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Abstract. Predicting future climate change over a region of
complex terrain, such as the western United States (US), re-
mains challenging due to the low resolution of global climate
models (GCMs). Yet the climate extremes of recent years in
this region, such as floods, wildfires, and drought, are likely
to intensify further as climate warms, underscoring the need
for high-quality and high-resolution predictions. Here, we
present an ensemble of dynamically downscaled simulations
over the western US from 1980–2100 at 9 km grid spacing,
driven by 16 latest-generation GCMs. This dataset is titled
the Western US Dynamically Downscaled Dataset (WUS-
D3).

We describe the challenges of producing WUS-D3, includ-
ing GCM selection and technical issues, and we evaluate
the simulations’ realism by comparing historical results to
temperature and precipitation observations. The future down-
scaled climate change signals are shaped in physically cred-
ible ways by the regional model’s more realistic coastlines
and topography. (1) The mean warming signals are heav-
ily influenced by more realistic snowpack. (2) Mean pre-
cipitation changes are often consistent with wetting on the
windward side of mountain complexes, as warmer, moister
air masses are uplifted orographically during precipitation
events. (3) There are large fractional precipitation increases
on the lee side of mountain complexes, leading to potentially
significant changes in water resources and ecology in these
arid landscapes. (4) Increases in precipitation extremes are
generally larger than in the GCMs, driven by locally intensi-

fied atmospheric updrafts tied to sharper, more realistic gra-
dients in topography. (5) Changes in temperature extremes
are different from what is expected by a shift in mean tem-
perature and are shaped by local atmospheric dynamics and
land surface feedbacks. Because of its high resolution, com-
prehensiveness, and representation of relevant physical pro-
cesses, this dataset presents a unique opportunity to evaluate
societally relevant future changes in western US climate.

1 Introduction

Predicting climate change on a regional level is critical for
assessing its societal impacts, such as changes to water re-
sources, flooding, drought, heat waves, wildfire, and wind-
storms. Current-generation global climate models (GCMs)
are ill-equipped for this task due to their coarse grid spac-
ing (on the order of 1° longitude and latitude). This pre-
vents GCMs from representing complex terrain and from
resolving small-scale meteorological phenomena that define
the local hydroclimate. To counter this limitation, a regional
climate model (RCM) may be used to dynamically down-
scale the GCM projections over a limited area. The resulting
high-resolution output allows us to study future weather- and
climate-relevant processes that may unfold across a region
of complex terrain and gain physical insights into the land–
atmosphere drivers of regional climate change. Moreover, the
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output can be used to drive land surface, hydrological, and
fire models under future climate conditions.

The western United States (WUS) is a particularly com-
plex natural laboratory for studying the heterogeneous pat-
terns of historical climate and future climate change. It con-
sists of major mountain ranges, deserts, shrublands, tem-
perate forests, plains, and a complex coastline. It is af-
fected by diverse atmospheric phenomena, such as extra-
tropical cyclones, atmospheric rivers, persistent blocking
highs, the North American Monsoon, summertime convec-
tive storms, wildfire-related downslope winds, and cooling
coastal breezes. The complex interplay of these phenom-
ena with local topography makes it impossible for GCMs
to represent the diversity of microclimates within the WUS
and how they may uniquely respond to larger-scale climate
change. In general, GCMs project midlatitude wetting to the
north of the region and subtropical drying to the south but
with disagreement on where within the WUS the transition
occurs (Meehl et al., 2007; Neelin et al., 2013). Moreover, in-
tensified interannual swings between extremely wet and ex-
tremely dry years (i.e., “whiplash”) are projected in parts of
the region (Swain et al., 2018; Chen et al., 2022). In recent
years the WUS has experienced catastrophic weather and cli-
mate events, such as the southwestern US drought (Mankin
et al., 2021; White et al., 2023), record-breaking floods in
California in 2017 (White et al., 2019) and 2023, and the un-
precedented 2021 heat wave in the Pacific Northwest (White
et al., 2023). In a warming climate, all these extreme events
are likely to be intensified. Thus, dynamical downscaling of
future GCM projections over the WUS can provide a unique
insight into how large-scale climate change may interact with
its complex terrain and diverse meteorological phenomena.

Direct dynamical downscaling of GCMs is far less com-
mon than that driven by historical reanalyses (Liu et al.,
2017, 2011; Rahimi et al., 2022; Rasmussen et al., 2011,
2014; Norris et al., 2019, and many, many others) due to
the fact that historical reanalyses tend to more reliably con-
tain the requisite data to drive RCMs (Bruyère et al., 2014;
Coppola et al., 2020, 2021; Huang et al., 2020, 2021; Ko-
murcu et al., 2018; Wang and Kotamarthi, 2015, 2013; Zobel
et al., 2018, 2017; Bukovsky and Karoly, 2011; Bukovsky
et al., 2021; Mearns et al., 2012; Scalzitti et al., 2016). Fur-
ther, since dynamical downscaling uses the laws of physics to
arrive at the high-resolution end product, it can be superior
to other purely statistical-based downscaling methods. For
example, dynamical downscaling does not explicitly assume
stationarity (Lanzante et al., 2018) in the creation of future
projections, as with other forms of downscaling (e.g., statis-
tical); the parameterization choices within RCMs do contain
empirically derived assumptions that are not completely free
of time stationarity. Dynamical downscaling can however be
used to tie explicitly simulated extreme weather events to the
governing large-scale dynamics simulated within their driv-
ing GCMs. Additionally, RCMs can solve for the full com-
plement of physical quantities relevant to climate that are

otherwise not available in statistical downscaling, which typ-
ically focuses on a small set of variables. For example, statis-
tically downscaled precipitation and temperature data prod-
ucts, even when obtained using multivariate relationships,
may contain no information about water vapor content, sur-
face pressure, cloud depth, etc. Finally, the use of physics to
arrive at the downscaled result means that feedbacks between
the landscape and the overlying atmosphere, as well as other
land and atmosphere processes, may be effectively simulated
(e.g., the snow albedo feedback).

There are three significant barriers to using RCMs to dy-
namically downscale GCMs: (1) RCMs require sub-daily 3-
D variables as initial and boundary conditions, which are not
typically sufficiently archived in GCM databases; (2) RCM
configurations may not be designed to ingest GCM data as
boundary conditions; and (3) it is extremely computationally
expensive. Because of these barriers, dynamical downscal-
ing of full GCM ensembles (e.g., the Coupled Model Inter-
comparison Project Phase 6; CMIP6) at landscape-resolving
(∼ 10 km) grid spacings generally remains out of reach.

Despite these barriers, we present results from 16 new
dynamically downscaled CMIP6 simulations over 11 WUS
states, including the whole of the Western Electricity Coordi-
nating Council (WECC) region, comprising the Western US
Dynamically Downscaled Dataset (WUS-D3). These simula-
tions span 1980–2100, combining the historical and Shared
Socioeconomic Pathway (SSP) output for each GCM. Down-
scaling a wide variety of CMIP6 models yields a diverse suite
of possible future climates over the WUS at a landscape-
resolving scale (9 km grid spacing). In the following sec-
tions, we present our methodology and technical challenges
encountered, as well as a characterization of the historical
performance and future change signals from our dataset.

