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Abstract. Irrigation activities are important for sustaining
food production and account for 70 % of total global water
withdrawals. In addition, due to increased evapotranspiration
(ET) and changes in the leaf area index (LAI), these activi-
ties have an impact on hydrology and climate. In this paper,
we present a new irrigation scheme within the land surface
model ORCHIDEE (ORganising Carbon and Hydrology in
Dynamic EcosystEms)). It restrains actual irrigation accord-
ing to available freshwater by including a simple environ-
mental limit and using allocation rules that depend on local
infrastructure. We perform a simple sensitivity analysis and
parameter tuning to set the parameter values and match the
observed irrigation amounts against reported values, assum-
ing uniform parameter values over land. Our scheme matches
irrigation withdrawals amounts at global scale, but we iden-
tify some areas in India, China, and the USA (some of the
most intensively irrigated regions worldwide), where irriga-
tion is underestimated. In all irrigated areas, the scheme re-
duces the negative bias of ET. It also exacerbates the posi-
tive bias of the leaf area index (LAI), except for the very in-
tensively irrigated areas, where irrigation reduces a negative
LAI bias. The increase in the ET decreases river discharge
values, in some cases significantly, although this does not
necessarily lead to a better representation of discharge dy-
namics. Irrigation, however, does not have a large impact on
the simulated total water storage anomalies (TWSAs) and its
trends. This may be partly explained by the absence of non-
renewable groundwater use, and its inclusion could increase
irrigation estimates in arid and semiarid regions by increas-
ing the supply. Correlation of irrigation biases with landscape

descriptors suggests that the inclusion of irrigated rice and
dam management could improve the irrigation estimates as
well. Regardless of this complexity, our results show that the
new irrigation scheme helps simulate acceptable land surface
conditions and fluxes in irrigated areas, which is important to
explore the joint evolution of climate, water resources, and
irrigation activities.

1 Introduction

Irrigation seeks to increase crop yields by reducing plant wa-
ter stress (Siebert and Döll, 2010; Klein Goldewijk et al.,
2017) and supports about 43 % of the world’s food produc-
tion on about 20 % of the arable land (Siebert and Döll,
2010; Grafton et al., 2017). The beneficial effects of irriga-
tion on food production, population, and economic growth
have dramatically pushed the increase in irrigated areas dur-
ing the 20th century from 28 Mha in 1850 to 276 Mha in
2000 (Klein Goldewijk et al., 2017; Siebert et al., 2015).
As a consequence, by the year 2000, irrigation accounted
for 70 % of the total water withdrawn (between 2657 and
3594 km3 yr−1). The consumptive water use, i.e., the part
of the withdrawn water that actually becomes evapotran-
spiration (ET) and does not flow to surface supplies and
groundwater, represents half of that volume (between 1021–
1598 km3 yr−1, which is around 1.7 % of total continental ET
of 75.6× 103 km3 yr−1, according to Jung et al., 2019) and
represents around 90 % of the total consumptive water use
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by human activities (Pokhrel et al., 2016; Döll et al., 2012;
Hoogeveen et al., 2015).

Water abstraction and corresponding ET increase have a
direct impact on the water and energy balances and on sur-
face and subsurface hydrology (Döll et al., 2012; Taylor
et al., 2013; Vicente-Serrano et al., 2019). The atmosphere
also reacts to these changes in land surface fluxes, for in-
stance, with regional increases or decreases in rainfall rate or
decreases in temperature extremes (Lo and Famiglietti, 2013;
Guimberteau et al., 2012b; Cook et al., 2015; Al-Yaari et al.,
2019; Thiery et al., 2020). Thus, it was recently shown that
climate models better capture historical trends in evapotran-
spiration if they account for irrigation and its expansion, al-
though the resulting cooling effect is too strong if irrigation
is not limited by water availability (Al-Yaari et al., 2022). Fi-
nally, with the acceleration of climate change, the irrigation
water demand is likely to increase, not only by expansion
of the irrigated area but also by increasing temperature and
changing precipitation variability (Wada et al., 2013). All of
these impacts and effects have promoted the inclusion of ir-
rigation inside land surface models (LSMs), which represent
the continental branch of the hydrologic cycle in the Earth
system models (Pokhrel et al., 2016).

Besides LSMs, global hydrology models (GHMs) also
represent irrigation at a global scale. Originally, GHMs were
developed to assess water resource availability and water use.
In GHMs, irrigation demand is equal to the increase in the
ET due to irrigation (i.e., water that becomes evapotranspi-
ration). This ET increase is estimated as the differences be-
tween crop-specific potential ET and actual ET with no ir-
rigation (Siebert and Döll, 2010; Mekonnen and Hoekstra,
2011; Wada and Bierkens, 2014; Chiarelli et al., 2020). Fol-
lowing Allen et al. (2006), the crop-specific potential ET is
defined as ETc = kc ·ET0, where parameter kc depends on
the crop type and growing stage, and ET0 is the reference
crop ET, corresponding to the atmospheric evaporative de-
mand. Some models also consider conveyance losses and re-
turn flows to rivers and aquifers; i.e., they consider the total
water withdrawal (water demand plus losses), using empiri-
cal ratios of irrigation efficiency (ratio of ET increase to wa-
ter withdrawal) or specific rules according to the irrigation
technique (Rost et al., 2008; Jägermeyr et al., 2015). The ad-
vantage of calculating the withdrawn volume is that it allows
comparison and validation with datasets of reported values,
for example, the Food and Agriculture Organization (FAO)
AQUASTAT dataset (Frenken and Gillet, 2012). GHMs ex-
plicitly represent water supply sources (Döll et al., 2012) and
allow the estimation of non-sustainable groundwater used for
irrigation (Wada et al., 2012). Some GHMs also simulate
water allocation (use of water by type of source), based on
rules that use information of local infrastructure and environ-
mental flow estimations (Siebert et al., 2010; Hanasaki et al.,
2008a).

LSMs do not generally use potential evapotranspiration
(PET) to estimate irrigation demand. The reason is that LSMs

do not deduce ET from daily PET input data but from the
surface energy balance at hourly and subhourly time steps.
This difference raises consistency issues between empirical
PET formulas and potential ET rates in LSMs (Barella-Ortiz
et al., 2013). Some LSMs prescribe irrigation rates estimated
offline (Lo and Famiglietti, 2013; Cook et al., 2015), but most
of the LSMs and some GHMs estimate irrigation demand by
calculating a deficit such as a soil moisture deficit between
actual and a target soil moisture (Haddeland et al., 2006;
Hanasaki et al., 2008a; Leng et al., 2014; Pokhrel et al., 2015;
Jägermeyr et al., 2015). Some LSMs, which benefit from a
physically based description of surface runoff and drainage,
can explicitly calculate return flow, but conveyance losses are
not explicitly included (Yin et al., 2020; Leng et al., 2017).
In addition, irrigation shortage due to water availability is not
always well represented in those LSMs (and GHMs) that in-
clude this feature, as some of them include a virtual infinite
reservoir to fulfill irrigation demand (Ozdogan et al., 2010;
Leng et al., 2014; Pokhrel et al., 2012). This virtual reservoir
may represent fossil groundwater use and water table deple-
tion, which is important in some areas like the High Plains
(in the USA) and India (Pokhrel et al., 2015; Leng et al.,
2017; Felfelani et al., 2021). Water allocation is commonly
based on a stream water supply first rule (Guimberteau et al.,
2012b), with some exceptions that use the global groundwa-
ter inventory from Siebert et al. (2010) (Leng et al., 2017;
Felfelani et al., 2021). These rather simple irrigation schemes
are used in land surface–atmosphere simulations to assess ir-
rigation effects on climate (Puma and Cook, 2010; Lo and
Famiglietti, 2013; Guimberteau et al., 2012b; Lo et al., 2021)
but not on water resources assessment.

