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Abstract. We describe a new Fortran computer program to
solve the system of equations for the NH+4 –Na+–Ca2+–K+–
Mg2+–SO2−

4 –NO−3 –Cl−–H2O system, based on the algo-
rithms of ISORROPIA II. Specifically, the code solves the
system of equations describing the “forward” (gas+ aerosol
input) metastable state but with algorithm improvements and
corrections. These algorithm changes allow the code to de-
liver more accurate solution results in formal evaluations of
accuracy of the roots of the systems of equations, while re-
ducing processing time in practical applications by about
50 %. The improved solution performance results from sev-
eral implementation improvements relative to the original
ISORROPIA algorithms. These improvements include (i) the
use of the “interpolate, truncate and project” (ITP) root-
finding approach rather than bisection, (ii) the allowance
of search interval endpoints as valid roots at the onset of
a search, (iii) the use of a more accurate method to solve
polynomial subsystems of equations, (iv) the elimination of
negative concentrations during iterative solutions, (v) cor-
rections for mass conservation enforcement, and (vi) several
code structure improvements. The new code may be run in
either a “vectorization” mode wherein a global convergence
criterion is used across multiple tests within the same chemi-
cal subspace or a “by case-by-case” mode wherein individual
test cases are solved with the same convergence criteria. The
latter approach was found to be more efficient on the com-
piler tested here, but users of the code are recommended to
test both options on their own systems. The new code has
been constructed to explicitly conserve the input mass for

all species considered in the solver and is provided as open-
source Fortran shareware.

1 Introduction

Anthropogenic atmospheric particulate matter (aerosols)
can negatively impact the Earth’s climate and biosphere –
aerosols can alter the atmosphere’s radiative forcing (Jacob-
son, 2001; Schmale et al., 2021), contribute to acid rain
(Irwin and Williams, 1988), reduce atmospheric visibility
(Quan et al., 2015), and cause morbidity in humans (Atkin-
son et al., 2014) and other plant and animal species (Lovett
et al., 2009). Atmospheric particulate matter is comprised of
organic and inorganic species, with 25 % to 60 % of particu-
late matter being inorganic by mass (Harrison and Pio, 1983;
Heintzenberg, 1989). The inorganic portion of atmospheric
particulate matter consists primarily of sulfate (SO2−

4 ), ni-
trate (NO−3 ), ammonium (NH+4 ), chloride (Cl−), calcium
(Ca2+), potassium (K+), magnesium (Mg2+), sodium (Na+),
and water (H2O) (Harrison and Pio, 1983; Wang et al., 2003).
Along coastlines and within marine air masses, inorganic
bromide (Br−) (Sander et al., 2003) and iodide (I−) (Saiz-
Lopez et al., 2011) may also be common. Ca2+, K+, Mg2+,
Na+, and Cl− exist principally in coarse-mode aerosols (par-
ticle diameter > 2.5 µm), and these species are particularly
important to the partitioning of ammonium and nitrate (Met-
zger et al., 2006). As an example, coarse-mode particle ni-
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trate may form via adsorption of nitric acid (HNO3) onto
sea salt (Savoie and Prospero, 1982). It should be noted
that a considerable amount of K+ may also be present in
fine-mode aerosols (particle diameter < 2.5 µm) when it is
generated during biomass burning events, termed “pyrogenic
potassium” (Metzger et al., 2006). The transfer of cation and
anion mass between the gas and particulate phase is crucially
dependent on inorganic thermodynamic partitioning. For ex-
ample, observations have indicated that base cations (Ca2+,
K+, Mg2+, Na+) and NH+4 can compete for uptake of HNO3
(the former residing in coarse-mode and the latter in fine-
mode particle nitrate formation) (Makar et al., 1998; Anlauf
et al., 2006).

The aerosols can reside in the crystalline solid phase or
exist as an aqueous solution of ions and may be in ther-
modynamic equilibrium with atmospheric gases. The parti-
tioning of the inorganic species between the solid, gaseous,
and aqueous phase is a complex computational problem, ow-
ing to the many nonlinearities involved. The equations de-
scribing high-concentration (non-ideal) inorganic heteroge-
neous equilibrium between gases, ions, and crystallized solid
phases present a system of N equations in N unknowns,
whereN is the number of chemical constituents. While these
equations may be addressed through searching for roots of
polynomials resulting from substitution of equations, the
non-ideal nature of the problem manifests as corrections to
the equilibrium constants in the equations, known as activ-
ity coefficients. The activity coefficients depend on concen-
trations in the condensed phase, increasing the nonlinearity
of the system of equations and requiring the development
of special techniques for their solution. Several solvers have
been developed to simulate the thermodynamic partitioning
of inorganic species (see Zhang et al., 2000; Pye et al., 2020,
for a detailed review of these solvers). AIM2 (Clegg and
Pitzer, 1992; Wexler and Clegg, 2002), GFEMN (Ansari and
Pandis, 1999a, b), and UHAERO (Amundson et al., 2006)
are considered the most rigorous solvers, in that they attempt
to find a global minimum in the Gibbs free energy of the
constituents. However, the downfall of this approach stems
from the computational time and operator review required
to discriminate between the true global minimum and poten-
tially many local minima (Makar et al., 2003). This difficulty
has prevented the use of these solvers in three-dimensional
(3D) chemical transport models (CTMs) to date. However,
these models may be used to help determine subsystems of
equations – local solution spaces where gas and aerosol par-
titioning will occur with a smaller number of constituents –
and hence describe simplified systems that may be solved
with more efficient methods. Inorganic heterogeneous chem-
istry implementations in CTMs have relied on computation-
ally efficient algorithms. These algorithms directly solve the
system of inorganic heterogeneous chemistry equations by
considering the species’ chemical potentials within these pre-
determined subspaces of a smaller numbers of species, hence
simplifying and reducing the number of equations and un-

knowns. The specific subspace to be solved is determined
based on the input precursor species and the ratio(s) of the to-
tal available cations to the total available sulfate (see Sect. 2).
This approach effectively breaks the larger problem into sev-
eral separate smaller problems. Solvers that apply this tac-
tic include SCAPE (Kim et al., 1993a, b; Kim and Seinfeld,
1995; Meng et al., 1995), EQUILSOLV-II (Jacobson, 1999),
ISORROPIA/ISORROPIA II/ISORROPIA-lite (Nenes et al.,
1998; Fountoukis and Nenes, 2007; Kakavas et al., 2022),
HETV (Makar et al., 2003), and HETP (presented herein).
HETV (HETerogeneous Vectorized) was a vectorized solver
(i.e., optimized for vectorized computer architecture) based
on the original ISORROPIA algorithms (Nenes et al., 1998)
but with numerical improvements related to more accurate
evaluation of cubic and quadratic equations whose coeffi-
cients may vary by several orders of magnitude, coding struc-
ture changes to replace logical IF statements with mathemat-
ical equivalents, the elimination of redundant calculations,
the replacement of intrinsic functions in activity coefficient
calculations by high-order Taylor series, and the gathering
of similar problems within a single subsystem to be solved
using global convergence criteria. These modifications al-
lowed HETV to perform calculations in 1/38 to 1/89 of
the time required for ISORROPIA (v1.0), on a vector su-
percomputer (the fastest supercomputer architecture at the
time the HETV code was created). More recent supercom-
puter architectures focus on parallel processing across mul-
tiple processors to reduce processing time. In 2007, an up-
date to ISORROPIA was released that included “crustal”
species (Mg2+, K+, Ca2+) and sea salt (Na+, Cl−), referred
to as ISORROPIA II (Fountoukis and Nenes, 2007). More re-
cently, a simplified and extended version of ISORROPIA II
has been developed, called ISORROPIA-lite. ISORROPIA-
lite addresses the metastable state (i.e., it assumes a supersat-
urated aqueous solution where crystalline states are ignored,
except CaSO4), as well as effects of organic aerosols on the
partitioning of the inorganic system. ISORROPIA-lite solves
the same chemical subspaces as ISORROPIA II but only for
the metastable-state option and uses precalculated binary ac-
tivity coefficients, resulting in a solver that executes about
35 % faster than ISORROPIA II (Kakavas et al., 2022).

The underlying issue driving the use of a metastable-state
assumption in regional air-quality models for inorganic het-
erogeneous chemistry solvers is that the presence of water
in the aerosol is not only controlled by the inorganic com-
ponents but also by other components within a mixed-phase
aerosol. In the absence of these additional sources of aerosol
water, the “pure” (i.e., only) inorganic aerosol thermodynam-
ics can result in partitioning to the “stable” aerosol phase as
only crystalline salts (no ions) or a mixture of crystalline salts
and aqueous ions that are saturated with respect to the crys-
talline salts. The presence of the additional sources of aerosol
water will ensure that some water is always present – and
hence the subsystems of equations that have no water will
not be encountered. It has been reported that metastable-state
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aerosols may be “ubiquitous” in the Earth’s atmosphere, ex-
isting more than 50 % of the time when the relative humidity
is between 45 % and 75 % (Rood et al., 1989; Tang et al.,
1995); this may be especially true in the case of dissolved
impurities such as organic species (Fountoukis et al., 2009).
Another issue driving the use of the metastable-state assump-
tion in regional air-quality models is the need to track the
RH history of aerosols to accurately predict their phase state,
due to the hysteresis of salts. Specifically, without knowing
the RH history of the aerosol, it is not possible to determine
whether the aerosol will exist as an aqueous solution of ions
or as a crystalline salt between its efflorescence and deli-
quescence RH (Martin et al., 2004; Fountoukis et al., 2009).
Given these reasons, applications of inorganic aerosol ther-
modynamics within CTMs tend to assume a metastable state
as the most likely conditions in the troposphere, although ab-
solutely stable aqueous aerosols are possible above the del-
iquescence RH. This assumption also reduces the number
of chemical subspaces required to obtain a solution of the
system of equations for inorganic heterogeneous chemistry,
and additions such as formulae for the water activity associ-
ated with organic aerosols may be used to better simulate the
aerosol water content (Kakavas et al., 2022).

In the different versions of ISORROPIA and HETV, the
roots of subsystems of equilibrium equations are used to
determine the thermodynamic equilibrium solution, the re-
sult being the concentrations of the inorganic ions and the
partitioning gases. In ISORROPIA, ISORROPIA II, and
ISORROPIA-lite and HETV, convergence of these solutions
to these systems of equations is obtained via a bisection
search, while in SCAPE, Newton’s method is employed.
Newton’s method is also used in ANISORROPIA where it is
combined with the bisection method for chemical subspaces
describing a neutral aerosol. ANISORROPIA performs a
sensitivity analysis on each inorganic species considered in
ISORROPIA (excluding Ca2+, Mg2+, K+) with respect to
the total input precursor species concentration (Capps et al.,
2012). It is well known that Newton’s method may fail to
converge if the “initial guess” of the root is too far away
from the actual root (Burden and Faires, 2011). Unlike New-
ton’s method, the bisection method is guaranteed to con-
verge, although the convergence may be slow. The bisection
method requires at most neval = log2

(
b−a
2ε

)
function evalu-

ations to locate the root (x) on the interval [a, b] such that
|xi − x

∗| ≤ ε, where ε is a set tolerance, x∗ is the current
estimate of the root, and xi is the previous estimate of the
root. In most cases, the bisection method will require all neval
function evaluations for convergence (Oliveira and Takahasi,
2021). Recently, Oliveira and Takahasi (2021) developed a
modified bisection approach called “interpolate, truncate and
project” (ITP), which may obtain superlinear convergence,
therefore reducing the execution time required to obtain a so-
lution with the same accuracy as the typical bisection method
(note that the bisection method has linear convergence). To
achieve an improved order of convergence, the ITP method

incorporates a regula falsi estimate into the bisection method.
The “typical” bisection method simply splits the original in-
terval in half, with x∗ becoming the midpoint of this inter-
val (x∗ = x1/2 = 0.5(a+ b)); a new interval is then chosen
(i.e., [a,x∗] or [x∗,b]) based on the sign change. The regula
falsi estimate, however, is determined by fitting a straight line
through the identified interval using the function values at
each endpoint (i.e., xf =

[
bf (a)− af (b)

]
/
[
f (a)− f (b)

]
).