2 Methodology

2.1 WRF setup

We use the Weather Research and Forecasting (WRF) model
version 4.1.3 (Skamarock et al., 2019) to dynamically down-
scale the simulations of 14 CMIP6 GCMs (Table 1) from
1980–2100. In each simulation, historical forcings were ap-
plied up to 2014 and then the forcings associated with the
SSP3-7.0 scenario thereafter. SSP3-7.0 is a high-emissions
scenario in which greenhouse gas emissions double by end of
century (O’Neill et al., 2016). We also downscale one GCM’s
(CESM2) SSP2-4.5 and SSP5-8.5 projections. In these sce-
narios, emissions remain roughly constant until 2050 before
falling thereafter and triple by end of century, respectively.

WRF is configured as was documented for a related down-
scaling of the ECMWF Fifth Generation Reanalysis (ERA5;
Hersbach et al., 2020) in Rahimi et al. (2022; WRF-ERA5).
We downscale each GCM year separately and in parallel; at
the beginning of each downscaling period (on 1 August ), the
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RCM is initialized to the driving GCM state. In this way, an
N -year simulation can be completed in the same wall clock
time as a 1-year experiment. For each year of integration, we
choose the beginning of the retained WRF output for anal-
ysis to coincide with minimum snowpack across the WUS
(1 September). This approach produces 1 month of spin-up
for the land surface. Thus, WRF is initialized on 1 August to
surface and 3-D data from each GCM and integrated through
1 September of the following year (13 months, including the
spin-up month) on 39 atmospheric levels. This approach is
similar to that of Zobel et al. (2018, 2017), who also ini-
tialized WRF experiments at yearly intervals but only in-
cluded 1 d of model spin-up. Despite our 1-month spin-up,
soil moisture, land surface fluxes, and streamflow may still
suffer from biases due to imperfect soil texture categories
and their associated hydrophysical properties (Dennis and
Berbery, 2021). However, because soil texture is a necessary
component of the land surface model and these underlying
datasets are imperfect, these effects are somewhat unavoid-
able without massive regional calibration. WRF’s paralleliza-
tion procedure, which is advantageous for executing simula-
tions in weeks instead of years, is performed to the detriment
of time continuity in simulating the surface and subsurface
runoff, as well as energy fluxes, with high precision. The con-
sequences of this choice will be expanded upon in Sect. 2.6.

Atmospheric carbon dioxide and methane concentrations
vary yearly in our simulations based on northern hemispheric
mean values from input4MIPs (Durack et al., 2017). Prior
to 2015, CMIP6 historical values are prescribed. From 2015
onward, these values are taken from the SSP3-7.0 scenario,
except for the alternate SSP CESM2 experiments. WRF’s
radiative code is modified to enable concentrations to be
manually inputted; this modification is no longer needed as
of WRF version 4.4.2. Because coupling WRF to an atmo-
spheric chemistry model is 6–20 times more computationally
expensive, interactive aerosol forcings were not explicitly
considered in our study. Further, historical-era 21-category
land-use and land-coverage (LULC) information from the
Moderate Resolution Imaging Spectroradiometer is used in
all experiments. Since CMIP-projected LULC changes were
not implemented in WUS-D3, the anthropogenic forcings
considered in this study stem directly from carbon dioxide
and methane concentrations and indirectly from all green-
house gas, aerosol, and LULC forcings in the forcing GCMs
at the lateral boundaries.

We dynamically downscale all GCMs to two grids of 45
and 9 km grid spacing (Fig. 1). On the parent 45 km grid,
the horizontal winds, temperature, and geopotential height
are relaxed (relaxation coefficient of 0.0003 s−1) to their re-
spective GCM-simulated fields above the planetary bound-
ary layer via spectral nudging for wavelengths greater than
1500 km. Smaller waveforms are allowed to evolve freely
on the WRF grid (Spero et al., 2014). This approach is de-
signed to reduce internal model drift away from the GCM
state. One-way nesting is then used to dynamically down-
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Figure 1. WRF grids used in this study. Topography [m] is shaded
to its highest resolution, and the blue shading indicates the Western
Electricity Coordinating Council (WECC) coverage area.

scale the 45 km result to the 9 km grid, on which spectral
nudging is not implemented. The 9 km grid encompasses the
entirety of the WECC’s US coverage area. For all nests, a
sponge layer of five grid points is used.

The lateral boundary conditions are updated at 6-hourly
intervals, and adaptive time stepping is used. Convective
precipitation is parameterized following Tiedtke (1989) and
Zhang et al. (2011). P3 microphysics is used (Morrison
and Milbrandt, 2015), shortwave and longwave radiation
schemes of Iacono et al. (2008) are implemented, and
the Noah land surface model with multi-parameterizations
(Noah-MP) is used (Niu et al., 2011).

2.2 GCM selection

Prioritizing SSP3-7.0 with an end-of-century radiative forc-
ing of 7 W m−2, we selected 14 GCMs (Table 1) based on
three criteria: (i) their skill in simulating important processes
that govern western North American climate over the histor-
ical (1980–2010) period, (ii) their collective representative-
ness of the broader CMIP6 ensemble spread in future tem-
perature and precipitation responses, and (iii) data availabil-
ity. Aspects considered in the GCM evaluation included the
following.

1. Large-scale meteorology associated with Santa Ana and
Diablo winds. This is important for extreme wind and
fire risk across the southwestern US. We use this met-
ric to minimize the usage of GCMs which simulate a
distorted portrayal of the Pacific High.

2. The El Niño–Southern Oscillation (ENSO). ENSO is
well-known to modulate the interannual variability in

precipitation and temperature across the western US.
We use this metric to prioritize GCMs which adequately
capture the ENSO–western US teleconnection.

3. Northern Hemisphere blocking and circulation (Simp-
son et al., 2020). Wave characteristics, both over cli-
mate and synoptic timescales, are directly related to the
variability in precipitation across the WUS. We use this
metric, for instance, to ensure that GCMs are not down-
selected if they are too progressive in their simulation
of midlatitude waves.

4. Landfalling jet characteristics. Atmospheric rivers are
responsible for most of the west-coast precipitation. As
such, we only select GCMs that demonstrate superior
performance in their landfalling position and tilt.

5. GCM-simulated surface air temperature and precipita-
tion. While these variables can be incorrectly simulated
in GCMs despite the more-or-less correct treatment of
their local driving processes, which may be more im-
portant for driving a regional climate model, we include
these variables to account for the relationships between
the GCM-simulated processes and GCM-simulated sur-
face temperature and precipitation profiles.

6. Extreme precipitation across California. Generally, ex-
treme precipitation events in California are driven by
large-scale synoptic events (described by column wa-
ter vapor, 500 hPa geopotential, and upper-tropospheric
wind speeds). These large-scale patterns can have ram-
ifications for weather and climate as they propagate
downstream; hence we include an evaluation of bias in
these fields for our GCM selection.