ORCHIDEE (ORganising Carbon and Hydrology in Dy-
namic EcosystEms), the LSM of the IPSL (Institut Pierre-
Simon Laplace) Earth system model (Krinner et al., 2005;
Boucher et al., 2020), has been used to assess irrigation ef-
fects on climate. First attempts to crudely represent irrigation
were based on potential evaporation and potential transpira-
tion for a generic crop type (de Rosnay et al., 2003; Guim-
berteau et al., 2012b). This irrigation scheme restrains irri-
gation according to available water and includes simple allo-
cation rules. Recently, ORCHIDEE-CROP, a version of the
model that includes a crop phenology module, improved the
irrigation scheme by representing flood and paddy irrigation
techniques and was tested in an offline mode in China (Yin
et al., 2020). These improvements open the possibility for as-
sessing irrigation effects on water resources. This is impor-
tant, as there is evidence that some modeling biases within
ORCHIDEE in offline and coupled modes are correlated to
the surface equipped for irrigation (Mizuochi et al., 2021).

Here, we present evidence on the effect of irrigation on the
reduction in the modeling biases in some key variables, like
ET and leaf area index (LAI), and on river discharge and total
water storage anomalies (TWSAs). After describing the OR-
CHIDEE model and the global irrigation scheme, we set the
parameter values using short simulations. We perform a sen-

Geosci. Model Dev., 17, 2141–2164, 2024 https://doi.org/10.5194/gmd-17-2141-2024



P. F. Arboleda-Obando et al.: ORCHIDEE v2.2 2143

sitivity analysis and a simple parameter tuning to fit observed
irrigation rates. We then perform long simulations, and we
compare irrigation estimates to observations and correspond-
ing variability due to parameter values and input maps. We
validate irrigation estimates by reported values, and we as-
sess the spatial variability in the modeling bias. Then we as-
sess the modeling bias against observed datasets using a fac-
tor analysis, with and without irrigation, for ET and LAI. In
large basins with extensive irrigation activities, we compare
simulated and observed values of discharge and total water
storage anomalies (TWSAs). We also show some results on
the correlation between the irrigation bias and some land-
scape descriptors as a first step to improve the realism of the
scheme. Finally, we discuss the results, and we present the
main conclusions and perspectives.

2 Model description

2.1 ORCHIDEE v2.2

ORCHIDEE describes the fluxes of mass, momentum, and
heat between the surface and the atmosphere (Krinner et al.,
2005). Here we use version 2.2, which is close to the version
used for CMIP6 (corresponding to 2.0). Version 2.0 has been
described in many papers (Cheruy et al., 2020; Boucher et al.,
2020; Tafasca et al., 2020), and version 2.2 only adds a few
minor bug corrections. We summarize the main characteris-
tics of the model that mediate in the simulation of irrigation.

In each grid cell, vegetation is represented by a mosaic of
up to 15 plant functional types (PFTs), including generic C3
and C4 crops, as well as generic C4 grasses, and tropical,
boreal, and temperate C3 grasses. The PFTs fractions are de-
scribed by the LUHv2 dataset (Lurton et al., 2020), and each
PFT is characterized by a specific set of parameters applied
to the same set of equations (Boucher et al., 2020; Mizuochi
et al., 2021). Plant phenology is controlled by the STOMATE
module, which couples photosynthesis and the carbon cycle
and computes the evolution of the leaf area index (LAI), and
all of these processes depend on the CO2 atmospheric con-
centration (Krinner et al., 2005).

A specialized version of ORCHIDEE has been proposed
by Wu et al. (2016) and evaluated by Müller et al. (2017) to
better describe temperate crops, with phenology thresholds
based on accumulated degree days after the sowing date, im-
proved carbon allocation to reconcile the calculations for leaf
and root biomass and grain yield, and nitrogen limitation re-
lated to fertilization. It was not used in this work owing to
a lack of ubiquitous parameters at the global scale, so C3
and C4 crops are simply assumed to have the same phenol-
ogy as natural grasslands but with higher carboxylation rates
and adapted maximum possible LAI (Krinner et al., 2005).
The crop growing season depends on mean annual air tem-
perature, as detailed in Krinner et al. (2005). In cool regions,
it starts after a predefined number of growing degree days,

while in warm regions, it starts a predefined number of days
after soil moisture has reached its minimum during the dry
season. In intermediate zones, the two criteria have to be ful-
filled. The end of the growing season also depends on tem-
perature and water stress and on leaf age.

Roots constitute an important link between the carbon and
the water balance. In each PFT, root density decreases ex-
ponentially with depth, and the parameter that controls the
decay is PFT-dependent. It is worth noting that the root den-
sity profile is constant in time and goes down to the bottom of
the soil column, set at 2 m, but forest PFTs have much denser
roots than crop and grass PFTs, especially in the bottom part
of the soil (Wang et al., 2018). The resulting root density
profile is combined with the soil moisture profile and a water
stress function to define the water stress factor of each PFT
on transpiration (Tafasca et al., 2020) and to estimate the wa-
ter uptake for transpiration (de Rosnay et al., 2002).

Evapotranspiration is represented by a classical aerody-
namic approach and is composed of snow sublimation, in-
terception loss, bare soil evaporation (E), and transpiration
(T ). The first two proceed at a potential rate, while bare
soil evaporation is limited by the upward diffusion of water
through the soil, and transpiration is controlled by a stom-
atal resistance, which depends on soil moisture and vegeta-
tion parameters. The vegetation types are grouped into three
soil columns according to their physiological behavior: high
vegetation (eight forest PFTs); low vegetation (six PFTs for
grasses and crops); and bare soil. While the energy balance
is calculated for the whole grid cell (Boucher et al., 2020),
a separate water budget is calculated independently for each
soil column in order to prevent forest PFTs from depriving
the other PFTs of soil moisture.

Vertical soil water flow is represented by a 1-D Richards
equation coupled to a mass balance, and lateral flow between
cells and soil columns is neglected (de Rosnay et al., 2002;
Campoy et al., 2013). Here, soil depth is set at 2 m and dis-
cretized into 22 layers to finely model the lower layers impli-
cated in drainage. Infiltration is simulated as a sharp wetting
front, based on the Green and Ampt model (Tafasca et al.,
2020; D’Orgeval et al., 2008). The resulting increase in top
soil moisture is redistributed by the Richards equation. The
bottom boundary condition assumes free drainage, equal to
the hydraulic conductivity of the deepest node. The saturated
hydraulic conductivity decreases with depth, but roots in-
crease the hydraulic conductivity near the surface (D’Orgeval
et al., 2008). Soil parameters are a function of soil texture
(Tafasca et al., 2020), and the spatial distribution is taken
from the Zobler (1986) map.

A routing scheme transfers surface runoff and drainage
from land to the ocean through a cascade of linear reservoirs
(Ngo-Duc et al., 2007; Guimberteau et al., 2012a). Each grid
cell is split into subbasins, according to a 0.5° flow direction
map. Three reservoirs are considered inside every subbasin,
representing groundwater, overland, and river reservoir, and
each one presents a distinct residence time (Ngo-Duc et al.,
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2007). The groundwater reservoir collects drainage from the
soil column, while the overland reservoir collects surface
runoff. Both reservoirs are internal to each subbasin and flow
to the stream reservoir, which also collects streamflow from
the upstream basins and contributes to large-scale routing
across subbasins and grid cells. Note that there are two sur-
face reservoirs, overland representing the headwater streams,
and a river reservoir representing large rivers.