This estimate defines the “interpolation” aspect of the ITP
method. By making use of these two estimates simultane-
ously (i.e., x∗ and xf), ITP can outperform the typical bi-
section method for both convergence rate and accuracy. For
well-behaved functions (i.e., there is exactly one root in the
function’s domain) ITP requires on average 24 % to 37 %
of the iterations required by bisection, and for ill-behaved
functions (i.e., there are multiple roots in the function’s do-
main or the function contains discontinuities) ITP requires
on average 82 % of the iterations required by bisection.
Oliveira and Takahasi (2021) also compared the performance
of ITP against well-established alternative root-finding meth-
ods, such as Ridder’s method, the Illinois method, MAT-
LAB’s “fzero” routine, and the Secant method. For all math-
ematical functions evaluated for convergence, ITP required
the lowest number of function evaluations when compared
against the other root-finding methods. For example, com-
pared to Ridder’s method, ITP requires an average of 20.2
function evaluations, while Ridder’s method requires an av-
erage of 26.1. The full mathematical details describing the
ITP method (as well as pseudocode) are given in Oliveira
and Takahasi (2021) and are not repeated herein.

In this work we present HETP (HETerogeneous vectorized
or Parallel), a solver based on the “forward” (input precur-
sor species as gas+ aerosol) metastable-state algorithms of
ISORROPIA II. HETP has been optimized for vector pro-
cessors where similar problems for a subsystem are gathered
and solved with a global convergence criterion or parallel
processors, where local case-by-case solutions to the system
of equations are used to minimize processing time. HETP fo-
cuses exclusively on the metastable state where some amount
of liquid water is always assumed to be present in the aerosol,
even at very low relative humidity. The metastable-state
assumption is currently applied in various state-of-the-art
global and regional CTMs, such as GEM-MACH, GEOS-
Chem, and CMAQ. GEM-MACH uses HETV (Makar et al.,
2018), while CMAQ (Wang et al., 2012) and GEOS-Chem
(Pye et al., 2009) use ISORROPIA II. HETP has been up-
dated to improve its numerical stability and computational
speed compared to ISORROPIA II, as will be discussed in
detail below. Specifically, in addition to the numerical im-
provements associated with its predecessor, HETV, modifi-
cations have been made to incorporate base cations and chlo-
rine, to ensure mass conservation, and to update the bisec-
tion method to ITP. In the following sections, we demonstrate
that the implementation of ITP not only decreases the execu-
tion time of the solver, but it can also improve the final con-

https://doi.org/10.5194/gmd-17-2197-2024 Geosci. Model Dev., 17, 2197–2219, 2024



2200 S. J. Miller et al.: HETPv1.0

vergence of the chemical system by initializing the search
with a species concentration (i.e., an initial guess) that is
closer to the actual solution being sought at thermodynamic
equilibrium. Thus, we have developed a new solver (HETP)
that has improved the accuracy and decreased the execution
time compared to the original ISORROPIA II metastable-
state forward algorithms. Section 2 briefly outlines the back-
ground theory underpinning the solver, followed in Sect. 3 by
a detailed list of modifications that are unique to HETP (rel-
ative to ISORROPIA II). The final sections provide a com-
prehensive comparison between ISORROPIA II and HETP,
in terms of output results and computational speed, both of
which are improved in the HETP algorithm. For brevity we
will henceforth refer to ISORROPIA II as ISORROPIA in
the remainder of this paper.

2 Background theory

HETP is based on the algorithms of ISORROPIA, which
are in turn based on Gibbs free energy minimizations to de-
fine subspaces of systems of equations for inorganic hetero-
geneous chemistry. ISORROPIA solves two types of prob-
lems, referred to as the “forward” or “reverse” problem. The
forward problem requires known input precursor concentra-
tions (total gas+ aerosol), along with a relative humidity and
air temperature, to predict the equilibrium state. HETP does
not consider the reverse problem where the relative humidity,
air temperature, and aqueous aerosol species concentrations
are known (i.e., no gaseous species are included in the input
precursor concentrations), and a solution is sought to deter-
mine the resulting equilibrium and gas concentrations. For
measured data, the reverse problem is typically not recom-
mended since it lacks the inclusion of gas-phase speciation in
the input, making its predictions highly sensitive to measure-
ment errors. For example, Hennigan et al. (2015) show that a
±10 % measurement error in NH+4 can alter the pH predicted
by the reverse mode by more than 1 pH unit. Furthermore,
Song et al. (2018) found that the aerosol pH predicted by the
reverse mode may result in a bimodal pH distribution; in their
study a negative ion balance gave highly acidic conditions,
while a positive ion balance gave near-neutral conditions. We
note that the reverse mode is used in CMAQ to perform mass
transfer with the coarse mode (Pye et al., 2020), but other
CTMs that employ ISORROPIA use only the forward mode.

The ISORROPIA solvers have been used in a large num-
ber of CTM applications (i.e., ISORROPIA: 1250 citations;
ISORROPIA II: 1245 citations) and have been a key com-
ponent in these models, allowing inorganic heterogeneous
chemistry calculations to be carried out in a timely fashion.
Here, we build on those solvers and would like to acknowl-
edge their important contribution to air-quality modeling sci-
ence. As stated in Sect. 1, HETP assumes a metastable state,
where some liquid water is always present, even at low rel-
ative humidity. The required input precursor species are to-

tal sulfate (TS; expressed as molar equivalent H2SO4), to-
tal ammonium (TA; expressed as molar equivalent NH3), to-
tal nitrate (TN; expressed as molar equivalent HNO3), to-
tal sodium (TNa; expressed as molar equivalent Na+), to-
tal chloride (TCl; expressed as molar equivalent HCl), total
magnesium (TMg; expressed as molar equivalent Mg2+), to-
tal potassium (TK; expressed as molar equivalent K+), and
total calcium (TCa; expressed as molar equivalent Ca2+).
Units of these net precursor species are mol m−3 air upon
input into both ISORROPIA and HETP. For some input
conditions ISORROPIA will adjust the input precursor con-
centrations prior to determining the subroutine that should
be entered. Specifically, ISORROPIA will adjust TA and
TCl so that they are no less than 1× 10−10 mol m−3, and if
(TNa+TS+TN) < 1× 10−10 mol m−3, then ISORROPIA
will adjust TNa and TN so that they are no less than 1×
10−10 mol m−3 (note these are applicable only to Branch 3
and 4; see Fig. 1). These adjustments performed within a
CTM result in output speciation that violates mass conser-
vation, since mass is created for TA, TN, TCl, and TNa. For
example, for 50 000 unique sets of input conditions execut-
ing Branch 4 subroutines (i.e., winter input from Sect. 4.2),
performing these adjustments results in a median of 1.09×
10−3 µgm−3 of TCl being created by the solver. On a relative
scale

(
output mass
input mass × 100%

)
this represents a median increase

in TCl mass by 42.7 %; for 25 % of these input conditions
the relative increase in TCl mass ≥ 4414 %. In a CTM these
mass violations would occur at a single time step; therefore
the impact would increase as the simulation progresses. Con-
sidering these mass violations, ISORROPIA currently used
in GEOS-Chem v14.0.0 (GEOS-Chem, 2022) does not per-
form these mass adjustments. It should be noted that GEOS-
Chem v14.0.0 uses ISORROPIA v2.2 which contains minor
bug fixes compared to ISORROPIA II (v2.0). CMAQv5.4
which also uses ISORROPIA v.2.2 (CMAS, 2016; USEPA,
2022) does perform these initial mass adjustments; however,
any output that results from input data that are mass ad-
justed is flagged. HETP adopts the approach of GEOS-Chem
and likewise does not perform these initial mass adjust-
ments. Therefore, ISORROPIA v2.2 used herein (obtained
from CMAQv5.4; USEPA, 2022) has been modified so that it
also does not perform the aforementioned mass adjustments.
Other than this modification, the branches and chemical sub-
spaces shown in Fig. 1 are identical to ISORROPIA.

Table 1 lists the entire set of equilibrium reactions (ER1
to ER7) that are solved in various chemical subspaces of the
metastable-state “forward” option of both ISORROPIA and
HETP. The decision tree (outlined at the end of this section)
used to select the appropriate chemical subspace, as well as
the equilibrium reactions shown in Table 1, is identical to
ISORROPIA (Fountoukis and Nenes, 2007). ER1 to ER7 are
solved by introducing additional relationships for mass con-
servation, electroneutrality (i.e., a charge balance equation),
aerosol water activity, and mean molality-based activity co-
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efficients (γ ) to represent ion–ion interactions in non-ideal
aqueous solutions (γ → 1 as the solution becomes more di-
lute, i.e., more “ideal”). Given in Table S1 are the equilibrium
reactions that form the basis of dry salt partitioning (ER8 to
ER25) that is completed during the initialization of several
metastable-state subspaces. It should be noted that ER8 to
ER25 are not solved directly – instead the input precursor
species are partitioned into various salts based on these equi-
librium reactions.

The exact salts that form (i.e., which anions are matched
by which cations) depend on the specific chemical subspace
that is entered and whether the subspace is “sulfate rich”,
“sulfate super-rich”, or “sulfate poor”; these classifications
are determined by the relative amounts of the input cations
to the total available sulfate. For example, in CALCP13 (the
algorithm branch describing a sulfate poor case with base
cations present), calcium, potassium, and magnesium first re-
act with the sulfates to produce CaSO4, K2SO4, and MgSO4
respectively, and sodium and chloride react to form NaCl.
Any free calcium will then react with nitrate and free chloride
to form Ca(NO3)2 and CaCl2 respectively. Next, free mag-
nesium will react with free nitrate and free chloride to form
Mg(NO3) and CaCl2, respectively, and then free sodium will
react with free nitrate to form NaNO3. Finally, free potas-
sium will react with free chloride and free nitrate to form
KCl and KNO3, respectively. The order of dry salt partition-
ing in the remaining chemical subspaces, where applicable,
is provided in Table S2 of the Supplement and is identical
to ISORROPIA (except for CALCL9, discussed in Sect. 3).
Depending on the amount of anions and cations present for
this initial partitioning stage, some of these input compo-
nents may be in excess of the amount which can be parti-
tioned into salts. This excess mass, beyond that required to
create a set of salts, is referred to as the “free” amount of
the given component. The salts created in this initial stage
of partitioning are then assumed to undergo deliquescence
in each of the problems to be solved, resulting in aqueous
phase speciation that is then used as the initial conditions for
which a thermodynamic solution is required. In addition to
the free amounts generated within a chemical subspace dur-
ing dry salt partitioning, free amounts may also be generated
during the initialization of HETP and ISORROPIA, prior to
entering a chemical subspace. Specifically, automatic adjust-
ments are applied if the input precursor species are nonelec-
troneutral. In this case, any excess cations are ignored, and
free amounts of Na, Ca, K, and Mg may be created. These
automatic adjustments help constrain the particle alkalinity
of the equilibrium solution, ensuring that it does not exceed
the pH of dissolved particulate calcium carbonate (Pye et
al., 2020). The free mass must therefore be treated carefully
in the context of the application of thermodynamic solvers
within CTMs. A key requirement for CTMs is that they con-
serve the mass of transported species, within process repre-
sentation such as inorganic thermodynamics. Solvers such
as ISORROPIA conserve mass for the “captured” or “non-