7. Regional wind shear. Wind shear helps to modulate
the lifetime of precipitation systems through storm-
scale organization and is a measure for the larger-scale
background baroclinicity, which is important for storm
tracks. We thus evaluate its bias.

The ranking system is described in Krantz et al. (2021),
and the process of choosing GCMs to downscale based
on climate-data-user needs and locally relevant atmospheric
processes is described in Goldenson et al. (2023). To empha-
size, being subject to these selection processes, the GCMs
downscaled in this study span the range of future changes in
temperature and precipitation from CMIP6 across the WUS.

For more details on the GCM selection process, we re-
fer readers to Krantz et al. (2021). However, we highlight
that temporal and spatial variability was considered in rank-
ing a preferred set of GCMs to downscale. Specifically, the
time variability of ENSO and high-frequency synoptic vari-
ability of landfalling waves are considered, while the spatial
variability of the California precipitation mode (Chen et al,
2021) was factored into our analyses via the identification of
where the geopotential anomalies exist upstream of the WUS

Geosci. Model Dev., 17, 2265–2286, 2024 https://doi.org/10.5194/gmd-17-2265-2024
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on extreme precipitation days. Additionally, our metrics per
Simpson et al. (2020) consider jet stream landfall position
bias. Finally, Krantz et al. (2021) performed a variance de-
composition using empirical orthogonal functions to reduce
the effects of metric redundancy, weighting them accordingly
in the final rankings of GCMs.

We only dynamically downscale GCMs with the follow-
ing outputs archived on the Earth System Grid Federation
system: 3-D atmospheric temperature (ta), horizontal winds
(ua and va), specific humidity (hus), surface pressure (ps),
soil layer specific temperature and water content (tsl and mr-
sol, respectively), and sea surface temperature (SST; tos).
Furthermore, we only dynamically downscale GCMs with
6-hourly instantaneous atmospheric outputs defined on na-
tive model levels (“6hrLev”) rather than on isobaric surfaces
(“6hrPlevPt”). Generally, 6hrPlevPt GCM outputs are only
defined on 3–10 pressure surfaces, which may be problem-
atic for atmospheric phenomena characterized by more gran-
ular vertical structures. In testing, we found that this vertical
resolution can have a large impact on the downscaled solu-
tion in cases where 6 versus 23 isobaric levels were used.

Additionally, we require that the full time series of SSTs
be available in GCM outputs. These SSTs are then pre-
scribed in WRF to update daily, which may be problematic
for atmospheric processes subject to a strong atmospheric–
ocean coupling evolving on sub-daily timescales. To bypass
this issue, we tested using a slab ocean model in WRF.
With time, strange artifacts in the SST and outgoing long-
wave radiation fields gradually developed, so slab ocean
physics were not enabled, and its use is discouraged for
simulations on regional climate timescales (Ming Chen,
personal communication, https://forum.mmm.ucar.edu/
threads/weird-pixilated-skin-temperatures-when-using-sf_
ocean_physics-1.12693 (last access: April 2023), 2023).
Daily SSTs are available for most GCMs, except for
FGOALS-g3 and GISS-E2-1-G, which only made monthly
SST outputs available. Thus, in the cases of FGOALS-g3
and GISS-E2-1-G, linear interpolation is used to upsample
monthly mean SSTs (assumed to be valid at the midpoint of
each month) to daily values.

2.3 Sea surface temperatures in the Gulf of California

SSTs in the Gulf of California (GoC) are known to modu-
late the North American Monsoon, which provides roughly
a third of Arizona and New Mexico’s annual precipitation
(Mitchell et al., 2002). However, the GoC is poorly resolved
in CMIP6 GCMs; in the best case, the GoC is expressed as a
subtle bay that barely intrudes into the North American conti-
nent. As a result, there is generally no SST information from
GCMs across the GoC that can be used to directly prescribe
SSTs in the WRF-resolved GoC. An additional problem is
that the adjacent open Pacific SSTs are on average about
10 K lower and undergo less seasonal variability than in the
GoC (Fig. 2). Hence, linearly extrapolating from the adjacent

Figure 2. (a) Climatological (1980–2014) mean SSTs from ERA5
along with transects across the Gulf of California (GoC; solid black
curve) and open Pacific (dashed black curve). The gray bounded
zone is our GoC entrance region. Panel (b) shows the latitudinally
weighted transect mean temperatures from the open Pacific and
GoC. Panel (c) shows the area-weighted GoC entrance region tem-
perature, while panel (d) depicts the temperature gradient along the
open Pacific and GoC transects from northwest to southeast.

open Pacific to the GoC would produce a representation of
GoC SSTs that is clearly unphysical. Fortunately, there are
predictable relationships in ERA5 between the climatolog-
ical GoC entrance region temperature (Fig. 2c), which can
be taken directly from GCMs, and the along-axis GoC SST
gradient (Fig. 2d), which can be used to produce reasonable
SSTs within the GoC. Thus, in most GCMs, we apply the
following linear extrapolation to estimate GoC SSTs based
on the entrance region SSTs:

TGoC =−
∂T

∂n

]
ERA5

(n)+ Tentry,GCM, (1)

where ∂T
∂n

]
ERA5 is the monthly varying climatological GoC

temperature gradient from ERA5 and is always positive, n is
the along-axis GoC coordinate (pointing towards the north-
west), and Tentry,GCM is the GoC entrance temperature which
is resolved in GCMs. The relevant regions are outlined in
Fig. 2a. To our knowledge, the difficulty in dealing with
SSTs in coastal estuaries and gulfs has not been generally ad-
dressed in regional climate modeling efforts, and this is the
first time that a physically based mathematical relationship
has been used to address this issue across this region.

We apply the above linear extrapolation to all GCMs,
except CESM2, CNRM-ESM2-1, and MPI-ESM1-2-LR,
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which were all downscaled prior to the implementation
of this improvement. Consequently, for CESM2 and MPI-
ESM1-2-LR, there is a spurious SST discontinuity (Fig. S1
in the Supplement). This is due to the default extrapolation
routine used in WRF, which uses a nearest weighted grid
point averaging approach to prescribe GoC SSTs. Thus, in
the southern GoC, the default extrapolation uses the near-
est GCM grid points from the warm GoC entrance region,
whereas further north the closest GCM ocean grid cells are
(inappropriately) taken from the open Pacific. We list the
GCMs with the SST modification in the rightmost column
of Table 1. The discontinuity and unrealistically low SSTs in
the northern GoC in these simulations may affect the sim-
ulation of the North American Monsoon but are unlikely to
affect other WUS phenomena documented in this paper. For
CNRM-ESM2-1, we masked out the southern GoC to re-
move this discontinuity in extrapolation, leading to its SSTs
being homogeneously populated by open Pacific SSTs. De-
spite the absence of a SST discontinuity (Fig. S1), this ap-
proximation is less physical than the improvement described
above (Fig. 2).

