1/3)(Sc1 + Sc2) is
the area associated with the edge (with c1 and c2 the triangles
sharing the edge). C is dimensional in this case and is taken
as C = 2.5 s2 m−2. Apart from the intention to make stability
of iterative process less sensitive to 1t and changes in mesh
resolution, the selection is purely empirical. It was tested in
the range of resolutions of 2–8 km in computations reported
in Mehlmann et al. (2021) but may need additional tuning
in other situations. A VP implementation can be a safer way
to proceed with the stabilization, but it is not pursued in this
work as we employ the EVP or mEVP methods in our prac-
tical applications.

As mentioned above, both vertex (P1) and cell represen-
tations of scalar fields are supported in the sea ice code. In
the first case we use the FCT-FEM method of Löhner et al.
(1987), as described in Danilov et al. (2015), to advect the
tracers. Because of the use of consistent mass matrices, its
high-order part is nominally fourth order in space and sec-
ond order in time. For the cell-wise constant scalars we use
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Figure 1. CD1: the nonconforming linear function Ne1 on the yel-
low triangle equals 1 on edge e1, −1 at v1, and 0 on the line con-
necting the mid-points of e2 and e3. CD2: triangle c (shaded yel-
low) is split into four sub-triangles (s1, s2, s3 and s4) by connect-
ing mid-edge points. The set of triangle edges (edge mid-points)
{e1,e2,e3} is ordered such that they are opposite to triangle ver-
tices {v1,v2,v3}. The basis function at e1 is non-zero at the set of
sub-triangles that meet at e1, v2 or v3. This basis function equals
1 at e1, We1v2 at v2 and We1v3 at v3, where We1v2 and We1v2 are
scalar weights in Eq. (13). It decays linearly to 0 at all other green
points of the stencil.

the first-order upwind method, which will be replaced by an
FCT method with the second-order high-order part for prac-
tical applications in the future.

3.3 Case CD2: a CD-grid discretization with
conforming linear elements on sub-triangles

The difference from the previous (CD1) case lies in the se-
lection of basis and test functions. Consider triangle c with
vertices V (c)= {v1,v2,v3} and edges E(c)= {e1,e2,e3}, as
shown in Fig. 1. As mentioned above, the convention is that
e1 is opposite to v1, and so on. The notation e1,e2 and e3 for
edges will be also used to denote the mid-edge points, which
should not lead to ambiguities. By connecting the mid-edge
points, each primary mesh triangle is subdivided into four
smaller triangles. Triangle c in Fig. 1 is subdivided into tri-
angles s1, s2, s3 and s4 with the following ordering of ver-
tices: {e1,e2,e3} for s1, {v1,e3,e2} for s2, {e3,v2,e1} for s3
and {e2,e1,v3} for s4. The ordering is important, because it
allows us to use the array of derivatives computed for the pri-
mary triangle. The velocity field is assumed to be linear on
each sub-triangle. We store the derivatives of standard linear
basis functions Mv , v ∈ V (c) for each c as matrices Gx

vc and
Gy
vc. The derivatives of linear functions on sub-triangles, by

virtue of the ordering described above, are obtained by mul-
tiplication of these matrices with −2 for s1 and 2 for s2, s3
and s4 for given c. Note that, compared to the nonconform-
ing linear basis functions of the previous section, only the
representation on sub-triangle s1 remains the same.

The available degrees of freedom are associated with edge
velocities, same as in the previous section. The edge veloc-
ity is interpreted as a mid-edge value. Values of velocity at
mesh vertices are reconstructed as a weighted mean of edge
velocities,

uv =
∑
e∈E(v)

Wveue. (13)

The weights are normalized so that
∑
e∈E(v)Wve = 1 for

each v. They are first taken as inverse of edge length and
then normalized. This reconstruction rule and the linear rep-
resentation on sub-triangles imply that for each edge e we
are working with a piecewise linear basis function Ne which
equals 1 at the mid-point of e, goes linearly to 0 at other edge
mid-points in triangles sharing e, goes linearly to Wve at the
edge vertices and goes linearly to 0 at mid-points of other
edges joining at vertices. The support of Ne1 in Fig. 1 is the
combination of sub-triangles meeting at e1 or v2 or v3.

In terms of Ne thus defined, the velocity field is written as

u=
∑
e

ueNe.