free” portion of the input chemical speciation but not the
free portion. Currently, ISORROPIA only outputs the aque-
ous, solid, or gaseous species that result after partitioning
at thermodynamic equilibrium and not free amounts. If the
non-volatile species (Ca2+, Mg2+, K+, Na+) output by the
solver are used by the CTM, and the free amounts are not
retained and used to conserve mass, then inputs to the solver
which result in free species will be lost in the solver call. We
note, however, that CTMs such as CMAQ v5.4 and GEOS–
Chem v14.0.2 avoid this potential problem by only allow-
ing the semi-volatile species (i.e., Cl−–HCl, NO−3 –HNO3,
NH+4 –NH3) to be modified on output from the solver. The
semi-volatile species are then saved and transferred back to
the model. The non-volatile species are not used after chem-
ical partitioning and are not transferred back to the model
calling ISORROPIA. Therefore, any non-volatile free mass
that was created in ISORROPIA is not lost in the solver call
in these CTMs (aerosol mass is conserved). In HETP the free
amounts have been retained in all cases and are returned to
the calling code for completeness. The manner in which the
initial salt concentrations are determined, including the free
amounts, is provided in detail in Table S2. HETP tracks all
free amounts explicitly, otherwise the initial dry salt concen-
trations outlined in Table S2 are determined to be identical to
those in ISORROPIA (except CALCL9 which is discussed
in Sect. 3).

The equilibrium constants are calculated from the Van’t
Hoff equation, where 1H 0 (T0) is approximated for a small
temperature range (Denbigh, 1981) as

Kj (T )=K0 exp

[
−
1H 0 (T0)

RT0

(
T0

T
− 1

)
−
1C0

p

R(
1+ ln

(
T0

T

)
−
T0

T

)]
, (1)

where K0 is the equilibrium constant at a reference temper-
ature of T0 = 298.15 K, R = 8.314 J mol−1 K−1 is the uni-
versal gas constant, 1C0

p (J mol−1 K−1) is the change of
molar heat capacity of products minus reactants, and 1H 0

(J mol−1) is the enthalpy change of the reaction at tempera-
ture T0 (K). K0 is determined as

K0 (T0)= exp

(
−
1G0

f
RT0

)
, (2)

where 1G0
f (J mol−1) is the standard molar Gibbs free en-

ergy of formation at T0.
The mean activity coefficients are calculated following the

same methodology as in ISORROPIA: multicomponent ac-
tivity coefficients are calculated according to Bromley’s for-
mula (Bromley, 1973), binary activity coefficients are de-
termined from the Kusik–Meissner relationship (Kusik and
Meissner, 1978), and the temperature dependence of the
multicomponent activity coefficients is calculated following
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Table 1. Equilibrium reactions (ERs) considered in the metastable-state chemical subspaces (Fountoukis and Nenes, 2007). These reactions
are solved directly within the appropriate major system. 1G0

f , 1H 0
f , and 1C0

p are the standard molar Gibbs free energy, enthalpy of
formation, and heat capacity at standard pressure; R = 8.314 J mol−1 K−1 is the universal gas constant; and T0 = 298.15 K is the reference
temperature. The ions denoted in square brackets [. . . ] (i.e., [H+], [SO2−

4 ], [HSO−4 ], etc.) refer to molalities with units of mol kg−1. Here, γ
is a multicomponent activity coefficient, and p is a gas partial pressure. Theoretically, equilibrium constants are unitless since each pressure
or concentration should be normalized by a standard state; here standard states are neglected.

Equation no. Equilibrium reactions and values of Equilibrium equation

exp
(
−1G0

f /(RT0)
)

, 1H 0
f /(RT0), 1C0

p/R

ER1 KHSO4 : HSO−4(aq)
↔ H+

(aq)+SO2−
4(aq)

KHSO4 =

[
H+

][
SO2−

4

]
[
HSO−4

] ( γH+γSO2−
4

γHSO−4

)
[mol kg−1]

exp
(
−1G0

f /(RT0)
)

1.015× 10−2

1H 0
f /(RT0) 8.85

1C0
p/R 25.14

ER2 KNH3a
: NH3(g) ↔ NH3(aq) KNH3a

=
[NH3(aq) ][
pNH3(aq)

] (γNH3(aq)

)
[mol kg−1 atm−1]

exp
(
−1G0

f /(RT0)
)

5.7639× 101

1H 0
f /(RT0) 13.79

1C0
p/R −5.39

ER3 KNH3b
: NH3(aq) +H2O(aq)↔ NH+4(aq)

+OH−
(aq) KNH3b

=

[
NH+4

]
[OH−][

NH3(aq)

]
aw

(
γNH+4

γOH−

γNH3(aq)

)
[mol kg−1]

exp
(
−1G0

f /(RT0)
)

1.805× 10−5

1H 0
f /(RT0) −1.50

1C0
p/R 26.92

ER4 KH2O : H2O(aq)↔ H+
(aq)+OH−

(aq) KH2O =

[
H+

][
OH−

]
aw

(
γH+γOH−

)
[mol2 kg−2]

exp
(
−1G0

f /(RT0)
)

1.010× 10−14 with γH+ = 1 and γOH− = 1

1H 0
f /(RT0) −22.52

1C0
p/R 26.92

ER5 KHNO3 : HNO3(g) ↔ H+
(aq)+NO−3(aq)

KHNO3 =

[
H+

][
NO−3

]
pHNO3

(
γH+γNO−3

)
[mol2 kg−2 atm−1]

exp
(
−1G0

f /(RT0)
)

2.511× 106

1H 0
f /(RT0) 29.17

1C0
p/R 16.83

ER6 KHCl : HCl(g)↔ H+
(aq)+Cl−

(aq) KHCl =

[
H+

][
Cl−

]
pHCl

(
γH+γCl−

)
[mol2 kg−2 atm−1]

exp
(
−1G0

f /(RT0)
)

1.971× 106

1H 0
f /(RT0) 30.20

1C0
p/R 19.91

ER7 KNH4NO3 : NH4NO3(s) ↔ NH3(g) +HNO3(g) KNH4NO3 = pNH3pHNO3 [atm2]

exp
(
−1G0

f /(RT0)
)

4.199× 10−17

1H 0
f /(RT0) −74.735

1C0
p/R 6.025

Note that
γH+ γSO2−

4
γ

HSO−4

=

γ 2
H+

γ
SO2−

4
γH+ γHSO−4

=

γ 3
H2SO4

γ 2
H−HSO4

(Kim and Seinfeld, 1993b).
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Meissner and Peppas (1973). HETP (as in ISORROPIA) as-
sumes that OH−(aq) is small compared to other species, and
hence it is not used in the calculation of ionic strength. HETP
only allows online calculation of activity coefficients and
does not use precalculated lookup tables.

Aerosol liquid water content in kg m−3 air is calculated ac-
cording to the Zdanovskii–Stokes–Robinson (ZSR) relation
(Robinson and Stokes, 1965), as

W =
∑
i

Mi

mi(aw)
, (3)

where Mi is the concentration of species i in mol m−3 air,
andmi is the molality (mol kg−1) of an aqueous solution of i
at the same water activity (aw) as the mixture. It is assumed
that there are negligible effects from droplet curvature (i.e.,
Kelvin effect) and that the growth of an aerosol by uptake of
H2O does not affect the ambient water vapor pressure (i.e., no
effect on the ambient RH). Therefore, equilibrium between
the vapor (gas) and liquid (aerosol) phase is assumed with
aw =RH (Seinfeld and Pandis, 2016).

There are other simplifications and assumptions applied
to the metastable state in HETP and ISORROPIA, includ-
ing the following: (i) sulfuric acid, sodium, magnesium, cal-
cium and potassium are assumed to only exist in the aerosol
phase (i.e., no sulfuric acid gas). (ii) Calcium sulfate (CaSO4)
never dissolves and will only be present as a solid species.
(iii) In cases that are sulfate rich (B4, C2, E4, F2, I6, J3,
L9, K4), the ions NH+4 , NO−3 , and Cl− are “assumed to be
minor species that do not significantly perturb the [thermo-
dynamic] equilibrium” (Fountoukis and Nenes, 2007) – the
partitioning problem to be solved for these ions in sulfate-
rich cases is referred to as a “minor system”. All minor sys-
tems are solved after convergence of the major system has
been achieved. Practically, for point (iii) above, this implies
that NO−3 and Cl− within the minor system will not affect
the charge balance or the activity coefficients of the major
system. The concentration of H+ determined from the ma-
jor system is used as the basis to perform the partitioning
between the aerosol and gas phase in the minor system(s),
using the equilibrium reaction(s) in Table 1 which describe
the minor system(s) to be solved.

The system of equations and order of the operations to cre-
ate a solution are identical between ISORROPIA and HETP
using the same chemical subspaces. The subspace that will
be entered, and therefore the speciation that will be present,
is determined based on the input precursor species. If crustal
species (TK, TMg, and TCa), TNa, and TCl are all near zero,
then the set of chemical subspaces reduces to those used in
HETV (Makar et al., 2003) and the original release of ISOR-
ROPIA (Nenes et al., 1998). Both codes follow the same
procedure, first creating three sulfate ratios: the “total sul-
fate ratio” (R1), “crustal species and sodium ratio” (R2), and
“crustal species ratio” (R3),

R1 =
TA+TNa+TCa+TK+TMg

TS
(4)

R2 =
TNa+TCa+TK+TMg

TS
(5)

R3 =
TCa+TK+TMg

TS
. (6)

These ratios are used as the basis to determine the appropriate
chemical subspace that is entered and solved, with 15 pos-
sible metastable subspaces in total. The possible subspaces
given the input ratios R1, R2, and R3 are summarized in
Fig. 1, along with the resulting speciation (aqueous, gaseous,
and solid). The bold font species are solved in the major sys-
tem, while regular font species are solved in the minor sys-
tem. Four unique “branches” exist: in Branch 1 only TS and
TA are present; in Branch 2 only TS, TA, and TN are present;
in Branch 3 TS, TA, and TN are present and at least one of
TNa or TCl; and in Branch 4 TS, TA and TN are present and
at least one of TCa, TK, or TMg. The branches are further
subdivided into subcases depending on input concentrations.
It should be noted that the subcases G5, H6, O7, M8, and P13
require that TCl be present, along with the aforementioned
requisite species, otherwise a solution is not possible due to
small numbers and floating-point arithmetic limitations. This
limitation occurs since HETP does not apply the mass modi-
fication that resets TCl to a floor value of 1×10−10 mol m−3,
as discussed near the start of the section.