2.4 Interpolation strategy

WRF requires all atmospheric, land, and ocean GCM in-
puts to be defined on a single rectilinear grid with atmo-
spheric variables defined on isobaric surfaces. However,
some GCMs’ outputs are given on irregular atmospheric
grids, whose latitude coordinates are not equally spaced from
pole to pole. FGOALS-g3 for instance is characterized by
∼ 5° latitudinal grid spacing near the poles and ∼ 2° grid
spacing near the Equator. Thus, for the GCMs without a na-
tive rectilinear grid, we bilinearly interpolate the output to
rectilinear grids with grid lengths defined by their respective
absolute minimum latitude or longitude grid spacing. This
technique preserves the smallest-scale features resolved on
the native GCM grid.

Since GCMs use different land surface models (LSMs)
containing differently defined vertical coordinates, we gen-
erally interpolate volumetric soil moisture and soil tempera-
ture from the native LSM levels to 3.5, 14, 64, and 195 cm. In
instances where vertical interpolation was not used, we used
the GCM’s native grid soil information. We computed vol-
umetric soil moisture by dividing layer total water content
(CMIP6 variable mrsol) by the layer thickness and the den-
sity of liquid water. GCM soil fields were generally available
daily.

2.5 Other technical challenges

In this section, we present additional technical challenges
and known issues in the downscaled data. First, WRF is not
designed to ingest GCM inputs that are, depending on the
modeling center, defined on different vertical coordinates.
For instance, CESM2 uses a hybrid-pressure, FGOALS-g3

a sigma, and UKESM1-0-LL a hybrid-height vertical coor-
dinate system. As a result, unique routines had to be de-
veloped for each GCM to convert their model level output
to WRF-usable inputs on isobaric pressure surfaces. Further,
MPI-ESM1-2 simulations had to be converted from NetCDF-
4 to NetCDF-4 Classic in order for input-output processing
times to be tractable in binary processing. These issues alone
prevented the development of a one-size-fits all routine to
preprocess GCM outputs for ingestion by WRF. These is-
sues were compounded by the fact that some GCMs, such as
UKESM1-0-LL and ACCESS-CM2, contain staggered out-
puts on their native Arakawa C-grids.

Second, 6hrLev GCM atmospheric fields are generally
provided at 00:00, 06:00, 12:00, and 18:00 UTC. However,
for the entire FGOALS-g3 and historical (1980–2014) com-
ponent of the NorESM2-MM experiments, data were pro-
vided at 03:00, 09:00, 15:00, and 21:00 UTC. For FGOALS-
g3, we simply integrated all experiments from 1 August 1980
at 03:00 UTC through 1 September 2100 at 03:00 UTC. For
NorESM2-MM, however, we linearly interpolated the histor-
ical GCM data to 00:00, 06:00, 12:00, and 18:00 UTC before
downscaling. As a further aside, since UKESM1-0-LL uses
a 360 d calendar, we had to modify WRF’s source code ac-
cordingly. WRF is designed by default to function with pro-
leptic Gregorian calendars (e.g., ERA5, MPI-ESM1-2-LR,
EC-Earth3-Veg), but we compiled the model with no-leap
calendars for other GCM experiments (e.g., CESM2, GISS-
E2-1-G, TaiESM1).

2.6 Spin-up strategy consequences

Despite 1 month of spin-up in parallelized yearly WRF
experiments, our adopted spin-up strategy neglects high-
resolution soil memory on timescales greater than 1 month.
This assumption may be particularly problematic across re-
gions where a transient simulation is necessary to equilibrate
the soil conditions to a state which properly resolves the
local-scale land–atmosphere coupling. For instance, some
grid points do not see complete meltout of snow by 31 Au-
gust 1993, but since data are retained from 1 September 1993
onwards, there are instances where discontinuities in surface
snow coverage exist. This leads to discontinuities in surface
energy variables (e.g., sensible heating; not shown). We en-
courage users of WUS-D3 to be wary of this pitfall. To allevi-
ate this discontinuity, we propose that the atmospheric tem-
perature, precipitation, surface radiative fluxes, winds, and
specific humidity from WRF be used to drive offline cali-
brated hydrology models that are time continuous and can
be integrated much more rapidly (e.g., Bass et al., 2023). We
acknowledge that this approach is inadequate across regions
with a strong land–atmosphere coupling.
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3 Simulation of the historical climate

Next, we present a review of simulated historical (1981–
2010) precipitation and surface air temperature across the
WUS. Figure 3 shows the added value introduced by dy-
namical downscaling in simulating these patterns, as well
as the relative fidelity of the GCMs when downscaled
with WRF. We compare the downscaled ensemble mean
against the native-resolution GCM ensemble mean, in addi-
tion to 9 km WRF-ERA5 and observational estimates from
the 4 km Parameter-elevation Regressions on Independent
Slopes Model (PRISM; Daly et al., 1994). The inability of
the raw GCMs to capture the complex terrain of the WUS
is illustrated by major warm and cold biases over mountains
and valleys, respectively. In particular, California’s Central
Valley is 5–7 K too cool, while the Sierra Nevada is warm
biased by the same magnitude. By contrast, the dynam-
ically downscaled simulations, whether GCM- or ERA5-
driven, better resemble the regional temperature and precipi-
tation patterns shown by PRISM. Despite this improvement,
the downscaled GCM experiments are generally colder than
PRISM, by as much as 5 K during part of the year in some
states (Fig. 4). The annual mean spatial patterns in Fig. 3 re-
veal the cold biases to be predominantly over mountains. The
cold bias is generally most prominent in the winter months
(shown by spatial patterns in Fig. S2) but persists year-round.
Additionally, dynamical downscaling generally reduces the
simulated temperature spread from that of the parent GCMs,
as indicated by the red circles (Fig. 4). Exceptions are noted
across western states, especially in winter; we speculate that
dynamical downscaling is increasing the spread proportional
to the magnitude of GCM biases in temperature, winds, and
SSTs, leading, when inherited by WRF, to varying mag-
nitudes of downscaled precipitation and temperature bias.
GCM bias impacts on the dynamically downscaled solution
are a current core focus by our research team.

The dynamically downscaled ensemble mean is generally
too wet across the states of Washington, Oregon, and Califor-
nia (Figs. 3, 4). A preexisting wet bias in the parent GCMs
is increased by downscaling, an impact seen primarily over
mountains during winter (Fig. S3). These biases vary sub-
stantially within the ensemble, with individual downscaled
GCMs exhibiting meaningful state-wide biases of hundreds
of percent (e.g., California in May for CNRM-ESM2-1; not
shown). However, the downscaled results greatly improve on
large wet biases across Nevada, Colorado, Wyoming, and
Montana in the parent GCMs, which are as much as 50 % in
the ensemble mean across Wyoming and hundreds of percent
in some GCMs. Also, across Arizona, the summertime mon-
soonal precipitation maximum is completely missed in all
GCMs. Meanwhile, the downscaled results capture it well,
albeit with some simulations that are far too wet (∼ 100 %
bias) compared to PRISM. Difficulties in simulating sum-
mertime precipitation across the southwestern US have been
noted in previous studies (Liu et al., 2017; Rahimi et al.,

2022). To summarize, dynamical downscaling generally in-
creases the simulated precipitation spread across Arizona,
California, Oregon, and Washington whilst decreasing the
spread across interior states.