In practice, we use two separate arrays: one to store the re-
solved velocities ue and another one to store their vertex
reconstructions uv . In the same way as for the CD1 dis-
cretization, the strain rates are assumed to be constant on
sub-triangles, and the metric terms are approximated by con-
stants to achieve this. The ice strength is taken as constant on
primary triangles, which leads to stresses that are constant on
sub-triangles. Since there are four sub-triangles in each trian-
gle c, 4 times more discrete stresses are iterated in the mEVP
procedure. This increases computational load compared to
the case of nonconforming functions, where the computation
cycle is limited to the primary triangles of the mesh.

To obtain the Galerkin approximation, the test function is
taken to be any of N j = wjNj . Since Nj is now continu-
ous, no additional penalty terms are present (in contrast to
the CD1 discretization of the previous section), and for edge
j we get∑
c,e

∫
c

(mN j · ∂tueNe−N j ·ReNe+∇N j : σ c

+mgN j · ∇H)dSc = 0. (14)

In the terms with the time derivative and Re,
∫
NjNedS

are the components of mass matrix. In contrast to the case
of nonconforming functions, this matrix is not diagonal now.
Similar to Danilov et al. (2015), it is replaced by its diago-
nally lumped approximation for numerical efficiency,∫
NjNedS ≈ δjeSe,

where Se is the row sum of mass matrix entries. It is equal to

Se = (1/4)
∑
c∈C(e)

Sc+
∑
v∈V (e)

WveSv,

https://doi.org/10.5194/gmd-17-2287-2024 Geosci. Model Dev., 17, 2287–2297, 2024
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where Sv =
∑
c∈C(v)Sc/12.

The computations of the third and fourth terms on the left-
hand side of Eq. (14) are done in the double cycle over tri-
angles (external) and sub-triangles (internal). Each term is
computed as explained above for the case of nonconforming
functions, but now the standard P1 functions on sub-triangles
are used instead of nonconforming functions. The contribu-
tions from the stress divergence from sub-triangles are first
collected in auxiliary edge-based (F e) and vertex-based (F v)
arrays. For example, the sub-triangle s2 in Fig. 1 contributes
to the edges e2 and e3 and to the vertex v1. On completing
the cycle over triangles, the edge-based result F e is updated
by two vertex-based contributions F v as

F e→ F e+
∑
v∈V (e)

WveF v.

We see that actual basis and test functions Ne are not used
in computations. They are, however, needed for the consis-
tent Galerkin formulation, in particular, for defining how to
compute Se. The procedure used by Capodaglio et al. (2022)
to determine consistent areas associated with edge degrees
of freedom is similar to the one used here, but the finite ele-
ment approach automatically determines the areas associated
with the computational nodes. Once again, we note that the
presence of sub-triangles increases the computational load in
finding the stress divergence.

3.4 Fourier analysis of CD2

It is instructive to perform the Fourier analysis of CD2. It will
provide an independent argument on the accuracy of this dis-
cretization, similarly to the analysis in Danilov et al. (2022).

Consider an infinite triangular mesh made of equilateral
triangles with side length a and height h= a

√
3/2. Let the x

axis be directed along one of the triangle sides and the y axis
along the height drawn to that side. The discrete velocities are
located at mid-edges. For the Fourier analysis they are natu-
rally split into three families related to sides with the same
orientation. A degree of freedom associated with a particular
side of a triangle has a neighborhood with the stencil which is
oriented differently compared to those associated with other
sides. This is why one needs to introduce six (three for u and
three for v) separate velocity amplitudes in order to perform
the Fourier analysis,

ue = u
aeik·xe , e ∈ Ea,

ue = u
beik·xe , e ∈ Eb,

ue = u
ceik·xe , e ∈ Ec.

Here, the subscript e denotes edges, and Ea , Eb and Ec are
the sets containing edges oriented as e1,e2 and e3 (Fig. 1),
respectively; k = (k, l) is the wave vector; and xe is the loca-
tion of the mid-edge point of edge e.

A vertex velocity is reconstructed from the edge velocities.
The amplitude of vertex velocity is

uv = (1/3)(ua cos(ka/2)+ub cos(ka/4+ lh/2)

+uc cos(−ka/4+ lh/2)).

