



### Supplement of

# An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)

Stefan Rahimi et al.

Correspondence to: Stefan Rahimi (srahimi@uwyo.edu)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1. Annual-mean sea surface temperatures (SSTs; [K]) from 1980-2009 from 14 GCMs considered in this study

### **DJF** surface air temperature bias



Figure S2. Wintertime (DJF) biases [K] in dynamically downscaled surface air temperature from 1981-2010 relative to PRISM. 11-state-mean biases are presented beneath each GCM label.

## **DJF** precipitation bias



Figure S3. Same as in Fig. S2, but for precipitation rate [mm d<sup>-1</sup>].

Climate response signals from GCM ensemble



**Figure S4.** Future winter (DJF) and springtime (MAM) climate response for parent GCMs (indicated by lettering) and their downscaled counterparts (indicated by circles) on the 9-km WRF grid averaged across 11 western U.S. states (End-Century). Non-colored circles are for SSP3-7.0 projections only, while blue (red) circles represent the SSP2-4.5 (SSP5-8.5) projections. Arrows point away from parent GCMs towards downscaled counterparts.

### Temperature change by EC



Figure S5. Changes in annual-mean surface air temperature [K] by the end-of-century (2070-2100) period.

### Precipitation change by EC



Figure S6. Same as in Fig. S5, but for precipitation [mm d<sup>-1</sup>].





**Figure S7.** Future changes in 1 January (left), 1 April (middle), and 1 July (right) snow water equivalent normalized by the amount of global warming [% K<sup>-1</sup>] in th 16-GCM mean.



Figure S8. Ensemble-mean future changes in 500 hPa pressure velocity normalized by endof-century (2070-2100) mean global warming [Pa s<sup>-1</sup> K<sup>-1</sup>].



**Figure S9.** 16-GCM-mean future changes in native-GCM fractional precipitation normalized by the amount of global warming [% K<sup>-1</sup>]. Hatching indicates statistical significance to the 95% confidence interval when grid point distributions are subjected to a two-sided Student's t-test. Stippling is not included for temperature because every grid point returns a p value smaller than 0.05.

#### rx1 change by EC



**Figure 10.** End-of-century (2070-2100) changes in rx1day precipitation [mm d<sup>-1</sup>] for each GCM. Circles denote statistical significance to the 95% for a two-sided Student's t-test.



**Figure S11.** Future change in (left) WRF and (right) GCM rx1day precipitation [% K<sup>-1</sup>] considering a 9-GCM mean.



**Figure S12.** Future changes in maximum daily 99<sup>th</sup> percentile surface air temperature (Tmax99) per degree of global warming [days year<sup>-1</sup> K<sup>-1</sup>] for each downscaled GCM.



**Figure S13. 11-GCM** future changes in maximum daily 99<sup>th</sup> percentile surface air temperature (Tmax99) per degree of global warming [days year<sup>-1</sup> K<sup>-1</sup>] considering the full change (left) and assuming a mean shift in the temperature distribution (middle). The right panel presents the difference between the left and center panels.