In general, overly wet and cold dynamically downscaled
GCMs have previously been noted across the region with a
different RCM (Rastogi et al., 2022), indicating that biases in
the GCM forcing data may be to blame. The effects of GCM
bias propagation are being explored in Rahimi et al. (2024)
and Risser et al. (2024). The absence of such large biases in
WRF-ERA5 (Figs. 3, 4, and 5), which is equivalent to the
downscaled GCMs except driven by ERA5, lends further ev-
idence in support of this hypothesis.

Finally, we evaluate historical extreme precipitation
(rx1day) in WUS-D3. Dynamical downscaling markedly im-
proves the spatial distribution of rx1day across the region
compared to the parent GCMs (Fig. 5, top), as with mean pre-
cipitation (Fig. 3). Across individual states, dynamical down-
scaling produces rx1day magnitudes that are in many cases
about double their parent GCM values, particularly across
Arizona, California, Oregon, and Washington. While gener-
ally too wet compared to PRISM, downscaled simulations
are much closer to the downscaled reanalysis (WRF-ERA5).
We attribute the greater rx1day values in the downscaled
simulations to the much better representation of topography
and orographic precipitation in WRF compared to the par-
ent GCMs. As such, the wetter behavior of WRF solutions is
generally localized to the highest elevations across each state.
These locations are precisely where observational uncertain-
ties are also maximized (Lundquist et al., 2019). Thus, we
characterize downscaled rx1day simulations as being wetter
than PRISM rather than clearly being wet biased. Because
of the rareness of rx1day events, the computation of rx1day
is also sensitive to the phasing of internal climate variability,
which is different in GCMs relative to PRISM and WRF-
ERA5. Hence, differences between downscaled GCMs and
PRISM rx1day precipitation may be partially explainable by
these phasing differences.

As indicated by the shaded bars in Fig. 5, downscaling
may alter the original GCM spread in simulated rx1day
magnitudes. Specifically, WRF significantly increases the
GCM spread in Oregon, Arizona, New Mexico, and Col-
orado but significantly decreases the spread in California,
Nevada, Idaho, and Montana. The states with large increases
in spread are generally where rx1day is more likely to oc-
cur during summer, indicating disagreements in monsoon-
related extreme precipitation across downscaled results. The
amplification of model uncertainty in precipitation extremes
by dynamical downscaling is yet to be addressed by the re-
gional modeling community and is a current focus of our re-
search efforts.
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Figure 3. The 1981–2010 annual mean (a) surface air temperature [K] and (b) precipitation rate [mm d−1] from the native GCMs (GCM; 14-
GCM ensemble mean), dynamically downscaled ERA5 (WRF-ERA5), dynamically downscaled GCMs (WRF GCMs; 14-member ensemble
mean), and PRISM. All GCM and PRISM data are interpolated from their native grids to the 9 km WRF grid.

4 Climate response across the western US

Next, we provide an overview of the WUS-D3’s climate re-
sponse to anthropogenic forcing (following SSP3-7.0). Fig-
ure 6 shows the mid-century (2030–2060; MC) and end-
century (2070–2100; EC) projected changes in annual mean
precipitation scattered against warming, averaged across 11
WUS states in each GCM. The native GCM projections (in-
dicated by letters) are connected to their downscaled coun-
terparts (indicated by circles) by thick arrows. The purpose
of Fig. 6 is to illustrate the degree to which downscaling can
modify the original GCM projections on regional scales.

According to the downscaled ensemble, the WUS will ex-
perience 2.25± 0.58 K of warming by MC and 4.65± 14 K
by EC (relative to 1980–2010). A considerably more uncer-
tain but generally wetter future is also predicted, with an en-
semble mean precipitation change of 0.039± 0.93 mm d−1

by MC and 0.083± 0.13 mm d−1 by EC. Despite a positive
mean change, a handful of simulations suggest drying across
the region (Fig. 6, right). Downscaling generally preserves
the intermodel variation among the parent GCMs in the 11-
state mean. For temperature change, there are correlation co-
efficients of 0.96 and 0.98 for MC and EC, respectively, be-
tween the raw GCM and downscaled ensembles. Correlation
coefficients are lower for precipitation change but remain
high: 0.88 and 0.78 for MC and EC, respectively. Regional
mean GCM warming is typically modified by no more than
0.5 K. Interestingly, downscaling generally reduces warm-
ing (leftward pointing arrows). This effect is most promi-
nent during winter and spring (Fig. S4), indicating that the

much better resolution of topography and hence climatologi-
cal snowpack improvements (e.g., Walton et al., 2017) in the
downscaling may be reducing the overall snow albedo feed-
back intensity and hence the surface’s temperature sensitivity
to anthropogenic forcing. Summer will see the largest mean
temperature increases across the WUS by EC: 5.2± 1.2 K in
the WRF simulations compared to 5.3± 1.2 K in the GCMs.
In contrast to temperature, downscaling does alter the re-
gional precipitation signals significantly but not in any sys-
tematic or obviously predictable way; downscaling can either
wet or dry the GCM precipitation projection. These modi-
fications are generally no more than 0.05 mm d−1, but no-
tably CanESM5 and FGOALS-g3’s projections are altered
by −0.2 and +0.15 mm d−1, respectively, by EC. In the case
of CanESM5, this transforms strong wetting to weak drying.

4.1 Spatial patterns of temperature and precipitation
change in WRF versus GCMs

Although domain mean changes are minimally unaffected by
downscaling, the spatial patterns of temperature and precip-
itation change in the downscaled solutions are significantly
different from those of the raw GCM projections (Fig. 7;
individual downscaled GCM annual changes are shown in
Figs. S5, S6). To account for large intermodel spread in
climate sensitivity, the local warming is normalized by EC
changes in global warming. A value of 2 K K−1 indicates that
a grid cell warms at twice the rate of the global average. Ex-
amining the upper panels of Fig. 7, large-scale spatial pat-
terns of warming are preserved in the downscaling, but there
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Figure 4. The 1981–2010 seasonal cycles of state mean surface air temperature [K] and precipitation [mm d−1] from native GCMs (GCM),
dynamically downscaled ERA5 (WRF-ERA5), dynamically downscaled GCMs (WRF GCMs; 14-member ensemble mean), and PRISM.
The parent and downscaled GCM ensemble spreads are presented in yellow and blue shading, respectively. Red circles indicate months
where the dynamically downscaled spread is smaller than the parental GCM spread.