The cosines contain phase shifts between a vertex and respec-
tive mid-edge points of edges emanating from this vertex.

In the same way as in Danilov et al. (2022), the stress
divergence operator is linearized, the sea ice strength (and
hence the viscosities η and ζ ) is taken constant and the ge-
ometry is assumed to be flat. One is interested in the eigen-
values of the stress divergence operator V =∇ · σ . We take
z= η/ζ = 1 to ensure that the eigenvalues are sufficiently
close to each other in plots.

We first compute the strain rates on each of the four sub-
triangles of a primary mesh triangle (see Fig. 1), counting the
phases relative to their centers. For example, for sub-triangle
s1, formed by the vertices at e1,e2 and e3, the gradients of
basis functions on this triangle are 2(0,−1)/h, (−

√
3,1)/h

and (
√

3,1)/h, respectively, so that the amplitude of ε̇11 on
this triangle is

(ε̇11)s1 = (−
√

3/h)ube−ika/4+ilh/6+ (
√

3/h)uceika/4+ilh/6,

and similarly for all other strain rate components on sub-
triangle s1 and also for the strain rates on other sub-triangles.
Note that the expressions for the gradients and phase shifts
depend on the orientation of primary triangles. The expres-
sion above is valid for triangles that are oriented as the yel-
low triangle in Fig. 1. For the primary triangles of opposite
orientation (the neighbors of the yellow triangle in Fig. 1),
the strain rate amplitudes are minus complex conjugates of
the respective results for the triangle (v1,v2,v3). In numer-
ical computations this complication is automatically taken
into account when the arrays of derivatives are computed.
After the strain rates on sub-triangles are computed, the di-
rect stress divergence contributions to edges and vertices are
found, and then the edge expressions are updated for vertex
contributions, just as is done in numerical computations. The
resulting Fourier symbol of discrete stress divergence is a 6-
by-6 matrix, the eigenvalues of which are found numerically
and plotted in the left panel of Fig. 2.

These have to be compared with the eigenvalues of CD1
and other discretizations given in Danilov et al. (2022). As in
the case of CD1, there are two physical (thick gray) and four
numerical (thick black) branches. The numerical branches
are strongly dissipative in the limit of small wavenumbers
and do not require any special care. There is no kernel (no
zero eigenvalues except for zero wavenumbers), so no stabi-
lization is needed. The right panel of Fig. 2 plots the physi-
cal eigenvalues found in Danilov et al. (2022) for other dis-
cretizations together with those of CD2 discretization. The
range of wavenumbers where the stress divergence eigenval-
ues give an accurate representation of continuous eigenvalues
is noticeably narrower for CD2 than for CD1 discretization.
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Figure 2. (a) The eigenvalues of the (dimensionless) Fourier sym-
bol of a2η−1

∇ · σ (thick gray lines) for the CD2 discretization as
a function of dimensionless wavenumber |k|a for the wavevector
oriented at π/6 to the x axis and ζ = η. The thin dashed lines show
the dimensionless eigenvalues −(k2

+ l2)a2 and −2(k2
+ l2)a2 of

the continuous case. Thick black lines show the spurious branches.
(b) Comparison with physical eigenvalues of other discretizations
(Danilov et al., 2022). In order of increasing accuracy: A grid (red),
B grid (Turner et al., 2022; PWL basis) (magenta), CD2 (gray), CD1
(green). The B grid of FESOM is nearly identical to CD2 and is
barely seen (orange cast).

We thus expect to see lower resolving power for CD2 com-
pared to CD1. The eigenvalues of CD2 are more accurate
than those of the B-grid discretization of Turner et al. (2022)
and the A-grid discretization of FESOM. The Fourier analy-
sis only shows that different discretizations have potentially
different accuracy. Full nonlinear simulations are needed to
judge their real performance.