3 Algorithm design and improvements

During the development of HETP, several improvements re-
lated to the mathematical techniques were incorporated rela-
tive to ISORROPIA (and HETV), as well as additional mod-
ifications related to mass balance. These modifications and
improvements include the following:

1. An updated root finding algorithm, referred to as “inter-
polate, truncate and project (ITP)” (Oliveira and Taka-
hashi, 2021), has been used instead of the bisection
method in HETP. ITP has the advantage of “superlin-
ear convergence” and hence may obtain a root with the
same accuracy as bisection but in fewer iterations. The
increased rate of convergence can affect the activity co-
efficients. In some cases, the faster convergence of ITP
can alter the ionic strength, resulting in different activ-
ity coefficients being calculated early on in the iterative
process than would be determined from the bisection
algorithm used in ISORROPIA. The new approach may
also contribute to an improved formal accuracy perfor-
mance for estimating the roots, for the same conver-
gence criteria level (see Sect. 4.1).

2. All bisection subroutines in ISORROPIA employ a
root-bracketing approach to obtain an initial interval
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Figure 1. Domains of the systems of equations, based on ISORROPIA. For Branch 3, each of TS, TA, and TN> tiny, as well as one (or
both) of TNa and TCl. For Branch 4, each of TS, TA, and TN> tiny, as well as one (or all) of TMg, TK, and TMg – thus Branch 4 does
not necessarily require TNa or TCl> tiny. However, it should be noted that for a solution to be possible, subcases CALCH6, CALCG5,
CALCM8, CALCO7, and CALCP13 do require TCl> tiny. The dashed lines in the figure imply that the domain extends infinitely in the
direction of increasing R1 or R2. For example, in Branch 1, 0≤ R1 <∞, but in the figure R1 only extends to 4, and subcase CALCA2
extends for all TA/TS> 2.

[xa,xb], where f (xa)f (xb) < 0, signifying that a root
exists within the interval according to the intermedi-
ate value theorem, assuming a continuous function. We
have found that ISORROPIA does not check to deter-
mine if either endpoint is a valid root, that is, if f (xa)=

0 or f (xb)= 0. Instead, ISORROPIA will proceed to
the next interval, continuing its search for a root and
potentially locating a different root than expected (the
code seeks the smallest positive real root in the case of
multiple roots in the search domain) or a slower con-
vergence towards the start or end of the root interval
than might otherwise be the case. In HETP we have in-

cluded a check during the root-bracketing stage to iden-
tify cases when xa or xb is a valid root. If an endpoint
is a root, then HETP will return since an equilibrium
solution has been found. It should be noted that the oc-
currence of an endpoint as a valid root is extremely rare,
and hence neglecting this modification will have no ef-
fect on most output from the solver, but nonetheless we
have included this possibility in HETP for completeness
and accuracy.

3. In some cases that require ITP (or bisection in ISOR-
ROPIA) to obtain an equilibrium solution, the indepen-
dent variable (i.e., x) converges, but the function being
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evaluated at x (i.e., y = f (x)) oscillates between a neg-
ative and positive value, and thus |y| does not converge
to zero as expected if x is a root (despite convergence of
x). This oscillating behavior of y may indicate (i) that x
is a discontinuity; (ii) that there is significant nonlinear-
ity in the partitioning solution; or (iii) that the accepted
tolerance on x is too loose for convergence, and hence
x is not an accurate solution to the system of equations
at the targeted tolerance level for x. For all subroutines
requiring ITP, HETP will track the species concentra-
tions, activity coefficients, and value of x that are found
to minimize |y| during the iterative process. If after con-
vergence of x it is determined that |y| is not minimized
compared to all earlier iterations, then HETP will “re-
set” and instead use the x value, species concentrations,
and activity coefficients that were found to minimize |y|
– this is chosen as the solution of the system. The effect
of this modification on the output from HETP is dis-
cussed in Sect. 4.2.

4. In all chemical subspaces, a quadratic equation must be
solved for a subsystem of the equations, while in some
cases a cubic equation will be solved. Quadratic equa-
tions have the form f (x)= ax2

+bx+c, where the so-
lution corresponding to f (x)= 0 is usually expressed

as the standard quadratic formula x = −b±
√
b2−4ac

2a . x
has two possible solutions, x1 and x2, determined by
the sign in front of the radical. As identified in Makar
et al. (2003) in the original version of HETV, when the
coefficient “b” differs by several orders of magnitude
from coefficients “a” or “c”, floating-point arithmetic
can fail to give an accurate answer for x when using the
standard root formula. For example, if

√
b2− 4ac ≈ b,

then addition in the quadratic formula may be problem-
atic since we are subtracting two nearly equal numbers
(i.e., ≈−b+ b). To avoid this issue, HETP uses the an-
alytic formula given in Press et al. (2007) to solve the
quadratic equation: q =− 1

2

(
b+ sign(b)

√
b2− 4ac

)
,

with roots xp1 =
c
q

and xp2 =
q
a

. Care must be taken
when applying this formula since the appropriate choice
of xp1 and xp2 depends simultaneously on the chosen
solution (i.e., x1 or x2) and the sign of the b coefficient,
as described in Table S3. In addition to the analytic for-
mula from Press et al. (2007), HETP also includes code
(which is commented out) to solve the quadratic equa-
tion using a Taylor series expansion of the quadratic for-
mula. In this code, the Taylor series expansion is only
applied when the coefficients “b” and “c” differ by or-
ders of magnitude and hence when the numerical preci-
sion issues as described above are likely to occur (note
that a = 1 in all subroutines; formulae were normal-
ized). Both methods produce very similar results, but
the analytic formula provided by Press et al. (2007) is
superior to the Taylor expansion since it provides an ex-

act solution, giving lower error metrics (i.e., Sect. 4).
For cases where a cubic equation must be solved, HETP
will employ an ITP search to obtain an estimate of the
smallest positive real root if an exact analytic solution
is not possible. The generic formulae describing the ex-
act analytic solution of a cubic polynomial are from
Spiegel et al. (2009) and are used in ISORROPIA. It
should be noted that the requirement to solve a cubic
equation occurs only during the solution procedure of
the minor systems of I6, J3, L9, and K4. For example,
the call to solve a cubic equation occurs on line 130 of
subroutine “mach_hetp_calchclhno3”. The most recent
version of ISORROPIA (i.e., ISORROPIA-lite) did not
address these outstanding numerical issues.

5. During the development of HETP we have identified
several cases where a negative ion or gas concentra-
tion can be output from ISORROPIA. For example, a
negative concentration of NH+4 can occur when solv-
ing the minor system NH3(g)+H+(aq)↔ NH+4(aq)

for ther-
modynamic equilibrium. In this case, HETP and ISOR-
ROPIA will solve a quadratic equation to determine the
concentration of ammonia gas (NH3). From the con-
centration of NH3, the ammonium cation is determined
as NH+4 = NH+4i −NH3, where NH+4i is the ammonium
concentration determined from the major system (see
Table S2). If partitioning (after solving the quadratic
equation) at this stage gives NH3 ≈NH+4i , then sub-
traction of two nearly identical numbers may lead to a
floating-point arithmetic error and a final concentration
of NH+4 < 0 in the original ISORROPIA equations. In
HETP, negative output is strictly prohibited. To accom-
plish this, we have utilized max statements that force
any negative concentrations to zero, in conjunction with
the more accurate evaluation of the quadratic formula
(i.e., point 4 above).

6. In ISORROPIA, the initial dry salt partitioning that is
completed at the commencement of chemical subspace
L9 may fail to conserve mass for sulfate, ammonium,
potassium, and sodium, in some cases. In HETP we
have slightly modified the initial dry salt partitioning of
CALCL9 (see Table S2) to ensure mass conservation
holds for all cases. Any free TA that may result in L9
is assumed to be in the gas phase as NH3 and is added
back to the final equilibrium solution after convergence
of both the major and minor systems. As discussed in
Sect. 2, the free amounts of SO4, Na, Mg, K, and Ca are
explicitly tracked in HETP for all chemical subspaces
and returned to the calling code to prevent a loss of mass
in the output speciation.

7. Mass conservation may not hold in ISORROPIA
when the input precursor concentrations are near the
lower limit for species concentrations, “tiny” (1×
10−20 mol m−3), used in the solver. The same lower
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limit used to bound the input precursor concentrations is
also used throughout ISORROPIA to bound the species
concentrations during and after chemical partitioning.
In HETP we use the same lower limit as ISORROPIA to
bound the input precursor species (i.e., tiny), but during
and after partitioning the lower limit for gaseous speci-
ation is reduced to tiny2 = 1×10−28 mol m−3. This re-
duction of the lower limit for gaseous speciation during
the iterative process improves mass conservation for the
limiting case when the input precursor concentrations
are near the lower limit of tiny.

8. The subroutine “adjust” performs a post-convergence
mass balance adjustment for ammonium, sulfate, ni-
trate, and chloride, with the goal of ensuring mass con-
servation holds to machine precision. Specifically, this
subroutine checks only for excess mass relative to the
input totals. If identified, the excess mass is removed
first from the aqueous phase, then from the solid phase,
and finally from the gaseous phase, until no excess
remains. However, the mass adjustment of sulfate in
ISORROPIA does not include CaSO4 in the mass bal-
ance calculations, and therefore in some cases, ISOR-
ROPIA will fail to properly conserve mass to machine
precision. In HETP we have included CaSO4 in the
mass balance adjustment of sulfate.

9. Improvements to the overall code structure and effi-
ciency include the following:

(a) use of modern Fortran compared to FORTRAN 77
in ISORROPIA;

(b) use of explicit declarations only (all subroutines
now start with an “implicit none” statement, and all
common blocks have been removed);

(c) removing all GOTO statements and instead us-
ing modern Fortran constructs such as “do while”
loops;

(d) removing function and short subroutine calls, ex-
cept for process calls to calculate activity coeffi-
cients (calcact), to solve a cubic equation (poly3),
to solve minor systems, and to perform a post-
convergence mass balance adjustment (adjust),
with the merging of functions and some short sub-
routines allowing several variables to be calculated
once and reused throughout the iterative process,
reducing computational time;

(e) moving expressions being recalculated unnecessar-
ily within loops to take place prior to the loop and
removing calculations that serve no purpose to the
actual solution being sought;

(f) precalculating constant values which are then
stored as variables to be used later in the subrou-
tine; and

(g) designing the code to include an optional use
of a vectorization-by-grid point approach (Makar,
1995), which may reduce the call factor overhead
on some compilers.

4 Comparison between HETP and ISORROPIA

4.1 Case-by-case comparison

In this section the output from HETP is compared to ISOR-
ROPIA for a set of 10 000 artificially generated input “test
cases” that span the domain of each chemical subspace.
The test cases have all precursor species held constant ex-
cept the total sulfate (TS), which is slowly varied linearly
over the range of the chemical subspace. Tests of this na-
ture demonstrate the stability of numerical solutions – ad-
jacent tests along the same axis of variation in general are
expected to be smoothly varying (Makar et al., 2003). The
convergence criteria are consistent between the two solvers.
For activity coefficients, εact = 1× 10−6 and maxitact = 4,
where εact is the relative error limit between successive it-
erations of activity coefficient calculations, and maxitact is
the maximum number of allowed iterations. For bisection
or ITP, ε = 1× 10−9, maxitbsec = 100, and ndiv= 5, where
ε is defined in Sect. 1, maxitbsec is the maximum number
of allowed iterations, and “ndiv” is the number of subdivi-
sions searched for an interval containing a root (i.e., sign
change) prior to the start of bisection or ITP. All output
from HETP, in this section and those presented hereafter,
includes the modifications outlined in Sect. 3 unless stated
otherwise. The ISORROPIA code used in this comparison is
the base version (ISORROPIA v2.2) used in the CMAQ air-
quality model (USEPA, 2022). ISORROPIA throughout this
paper has been compiled using the “-r8” flag that converts
all real variables to double precision, to ensure the precision
of both solvers is consistent (HETP uses double precision
throughout). It should be noted that ISORROPIA is coded
to use mostly “double-precision” variables, but some single-
precision variables exist (i.e., declared as “real”, either ex-
plicitly or by default under Fortran variable naming conven-
tions). While compiling ISORROPIA with the Intel Fortran
compiler flag -r8 does not have a large impact on the exe-
cution time, it may in some cases produce non-trivial differ-
ences in the output, compared to output produced without the
-r8 flag. Aside from the -r8 flag, no other compilation flags
were used in this work. All numerical tests herein were exe-
cuted on a Lenovo ThinkSystem SD650v2 DWC computer,
which uses an Intel® Xeon® Platinum 8380 CPU running at a
clock speed of 2.30 GHz, with 512 GB of available random-
access memory. The compiler used was an Intel compiler
(IFORT) version 2021.5.0.2021109.