are seasonal and local differences. Notably, we see enhanced
(and likely more realistic) warming adjacent to mountainous
areas of the Rockies during winter and spring and at the high-
est elevations of the Sierra Nevada during summer. This is
primarily tied to the improved representation of topography
and thus more expansive historical snow cover. We expect

simulations with greater snow cover to exhibit more warming
across these areas because they would be able to lose more
snow under warming (Fig. S7) and therefore have a stronger
snow albedo feedback (SAF; Hall, 2004; Qu and Hall, 2006;
Thackeray and Fletcher, 2016). The addition of value is clear
in terms of the granularity of future snow loss and subse-
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Figure 5. Historical (1981–2010) mean rx1day (annual maximum daily precipitation) precipitation amounts [mm] from native GCMs (14-
GCM ensemble mean), dynamically downscaled ERA5 (WRF-ERA5), dynamically downscaled GCMs (WRF GCMs; 14-member ensemble
mean), and PRISM. Panel (a) presents the spatial distribution of rx1day precipitation, while (b) presents rx1day precipitation amounts
averaged across each western US state. Ensemble mean values are presented as colored circles, while the GCM spread in rx1day values is
shaded. GCM data were interpolated to a 1° rectilinear grid before computations.
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Figure 6. Future climate response for parent GCMs (indicated by lettering) and their downscaled counterparts (indicated by open circles)
on the 9 km WRF grid averaged across 11 western US states. Non-colored circles are for SSP3-7.0 projections only, while blue (red) circles
represent the SSP2-4.5 (SSP5-8.5) projections. Arrows point away from parent GCMs towards downscaled counterparts.

quent impact on warming in winter and spring and is com-
parable to previous studies (e.g., Walton et al., 2017). How-
ever, enhanced summertime high-elevation warming may be
somewhat overestimated due to large cold-season wet biases
(Figs. 4, S3); excessive snow survives into the warm season
and creates an unrealistically large snow albedo feedback
effect under climate change. We also hypothesize that the
lapse rate feedback (Hansen et al., 1984; Colman and Soden,
2021) may be contributing to the enhanced warming at high
elevations during summertime. For example, in the GCMs,
850 hPa temperatures warm by 3.75 K across the WUS, while
300 hPa temperatures warm by 4.75 K (not shown). This en-
hanced warming at high altitudes likely contributes to en-
hanced surface warming at high elevations as well. Lastly,
the downscaled ensemble exhibits enhanced warming across
the interior during fall, perhaps associated with drying and
a reduction in evaporative damping of surface temperature
(Zhou et al., 2019).

Spatial patterns of precipitation change illustrate greater
contrasts between the downscaling and GCMs across seasons
(Fig. 7, lower panels). EC changes are normalized by global
mean warming here to take into account the large spread in
climate sensitivity among CMIP6 models and to focus atten-
tion on the components of the hydrologic response that do
not simply scale with temperature. The large-scale precipi-
tation response is generally preserved in downscaling, with
statistically significant wetting (drying) in the northwestern
(southwestern) US during winter and spring. The lack of sta-
tistical significance along a transition region, extending from
southern California through northern Arizona and New Mex-
ico, is symptomatic of GCM disagreement on the location
of the transition of subtropical drying to midlatitude wet-
ting (Meehl et al., 2007; Neelin et al., 2013). Consistent with

other studies (e.g., Mahoney et al., 2021; Rupp et al., 2022),
the downscaled ensemble appears to produce greater wet-
ting across major WUS mountain ranges during spring and
winter. The locally more intense change signal is tied to in-
creased water vapor within atmospheric rivers and other syn-
optic disturbances, which interacts with WRF’s more realis-
tically simulated terrain to produce more realistic orographic
uplift relative to native-resolution GCMs (Huang et al., 2020;
see mean changes in vertical velocities in Fig. S8). There are
also instances where WRF simulates a locally more intense
drying signal compared to the native GCMs, which is also
clearly linked to topography, e.g., the Sierra Nevada in au-
tumn and spring, the upslope of the Cascades in summer, and
northwestern Mexico in winter and summer.

We also examine ensemble mean fractional precipitation
changes (again normalized by warming) to focus attention
on where the largest changes are relative to the climatology
(Fig. 8). Here, a value of −20 % K−1 indicates that EC-era
precipitation has decreased by 20 % relative to the historical
era, while the global temperature has warmed by 1 K. One of
the most notable and robust signals seen during all seasons
and almost entirely missed in the parent GCMs (Fig. S9)
is significant wetting in the lee of major WUS mountain
ranges. This effect was explored in an idealized context in
Siler and Roe (2014). They concluded that higher cloud bases
associated with decreased surface relative humidity values in
a warmer world will lead to enhanced hydrometeor fallout
further upslope and downwind of mountain ranges. In our
simulations, these lee-side changes are large in magnitude.
For example, in winter, precipitation increases by 7 % K−1–
10 % K−1 in the lee of the Cascades, 10 % K−1–20 % K−1 in
the lee of the Sierra Nevada, and 6 % K−1–20 % K−1 over
California’s Central Valley (i.e., the lee of the coastal ranges)
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Figure 7. Ensemble mean future changes in (a) seasonal surface air temperature [K K−1] and (b) precipitation per degree of global warming
[mm d−1 K−1] from 16 downscaled GCMs. Hatching indicates statistical significance to the 95 % confidence interval when grid point
distributions are subjected to a two-sided Student’s t test. Stippling is not included for temperature because every grid point returns a p value
smaller than 0.05.
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and otherwise 5 % K−1–20 % K−1 in lee-side watersheds of
the intermountain west, including the entire western Great
Plains. In spring, this lee-side wetting response is limited to
northern mountain ranges such as the Cascades, Wyoming
ranges, and the northern Great Plains. During summer, the
downscaling also shows a dipole of drying (wetting) over the
windward (leeward) side of the Sierra Nevada. This could be
related to the mechanism identified by Siler and Roe (2014),
although given the importance of mountain-top convection
to summertime precipitation here, it may also result from
changes in other mechanisms. In general, because the lee
sides of WUS mountain ranges are typically arid, these large
and robust fractional increases in lee-side precipitation will
likely have a significant impact on local water resources and
ecology.

4.2 Changes in extremes

The future fractional change in extreme (rx1day) precipi-
tation is much more consistent across the WUS than for
the mean, with intensified extremes occurring over most
of the domain in both the parent and dynamically down-
scaled GCMs (Fig. 9, left column; Fig. S10 for individ-
ual GCMs). These changes in rx1day vary from roughly
0 % K−1–12 % K−1 across the domain in the downscaled en-
semble mean. In both the GCM and downscaling cases, the
spatial variations in the changes in rx1day can be traced in
part to vertical velocity (defined by the pressure velocity)
changes: spatial correlations of −0.7 (−0.3) are found be-
tween rx1day precipitation and vertical velocity changes in
GCM (downscaling) experiments. Here, a negative correla-
tion coefficient implies a positive relationship between up-
ward vertical velocities and positive rx1day changes. How-
ever, the patterns of vertical velocity change are very dif-
ferent in the two cases. In the downscaling experiments, the
largest intensification of rx1day occurs via upward vertical
velocity increases on the lee side of latitudinally oriented
mountain chains that are not resolved in the parent GCMs
(Fig. 9 right column). Over large parts of these areas, the
increases are super-Clausius–Clapeyron (> 7 % K−1). This
indicates that extreme precipitation intensifies at a greater
rate than saturation specific humidity, commonly termed the
thermodynamic component of extreme-precipitation scaling.
Thus, WRF simulates greater dynamical intensification of
extreme precipitation (e.g., Norris et al., 2019) than the
GCMs and in a distinct topographically modulated pattern.