4 Comparison of performance

Since this work relies on the already existing discretizations,
we only compare the performance of the two new CD meth-
ods in FESOM with respect to their numerical efficiency and
ability to represent linear kinematic features (LKFs) based
on the test case proposed by Mehlmann et al. (2021). Their
comparison under realistic conditions will be carried out in a
separate work. The representation of LKFs is judged qualita-
tively by their fine structure and quantitatively by computing
the number of simulated LKFs using the method of Hutter
et al. (2019). CD1 and CD2 discretizations are run in two
options with the cell-based and vertex-based scalars. One ex-
pects that the ability to represent the fine structure of LKFs
is mainly governed by the number of degrees of freedom
used to resolve velocities. However, on triangular meshes,
the number of cells is twice that of vertices, which may lead
to a more detailed representation of sea ice concentration and
thickness. Furthermore, computations of mean ice strength
on triangles in our implementations imply averaging for the

Figure 3. Sea ice concentration (a, b) and 1 (c, d) in the test
case described by Mehlmann et al. (2021), simulated with CD1 dis-
cretization (a, c) and CD2 discretization (b, d) with the cell-based
sea ice concentration and thickness.

vertex-based scalars to cells, whereas no averaging is applied
in the cell-based case. For more details on the influence of the
tracer placement on the resolution of LKFs, see Mehlmann
and Danilov (2022). We also compare the CD-grid simula-
tions with those performed with the default A-grid sea ice
discretization of FESOM on a finer mesh with the same num-
ber of degrees of freedom as for the CD discretizations.

The test case is run on a triangular mesh occupying a rect-
angular domain of 512 by 512 km. Except for western and
eastern boundaries, the triangles are equilateral. Smaller rect-
angular triangles are added along the western and eastern
boundaries to make these boundaries straight. The sides of
equilateral triangles are 2 km for CD discretizations. The A-
grid simulation is run on the mesh with a triangle side of
2/
√

3 km. The test case describes the initial phase of sea ice
deformation under the forcing of a cyclone moving diago-
nally to the north-eastern corner. Precise formulation of the
test case and forcing parameters can be found in Mehlmann
et al. (2021). All simulations use the same external time step
1t = 2 min. While a larger time step is possible, the selected
time step would be typical if the sea ice model were run to-
gether with an ocean model at such spatial resolution. The
simulated sea ice patterns at the end of the second day of the
model integration are compared. We use α,β = 800 on the
A grid but increase them to 1500 on CD grids to maintain
numerical stability. Our other runs (not shown here) indicate
that the sensitivity of the simulations to the precise values of
α, β is weak if these values are sufficiently large for stabil-
ity of the iterative procedure. All runs use NEVP = 100, as
mentioned earlier.
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Figure 3 presents the field of sea ice concentration (top
row) and 1 (see Eq. 4) (bottom row) for CD1 (nonconform-
ing basis functions) in the left column and for CD2 (linear
basis functions on sub-triangles) in the right column. In both
cases the scalars are placed on cells, and the first-order up-
wind advection is used. It can be seen that CD1 simulates
more LKFs. The LKFs are wider and have fewer small-scale
details in CD2.

Figure 4 presents the same fields as Fig. 3 in the first two
columns but for vertex-based scalars. Here, too, the ability of
CD1 to simulate finer scales is clearly seen in both the con-
centration and 1. However, by comparison with the patterns
of Fig. 3, we conclude that the vertex placement of scalars
leads to some reduction in details in the western parts of the
domain for CD1, despite the fact that the high-order advec-
tion scheme (see Danilov et al., 2015) is used in this case in
contrast to the highly dissipative first-order upwind scheme
used for the cell-based scalars. For CD2, almost no difference
is seen between the cell and vertex placement.

The third column in Fig. 4 displays the sea ice concen-
tration and 1 for the vertex (A-grid) velocity placement but
on a finer mesh. The number of velocity degrees of freedom
in this case is approximately the same as in the CD cases.
Fine scales are better simulated than in the case of CD2 but
still less resolved than in the case of CD1. The number of
LKFs diagnosed with the algorithm of Hutter et al. (2019)
are 114 for the A grid and 73 and 75 for CD2 with cell and
vertex scalars, respectively, to be compared with ≈ 200 for
CD1 with cell scalars.