Figure 2 displays the output from ISORROPIA and HETP
for two example chemical subspaces: panels (a) and (b) dis-
play CALCO7, and panels (c) and (d) show CALCM8. These

Geosci. Model Dev., 17, 2197–2219, 2024 https://doi.org/10.5194/gmd-17-2197-2024



S. J. Miller et al.: HETPv1.0 2207

Figure 2. A side-by-side comparison of the output from HETP (a, c) and ISORROPIA (b, d), for the chemical subspace CALCO7 (a, b)
and CALCM8 (c, d). All input species are held constant, except the total available sulfate (TS), which is varied over 10 000 sets of initial
conditions. The air temperature and relative humidity are 306 K and 35 % respectively, for all test cases in the figure. The convergence criteria
are consistent between the two solvers (see text).

chemical subspaces involve the presence of at least one of
Ca2+, K+, and Mg2+, and so they were not included in
the original HETV package, which was designed for the
SO4–NO3–NH4–H2O system. Furthermore, these two sub-
spaces are frequently called in practical CTM applications
(see Sect. 4.2) and hence are used to compare HETP against
ISORROPIA in this section. For the test cases shown in
Fig. 2, the relative humidity (RH) was set to 35 % and the
air temperature (T ) to 306 K, conditions typical of a hot
summer’s day in central North America. The output for
CALCO7 is nearly identical between the two solvers, with
a difference of < 1 % between HETP (Fig. 2a) and ISOR-
ROPIA (Fig. 2b), except for TS between 2.1× 10−5 and
2.4× 10−5 mol m−3, where visual differences begin to ap-
pear, particularly for H+, HSO−4 , and NH3. In the case of
CALCM8, the output from HETP (Fig. 2c) is vastly differ-
ent from ISORROPIA (Fig. 2d) for the same initial condi-
tions and convergence criteria. For these initial conditions,
the ISORROPIA solution shows the effects of numerical in-
stability in the bisection root-finding procedure. The ISOR-
ROPIA algorithm used in CALCM8 is designed so that the

variable being bisected is proportional to Cl− (see Table S2).
At the same time, the multicomponent activity coefficients
are dependent on the ionic strength of the aqueous aerosol,
determined from the molar concentration of all ions present,
including Cl−. Both of these iterative procedures are com-
pleted simultaneously and impact each other in a nonlinear
fashion. The choice of Cl− during the first iteration of bisec-
tion (or ITP) may considerably impact the final equilibrium
solution, by altering the initial ionic strength, and, as a result,
the convergence of the multicomponent activity coefficients.
This effect is demonstrated for CALCM8 in Fig. 2c and d,
where the differences between ISORROPIA and HETP are
related only to the choice of root-finding methodology. In
fact, if the ITP approach within HETP is reverted to the
same bisection algorithm used in ISORROPIA, then the out-
put from HETP begins to show the same unstable behavior
that is demonstrated in the ISORROPIA simulation shown in
Fig. 2d. It should be noted that these differences are due to
the choice of root-finding methodology and are not the result
of allowing the ends of the interval to be potentially valid
roots (i.e., point 2 in Sect. 3).
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The accuracy of each solver can be assessed directly by
introducing an error term (ξ ), determined as the logarith-
mic difference between the “calculated” equilibrium con-
stant (Kcalc) and the “true” equilibrium constant (Ktrue);
that is, ξ = log(Kcalc)−log(Ktrue).Kcalc is determined from
the species concentrations converted to molalities using the
aerosol liquid water content in kg m−3 and activity coeffi-
cients after convergence of the major or minor system (i.e.,
from the equations in Table 1), whileKtrue is calculated from
the Van’t Hoff equation (Eq. 1). The parameter ξ thus pro-
vides a direct measure of each solver’s proximity to the actual
root of the system of equations, for a given level of conver-
gence criteria employed in both solvers. For statistical char-
acterization of ξ , the absolute value of the difference is used,
so that ξ ′ = |ξ |. A logarithmic difference is used herein (in-
stead of a percent difference, for example) since the differ-
ence betweenKcalc andKtrue can span several orders of mag-
nitude. In this way, a difference on the order of 1 implies that
Kcalc and Ktrue differ by an order of magnitude, while a dif-
ference on the order of 1×10−2 impliesKcalc andKtrue differ
starting at the second or third digit, when written in scientific
notation. The error analysis has been completed using the
case-by-case implementation of HETP (see Sect. 4.3). Ide-
ally, ξ ′ = 0, signifying that the problem has converged to a
solution whose concentrations and activity coefficients sat-
isfy the equilibrium equations of the major and minor sys-
tems precisely. In reality, however, there may be some mag-
nitude of difference betweenKcalc andKtrue. The accuracy of
Ktrue calculated from Eq. (1) (used in both solvers) is limited
to three significant digits due to the variable −1H 0

f /(RT0).
Therefore when ξ ′ < 1× 10−3 in either solver, we can con-
clude that Kcalc after convergence is identical to Ktrue within
its known accuracy. However, in practical applications (i.e.,
within a CTM), the value of Ktrue calculated from Eq. (1)
will retain all digits as determined by the precision of the
code (i.e., double precision in HETP), and therefore ξ ′ may
be � 1× 10−3. Hence, we seek a solver that obtains ξ ′ as
close to zero as possible. Table 2 gives the median, the max-
imum, and the 25th and 75th percentiles of ξ ′ for HETP and
ISORROPIA, corresponding to the data presented in Fig. 2.
For CALCM8, the median ξ ′ is lower in HETP than ISOR-
ROPIA for all equilibrium constants, which suggests that
HETP is obtaining a more accurate solution for this set of
input conditions. The difference in median ξ ′ between the
two solvers is large and indicates that HETP values are more
accurate than ISORROPIA by many orders of magnitude, for
the same level of convergence criteria. For example, forKHCl
HETP has a median ξ ′ ≈ 1.77× 10−8, while ISORROPIA
has a median ξ ′ ≈ 0.39, with similar results for KHNO3 . The
superior performance of HETP for this set of initial condi-
tions can also be confirmed visually by comparing Fig. 2c
to d. For all species present in this subspace, HETP shows
a smooth transition with incremental change in TS, but this
is not the case for ISORROPIA. In CALCM8, the very large
differences in median ξ ′ between the two codes demonstrate

that the ξ ′ values are linked to the poor convergence perfor-
mance of ISORROPIA and are associated with the high de-
gree of sensitivity of that algorithm’s use of bisection towards
initial conditions.

In CALCO7 (Fig. 2a, b), the median ξ ′ for all equilib-
rium constants is lower in HETP than ISORROPIA, but
the difference between the two solvers is marginal, espe-
cially when the 25th and 75th percentiles are considered
(i.e., for KHCl the 75th percentile of ξ ′ is 4.88× 10−7 and
4.40× 10−7 for HETP and ISORROPIA respectively). Ta-
ble 2 also gives statistics of ξ ′ for the same set of input
precursor concentrations but now with a RH = 65 % and
T = 263 K. The main difference here is that CALCO7 per-
forms slightly worse in HETP than ISORROPIA, as deter-
mined from the median and 75th percentile of ξ ′. Despite
this worse statistical performance in HETP, there are no vi-
sual differences between them when the output from each
solver is plotted (see Fig. S1). In this case, the median ξ ′ of
both solvers is on the order of 1.0× 10−4, implying that the
difference between Kcalc and Ktrue occurs in the fourth digit
when written in scientific notation. As a result, the differ-
ences between HETP and ISORROPIA do not become ap-
parent unless the graph is zoomed in very close to the data
points. For CALCM8 at these new meteorological conditions
(RH = 65 % and T = 263 K), HETP has an unstable behav-
ior in the output speciation for TS between 1.6× 10−7 and
2.3× 10−7 mol m−3, while ISORROPIA has an unstable be-
havior for all TS > 0.7× 10−7 mol m−3 (see Fig. S1). This
poor performance in CALCM8 for these meteorological con-
ditions is demonstrated in the statistics of ξ ′ shown in Ta-
ble 2.

Figure 3 displays a comparison of HETP and ISOR-
ROPIA, where now TS and TA are varied simultaneously
while all other input precursor species are held constant. Fig-
ure 3 displays output generated from n= 2000000 unique
test cases. These test cases are divided into two tests, de-
noted as a high Mg2+–Ca2+–K+–Na+ case (Fig. 3a–c) and a
low Mg2+–Ca2+–K+–Na+ case (Fig. 3d–f). The input con-
ditions used to generate Fig. 3 are summarized in Table 3. It
should be noted that in the unaltered version of ISORROPIA,
TCl< 1×10−14 mol m−3 would have necessitated a mass ad-
justment at the commencement of the solver. In this case, TCl
would be reset to a floor value of 1×10−10 mol m−3, thereby
creating mass. This adjustment has not been applied here.

The colors in Fig. 3a, b, d, and e represent the amount of
gaseous NH3 after partitioning between the gas and aerosol
phase. The test input spans across all of Branch 4 (O7, M8,
P13, L9, and K4), using the same convergence criteria as
Figs. 1 and 2. The colors shown in Fig. 3c and f give the ab-
solute percent difference between Fig. 3a and b and Fig. 3d
and e, respectively, calculated relative to HETP as |HETP-
ISO|/HETP× 100 %. The color contour intervals in Fig. 3
are on a logarithmic scale. In each figure panel, dashed black
lines separate the different chemical subspaces, with the par-
ticular subspace label superimposed. In Fig. 3a, b, d, and e
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Table 2. Theoretical error (ξ ′) for n= 10000 generated input conditions corresponding to the chemical subspaces O7, M8, and I6. Statistics
of ξ ′ for two sets of atmospheric conditions are presented (temperature, T , and relative humidity, RH). The bold values denote the smallest
median error for that equilibrium constant (i.e., row) between HETP and ISORROPIA.