The water and energy budgets and the routing scheme are
computed at the same 30 min time step, while the carbon and
plant phenology processes in STOMATE are solved with a
daily time step.

2.2 Irrigation scheme

The irrigation scheme (Fig. 1) is based on the flood irrigation
representation from Yin et al. (2020), but it includes some
changes in the parameterization to run at a global scale. The
flood irrigation technique (which consists of adding water to
the soil surface to achieve a certain soil moisture content) is
chosen for global simulations, as it is the most used technique
(Jägermeyr et al., 2015; Sacks et al., 2009).

First, the scheme defines a root zone depth in the crop
and grass soil column, based on the cumulative root density
(CRD), ranging from 0 at the soil surface to 1 at the soil
bottom; the root zone comprises all soil layers with a CRD
below a user-defined threshold, Rootlim. When the threshold
is set to 0.9, the root zone includes 90 % of the root system.
For a 2 m soil column with 22 layers, and an exponential root
density decay of 4 (default value for crops and grasses in OR-
CHIDEE), this threshold defines a root zone depth of 0.65 m,
encompassing 11 soil layers.

We can then define a soil moisture deficit D (mm) in the
root zone as the sum of the difference between actual soil
moisture and a soil moisture target in all layers of the root
zone, as follows:

D =
∑

i∈Root zone
max(0,βW fc

i −Wi), (1)

where Wi and W fc
i (both in mm) are the actual and field ca-

pacity soil moisture in soil layer i, respectively, and β is a
user-dependent parameter that controls the target value with
respect to field capacity (shown in Fig. S10 with soil texture).
When soil moisture drops below the target, irrigation is trig-
gered. To prevent irrigation when there is no plant develop-
ment, for example, during winter, we set the deficitD to zero
if all crops and grasses are below a certain LAI threshold,
LAIlim. By doing so, we overlook irrigation used to enhance
germination and tend to underestimate irrigation amounts.

The irrigation requirement Ireq (mm s−1) is calculated as

Ireq = firr min(D/1t,Imax), (2)

where firr is the fraction of irrigated surface (–) in the grid
cell, defined by a map of irrigated fractions. The map that

prescribes the irrigated fraction may change every year, but
note that we do not separate the irrigated area into a separate
soil column; i.e., the soil column includes crops (both irri-
gated and rainfed) and grasses. Imax is a user-defined max-
imum hourly irrigation rate (mm h−1). This third threshold
is used to avoid excessive runoff production when the deficit
is larger than the infiltration capacity of the soil. Therefore,
the deficit is fulfilled progressively over the subsequent time
step. The effective irrigation (I ; see below) is uniformly ap-
plied over the crop and grass soil column. Therefore, care
must be taken by the model that the irrigated fraction is not
greater than the soil column. If the fraction of the irrigated
surface is much smaller than the crop and grass soil col-
umn, then irrigation will eventually be spread over a larger
area than the actual irrigated surface. This particular case
(an important difference between irrigated fraction and soil
column fraction) could likely result in an overestimation of
the amount of irrigation (mainly because the water put on
the surface will not be sufficient to reach the soil moisture
target; see Fig. S9). Besides, the fraction of irrigation water
that actually evaporates could be larger than in reality. The
latter could lead to an overestimation of the evapotranspira-
tion increase, especially in areas that are energy-controlled
(Puma and Cook, 2010), and an overestimation of irrigation
efficiency.

Irrigation can be withdrawn from three routing reservoirs,
but the effective water availability, Aw (mm), also depends
on the facility to access surface water and groundwater, and
it can be reduced to preserve environmental flows as follows:

Aw = fsw (a1 S1+ a2 S2)+ fgw a3 S3. (3)

In this equation, Sj (mm) is the volume storage in each
routing reservoir, with index j equal to 1, 2, and 3 for the
stream, overland, and renewable groundwater (i.e., shallow
aquifers that are recharged by drainage at the soil bottom)
reservoirs, respectively. To prevent the complete depletion
of these reservoirs, which all feed streamflow and support
aquatic ecosystems, we mimic an environmental flow reg-
ulation by reducing the available volume, owing to a user-
defined parameter aj , to between 0 and 1. It is set here at
0.9 for all three reservoirs, so as to keep at least 10 % of the
available water at each time step. The facility to irrigate from
surface water reservoirs (S1 and S2) and groundwater reser-
voir (S3) is accounted for by factors fsw and fgw, also rang-
ing between 0 if the reservoirs cannot be used and 1 if they
are fully accessible. In the present application, these factors
represent the fraction of irrigated areas that are equipped for
irrigation with surface and groundwater, respectively, follow-
ing the global map of Siebert et al. (2010). We do not con-
sider irrigation from nonconventional sources (e.g., wastew-
ater and water from desalination plants). This map assumes
that a grid cell is either equipped for groundwater irrigation
or for surface water irrigation, so fsw+ fgw = 1.

Eventually, the actual irrigation I (mm s−1) is estimated at
each time step by comparing Ireq, i.e., the demand, to water

Geosci. Model Dev., 17, 2141–2164, 2024 https://doi.org/10.5194/gmd-17-2141-2024



P. F. Arboleda-Obando et al.: ORCHIDEE v2.2 2145

Figure 1. ORCHIDEE model and new irrigation scheme. See the text for an explanation of the parameters.

availability Aw (mm), i.e., the supply, as follows:

I =min(Aw/dt, Ireq). (4)

If we assumed that water abstraction Qj from each natural
reservoir due to irrigation withdrawal is simply proportional
to the available water in each of them, then it would be given
by the following equations, with the sum of the three right-
hand side terms being equal to I :

dS1

dt
=−Q1 =−

fsw a1 S1

Aw
I (5)

dS2

dt
=−Q2 =−

fsw a2 S2

Aw
I (6)

dS3

dt
=−Q3 =−

fgw a3 S3

Aw
I. (7)

But we chose to implement an additional constraint for
surface water withdrawals, which are withdrawn from the
stream reservoir (corresponding to large rivers) at a higher
priority. This new constraint leads to the definition of the re-
vised set of equations, where the total surface water avail-
ability is Asw = fsw (a1 S1+ a2 S2). as follows:

dS1

dt
=−Q1 =−min

(
Asw

Aw
I ,
fsw a1 S1

1t

)
(8)

dS2

dt
=−Q2 =−min

(
Asw

Aw
I −Q1 ,

fsw a2 S2

1t

)
(9)

dS3

dt
=−Q3 =−

fgw a3 S3

Aw
I. (10)

The sum of Q1, Q2, and Q3 still equals I .

When Ireq−I > 0, i.e., there is a deficit and the water sup-
ply cannot satisfy the irrigation demand, then the scheme
may adduct water from the neighboring grid cell with the
largest streamflow volume. The choice of water adduction
was introduced in Guimberteau et al. (2012b) but was dis-
abled due to the coarse modeling resolution (grid cell larger
than 100× 100 km in size). Here we use a similar parame-
terization, but we add a user-defined parameter to take into
account the facility to access distant river reservoirs:

dS1,add

dt
=−Q1,add =−min

(
Ireq− I ,

a1,add S1,add

dt

)
. (11)

In this equation, water adductionQ1,add from the largest river
reservoir in the neighboring grid cell S1,add, will depend on
the facility of access represented by the factor a1,add. This
factor can range between 0 if there is no adduction and 1 if
the distant river reservoir is fully accessible for water adduc-
tion.