Mehlmann et al. (2023) compare the performance of the
CD discretizations in ICON-O, MPAS and FESOM frame-
works. They show that the number of LKFs simulated by
the FESOM CD2 discretization is lower compared to that
simulated in the MPAS framework. Further experiments car-
ried out after the present paper was submitted show that the
CD2 discretization is sensitive to the representation of the
ice strength for the vertex-based scalars, which correspond
to the cell scalars of hexagonal meshes. The ice strength P0
(Eq. 5) in the FESOM implementation was taken constant
on primary mesh triangles (e.g., the triangle with vertices
v1,v2 and v3 in Fig. 1) in the simulations shown in Fig. 4
and used in Mehlmann et al. (2023). This choice was inher-
ited from the A-grid and CD1 discretizations, where it led to
element-wise constant strain rates and stresses. For the CD2
discretization, a more accurate choice is possible for vertex
scalars. The ice strength is still element-wise constant but
on small triangles. Returning to Fig. 1, P0 is based on the
mean thickness and concentration on the triangle (v1,v2,v3)

only for s1; the values of P0 on triangles s2, s3 and s4 are
estimated at vertices v1,v2 and v3, respectively. This treat-
ment increases the number of simulated LKFs (not shown),
which becomes closer to that of MPAS simulations. The ver-
tex placement of scalars leads in this case to finer detail than
the cell placement, despite the number of DOF for the cell
placement being twice as large. This observation indicates

that not only the representation of scalars, but also the repre-
sentation of P0, is important. A detailed analysis is the sub-
ject of future work.

5 Discussion

The higher resolving capability of the CD (edge) placement
of velocity compared to the vertex (A-grid) placement is
related to its number of discrete velocities being 3 times
as large. The larger number of degrees of freedom implies
shorter distances between their locations and may potentially
lead to a more accurate approximation of differential opera-
tors. The gain in accuracy depends on the discretization, and
an elementary Fourier analysis of the eigenvalues of the lin-
earized stress divergence operator in Danilov et al. (2022)
and in Sect. 3.3 here indicates that CD1 is more accurate than
CD2, and both outperform the A-grid discretization. This re-
sult agrees with the behavior of discretizations in the simple
test simulations above. We also note that CD1 outperforms
the A grid even in terms of LKFs per degree of freedom, as
mentioned in Mehlmann and Danilov (2022) and also illus-
trated above by the A-grid run on a

√
3-times-finer mesh.

A caveat of the CD1 discretization is that it needs stabi-
lization to remove kernels in differential operators, as dis-
cussed by Mehlmann and Korn (2021). The stabilization con-
stant C requires tuning with the methods of EVP type, and,
although the empirically found value ensures reliable work
across some tested range of mesh resolutions, it may still
need some attention on highly variable meshes. In contrast,
CD2 does not require stabilization. From this perspective, it
can be viewed as a more robust alternative to CD1.

We also note that CD1 shows a tendency to simulate very
close LKFs, separated by several mesh cells. They are well
seen in Fig. 3 for cell-based scalars but become less apparent
in Fig. 4 for the vertex-based scalars. It is difficult to judge
whether such scales are already affected by numerical errors
in a full nonlinear case (the accuracy of the linear stress di-
vergence operator remains high for |ka|< 2.5; see Fig. 2). It
remains to be seen which of the two CD discretizations on
triangular meshes is more reliable in real-world applications
on general unstructured meshes.

In our implementation, CD1 is approximately 2 times and
CD2 approximately 4 times more expensive than the A-grid
code on the same mesh. In all cases there are two basic cy-
cles over triangles. The stresses are computed in the first cy-
cle, and the divergence of stresses is computed in the sec-
ond cycle. For the A-grid discretization these two cycles take
most of the CPU time. In CD1, there are two additional cy-
cles over triangles to compute the contribution of stabiliza-
tion, which largely explains the CPU time doubling. The cy-
cles over triangles in CD2 include an inner cycle over four
sub-triangles, which is the main reason for the observed in-
crease in the computational load in this case. We speculate
that some optimization is still possible, so these numbers can
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Figure 4. Same as in Fig. 3 but for the cases with vertex-based scalars for CD1 discretization (a, d), CD2 discretization (b, e) and fine A-grid
discretization (c, f). The two CD cases are for a mesh with a triangle side of 2 km, while the A-grid case is for a mesh with a triangle side of
2/
√

3 km.

only be treated as preliminary estimates. In addition to the
increase in the time needed for computations, the number of
halo exchanges in parallel implementation also increases in
the CD cases. As compared to the A-grid code, in our im-
plementation the CD1 discretization requires an additional
halo exchange for edge velocity differences. The CD2 case
needs additional exchanges for vertex velocities and for the
contributions to the divergence of stresses that are assembled
at vertices. As demonstrated by Koldunov et al. (2019a), the
halo exchanges in the sea ice module are the factor limiting
the scalability of FESOM in massively parallel applications.
This raises a question on the effect of CD discretizations on
scalability, which also requires further work.