Case Equilibrium constant HETP: ξ ′ = |log(Ktrue/Kcalc)| ISORROPIA II: ξ ′ = |log(Ktrue/Kcalc)|

Median Q25 Q75 Maximum Median Q25 Q75 Maximum

T = 306 K; RH= 35 % (Fig. 2)

O7 KNH3/KH2O 9.83×10−9 3.56× 10−12 2.09× 10−6 1.81× 10−3 9.84× 10−9 3.51× 10−12 2.09× 10−6 1.81× 10−3

KHNO3 1.27×10−9 2.63× 10−10 4.88× 10−7 0.30 2.86× 10−9 1.19× 10−9 4.80× 10−7 0.85
KHCl 1.27×10−9 2.63× 10−10 4.88× 10−7 0.30 2.86× 10−9 1.19× 10−9 4.40× 10−7 0.85

M8 KNH3/KH2O 2.52×10−13 2.13× 10−14 3.61× 10−12 6.95× 10−11 7.33× 10−12 3.55× 10−14 1.47× 10−10 12.0
KHNO3 1.77×10−8 1.89× 10−9 9.34× 10−8 1.87× 10−4 0.39 8.38× 10−8 1.93 40.5
KHCl 1.77×10−8 1.89× 10−9 9.34× 10−8 1.87× 10−4 0.39 8.38× 10−8 1.94 30.8

T = 263 K; RH= 65 % (Fig. S1)

O7 KNH3/KH2O 2.31× 10−5 1.00× 10−9 2.49× 10−3 5.19× 10−2 2.31× 10−5 9.69× 10−10 2.49× 10−3 5.19× 10−2

KHNO3 3.60× 10−4 4.70× 10−10 2.95× 10−3 7.69× 10−3 1.52×10−4 9.13× 10−10 9.10× 10−4 3.19× 10−3

KHCl 3.60× 10−4 4.70× 10−10 2.95× 10−3 7.69× 10−3 1.52×10−4 9.13× 10−10 9.10× 10−4 3.19× 10−3

M8 KNH3/KH2O 1.84×10−11 7.38× 10−12 3.59× 10−11 31.8 2.32 8.87× 10−11 11.5 17.1
KHNO3 1.75 1.67 1.90 7.17 3.89 1.96 20.3 37.4
KHCl 1.74 1.67 1.90 7.17 3.92 1.95 20.9 25.8

T = 243 K; RH= 5 % (Fig. 4)
I6–1: no improvements to root-finding methodology in HETP
I6–2: updated analytic formula to solve quadratic equations, no ITP for cubic equations
I6–3: updated analytic formula to solve quadratic equations and ITP for cubic equations

I6–1 KHSO4 9.02 1.68 15.1 35.9 9.80 3.87 18.1 40.6
KHNO3 15.1 11.7 18.3 24.8 15.1 11.9 18.2 23.8
KHCl 15.1 11.7 18.3 24.8 15.1 11.9 18.2 23.8

I6–2 KHSO4 2.94× 10−5 6.67× 10−8 3.66× 10−2 5.75 – – – –
KHNO3 13.0 9.35 16.2 19.8 – – – –
KHCl 13.0 9.35 16.2 19.8 – – – –

I6–3 KHSO4 2.94× 10−5 6.67× 10−8 3.66× 10−2 5.75 – – – –
KHNO3 1.46× 10−9 6.38× 10−10 3.36× 10−8 1.45× 10−2 – – – –
KHCl 1.46× 10−9 6.38× 10−10 3.36× 10−8 1.45× 10−2 – – – –

Table 3. Input conditions used to generate Fig. 3 for 2 000 000 total unique test cases. All input precursor species have units of mol m−3.

Fig. 3a–c: high Mg2+–Ca2+–K+–Na+ Fig. 3d–f: low Mg2+–Ca2+–K+–Na+

TS Varying between 2.5× 10−5 and 2.5× 10−12 Varying between 2.5× 10−5 and 2.5× 10−12

TA Varying between 2.5× 10−5 and 2.5× 10−18 Varying between 2.5× 10−5 and 2.5× 10−9

TN 3.0× 10−6 1× 10−8

TNa 1.0× 10−5 1× 10−6

TCl 1.0× 10−14 1× 10−14

TCa 1.0× 10−8 1× 10−16

TK 1.0× 10−14 1× 10−17

TMg 1.0× 10−14 1× 10−16

Temp (K) 306 Same as Fig. 3a–c
RH (%) 35 Same as Fig. 3a–c
n 1 000 000 1 000 000

the output compares well between HETP and ISORROPIA
for the subspaces O7, M8, and P13, with absolute differ-
ences typically < 0.1 % and no obvious visual differences
between the two solvers. However, in the high Mg2+–Ca2+–
K+–Na+ case (Fig. 3a, b), there are some noticeable vi-

sual differences between the two solvers for the subspaces
K4 and particularly L9. The differences in L9 between the
two solvers result from (i) the updated methodology within
HETP to calculate polynomial roots; (ii) a correction within
HETP to the initial dry salt partitioning to ensure mass con-
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servation; and (iii) one fewer call to calculate activity coef-
ficients in HETP for some test cases, specifically those test
cases that have no convergence of activity coefficients af-
ter completing the maximum number of allowed iterations.
The largest absolute differences of 100 % to 600 % are in
L9 and are predominantly due to (ii), where for some input
conditions ISORROPIA creates dry salt mass for TA, TS,
and TK. Specifically in ISORROPIA, 6.02 %, 0.05 %, and
5.97 % of the test input conditions shown in Fig. 3a and b cre-
ate mass for TS, TA, and TK respectively that cannot be at-
tributed to machine precision near the lower limit used in the
solver (i.e., speciesout−speciesin > 9.999×10−19 mol m−3).
The median relative mass created for these input conditions
is 22.6 % for TS, 0.24 % for TA, and 2.93× 1010 % for TK.
In K4, (ii) is not applicable, so the differences are thus due to
(i) and (iii). As demonstrated in Fig. 3a–c, there is a large
amount of “noise” in K4 for TS> 1× 10−5 mol m−3 and
TA< 12× 10−6 mol m−3 in ISORROPIA that is not present
in HETP. This noise shows up as speckling in the percent dif-
ference plots and is due mainly to (i). If the noise in ISOR-
ROPIA is neglected for K4, then the output from ISOR-
ROPIA is quite similar to HETP, with differences < 1 %.

An additional concern identified in Makar et al. (2003)
is the potential impact of the inaccurate evaluation of the
quadratic and cubic formula (i.e., analytic formulae to obtain
an “exact” solution), which remains present in subsequent
iterations of ISORROPIA since the development of HETV
(see Sect. 3, point 4). An example showing the incremen-
tal improvement of the quadratic and cubic solution proce-
dure on the output speciation is displayed in Fig. 4, which
depicts the output of CALCI6 from ISORROPIA (Fig. 4b)
and HETP (Fig. 4a, c, d). This case illustrates differences
that would occur at rather low temperatures and relative hu-
midity, in this case T = 243 K and RH = 5 %. While such a
combination of air temperature and relative humidity is likely
to be rare in the lower troposphere, it is not uncommon for
surface air temperatures to reach 243 K or lower in the win-
ter in Canada and at similar higher latitudes in other parts of
the world. The choice of RH = 5 % here is used to highlight
the numerical issues present in ISORROPIA, which occur
more frequently and are more pronounced at low RH. How-
ever, the numerical issues highlighted in Fig. 4 continue to
be present in the output from ISORROPIA but to a lesser ex-
tent, even as the RH is increased to 35 % for the same set of
initial conditions. At an ambient RH of 5 %, the assumption
of a supersaturated aqueous phase may be less justified and is
more likely to be representative of a very hypothetical case.
Nonetheless, observations from southern California have in-
dicated (although in warmer air temperatures than investi-
gated here) that crystallization of some ambient aerosols may
not occur until a RH as low as 4 % (Shaw and Rood, 1990),
suggesting that in some atmospheric conditions metastable
aerosols are possible, even at a very low RH of 5 %.

In Fig. 4a, HETP has been executed without any modifi-
cations to improve the accuracy of polynomial root calcula-

tions, so that the only improvement over ISORROPIA is that
HETP will not allow negative species concentrations (i.e.,
HSO−4 ). In Fig. 4c, HETP now includes an improved method-
ology to calculate roots of quadratic polynomials (“analytic
quad”), in addition to the improvement related to negative
species concentrations of Fig. 4a. Lastly, In Fig. 4d, HETP
now includes an ITP search to determine the roots of cubic
polynomials, in addition to the improvements of Fig. 4a and
c. Figure 4 follows the same procedure as Fig. 2 – that is,
an incremental variation of the input TS while holding all
other precursor species constant. Without the modifications
applied in Fig. 4c and d, the output from HETP and ISOR-
ROPIA is quite similar. However, as numerical improve-
ments are incrementally applied to HETP, clear visual dif-
ferences between HETP and ISORROPIA become apparent
for most chemical species in this subspace. In CALCI6, the
major system being solved is H+–HSO−4 –SO2−

4 , requiring
a quadratic root with a large variation in coefficient magni-
tudes to be derived – and therefore an error in H+ will prop-
agate through to the minor systems that are solved thereafter
(see Table S2). It should be noted that the y axis in Fig. 4
is logarithmic, so negative values are not shown in the figure
panels. Nonetheless, there are many instances when ISOR-
ROPIA outputs a negative concentration of HSO−4 for this
subspace (Fig. 4b) as a result of the use of the standard (and
under these circumstances inaccurate) formula for the roots
of a quadratic equation for H+ in this subspace. In HETP, up-
dated methodologies are used to solve the quadratic equation
that avoid numerical inaccuracies due to catastrophic can-
cellation. The result of this modification (as demonstrated in
Fig. 4c) is the removal of the numerical instability present in
the output of HETP for this set of initial conditions shown in
Fig. 4a. Numerical instability caused by the erroneous eval-
uation of the quadratic formula appears to be most prevalent
at a low relative humidity (low aerosol water mass).

Following convergence of the major system in CALCI6,
the minor systems are solved, one of which requires the roots
of a cubic polynomial to be identified; the smallest positive
real root determines the concentration of Cl− and NO−3 . In
HETP, an ITP search is employed to determine the smallest
positive real root of the cubic polynomial when an exact an-
alytic solution from the cubic root formulae is not possible,
due to a large range in the magnitude of the coefficients of
the cubic polynomial, which may lead to floating-point arith-
metic errors. For the set of input conditions shown in Fig. 4,
including an ITP search to solve cubic polynomials results
in about 72 % more roots being identified in HETP than in
ISORROPIA. If ISORROPIA is unable to determine a valid
root from the cubic formula, it will assume that the root is
a tiny value (i.e., 1× 10−20 mol m−3) – this is the procedure
that was applied to generate the output shown in Fig. 4a–c.
The effect of including an ITP search to solve cubic polyno-
mials is a very large reduction in ξ ′ for KHCl and KHNO3 in
the chemical subspaces I6, J3, L9 and K4 for some sets of
initial conditions. Statistics of ξ ′ corresponding to CALCI6
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Figure 3. Regular variation (linear) of the total available sulfate (TS) and the total available ammonium (TA), while holding all other input
precursor species constant (see Table 3 for a summary of the input conditions). The colors in figure panels (a) and (b) and in panels (d) and
(e) give the amount of gaseous NH3 after chemical partitioning at thermodynamic equilibrium (the color scale is logarithmic and identical in
these panels). Panels (c) and (f) show the percent difference of (a) and (b) and of (d) and (e) respectively. Each panel set (i.e., a–c and d–f)
includes 1 000 000 unique input test cases, with the same convergence criteria as those used to generate Fig. 2. Superimposed on each panel
are dashed black lines denoting the boundaries between different chemical subspaces. The actual subspace contained within a set of dashed
lines is given as a text label.

shown in Fig. 4 are given at the bottom of Table 2. For ex-
ample, in Fig. 4d, HETP has been implemented with an ITP
search to solve cubic polynomials, and as shown in Table 2,
this implementation leads to a large reduction in the median
ξ ′ for KHCl from 13.0 to 1.46× 10−9. The difference here is
a solution that is accurate versus one that is not. The output
shown in Fig. 4d demonstrates that including an ITP search
to solve cubic polynomials removes discontinuities that oc-
cur in Cl−, NO−3 , H+, and NH3 near 1.4× 10−12 mol m−3 –
and hence these species now show a smooth transition over
the entire range of TS. HETP has a limiting precision of
1× 10−28 mol m−3, which is the likely cause of the HSO−4
concentration becoming zero in Fig. 4c and d when TS is
between about 2.15× 10−12 and 2.4× 10−12 mol m−3.