Next, we examine future changes in extreme heat, defined
by the number of days exceeding the 99th percentile of the
historical daily maximum surface air temperature (Tmax99).
Consistent with extreme precipitation, these changes are nor-
malized by global warming to account for the large in-
termodel spread in climate sensitivity (Fig. 10, left). Av-
eraged across the WUS, Tmax99 exceedances increase by
11.9± 2.1 d yr−1 K−1. California, Oregon, and Washington
see increases of 4–7 d yr−1 K−1, with coastal areas seeing in-

creases of less than 5 d yr−1 K−1. The power of dynamical
downscaling is particularly evident, as the GCMs (Fig. 10,
top row) cannot simulate (i) the correct coastline geome-
try, leading to an unphysical intrusion of maximized ocean-
influenced Tmax99 exceedances and (ii) the complex ter-
rain of the WUS, which strongly modulates the snow cov-
erage and subsequently the land surface sensitivity to warm-
ing. Additional examination reveals that the GCMs with
the greatest regional mean warming are not necessarily the
GCMs with the largest increase in exceedances (Figs. S5,
S12). This discrepancy may be due to GCM differences in the
simulation of synoptic-scale events that produce heat waves.
Anthropogenic changes in such events may occur indepen-
dently of mean temperature shifts (Fig. 7).

Next, we explore whether changes in Tmax99 ex-
ceedances are explainable by mean shifts in the tempera-
ture distribution. As shown in Fig. 10 (right column), the
number of actual future Tmax99 exceedances from parent
and dynamically downscaled GCMs can be quite different
compared to the case where all quantiles in the tempera-
ture distribution are shifted equally based on the amount
of local mean warming in Tmax99 (Fig. 10, middle col-
umn). Red (blue) pixels indicate regions where the tails of
the temperature distribution are warming more (less) than
can be explained by mean warming in Tmax99. Assuming
a mean shift in Tmax99 significantly underpredicts the in-
crease in exceedances by 3–4 d yr−1 K−1 across portions of
California, Oregon, and Washington. Still greater underpre-
dictions of future exceedances assuming a mean shift are
seen across western Montana, Idaho, and portions of western
Wyoming, particularly at higher elevations. Further south,
however, the number of exceedances in Tmax99 can be ex-
plained mostly by mean shifts in Tmax99. Assuming a mean
shift, exceedances are slightly overpredicted across portions
of New Mexico and western Texas relative to GCM and WRF
simulations. This analysis highlights that the intensification
of extreme temperature events may not be entirely explain-
able by mean shifts in the temperature distribution alone, and
parent and downscaled GCMs are broadly similar in this re-
spect. However, there is also significant spatial structure in
the downscaling patterns not seen in the GCMs, indicating
that local atmospheric dynamics and local land–atmosphere
feedbacks play a role in shaping change in the right tail of
the temperature distribution.

5 Summary and conclusions

Future regional climate change remains difficult to project,
given the low resolution of GCMs, particularly over a region
of complex terrain such as the western US. In this study, we
present a dataset containing 16 CMIP6 models dynamically
downscaled with WRF over the region from 1980 to 2100
at 9 km grid spacing: the Western US Dynamically Down-
scaled Dataset (WUS-D3). The future projections are primar-
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Figure 8. The mean future changes of the 16 GCMs in dynamically downscaled fractional precipitation normalized by the amount of global
warming [% K−1]. Hatching indicates statistical significance to the 95 % confidence interval when grid point distributions are subjected to a
two-sided Student’s t test. Stippling is not included for temperature because every grid point returns a p value smaller than 0.05.

ily based on the SSP3-7.0 high-emissions scenario, but we
include two additional downscaled experiments with CESM2
of the SSP2-4.5 and SSP5-8.5 scenarios. An extensive evalu-
ation of CMIP6 models’ historical simulations over the west-
ern US has been conducted (Krantz et al., 2021; Goldenson et
al., 2023) to identify the most suitable candidates for down-
scaling over this region. However, GCM selection was also
based on the availability of data required to provide initial
and boundary conditions to WRF. The optimal configuration
of WRF over the western US was established via an exten-
sive evaluation of an ERA5-driven WRF run (Rahimi et al.,
2022). Numerous other challenges of using the CMIP6 data
to force WRF are outlined in the methods.

Aside from the obvious improved representation of spatial
patterns of meteorological variables, there are many notable
improvements of the downscaling over raw GCMs when

compared to observations over the historical period. For ex-
ample, the WRF simulations largely correct for major wet
biases (∼ 100 %) in the raw GCMs over Nevada, Wyoming,
Montana, and Colorado. These bias reductions apply to both
winter and summer, depending on the state. Moreover, the
GCMs completely fail to represent the summertime precip-
itation maximum over Arizona and New Mexico, which is
corrected in the downscaled experiments, albeit with some
large wet biases therein. The WRF simulations also correct
large summertime warm biases over much of the domain,
particularly the interior states, due to the improved represen-
tation of terrain and resulting snowpack improvements. Fi-
nally, extreme precipitation (measured by rx1day) is greatly
increased (generally about doubled) from the GCM values.
In some cases, this amounts to wet biases from WRF, accord-
ing to PRISM, but these apparent biases are mostly at high
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Figure 9. Future response in (a, c) rx1day precipitation [% K−1] and (b, d) 500 hPa pressure velocity [Pa s−1 K−1] conditioned on rx1day
occurrence for the (a, b) GCM and (c, d) WRF ensembles per degree of global warming [% K−1]. Due to the lack of GCM data with daily
vertical velocity outputs, we use a 14-GCM (9-GCM) mean for rx1day (pressure velocity); the WRF patterns of rx1day generally are similar
for a 9-GCM mean (Fig. S11).

elevations where observational uncertainties are maximized
(Lundquist et al., 2019).

There are, however, extensive and systematic biases that
remain from the parent GCMs and in some cases are exacer-
bated. For example, the GCMs generally overestimate winter
precipitation along the west coast, which likely results from
unrealistically high moisture contained within atmospheric
rivers (Norris et al., 2021) and other GCM biases transmit-
ted to WRF. In the WRF simulations, these wet biases are
amplified, likely as excessive moisture is forced up steeper
orographic gradients than in the GCMs. Also, unlike the
GCMs, the downscaled experiments are generally too cold
compared to PRISM, particularly in winter, with some states
exhibiting as much as a 5 K bias. These results are compa-
rable to Rastogi et al. (2022), who used a different regional
climate model, implying that inherited GCM biases may be

to blame. The dynamical downscaling community should be
frank about such biases, particularly in lieu of the fact that
these biases are often artificially removed post-downscaling
using bias correction. This practice is ubiquitous in hydrol-
ogy and demand forecast modeling, as well as in statistical
downscaling. Users of WUS-D3 should be open-eyed and
wary about the possibility that these large historical biases
may compromise the trustworthiness of its climate change
signals.