The A-grid run on a
√

3-times-finer mesh, which ensures
the same number of degrees of freedom as in the CD cases,
is approximately as computationally expensive as CD2. The
fact that it simulates more LKFs than CD2 might be related to
a much more accurate representation of scalars in this case.
However, sea ice simulations are generally run on the surface
mesh of the ocean model, and the potential possibility of us-
ing a separate finer mesh for sea ice is not always feasible.
One would opt for using CD1 or CD2 instead of A-grid dis-
cretization if a better resolution of LKFs is required than the
one provided by the A grid.

There is a possible extension of CD2 discretization. In-
stead of considering vertex velocities as dependent variables
one treats them as independent ones, in addition to the edge
velocities, and uses P1 finite elements on sub-triangles. The
scalars are treated as previously on the original mesh. This
extension is equivalent to considering the sea ice dynamics
on a virtual twice-finer mesh. The increase in the numer-
ical work is negligible compared to the case of CD2 dis-

cretization, but the advantage is the smaller support of basis
functions, hence better resolution. Also, as follows from the
Fourier analysis (the right panel of Fig. 2), the B-grid im-
plementation of FESOM, briefly sketched in Danilov et al.
(2022), is nearly as accurate as CD2. It is nearly as expen-
sive as CD1. A detailed comparison of these possibilities in
realistic simulations deserves further work.

6 Conclusions

We describe the implementation of two CD-type discretiza-
tions of sea ice mEVP dynamics in FESOM2. They are
based on the finite element method and the use of longitude–
latitude coordinates. Both discretizations have been pro-
posed earlier by Mehlmann and Korn (2021) (CD1) and
Capodaglio et al. (2022) (CD2), respectively. In the first case,
the difference to the original implementation lies in using
the longitude–latitude coordinates and the addition of metric
terms, which eliminates the need to transform velocities be-
tween local tangent coordinate systems. In the second case,
the difference lies in using the finite element approach, which
makes the derivation more compact and automatically deter-
mines the surface area associated with the velocity degree of
freedom.

Both CD1 and CD2 demonstrate higher LKF-resolving ca-
pability than the A-grid discretization. Although CD2 shows
lower resolving capacity than CD1, it may be more robust in
(m)EVP dynamics as it does not need much additional ad-
justment. The new discretizations can be sensitive to partic-
ular implementation details. It also remains to be seen how
these new discretizations behave in realistic global climate
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simulations compared to the standard A-grid discretization
of FESOM, which is the subject of our future work.

Code and data availability. The exact version of the model used
to produce the results used in this paper is archived on Zen-
odo (https://doi.org/10.5281/zenodo.7646908; Danilov et al., 2023).
The mesh files and data files used to compile the last two figures are
archived together with the code (Danilov et al., 2023).

Author contributions. SD worked on the implementation. All the
authors contributed to writing and discussion.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Geoscientific Model Development. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the use of the METIS
(Karypis and Kumar, 1998) software package for mesh partitioning
and express our thanks to N. Hutter for the use of his LKF diagnos-
tics. This paper is a contribution to the project S2, Improved param-
eterizations and numerics in climate models, of the Collaborative
Research Center TRR 181, “Energy transfers in Atmosphere and
Ocean”, funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation; project no. 274762653).

Financial support. The work of Carolin Mehlmann is funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation; project no. 463061012).

The article processing charges for this open-access
publication were covered by the Alfred-Wegener-Institut
Helmholtz-Zentrum für Polar- und Meeresforschung.

Review statement. This paper was edited by Philippe Huybrechts
and reviewed by Giacomo Capodaglio and one anonymous referee.

References

Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-
viscous-plastic method revisited, Ocean Model., 71, 2–12, 2013.

Capodaglio, G., Petersen, M. R., Turner, A. K., and Roberts,
A. F.: An unstructured CD-grid variational formulation

for sea ice dynamics, J. Comput. Phys., 473, 111742,
https://doi.org/10.1016/j.jcp.2022.111742, 2023.