The irrigation water, I +Q1,add, is finally added at the soil
surface for infiltration, thus resembling a flood or drip irri-
gation technique. We note that irrigation is not restricted to
an optimal period during the day but may be triggered at any
moment. It may lead to an overestimation of evapotranspira-
tion (Ozdogan et al., 2010). We do not represent dams oper-
ation in this simulation, even if they play an important role
in modulating the temporal dynamics of surface water and
ensure water supply for irrigation in many large river basins
(Pokhrel et al., 2016; Hanasaki et al., 2008a).
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3 Data description

3.1 Input data for ORCHIDEE

First, ORCHIDEE is run at global scale in offline mode. We
run the model for the period 1970–2013, but we leave the
first 10 years as warm-up, and we focus our analysis on the
period 1980–2013. We use GSWP3 (van den Hurk et al.,
2016) as meteorological forcing (http://hydro.iis.u-tokyo.ac.
jp/GSWP3/, last access: 28 February 2024), with a resolution
of 0.5°. We also run short simulations for the sensitivity anal-
ysis and parameter tuning (see Sect. 4). We prescribe the irri-
gated surfaces in transient mode; i.e., irrigated surfaces may
change every year, based on the Historical Irrigation Dataset
(HID) from Siebert et al. (2015) and on Land Use Harmo-
nization 2 (LUHv2) dataset from Hurtt et al. (2020).

HID presents a map every 10 years before 1980 and every
5 years after at 5 arcmin resolution, and for each year, we use
the nearest map in time to avoid data interpolation; LUHv2
presents a map every year with a 0.25° resolution. The main
difference between the HID and LUHv2 maps is that HID
prescribes the area that is equipped for irrigation (AEI), while
LUHv2 prescribes the area that is actually irrigated (AAI).
As a result, the HID dataset has a greater irrigated surface
(3.0×106 km2 for HID; 2.5×106 km2 for LUHv2 at a global
scale around the year 2000). It also means that AAI should
be included in the AEI if the two datasets share a similar spa-
tial distribution. But this is not the case, as the two datasets
rely on different information sources that are processed with
different methods (de Oliveira, 2022). The performed simu-
lations use uniform parameters over irrigated areas, and the
main changes between simulations are summarized in Ta-
ble 1. As a reference, we use a simulation with no irrigation,
called NoIrr, while simulation Irr, with irrigation activated,
uses parameter values according to results from the sensi-
tivity and tuning analysis (Sect. 4) and the HID maps. The
simulation Irr_NoTuned also activates irrigation and uses the
HID dataset as input, but it uses a priori parameter values.
This latter simulation does not consider the conclusions from
the sensitivity analysis and, for instance, does not activate ir-
rigation withdrawal from the overland reservoir or adduction.

We run additional simulations to assess the uncertainty in
the simulated irrigation amount and the influence of the most
sensitive parameters, according to the sensitivity analysis.
The impact of the deactivation of adduction in our scheme is
considered in simulation Irr_NoAdd, the effects of changes
in the β value are considered in simulations Irr_NoTuned,
Irr, and Irr_Beta, and finally the effect of changes in the Imax
value is considered in simulation Irr_Imax. All of these sim-
ulations use HID to prescribe irrigated areas. We analyze the
effect of the large differences in prescribed irrigated areas on
irrigation amounts using the LUHv2 dataset as input (simu-
lation Irr_LUH) and using the same parameter values as the
Irr simulation.

3.2 Validation datasets and landscape descriptors

The validation of the new irrigation scheme and its effect on
the model bias is focused on five variables: evapotranspira-
tion, leaf area index, discharge, irrigation withdrawal, and to-
tal water storage anomalies. We also use two landscape de-
scriptors datasets (see below).

– Irrigation water withdrawals. We use two datasets.
First, we compare the simulated irrigation rates with
values from the FAO AQUASTAT database (https:
//www.fao.org/aquastat/en/, last access: 28 Febru-
ary 2024) reported in Frenken and Gillet (2012) for
irrigation volumes around the year 2000. AQUASTAT
is based on reported values at the country scale, so it
does not inform on seasonal values or their spatial dis-
tribution. In countries with a lack of information, data
are completed using modeling outputs to estimate the
plant requirement and country level ratios of irrigation
efficiency to calculate the irrigation water withdrawal
(Hoogeveen et al., 2015). While the plant requirement
corresponds to the increase in the evapotranspiration,
the irrigation water withdrawal is the volume that is
abstracted from the natural reservoirs and includes the
losses and return flows.

We also use the spatially explicit information of irriga-
tion water withdrawal around the year 2000 from Sacks
et al. (2009). This reconstruction uses national level
census data, primarily from AQUASTAT, with maps of
croplands by crop type, areas equipped for irrigation,
and climatic water deficit. The result is a gridded map
with a resolution of 0.5°.

– Evapotranspiration. We use two datasets. The first
product is GLEAM v3.3a, which combines satellite-
observed values of soil moisture, vegetation optical
depth, and snow water equivalent, reanalysis of air tem-
perature and radiation, and a multisource precipitation
product at 0.25° resolution (Martens et al., 2017). The
second dataset is FLUXCOM (Jung et al., 2019), which
merges Fluxnet eddy covariance towers with remote
sensing (RS) and meteorological (METEO) data, us-
ing machine learning algorithms at 0.5° resolution. Here
we use RS+METEO products, specifically the averages
of RS+METEOWFDEI and RS+METEOCRUNCEP v8, to
cover the analysis period.

– Leaf area index. We use the LAI3g dataset (Zhu et al.,
2013) climatological values for the period 1983–2015.
This dataset applies a neural network algorithm on satel-
lite observations of the normalized difference vegetation
index (NDVI) 3g to estimate LAI at 5 arcmin resolution.

– River discharge. We use monthly data from the Global
Runoff Data Centre (GRDC; https://www.bafg.de/
GRDC-/EN/Home/homepage_node.html, last access:
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Table 1. Simulations with inputs and parameter values. The units of the parameter are given in parentheses. The “–” symbol means that the
parameter corresponds to a fraction and does not have a unit. The change in parameter values with respect to the Irr simulation is shown in
bold typeface.

Simulation Irrigation Irrigated surfaces β (–) ai (–) Imax (mm h−1) Adduction (–)

NoIrr No – – – – –
Irr_NoTuned Yes HID 1.0 0.9,0.0,0.9 1.0 0.0
Irr Yes HID 0.9 0.9,0.9,0.9 3.0 0.05
Irr_LUH Yes LUHv2 0.9 0.9,0.9,0.9 3.0 0.05
Irr_NoAdd Yes HID 0.9 0.9,0.9,0.9 3.0 0.0
Irr_Beta Yes HID 0.75 0.9,0.9,0.9 3.0 0.05
Irr_Imax Yes HID 0.9 0.9,0.9,0.9 1.0 0.05

28 February 2024) in 14 large basins with strong irri-
gation activities. We choose the station nearest to the
river mouth that also has data available for the study
period (Fig. S4 shows the basins and its correspond-
ing discharge station). Basin boundaries were delin-
eated with the flow directions map used by ORCHIDEE
(Sect. 2.1).

– Total water storage anomalies. We compare the total
water storage anomalies (TWSAs) from our simula-
tions with three different monthly products of TWSAs,
based on GRACE (Gravity Recovery and Climate Ex-
periment) observations that are based on global mas-
con solutions that are suitable for hydrologic applica-
tions (Scanlon et al., 2016), including CSR (Save et al.,
2016); GRC Tellus, hereafter called TELLUS (Watkins
et al., 2015); and NASA GSFC (Loomis et al., 2019).
CSR has a spatial resolution of 0.25°, while TELLUS
and NASA GSFC have a resolution of 0.5°. As the dif-
ferences between products at the large river basin scale
are small, we use the average value of the three prod-
ucts. All of the products cover the period from April
2002 to the end of the simulation in 2014.