4.2 Comparison using input from the GEM-MACH
air-quality model

Aside from generating artificial sets of input data to evalu-
ate HETP (Sect. 4.1), the value of which is to demonstrate
relative solution stability across small increments in input
conditions, a comparison between HETP and ISORROPIA
can be completed using more realistic input conditions ob-
tained from the GEM-MACH air-quality model (Makar et al.,

2018). In this section, 20 000 unique sets of input data (“test
cases”) from GEM-MACH are investigated for each chem-
ical subspace, with 10 000 test cases obtained from sum-
mer days and 10 000 test cases obtained from winter days.
These test cases were selected from input conditions gener-
ated from a 10 km resolution simulation with a domain cover-
ing North America. The test cases were chosen randomly so
that the selected set of test cases spans across a broad range
of temperatures and relative humidity, typical of actual tro-
pospheric conditions. Table 4 gives the relative frequency of
calls to each chemical subspace as a percentage of the to-
tal calls in GEM-MACH determined from 4 d (2 in the win-
ter and 2 in the summer). It should be noted that subspaces
A2, B4, and C2 all require that TN be formally zero. A low
number limit in the GEM-MACH model prevents true zero
conditions from occurring; hence the given subroutines are
not called in this practical application test. The majority of
calls are to the subspaces O7, M8, and L9 which comprise
more than 75 % of the total calls on these 4 d. Therefore, most
situations encountered in GEM-MACH over North America
have a non-zero amount of base cation species present (K+,
Mg2+ and Ca2+).
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Figure 4. A side-by-side comparison of the output from HETP (a, c, d) and ISORROPIA (b) for CALCI6. In (a), HETP does not include any
methodological improvements to polynomial root calculations. In (c), HETP uses an updated methodology to calculate polynomial roots.
In (d), HETP uses an updated methodology to calculate polynomial roots, as well as an ITP search to determine cubic polynomial roots.
ISORROPIA shown in (b) solves quadratic equations using the “standard” quadratic formula and attempts to find an exact analytic solution
of cubic equations. All input precursor species are held constant, except the total available sulfate (TS), which is varied over 10 000 sets of
initial conditions. The air temperature and relative humidity are 243 K and 5% respectively, for all test cases in the figure. The convergence
criteria are consistent between the two solvers (see text).

Table 4. The percentage of total calls to each subspace determined from 4 separate days (2 in the winter and 2 in the summer). The call
frequencies are determined from the 10 km domain of the GEM-MACH air-quality model which covers all of North America. Any subspace
with > 10 % of total calls is in bold in the table.

Case A2 B4 C2 D3 E4 F2 G5 H6 I6 J3 O7 M8 P13 L9 K4

Percentage called 0.000 0.000 0.000 9.735 4.470 0.016 2.479 0.709 3.825 0.038 31.72 25.85 0.044 20.88 0.232

Figure 5 displays a scatter plot of Cl− and HCl (left pan-
els) and NO−3 and HNO3 (right panels) output from ISOR-
ROPIA (y axis) and HETP (x axis). Figure 5a and b display
CALCM8:summer (hereafter M8:S), and Fig. 5c and d show
CALCG5:winter (hereafter G5:W). The dashed black lines
give a 1 : 1 relationship, denoting where HETP and ISOR-
ROPIA agree exactly. There is relatively good agreement
between the two solvers for M8:S, despite the differences
noted for this subspace in Sect. 4.1. However, for G5:W a
large amount of scatter exists, demonstrating disagreement
between the two solvers for some test cases. This disagree-

ment is likely related to the choice of root-finding method
and/or other numerical updates that have been made to the
HETP code, as described in Sect. 3. The differences between
the two solvers noted for Cl− and HCl in Fig. 5c are only for
very low concentrations, which likely would not be impactful
in practical air-quality applications.

As in Sect. 4.1, statistics of ξ ′ are calculated from the out-
put of each solver to judge the accuracy of the equilibrium so-
lution. This is especially important since the test cases in this
section cannot be plotted in a regular fashion (as in Sect. 4.1),
to graphically reveal obvious numerical instabilities. Figure 6
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Figure 5. A scatter plot of the output concentrations (mol m−3) from ISORROPIA (y axis) compared against HETP (x axis) for M8:summer
(M8:S) (a, b) and G5:winter (G5:W) (c, d), calculated from 10 000 input test cases obtained from the GEM-MACH air-quality model. The
solid black line gives a 1 : 1 relationship. Speciation is given in the legend shown in panel (a).

displays a box-and-whisker plot of ξ ′ for the chemical sub-
spaces G5, H6, O7, M8, and P13. These subspaces all require
bisection or ITP and must have chloride present, with KHCl
providing the “final convergence check” (except for H6). The
statistics shown in Fig. 6 include the data shown in Fig. 5 for
subspaces M8:S and G5:W. Fig. 6a and b show ξ ′ for KHCl
and KHNO3 respectively. Each panel shows ξ ′ for both sea-
sons with summer having a “:S” label and winter having a
“:W” label. In the box plot, the 25th percentile, the median,
and the 75th percentile of ξ ′ correspond to the bottom of the
box, center line in the box, and top of the box respectively.
The bottom and top whisker of each box give the minimum
and maximum of ξ ′ respectively; if the bottom whisker ex-
tends off the graph, then the minimum ξ ′ is zero. Except
for G5:S, H6:S, H6:W, M8:S, and M8:W, the median ξ ′ of
KHNO3 is smaller in HETP than ISORROPIA for all sub-
spaces shown in Fig. 6b. ForKHCl, all subspaces except H6:S
and H6:W have a smaller median ξ ′ in HETP than ISOR-
ROPIA. We note that despite HETP having lower median
ξ ′ than ISORROPIA for some subspaces, the magnitude of

ξ ′ suggests that ISORROPIA is nevertheless providing suf-
ficiently accurate output for most test cases. For the input
data investigated here, the subspace H6 is performing poorly
in both solvers, with a median ξ ′ > 0.5 for all equilibrium
constants (but with marginally worse performance in HETP
than in ISORROPIA). For example, in H6:S for KHNO3 the
75th percentile in HETP is 31.8, and in ISORROPIA it is
13.4. H6 is unique relative to the other subspaces requiring
a root-finding method (i.e., G5, O7, M8, and P13), since the
objective function used to determine the root of the system
of equations does not include H+ explicitly. The expressions
for ξ ′ used in Fig. 6, however, explicitly evaluate the con-
vergence of H+ relative to KHCl and KHNO3 equilibria. The
relatively poor performance of the H6 algorithm when eval-
uated using ξ ′ thus tells us that although the other ions and
gases in the H6 chemical subspace have converged with the
existing solution procedure, convergence with respect to H+

remains poor.
Returning to the scatter noted in HNO3 and NO−3 between

the two solvers in G5:W (Fig. 5d), it is clear from the statis-

https://doi.org/10.5194/gmd-17-2197-2024 Geosci. Model Dev., 17, 2197–2219, 2024



2214 S. J. Miller et al.: HETPv1.0

tics of ξ ′ for KHNO3 and KHCl shown in Fig. 6 that both
solvers are producing output that spans a broad range of ac-
curacy. The 75th percentiles of KHNO3 and KHCl are 2 or-
ders of magnitude lower in HETP than ISORROPIA. For
KHCl the 75th percentile of ξ ′ is 6.93× 10−2 and 4.35 in
HETP and ISORROPIA respectively. However, the maxi-
mum ξ ′ values are a similar magnitude in each solver. This
suggests that both solvers are struggling with partitioning be-
tween the aqueous and gaseous phase for some test cases in-
vestigated here. Of the 10 000 test cases analyzed in G5:W,
14.02 % are identified in HETP as having “oscillatory behav-
ior” (see Sect. 3, point 3). These flagged test cases generally
have large ξ ′ for all equilibrium constants (in both solvers),
which is related to poor convergence during the iterative pro-
cess. Removing these flagged test cases reduces the median
and 75th percentile of ξ ′ (for KHNO3 and KHCl) by an or-
der of magnitude in both solvers. For HETP the median ξ ′

for KHNO3 reduces to 4.89× 10−8 (from 4.60× 10−7), and
for ISORROPIA the median ξ ′ reduces to 2.72×10−6 (from
5.59×10−5). The modification to account for oscillatory be-
havior has the effect of reducing ξ ′ for the flagged test cases
in HETP compared to ISORROPIA – for the 14.02 % of test
cases affected, the median ξ ′ for KHNO3 is 0.28 for HETP,
but for ISORROPIA it is 2.65. Furthermore, 75.3 % of the
flagged test cases are times when Cl− is predicted to be
< 1× 10−16 mol m−3 (Cl− is the bisected variable in G5),
and all flagged test cases have TCl < 1× 10−10 mol m−3.
For test cases where the output from each solver agrees well
and falls along the 1 : 1 line in Fig. 5c and d, ξ ′ for KHNO3

and KHCl is minimized in each solver. The statistics of ξ ′ for
other subspaces not discussed here are summarized in Ta-
ble S4 (summer) and Table S5 (winter) of the Supplement.

4.3 Computational time

The mean time (determined from 10 repeated samples) re-
quired for the central processing unit (CPU) of a Lenovo
SV650v2 DWC computer to solve the test cases from
Sect. 4.2 for each season and subspace is given in Table 5.
The timing tests have an estimated uncertainty of ±1 %. For
HETP, two sets of timing tests are reported. Test 1, labeled
“THETV”, refers to timing using a global convergence crite-
rion for all tests within a given chemical subspace, repre-
senting a “vectorized” test where all n test cases for a given
subspace are solved simultaneously. This is the methodology
used in Makar et al. (2003), where the great reduction in pro-
cessing time associated with vectorization on a vector com-
piler was used to offset the fact that the number of iterations
was determined by the single test case with the worst conver-
gence behavior. Test 2, labeled “THETP”, refers to a case-by-
case test where the solver is called individually for each test
case (i.e., the solver is called n times). In the latter test, the
time associated with subroutine calls is offset by the number
of iterations becoming test specific. The first strategy may be
more efficient, aside from vectorization architecture gains,

Figure 6. A box-and-whisker plot of the absolute error ξ ′ =
|log(Kcalc)− log(Ktrue)| for (a) KHCl and (b) KHNO3 The sum-
mer season is denoted by “:S”, and the winter season is denoted by
“:W” in the x axis labels. ξ ′ is calculated from a set of 10 000 test
cases in each season (obtained from the GEM-MACH air-quality
model). ξ ′ shown in the figure for M8 and G5 corresponds to the
scatter plots shown in Fig. 5. The median ξ ′ is represented by the
solid black line in the center of each box, and the 25th and 75th per-
centiles correspond to the bottom and top of each box respectively.
The whiskers give the maximum (top) and minimum (bottom) of ξ ′.

when the convergence criteria are relatively similar across
grid cells; that is, all input problems converge with the same
number of iterations. The second strategy may be more effi-
cient when the distribution of convergence is more heteroge-
neous, with some test cases requiring many more iterations
than others. ISORROPIA (TISO) requires a case-by-case im-
plementation and cannot solve n cases simultaneously. The
convergence criteria are identical to those used in the previ-
ous sections (Sect. 4.1 and 4.2). In the case of ISORROPIA,
it is important to reaffirm that the -r8 flag was used during
compilation, forcing all calculations to be performed in dou-
ble precision (as in the default implementation of HETP) and
removing precision as a possible cause for differences in per-
formance. For the subspaces D3, G5, H6, O7, M8, and P13,
all test cases investigated were chosen so that they require the
application of a root-finding method for convergence, since
these are the most computationally intensive cases encoun-
tered by the solver. As noted above, not all chemical sub-
spaces have 10 000 unique input data derived from GEM-
MACH simulations for the days sampled from each season.
Specifically, in the winter the subspaces A2, B4, C2, and F2

Geosci. Model Dev., 17, 2197–2219, 2024 https://doi.org/10.5194/gmd-17-2197-2024



S. J. Miller et al.: HETPv1.0 2215

do not have enough suitable input data from which to draw
10 000 unique samples and likewise in the summer for sub-
spaces A2, B4, and C2. For winter, input data from J3 are
used for F2, except with TNa= 0 and TCl= 0, the aim here
being to provide timing tests across a realistic range of ini-
tial conditions. It should be noted again that the subspaces
A2, B4, and C2 were not executed by GEM-MACH on ei-
ther day for the reasons noted in Sect. 4.2. Therefore, like
F2 (winter), the input data used to analyze D3, E4 and F2
are used to analyze A2, B4, and C2 respectively, except with
TN= 0.