Danilov, S., Wang, Q., Timmermann, R., Iakovlev, N., Sidorenko,
D., Kimmritz, M., Jung, T., and Schröter, J.: Finite-Element Sea
Ice Model (FESIM), version 2, Geosci. Model Dev., 8, 1747–
1761, https://doi.org/10.5194/gmd-8-1747-2015, 2015.

Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-
volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev.,
10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, 2017.

Danilov, S., Mehlmann, C., and Fofonova, V.: On discretiz-
ing sea-ice dynamics on triangular meshes using ver-
tex, cell or edge velocities, Ocean Model., 170, 101937,
https://doi.org/10.1016/j.ocemod.2021.101937, 2022.

Danilov, S., Mehlmann, C., Sidorenko, D., and Wang, Q.: Sea ice
CD-type discretizations of FESOM, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7646908, 2023.

Dasgupta, G.: Interpolants within convex polygons: Wach-
spress’ shape functions, J. Aerospac. Eng., 16, 1–8,
https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(1), 2003.

Falk, R.: Nonconforming Finite Element Methods for the Equations
of Linear Elasticity, Math. Comput., 57, 529–529, 1991.

Hansbo, P. and Larson, M.: Discontinuous Galerkin and the
Crouzeix–Raviart element: Application to elasticity, ESAIM, 37,
63–72, 2003.

Hibler III, W. D.: A Dynamic Thermodynamic Sea Ice Model, J.
Phys. Oceanogr., 9, 815–846, 1979.

Hibler III, W. D. and Ip, C. F.: The effect of sea ice rheology on Arc-
tic buoy drift, edited by: Dempsey, J. P. and Rajapakse Y. D. S.,
ASME AMD, 207, Ice Mechanics, 255–263, ISBN 0791813223,
1995.

Hunke, E. C. and Dukowicz, J. K.: An Elastic-Viscous-Plastic
model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867,
1997.

Hutter, N., Zampieri, L., and Losch, M.: Leads and ridges in
Arctic sea ice from RGPS data and a new tracking algo-
rithm, The Cryosphere, 13, 627–645, https://doi.org/10.5194/tc-
13-627-2019, 2019.

Karypis, G. and Kumar, V.: A fast and high quality multilevel
scheme for partitioning irregular graphs, SIAM J. Sci. Comput.,
20, 359–392, 1998.

Kimmritz, M., Danilov, S., and Losch, M.: On the convergence of
the modified elastic-viscous-plastic method for solving the sea
ice momentum equation, J. Comp. Phys., 296, 90–100, 2015.

Kimmritz, M., Losch, M., and Danilov, S.: A comparison of
viscous-plastic sea ice solvers with and without replacement
pressure, Ocean Model., 115, 59–69, 2017.

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko,
D., Danilov, S., and Jung, T.: Scalability and some opti-
mization of the Finite-volumE Sea ice–Ocean Model, Ver-
sion 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012,
https://doi.org/10.5194/gmd-12-3991-2019, 2019a.

Koldunov, N. V., Danilov, S., Sidorenko, D., Hutter, N., Losch,
M., Goessling, H., Rakowsky, N., Scholz, P., Sein, D., Wang,
Q., and Jung, T.: Fast EVP solutions in a high-resolution
sea ice model, J. Adv. Model. Earth Sy., 11, 1269–1284,
https://doi.org/10.1029/2018MS001485, 2019b.

Korn, P.: Formulation of an unstructured grid model for global
ocean dynamics, J. Comput. Phys., 339, 525–552, 2017.

Geosci. Model Dev., 17, 2287–2297, 2024 https://doi.org/10.5194/gmd-17-2287-2024

https://doi.org/10.5281/zenodo.7646908
https://doi.org/10.1016/j.jcp.2022.111742
https://doi.org/10.5194/gmd-8-1747-2015
https://doi.org/10.5194/gmd-10-765-2017
https://doi.org/10.1016/j.ocemod.2021.101937
https://doi.org/10.5281/zenodo.7646908
https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(1)
https://doi.org/10.5194/tc-13-627-2019
https://doi.org/10.5194/tc-13-627-2019
https://doi.org/10.5194/gmd-12-3991-2019
https://doi.org/10.1029/2018MS001485


S. Danilov et al.: CD sea ice discretization in FESOM 2297

Lemieux, J.-F., Knoll, D., Tremblay, B., Holland, D., and Losch, M.:
A comparison of the Jacobian-free Newton-Krylov method and
the EVP model for solving the sea ice momentum equation with
a viscous-plastic formulation: a serial algorithm study, J. Comp.
Phys., 231, 5926–5944, 2012.