– Landscape descriptors. We compare the simulation re-
sults with two landscape descriptors which are linked to
irrigation and may contribute to the irrigation bias. We
use the fraction of irrigated rice around the year 2000
from MIRCA2000 (Portmann et al., 2010a) (see the spa-
tial distribution and focus on Southeast Asia in Fig. S5)
and the location and volume of major dams based on the
Global Reservoir and Dams database, GRanD (Lehner
et al., 2011). GRanD contains information on the maxi-
mum storage capacity and main use of dams with reser-
voirs larger than 0.1 ha. Here we consider dams that
have irrigation as their main purpose.

3.3 Data processing and analysis

We aggregate and interpolate all the observed data to the
0.5° spatial resolution of the ORCHIDEE simulations. For
ET, we mask GLEAM and the simulated data according to

FLUXCOM, which does not cover all the continents, so all
the comparisons are made over the same grid cells with avail-
able information. For LAI, we exclude grid cells with no data
in LAI3g from the analysis. We compare grid cell values and
zonal average values. The statistical significance of the mean
difference between observed and simulated time series is as-
sessed with a Student’s t test at the 5 % significance level.

We use the simulated discharge from the grid cell that best
matches the watershed area upstream of the discharge sta-
tion. In addition, we only use time steps with data available
from observations so that both time series agree. For TWSAs,
we compare observed and simulated basin averages. As OR-
CHIDEE gives the total water storage (TWS) value, we nor-
malize the time series with the mean value of the NoIrr sim-
ulation for the period 2002–2008, which is the same as the
observed products. In this way, the effect of irrigation over
TWS is observed in the simulated time series.

In addition to direct comparison at the grid cell, zonal, or
basin scale, we perform a factor analysis to reveal relation-
ships between modeling bias and landscape descriptors. We
use the fraction of irrigated areas around 2000 from HID, as
well as the fraction of irrigated rice from MIRCA2000, both
interpolated to the ORCHIDEE resolution. We categorized
grid cells into six classes by irrigation fraction levels based
on the two datasets, following Mizuochi et al. (2021): class 1
0 %; class 2 0 % to 5 %; class 3 5 % to 10 %; class 4 10 % to
20 %; class 5 20 % to 50 %; and class 6 50 % to 100 %.

We also performed a comparison between the average
basin-scale irrigation bias and the volume capacity of dams
used for irrigation within the basin, according to GRanD. We
use Pearson’s correlation coefficient (r) as a metric for the
correlation analysis.

4 Sensitivity analysis and parameter tuning

4.1 Sensitivity analysis

Short simulations were run to assess the sensitivity of the ir-
rigation amount at the global scale to different parameter val-
ues, which are assumed to be uniform in all irrigated areas.
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We used GSWP3 as meteorological forcing and the LUHv2
from Hurtt et al. (2020) to prescribe the irrigated surfaces
(see Sect. 3.1). We ran a total of 23 simulations with vary-
ing parameters, plus a reference simulation with no irriga-
tion. All of them were run with the same initial conditions
for 3 years (1998–2000), and a comparison of the irrigation
amount and ET increase was performed for the year 2000.
Using the last simulation year, we reduce the effect of the
common initial conditions on the simulation results, and the
year 2000 corresponds to the values given in AQUASTAT
and Sacks et al. (2009). Note that we use a single meteoro-
logical forcing dataset and compare our estimates to a single
set of observed AQUASTAT data for the period around the
year 2000. We choose to compare our estimates for the year
2000 because this year is commonly used as the reference pe-
riod in the literature concerning the estimation of the amount
of irrigation on a global scale (see, e.g., Pokhrel et al., 2016;
Table 2). The choice of the year 2000 is mainly due to the
existence of more complete reported or observed values for
that year, as well as simulated estimates. We use the same ref-
erence period to compare our results with independent data.
A brief description of each parameter, as well as the unit,
range, and values used in the sensitivity analysis, is shown in
Table 2.

We change the value of one parameter at a time (one-
at-a-time screening; see Mishra, 2009; Song et al., 2015),
and then we observe its effect on the irrigation rate and on
the increase in evapotranspiration. We tried to include the
full range of parameters, but it is worth noting that in some
cases, values were restricted to ensure an expected behav-
ior. In the case of β, we set values around 1.0 (target equal
to the field capacity soil moisture), as it seems a plausible
target for flood irrigation, but note that values higher than
1.4 or lower than 0.6 are possible. Theoretically the upper
limit is infinite, but values above 1.5 may exceed the satu-
rated soil moisture for some soil textures, and the lower limit
is zero (see Table S4). For adduction, we set parameter val-
ues under 0.2 (20 % of streamflow available for adduction at
every time step), which seems high enough to represent wa-
ter adduction in large river basins (Leng et al., 2015). In the
case of the LAIlim and Imax, upper values were selected a
priori. Those values shown in bold in Table 2 are called ref-
erence values afterwards. The reference parameter values are
intended to maximize the irrigation amount, as preliminary
tests (not shown) performed with a priori values exhibited an
underestimation of irrigation rates at global scale. The refer-
ence values do not change if not explicitly required by the
one-at-a-time screening method.

Figure 2 shows that β is the parameter with the strongest
effect on the global mean irrigation rate, followed by the cu-
mulative root density threshold Rootlim, Imax and the fraction
of stream storage available for adduction a1,add. The fraction
of water storage left for the ecosystems (called “Environmen-
tal” in Fig. 2; aj ) has a more limited effect, suggesting that in
many irrigated areas, there is enough water from surface and

groundwater to fulfill the irrigation requirements. Finally, the
LAI limit, LAIlim, to trigger irrigation has a weaker effect
than the other parameters. In the case of ET increase (Fig. 2;
blue line), the sensitivity to the different parameters is sim-
ilarly hierarchized, although the magnitude is not necessar-
ily the same. Also note that the effect on irrigation efficiency
(i.e., ratio of ET increase to irrigation amount) is different for
β values higher than 1.0 and for Rootlim values higher than
0.5. This implies that the fraction of irrigation water that be-
comes runoff or deep drainage is more important.

4.2 Parameter tuning

The sensitivity analysis showed that β has the strongest ef-
fect on the simulated irrigation amount and that these effects
can induce changes in the irrigation efficiency. Therefore, we
explored its behavior in more detail to set a value. Note that
we used the chosen reference values for the other parameters.
We compared the irrigation rate estimated by ORCHIDEE
for the year 2000 in the short tests with the observed irri-
gation from Sacks et al. (2009) (Fig. 3), using total irriga-
tion volume at global scale and irrigation difference at grid
cell scale. When comparing the irrigation water amount at a
global scale (in km3 for the year 2000; Fig. 3a), we observe
that a value of 1.2 maximizes the irrigation and minimizes
the irrigation bias. When we assess the distribution of bias
using grid cell values (in mm d−1; Fig. 3b), we observe that
for β equal to 0.8, 0.9, or 1, the bias distribution is centered
around 0, while it starts to move up for values of 1.2 and
1.4. This behavior can be slightly different, depending on the
irrigated fraction (see Fig. S9). For simplicity here, and as
a tradeoff between the underestimation of irrigation volume
and the spatial distribution of bias, we choose to set β to 0.9
in all irrigated areas. We decided to use the reference values
for the other parameters, as they play a minor role according
to the sensitivity analysis, and the reference values does not
minimize the irrigation amount.