The CPU timing results demonstrate that all subspaces
(except H6, winter and summer) execute faster in HETP’s
vectorized THETV implementation than ISORROPIA. In
some cases the speed-up is significant: for CALCO7 the
speed-up is about a factor of 1.74 to 1.83 when using THETV.
An even greater speed-up can be achieved by using the case-
by-case THETP implementation for some subspaces, specif-
ically those that require bisection (A2, D3, G5, H6, O7,
M8, and P13). Unlike THETV, all chemical subspaces exe-
cute faster in THETP than ISORROPIA. For the sets of test
cases investigated in this work, the best-case performance is
found in P13:S, where THETV executes in about 0.38 s, but
THETP executes in about 0.18 s (the latter being ∼ 4.3 times
faster than ISORROPIA). The speed-up afforded by HETP
for this subcase is largely the result of HETP’s root-finding
methodology (ITP), which requires fewer iterations on aver-
age to obtain a solution with an equivalent or better level of
accuracy as ISORROPIA. The statistics related to the num-
ber of iterations required by the root-finding methodology
of each solver to achieve convergence of the major systems
are given in Table 6, for the same input data used to gener-
ate the timing tests shown in Table 5. For P13:S which has
the best-case performance, ITP in HETP requires on aver-
age 8.0 iterations for convergence, while bisection in ISOR-
ROPIA requires on average 42.5 iterations. Thus, HETP’s
root-finding method requires about 19 % of the iterations re-
quired by ISORROPIA for this set of input conditions, while
executing in about 23 % of the time using the case-by-case
mode. The overall performance for the tests in GEM-MACH
(bottom row of Table 5) shows the average performance of
HETP operating in the case-by-case mode results in a speed-
up relative to ISORROPIA of a factor of 2.24 times for the
summer tests and 2.12 times for the winter tests. The inclu-
sion of an ITP search for the smallest positive real root of
cubic equations in I6, J3, L9, and K4 substantially increases
the execution time of the solver for these chemical subspaces
relative to no ITP search, but despite this, HETP still executes
in less time than ISORROPIA for these subcases.

The difference between THETP and THETV becomes even
more apparent and in favor of THETP if a significant amount
of test cases do not require bisection. While THETV includes a
return statement to reorder the problem, removing those test
cases that have converged or have no solution prior to enter-
ing ITP, the root-bracketing stage in THETV will nonetheless

need to be repeated a second time for all test cases that do
require ITP. Note that the root-bracketing stage identifies an
interval where the objective function has a sign change. As-
suming a continuous function, this sign change signifies that
a root exists within the interval. Furthermore, in THETV some
test cases may iterate in the root-bracketing stage more times
than necessary (i.e., one test case has an identified interval,
but other test cases within the same chemical subspace being
solved by a global convergence criterion do not), thereby in-
troducing excess computations into THETV that do not exist in
THETP. This is especially true as the variable ndiv, which con-
trols the number of subdivisions searched for a sign change,
is increased. Thus, in most applications, and for the computer
architecture tested here, the case-by-case THETP implementa-
tion will be preferred. Both options are available as separate
versions of code, and we recommend users test both options
of the code on their own system to determine the best perfor-
mance.

The results presented herein have demonstrated that HETP
is able to provide output for these subspaces that is more ac-
curate overall, while executing up to 4.3 times faster than
ISORROPIA, with an average performance increase in a
practical application between 2.12 times and 2.24 times (us-
ing the case-by-case mode). The subspace H6 which executes
slower in THETV than THETP and is also less accurate than
ISORROPIA for most input test cases accounts for < 1 % of
the test cases on the days sampled (see Table 4).

5 Conclusions

In this work we have presented HETP, an updated
solver to perform thermodynamic equilibrium calculations
of the H+–SO2−

4 –NH+4 –NO−3 –Cl−–Na+–Ca2+–K+–Mg2+–
H2O chemical system, based on the algorithms of ISOR-
ROPIA in the forward metastable state. HETP has been up-
dated in several ways to improve both the computational
speed and accuracy compared to ISORROPIA. For most in-
put conditions HETP produces equivalent results to ISOR-
ROPIA, but for some input conditions the output from the
solvers can diverge. Analysis of the output from each solver
suggests that HETP’s use of ITP, instead of bisection, im-
proves the accuracy of its equilibrium solution for some in-
put conditions by obtaining a more accurate initial estimate
of the root prior to the commencement of the ITP search.
At the same time, ITP can reduce the number of iterations
required for convergence. The differences may be formally
linked to reduced accuracy of the ISORROPIA solver’s out-
put due to several numerical issues as described in the sec-
tions above. In addition to providing more accurate output
for most test cases, HETP, when implemented to solve n test
cases simultaneously, may execute 1.3 to 2.1 times faster than
ISORROPIA (except for CALCH6), based on input from
the CTM GEM-MACH. Alternatively, when HETP is imple-
mented as a case-by-case solver (the solver is called n times),

https://doi.org/10.5194/gmd-17-2197-2024 Geosci. Model Dev., 17, 2197–2219, 2024



2216 S. J. Miller et al.: HETPv1.0

Table 5. The average computational time (T ) (calculated from 10 samples) required to solve 10 000 unique sets of input conditions (from
summer and winter), using ISORROPIA (TISO), the vectorized solver of HETP (THETV), and the case-by-case solver of HETP (THETP).
Input conditions were obtained from the GEM-MACH air-quality model, and the convergence criteria are consistent between the two solvers
(see text). The speed-up is a dimensionless quantity, with the non-bracketed value representing TISO/THETV and the bracketed value rep-
resenting TISO/THETP. A value > 1 implies that HETP (or HETV) is computationally faster, while a value < 1 implies that ISORROPIA
is computationally faster. In the first three columns of each season, the bold value denotes the fastest execution time between each of the
solvers. The bold value in the speed-up column shows which solver style is computationally faster (i.e., HETP or HETV); an underlined
value in this column signifies that HETV is computationally slower than ISORROPIA for that subcase (row).

Subroutine Winter Summer

THETV (s) THETP (s) TISO (s) Speed-up THETV (s) THETP (s) TISO (s) Speed-up

CALCA2 0.044 0.042 0.061 1.39 (1.45) 0.049 0.046 0.069 1.41 (1.50)
CALCB4 0.011 0.011 0.022 2.00 (2.00) 0.011 0.011 0.022 2.00 (2.00)
CALCC2 0.010 0.009 0.020 2.00 (2.22) 0.010 0.010 0.020 2.00 (2.00)
CALCD3 0.335 0.270 0.486 1.45 (1.80) 0.347 0.262 0.461 1.33 (1.76)
CALCE4 0.013 0.013 0.027 2.08 (2.08) 0.014 0.014 0.026 1.86 (1.86)
CALCF2 0.013 0.012 0.024 1.85 (2.00) 0.013 0.012 0.024 1.85 (2.00)
CALCG5 0.447 0.373 0.806 1.80 (2.16) 0.360 0.284 0.704 1.96 (2.48)
CALCH6 0.126 0.059 0.108 0.86 (1.83) 0.136 0.068 0.121 0.89 (1.78)
CALCI6 0.027 0.026 0.037 1.37 (1.42) 0.029 0.027 0.039 1.34 (1.44)
CALCJ3 0.030 0.030 0.039 1.30 (1.30) 0.032 0.031 0.041 1.28 (1.32)
CALCO7 0.690 0.541 1.202 1.74 (2.22) 0.688 0.558 1.262 1.83 (2.26)
CALCM8 0.409 0.259 0.607 1.48 (2.34) 0.482 0.354 0.646 1.34 (1.82)
CALCP13 0.409 0.290 0.727 1.78 (2.51) 0.376 0.184 0.796 2.12 (4.33)
CALCL9 0.041 0.039 0.059 1.44 (1.51) 0.038 0.036 0.058 1.53 (1.61)
CALCK4 0.044 0.042 0.063 1.43 (1.50) 0.042 0.040 0.060 1.43 (1.50)

Sum of GEM-MACH tests 2.65 2.02 4.29 1.62 (2.12) 2.63 1.94 4.35 1.65 (2.24)

Table 6. Statistics describing the number of iterations required to achieve convergence of bisection (ISORROPIA) or ITP (HETP) for the
timing tests shown in Table 5. The final column shows the average speed-up, calculated for each row as the mean number of iterations from
ISORROPIA divided by the mean number of iterations from HETP.

ISORROPIA: winter HETP: winter

Case Median Q25 Q75 Min Max Mean Median Q25 Q75 Min Max Mean Speed-up

CALCD3 29 28 43 28 61 33.8 29 10 41 5 61 26.7 1.27
CALCG5 34 32 35 28 52 34.3 30 7 34 1 51 22.7 1.51
CALCH6 33 30 37 28 41 33.6 7 7 7 4 37 9.9 3.39
CALCO7 34 32 37 27 52 35.2 14 8 34 1 53 20.6 1.71
CALCM8 31 30 33 28 43 31.6 7 7 11 4 38 11.3 2.80
CALCP13 31 28 35 28 58 31.8 8 7 9 5 42 11.9 2.67

ISORROPIA: summer HETP: summer

Case Median Q25 Q75 Min Max Mean Median Q25 Q75 Min Max Mean Speed-up

CALCD3 29 28 32 22 68 33.5 28 24 31 1 62 28.2 1.19
CALCG5 33 31 36 26 57 34.1 12 7 32 1 44 17.6 1.94
CALCH6 32 28 37 28 40 32.6 7 7 29 5 38 15.1 2.16
CALCO7 34 32 36 28 47 33.9 17 9 34 5 45 21.1 1.61
CALCM8 32 29 34 28 41 31.9 11 7 29 5 40 18.2 1.75
CALCP13 42 39 45 28 60 42.5 7 6 7 5 61 8.0 5.31
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then HETP is 1.3 to 4.3 times faster than ISORROPIA for in-
dividual chemical subspaces and 2.1 to 2.2 times faster than
ISORROPIA on average, with the speed-up being most sig-
nificant in subspaces that require the application of a root-
finding method for convergence.
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