The future downscaled climate change signals are shaped
in physically credible ways by the regional model’s more re-
alistic coastlines and topography. Large-scale warming pat-
terns are generally preserved from the parent GCMs but with
enhanced warming adjacent to high terrain during winter and
spring and over high elevations during summer. This locally
enhanced warming occurs where relative snow losses are
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Figure 10. Future changes in the 99th percentile of surface daily maximum air temperature (Tmax99) per degree of global warming
[d yr−1 K−1] considering the full change (a, d) and assuming a mean shift in the temperature distribution (b, e) for (a, b, c) GCMs and
(d, e, f) WRF GCMs. The right panel presents the difference between the left and center panels. Parent GCM (WRF GCM) calculations
utilize an 11-member (16-member) ensemble. When using the same 11-member ensemble, the WRF panels look similar (Fig. S13).

maximized in the future, a feature that cannot be captured at
the GCMs’ coarse resolution. Meanwhile, precipitation pat-
terns undergo much greater transformation with downscal-
ing. Although WRF preserves the broad pattern of subtrop-
ical drying and midlatitude wetting, WRF simulates addi-
tional local precipitation changes. In particular, mean pre-
cipitation changes are often consistent with wetting on the
windward side of mountain complexes, as warmer, moister
air masses are uplifted orographically during precipitation
events, similar to Huang et al. (2020). There are large frac-
tional precipitation increases on the lee side of mountain
complexes, consistent with the theoretical work of Siler and
Roe (2014). This could lead to significant changes in wa-
ter resources and ecology across these arid landscapes. The
intensification of precipitation and temperature extremes is
also modified in significant ways by dynamical downscaling.
Over complex terrain, precipitation extremes scale at much
greater rates, on the order of 12 % K−1. This greater scaling
in WRF is likely due to greater dynamical enhancement of
extreme precipitation over mountain ranges, as evidenced by
the intensification of upward vertical velocity changes condi-
tioned on extremes. Temperature extremes also intensify, as
measured by future exceedances of historical 99th-percentile
surface air temperature per degree of global warming. These
are on the order of +5 d yr−1 K−1 along the west coast and
approaching 15 d yr−1 K−1 in the interior west. The simu-
lated changes are mostly greater than that predicted by a sim-

ple mean shift in the temperature distribution, indicating the
effect of an extension of the right tail. The imprint of topog-
raphy is evident in this change in the temperature distribu-
tion’s shape, indicating the importance of local atmospheric
dynamics and land surface feedbacks.

Despite the care taken in creating WUS-D3, this paper
provides a forum to scrutinize the dynamical downscaling
technique. For instance, here we assume that the ocean–
atmosphere coupling is adequately preserved in downscal-
ing since SSTs are prescribed to update regularly, and large-
scale winds and temperatures are preserved in downscaling
via spectral nudging. But is this a good assumption given that
half of our 45 km grid covers the open Pacific, and so should
a version of WRF with coupled ocean capabilities be used
in future downscaling across the region? Also, as discussed
previously, unrealistically large surface air temperature and
precipitation biases in the parent GCMs were in some cases
replaced by equally egregious biases in the downscaled so-
lution. Despite a careful GCM selection process employed
in this study, does this result motivate the consideration of a
pre-downscaling bias correction procedure of GCM fields in
future studies?

WUS-D3 constitutes the first comprehensive dataset of
landscape-resolving climate projections over the western
US. Although only temperature and precipitation projections
have been evaluated here, the dataset includes all 2-D and
3-D meteorological and land surface variables at 6-hourly
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intervals with an auxiliary datastream of more than 20 land
surface variables needed to drive downstream models (e.g.,
hydrology) offline. Thus, it represents a unique opportunity
to explore potential future changes to a wide diversity of
weather and climate phenomena over the region. These in-
clude but are not limited to atmospheric rivers, the North
American monsoon, summer convective storms, intense heat
waves, wildfire-related downslope winds, and ventilation by
sea breezes. Moreover, these data may be used to drive offline
and calibrated hydrology and fire-weather models to obtain
more detailed projections of water resources and flooding
and wildfire. Nevertheless, there are biases in the downscaled
simulations, briefly documented here, which should be un-
derstood and appreciated when using the data for future pro-
jections. We strongly encourage the community to use these
results with other dynamically and statistically downscaled
products to develop risk assessments and bound uncertainty.
Such intercomparisons of different downscaled products are
critical to assessing a product’s usefulness and applicability.
Finally, for the express purpose of dynamical downscaling,
we implore the CMIP7 protocol development team to man-
date that new GCM outputs for ta, ua, va, and hus be re-
ported on 20–30 isobaric pressure levels and at 6-hourly in-
tervals (along with ps), as increasingly powerful computing
platforms are beginning to enable the community to consider
dynamically downscaling large ensembles of GCMs.

Code availability. Individualized preprocessing codes were devel-
oped to create the intermediate binary files for each GCM before
ingestion into WRF. As such, we have archived these codes for var-
ious GCMs on Zenodo (https://doi.org/10.5281/zenodo.10286544,
Rahimi and Huang, 2024).

Data availability. The versions of WRF used in this study,
a Jupyter notebook reproducing the figures in the main text,
their attendant files, and the geography files are archived with
Zenodo in an open DOI subject to a Creative Commons License
version 4 (https://doi.org/10.5281/zenodo.10635867, Rahimi
and Huang, 2024). All downscaled data for WUS-D3, includ-
ing the full 6-hourly WRF datastream (Tier 1), hourly data
for select land surface variables (Tier 2), and a daily post-
processed datastream (Tier 3), are located in the following
open-data bucket on Amazon S3: s3://wrf-cmip6-noversioning/
at https://registry.opendata.aws/wrf-cmip6/ (Rahimi and Huang,
2023a). These data are completely open and free to the public.
We have also developed a technical access and usage docu-
ment that details these three data tiers which can be found at
https://dept.atmos.ucla.edu/sites/default/files/alexhall/files/aws_
tiers_dirstructure_nov22.pdf (Rahimi and Huang, 2023b) and
on ResearchGate (https://www.researchgate.net/publication/
374504614_Data_tier_descriptions_directory_structure_and_data_
access_of_the_Western_US_Dynamically_Downscaled_Dataset_
WUS-D3_version_1, Rahimi and Huang, 2023c). As recommended
in the document, these data are most easily downloaded when using
Amazon Web Service’s (AWS) Command Line Interface (CLI) or

with wget. An example is presented in the technical access and
usage document.
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