After this analysis, we underline four points. First, this
process does not correspond to a proper calibration, as we
assumed the uniform parameter values, the number of sim-
ulations is low, and the observed data are sparse. The ob-
jective of the sensitivity analysis and parameter tuning was
to identify key parameters and reduce the underestimation
of irrigation by tuning the uniform parameter values. Sec-
ond, our scheme does not include conveyance losses, al-
though application losses and return flows are represented.
As ORCHIDEE determines the water partitioning, some
model flaws in hydrologic processes like infiltration or bare
soil evaporation could bias the effect in the return flows, in
the increase in the ET, and ultimately in the irrigation effi-
ciency. Third, although the one-at-a-time method is suitable,
given the computational cost of running an ORCHIDEE sim-
ulation, it also has drawbacks and limitations in its analysis
(Song et al., 2015); this includes, for instance, its qualitative
nature and the lack of the quantification of individual inter-
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Table 2. Parameters of the irrigation module, brief description, range, and values used in the sensitivity analysis. Values in bold correspond
to the reference value. Note that, for parameter ai , the three reservoirs share the same value.

Parameter Description Unit Range Values

β Controls the soil moisture target, equal
to θfc ·β

Fraction, no units [0–∞] 0.6, 0.8, 0.9, 1.0, 1.2, 1.4

aj Controls the fraction in reservoir avail-
able for irrigation, with the complement
being the fraction left for ecosystems

Fraction, no units [0–1] 0.1, 0.5, 0.9, 1.0

a1,add Controls the fraction in stream reservoir
available for adduction

Fraction, no units [0–1] 0.0, 0.05, 0.1, 0.2

Imax Maximum irrigation rate per hour mm h−1 [0–∞] 0.5, 1.0, 3.0, 5.0, 7.0

Rootlim Defines if a soil layer is part of the root
zone

Cumulative relative root den-
sity

[0–1] 0.0, 0.5 0.9, 1.0

LAIlim Minimum LAI in crops and grasses
PFTs to trigger irrigation

m2 m−2 [0–∞] 0.0, 0.1, 0.3, 0.5, 1.0

Figure 2. Sensitivity of global irrigation volumes and increase in the evapotranspiration (km3) to changes in parameter values for the year
2000, using short simulations. Secondary y axis correspond to ET increase values compared to the simulation with no irrigation. Note that
the y axis scales differ between parameters.

action between parameters. Fourth, we use the LUHv2 map,
which represents the areas actually irrigated, AAI (a lower
value than the areas equipped for irrigation, AEI, which is
used in other datasets). We do not consider the effect of pre-
scribed data uncertainty or the effect of meteorological forc-
ing in this analysis.

5 Results

5.1 Validation of irrigation water withdrawals

Irrigation from the Irr simulation is estimated at
0.049 mm d−1 (2452.5 km3 yr−1) around the year 2000
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Figure 3. Calibration of β value with the Sacks et al. (2009) dataset
as the observed value, using outputs from the short simulations. Bias
in the total irrigation volume (in km3) by β value (a). Box plot of
the bias of irrigation rates in grid cells (in mm d−1) by β value (b).

(Fig. 4a). This estimation is in the lower part of other
studies, which range between 2465 and 3755 km3 yr−1

(Pokhrel et al., 2016), and is lower than AQUASTAT esti-
mation of 2735.1 km3 yr−1 around the year 2000 (Frenken
and Gillet, 2012). The results suggest that the proposed
scheme is adequate to simulate the reported estimations
of irrigation, despite the underestimation (−10 % than the
2735.1 km3 yr−1 from AQUASTAT around the year 2000).
We note that this estimate is also higher than that of the old
irrigation scheme of Guimberteau et al. (2012b), but the
scheme proposed here can still benefit from a more robust
parameter tuning.

At the country scale, Fig. 4b shows that the irrigation mod-
ule underestimates water withdrawals in the main hotspots of
irrigation, i.e., India, China, and the USA, while it overesti-
mates irrigation rates in Africa, Eastern Europe, and Latin
America (see also Fig. S1). Such reduced contrasts between
highly and weakly irrigated countries could indicate a lim-
itation of the irrigation scheme to represent local irriga-
tion strategies, as our scheme uses global uniform values
for all of the parameters. Comparison with the estimation
from Sacks et al. (2009) (see Fig. S1) supports this result
(−0.004 mm d−1, −219.2 km3 yr−1; Fig. 4c) and allows us
to identify the areas where the irrigation bias is the strongest.
In India, the Indus Basin presents a strong underestimation,
as well as in the northern part of the Ganges–Brahmaputra
basin. In China, there is a more widespread underestimation.
That is also the case in the western part of the Great Plains
in the USA. The other regions present, in general, an over-
estimation of irrigation withdrawals, which is especially im-
portant in some small areas in Africa, in Eastern Europe and

north of the Caspian Sea, and in some areas of central Asia.
Finally, we note that within a country, it is possible to ob-
serve areas with positive and negative bias, for instance in
the USA or India. This could also be partially explained by
the use of globally uniform values, as there could be impor-
tant local differences on irrigation strategies within the same
country, and it points out the need to assess the irrigation bias
at different scales (see Fig. S11).

5.2 Variability in the irrigation rates due to parameter
values and input data

The global annual irrigation volumes (Fig. 5a) show a large
uncertainty across the simulations due to changes in the pa-
rameter values (for instance, −24.7 % between Irr_NoTuned
and Irr), but note that the change in irrigation rates at the
grid cell scale can have a strong spatial heterogeneity within
a country (Fig. 5c), for instance, in India or the USA. The
parameter set used in the Irr simulation manages to increase
the irrigation rate and to markedly reduce the irrigation bias
when compared to the Irr_NoTuned simulation at global
scale, even if we may observe both an increase or a de-
crease on the irrigation rate in the same country locally, for
instance, in China (with a marked north–south difference;
Fig. 5c; Irr_NoTuned–Irr) or the Indus river basin in Pak-
istan and India (see Fig. 5c; Irr_NoTuned–Irr). Also, a pos-
itive trend in the annual irrigation volume is observed in all
simulations. It is caused by the increase in irrigated area and
observed in both HID and LUHv2 datasets (see simulations
Irr and Irr_LUH). The irrigated area has been identified by
Puy et al. (2021) as the main driver of irrigation water with-
drawal, and the increase in the prescribed irrigated area in the
simulations partly explains the positive trend in the irrigation
rate (see Fig. S6).

Based on the mean annual values (Fig. 5c), the β parame-
ter has the largest effect on the mean irrigation rate (−22.3 %
when β decreases from 0.9 to 0.75), followed by the change
in the input map from HID to LUHv2 (−19.7 %), a lower
Imax (−16.5 %), and, finally, no adduction (−15.7 %). From
a spatial point of view, the overall reduction in irrigation due
to the above changes is not homogeneous, and large areas
may even display an increased irrigation rate. The exception
is the β parameter, which shows an overall reduction in the
irrigation with a lower parameter value, except in the Indus
Basin. The Indus River basin is a region that depends on both
surface and groundwater for irrigation, and the irrigation de-
mand is one of the most important worldwide (Laghari et al.,
2012). In Irr_Beta, a lower β induces a reduction in the wa-
ter demand in the upper areas of the Indus River basin, in-
creasing the river discharge downstream. More surface wa-
ter supply in the middle and lower parts of the basin can
increase irrigation in these areas, even if the water demand
also decreases, because the irrigation deficit; i.e., the differ-
ence between demand and supply is still high, despite the
demand reduction. We suggest here that the propagation of
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Figure 4. Total water withdrawal for irrigation in the Irr simulation with the yearly average for 1998–2002 (a). Difference in water withdrawn
for irrigation between Irr (yearly average, 1998–2002) and AQUASTAT value (Frenken and Gillet, 2012) at country level (b). Difference in
water withdrawn for irrigation between Irr (yearly average, 1998–2002) and the dataset from Sacks et al. (2009) (c).

water supply through the river system can explain part of the
heterogeneity in response to other parameter changes.