Löhner, R., Morgan, K., Peraire, J., and Vahdati, M.: Finite-element
flux-corrected transport (FEM-FCT) for the Euler and Navier–
Stokes equations, Int. J. Numer. Meth. Fl., 7, 1093–1109, 1987.

Mehlmann, C. and Danilov, S.: The effect of the tracer stag-
gering on sea ice deformation fields, in: 8th European
Congress on Computational Methods in Applied Sciences
and Engineering, Oslo, Norway, 5–9 June 2022, CIMNE,
https://doi.org/10.23967/eccomas.2022.267, 2022.

Mehlmann, C. and Gutjahr, O.: Discretization of Sea Ice Dynam-
ics in the Tangent Plane to the Sphere by a CD-Grid-Type Fi-
nite Element, J. Adv. Model. Earth Sy., 14, e2022MS003010,
https://doi.org/10.1029/2022MS003010, 2022.

Mehlmann, C. and Korn, P.: Sea-ice dynamics on
triangular grids, J. Comput. Phys., 428, 110086,
https://doi.org/10.1016/j.jcp.2020.110086, 2021.

Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter,
N., Richter, T., Blain, P., Hunke, E. C., and Korn, P.: Simulat-
ing Linear Kinematic Features in Viscous-Plastic Sea Ice mod-
els on quadrilateral and triangular Grids With Different Vari-
able Staggering, J. Adv. Model. Earth Sy., 13, e2021MS002523,
https://doi.org/10.1029/2021MS002523, 2021.

Mehlmann, C., Capodaglio, G., and Danilov, S.: Simulating
sea-ice deformation in viscous-plastic sea-ice models with
CD-grids, J. Adv. Model. Earth Sy., 15, e2023MS003696,
https://doi.org/10.1029/2023MS003696, 2023.

Petersen, M. R. A.-D., S., X., Berres, A. S.and Chen, Q., Feige,
N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Maltrud,
M. E., Price, S. F., Ringler, T. D., Streletz, G. J., Turner,
A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., Wol-
fram, P. J., and Woodring, J. L.: An evaluation of the ocean
and sea ice climate of E3SM using MPAS and interannual
CORE-II forcing, J. Adv. Model. Earth Sy., 11, 1438–1458,
https://doi.org/10.1029/2018MS001373, 2019.

Ringler, T., Petersen, M., Higdon, R., Jacobsen, D., Maltrud, M.,
and Jones, P.: A multi-resolution approach to global ocean mod-
elling, Ocean Model., 69, 211–232, 2013.

Turner, A. K., Lipscomb, W. H., Hunke, E. C., Jacobsen, D.
W., Jeffery, N., Engwirda, D., Ringler, T. D., and Wolfe,
J. D.: MPAS-Seaice (v1.0.0): sea-ice dynamics on unstruc-
tured Voronoi meshes, Geosci. Model Dev., 15, 3721–3751,
https://doi.org/10.5194/gmd-15-3721-2022, 2022.

Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wek-
erle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Ele-
ment Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an
ocean general circulation model, Geosci. Model Dev., 7, 663–
693, https://doi.org/10.5194/gmd-7-663-2014, 2014.

https://doi.org/10.5194/gmd-17-2287-2024 Geosci. Model Dev., 17, 2287–2297, 2024

https://doi.org/10.23967/eccomas.2022.267
https://doi.org/10.1029/2022MS003010
https://doi.org/10.1016/j.jcp.2020.110086
https://doi.org/10.1029/2021MS002523
https://doi.org/10.1029/2023MS003696
https://doi.org/10.1029/2018MS001373
https://doi.org/10.5194/gmd-15-3721-2022
https://doi.org/10.5194/gmd-7-663-2014

	Abstract
	Introduction
	Equations of sea ice dynamics
	Discretizations
	Spherical geometry
	Case CD1: a CD discretization based on nonconforming linear finite elements
	Case CD2: a CD-grid discretization with conforming linear elements on sub-triangles 
	Fourier analysis of CD2

	Comparison of performance
	Discussion
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