To estimate the interannual irrigation rate variability, we
calculate the coefficient of variation (ratio of standard de-
viation to the mean; Fig. 5b). We use the pluriannual mean
irrigation rate from all simulations with irrigation activated
from Table 1. Results highlight a certain homogeneity, but
we can identify at least two situations, namely an area of low
variability (around 0.25) in Southern Asia, some areas in the
Mediterranean and North and South America, and an area
of high variability (around 0.75) in northern Europe, North
America, Africa, and Australia, with some points where the
coefficient of variation is the highest (over 2.0), especially in
Africa. The use of global parameter values could explain the
relative homogeneity of the coefficient of variation, while re-
gional differences like climate variability and irrigation water
demand could explain the existence of these two variability
classes.

5.3 Factor analysis: correlation of modeling biases and
irrigation classes

Figure 6a shows the bias of ET by class of irrigated fraction
at grid cell scale when we compare ORCHIDEE simulations
with the FLUXCOM dataset. It shows that the activation of
irrigation reduces the ET bias in those areas with high irri-
gation fractions (also see Fig. S7 for the spatial distribution).
For the comparison with GLEAM in Fig. 6b, it shows that
the activation of irrigation induces a positive bias in those ar-
eas with irrigation. When comparing absolute ET values by
irrigation class (Fig. 6c), we observe that NoIrr and GLEAM
are similar in all the classes, except for 0 and All (i.e., no
irrigated fraction and all grid cells). It means that the differ-
ences between NoIrr and GLEAM come from non-irrigated
areas. This could suggest a limitation in GLEAM in terms
of representing the effects of irrigation on ET rates, as this
product does not respond to the presence of irrigated areas.
On the other hand, Irr and FLUXCOM box plots are similar
for classes 10–20, 20–50, and 50–100. A seasonal assess-
ment on the zonal average values for irrigated areas supports
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Figure 5. Time series of globally averaged irrigation rates simulated by ORCHIDEE (a). Map of the standard deviation of mean irrigation
rates from all simulations (in mm d−1) (b). Maps of mean difference between Irr simulation and others for the period 1980–2013 (in
mm d−1) (c). Blank areas correspond to grid cells with no irrigated areas.

this suggestion (Fig. S7). Thus, from now on, we prioritize
FLUXCOM for our analysis regarding the ET bias.

A similar analysis for the LAI bias and classes of irrigated
fraction (Fig. 6d) shows an increase in the LAI difference
between ORCHIDEE and LAI3g in the Irr simulation. Also,
for all classes, the positive bias in the NoIrr simulation is
exacerbated in the Irr simulation, except for the most inten-
sive class (class 50–100), which reduces the negative bias

when comparing NoIrr and Irr simulations. It is worth not-
ing that class 50–100, where irrigation is more important,
is the only one with a negative bias in NoIrr, and this neg-
ative bias is partially reduced when irrigation activities are
included (see Fig. S8 for spatial distribution and zonal aver-
age values). This is due to less water stress and thus more
photosynthesis and biomass production, which is consistent
with the decrease in the ET bias for this class. When compar-
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Figure 6. Factor analysis of ET bias with FLUXCOM against irrigated fraction classes (a) and with GLEAM (b). Mean ET values of
simulations and observed products against irrigated fraction classes (c). LAI bias with LAI3g against irrigated fraction classes (d) and mean
LAI values of simulations and observed product against irrigated fraction classes (e).

ing absolute values between the simulations and the observed
product (Fig. 6e), we observe that irrigation activation within
ORCHIDEE does not significantly change the distribution of
LAI values at a global scale. These results are consistent with
the changes that irrigation induce on water fluxes and reser-
voirs, as well as on water and energy budget (see Figs. S2
and S3).

5.4 Effect of irrigation on TWSAs and river discharge

We now focus on the average TWSA value at the basin scale
(Fig. 7). Activation of irrigation induces small changes in
TWSAs, which are consistent with changes in TWS between
both simulations (Fig. S2). For instance, we observe higher

peaks in Huang He when irrigation is activated. Low values
also become lower for the Irr simulation in the Huang He
basin. In the Ganges Basin, low values are lower as well in
the Irr simulation compared to NoIrr. The changes in wa-
ter pathways and related residence times that explain the
changes in TWS between Irr and NoIrr (transfer of water
from a reservoir with rapid flows like the streamflow to the
soil with a slow flow) could also explain these changes in the
TWSA dynamics at a large basin scale. Other basins, like the
Nile river basin or the Amu-Darya, show little effect between
both simulations, even if extreme peaks values can be overes-
timated (during 2007 in the Nile) or underestimated (during
2005 and 2006 in Amu-Darya). But note that the model is
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unable to follow the GRACE trends in basins with negative
trends (for instance, Huang He, Indus, or Ganges) or positive
trends (Murray River between 2011 and 2014).

The correct simulation of river discharge (Fig. 8) is another
challenge in ORCHIDEE and other LSMs (Oki et al., 1999;
Ducharne et al., 2003; Guimberteau et al., 2012a; Koirala
et al., 2014; Cheruy et al., 2020). Irrigation plays an impor-
tant role in reducing the average values when we compare
NoIrr and Irr simulations (see, for example, the Nile or the
Indus rivers, as these results are consistent with those from
de Graaf et al., 2014). The main effect of irrigation over the
seasonal variations is that peak discharge can occur before
in the Irr simulation (for instance, Missouri River or Huang
He) or that the decrease after the peak is more rapid, and low
values are lower in Irr than in NoIrr (for instance, Colorado
River or the Danube). These changes are due to the triggering
of irrigation during spring and summer and the correspond-
ing ET increase. It is worth noting that the Irr simulation does
not necessarily reduce the discharge bias against GRDC data
compared to the NoIrr simulation, with the exception of the
Danube (see Table S1 for some goodness-of-fit metrics for
the observed and simulated discharge values).

5.5 Factor analysis: correlation of irrigation biases and
landscape descriptors

We compare biases and errors in irrigation estimates with
landscape descriptors that could help explain these model-
ing errors. We also seek a perspective to increase the realism
of the irrigation scheme and reduce the error in irrigation es-
timation. For the irrigation bias, classes with a high fraction
of irrigated paddy rice (for instance, classes 20–50 or 50–
100) exhibit a higher bias than classes with small fractions
(Fig. 9a). The spatial distribution of irrigated paddy rice is
concentrated in Southeast Asia and includes the most irri-
gated river basins worldwide (see Fig. S5). At the large basin
scale (see values in Table S2), the irrigation bias also cor-
relates well with the capacity of dams used for irrigation
(Fig. 9b) if we retire a single outlier corresponding to the
Nile river basin (r value without the outlier is −0.55).

The correlation between paddy rice and irrigation bias
suggests the need to explicitly represent paddy irrigation at
global scale. Thus, we add an assessment of the β value and
irrigation bias, using the short simulations used on the param-
eter tuning (see Sect. 4). We use all simulations with changes
in the β parameter from Table 2. Then, we build a compos-
ite map of the β value that minimizes the irrigation bias at a
grid cell scale (Fig. 9c) and then we show the corresponding
irrigation bias as compared to the Sacks et al. (2009) dataset.
The results roughly show at least two classes for β, with the
first with values of 1.2 and 1.4 (for instance, China and north
India) and the second with values of 0.6. Using at least two β
values is not enough to reduce the irrigation bias at a global
scale, but it has an important effect on the spatial distribu-
tion of the irrigation bias in Southern Asia, the region with

the largest paddy rice area. These results suggest that the β
parameter should have at least two values, namely 1.3 in ar-
eas with paddy rice and 0.6 in the rest of the irrigated areas.
But note that the data used for this analysis correspond to a
single year, i.e., the year 2000. Also, regional characteristics,
like more than one harvest of paddy rice due to optimal cli-
mate conditions, are not taken into account in this analysis
but could also help to explain the irrigation underestimation
in our estimations (Yin et al., 2020).

6 Discussion

In this study, we implemented a new global irrigation scheme
inside the ORCHIDEE land surface model, based on previ-
ous work from Yin et al. (2020), in China. While we found
a reduction in some modeling biases when irrigation is acti-
vated, we also identified at least four types of limitations in
our modeling framework that can affect the estimates of irri-
gation or the effects of irrigation on other variables inside the
land surface model.

1. The irrigation scheme exhibits some shortcomings that
may bias the estimated irrigation amount, namely the
use of a single irrigation technique, simplified rules to
trigger irrigation and allocate the available water, the
joint representation of rainfed and irrigated crops within
the same soil column, and the non-representation of
conveyance losses, although losses due to return flows
are represented.

2. The parameter tuning is overly simplistic. As a first step,
we considered globally uniform parameters, which is
overly simplistic, although spatially distributed values
would allow us to better describe the local features of
irrigation systems, as shown by the spatial variations in
an optimized β map, and the dependence of the local
irrigation bias on the fraction of paddy rice.

3. We also use a single meteorological forcing dataset and
a single year to characterize the observed irrigation val-
ues. This contributes to biasing the parameter adjust-
ment process by taking uncertain data (meteorological
forcing and reference irrigation) as certain.

4. The ORCHIDEE model exhibits many uncertainties
that are not related to the irrigation scheme but ulti-
mately impact the irrigation withdrawals and efficiency
(defined here as the ratio of additional ET due to irri-
gation to water withdrawal) and the temporal dynamics
of irrigation. One particular uncertainty comes from the
overestimation of bare soil evaporation (Cheruy et al.,
2020) that we are presently trying to correct in OR-
CHIDEE. Other uncertainties result from the inherent
simplifications of any model. In ORCHIDEE, they in-
clude the use of a single soil texture in each grid cell
of only two kinds of crops, with simplified phenology
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Figure 7. Comparison of TWSAs between ORCHIDEE simulations and GRACE datasets in large basins with strong irrigation activities.

and crop calendars, and the choices made to simulate
infiltration and evaporative processes.

These shortcomings and limitations could induce positive or
negative biases in the simulated regional irrigation amounts;
this as a result of differences in regional landscape, hydrocli-
matic conditions, and local irrigation practices not well rep-
resented or absent in our scheme. For example, the missing
representation of paddy irrigation induces under-irrigation in
paddy rice areas, the joint representation of rainfed and irri-
gated crops induces over-irrigation in areas with other crop
types and irrigation techniques, and the simplistic parameter
tuning could tend to minimize the overall net bias while in-
creasing the regional biases. These limitations (some shared
with other global LSMs) call for further model developments
that aim at a better representation of the water supply (fossil
groundwater and water adduction, to list two examples men-
tioned in the results) and the water demand (a separate water
budget for irrigated areas, the inclusion of other irrigation
techniques, and new irrigation rules, such as irrigation be-
fore sowing or interruption of irrigation before harvest). In
addition to the improvements noted here that focus on model
developments, the irrigation representation can be improved
using new input datasets and regional parameter values to
include local practices (if these datasets exist at the coarse

model resolution in the global domain and for historical pe-
riod or future scenarios), for instance, to prescribe regional β
values or to prescribe the start and end of the growing season.

The model estimates the irrigation water demand by calcu-
lating a soil moisture deficit according to a user-defined soil
moisture target. Besides, it constrains the actual irrigation
rate using the available water supply. The water supply takes
into account the facility to access surface or underground wa-
ter sources according to local infrastructure and environmen-
tal restrictions. Note that this environmental restriction is a
simplification compared to the complex methods used in the
real world to estimate environmental flow requirements, and
other more robust approaches exist (for instance, in Hanasaki
et al., 2008a, providing monthly environmental flow require-
ments). Strict environmental requirements could reduce the
surface water supply and thus the irrigation rate (Hanasaki
et al., 2008b).

For the facility to access the water sources, we use two
static factors based on local infrastructure, while water allo-
cation is dynamic and can change according to water avail-
ability (de Graaf et al., 2014) as well as economic and soci-
etal aspects (D’Odorico et al., 2020). The irrigation scheme
also allows the adduction of water from neighboring grid
cells, which can be important in areas of China and India
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Figure 8. Comparison of observed and simulated river discharge in large basins with strong irrigation activities.

(Laghari et al., 2012; Yin et al., 2021), where surface water
is intensively used. This representation of water adduction,
however, is very simple, and could be improved by including
human water management and dams operation, as in Zhou
et al. (2021), where the supply and demand network is op-
erated as a system, taking into account some constraints like
topography and environmental flow (Hanasaki et al., 2018).

Regarding the water demand, we observed that the con-
ditions to trigger and stop irrigation, although controlled by
four parameters, may seem too simple in our scheme, espe-
cially when compared to specialized irrigation models like
the new irrigation scheme in LSM CLM5 (Yao et al., 2022),
which includes multiple irrigation techniques, or the ISBA
LSM (Druel et al., 2022), which implements complex sets of
rules to represent different irrigation strategies. Some rules
could change the moment when irrigation is triggered and
increase the amount (for instance, allowing irrigation some
days before the crop emergence) or decrease it (for instance,
preventing irrigation during the maturity of the crop, shorten-
ing the growing season, or preventing continuous irrigation
during more than a certain number of days). Implementing
these sets of rules for irrigation strategies in ORCHIDEE is
feasible; for instance, the definition of the growing season
(with the trigger of irrigation before sowing and stopping be-
fore harvesting) could be based on the prescription of the
start and end dates, as done by Yin et al. (2020), or could use
the phenology information simulated by the model (as in the
version used here or using a crop-specific module as in Wu

et al., 2016). But defining the set of rules and parameter val-
ues would need a careful tuning and evaluation process with
local data at a sub-yearly scale.

Despite these limitations, the evaluated irrigation scheme
produces acceptable estimations of yearly irrigation with-
drawals on a global mean basis, but it underestimates irri-
gation volumes in areas of China, India, and the USA (the
most irrigated areas). Our estimations are affected by the un-
certainty about global parameter values that are assumed to
be uniform and on the map of irrigated fractions (Puy et al.,
2021). We show that the lack of paddy rice irrigation could
contribute to the underestimation of irrigation in southern
Asia, as the paddy technique needs the inundation of the
field and maintains a saturated soil during at least 80 % of the
crop growth (de Vrese and Hagemann, 2018). The irrigation
module of MATSIRO LSM, called MAT-HI and HiWG-MAT
(Pokhrel et al., 2012, 2015), already implemented an explicit
representation of paddy rice irrigation by setting a higher
soil moisture target for rice than for other crops. An explicit
paddy representation was also implemented in ORCHIDEE-
CROP (Yin et al., 2020) at a regional scale by implementing a
pond for paddy rice and using a water level target, but it uses
detailed crop information that is not easy to access at a global
scale. A surrogate approach in our simpler irrigation scheme
could be to use at least two β values, one for paddy rice and
another one for other crops, as suggested by the composite
map of β values to minimize the irrigation bias.
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Figure 9. Factor analysis of irrigation rate bias with data from Sacks et al. (2009) against irrigated paddy rice classes (a). Basin average
value of irrigation bias against dam capacity (b). Map of β that minimizes the irrigation bias, according to the short simulations (c), and
corresponding map of minimum irrigation bias, according to the β value in panel (c) (in mm d−1) (d).

An outcome of our study is to reveal that the GLEAM
values do not exhibit a significant sensitivity of ET to the
presence of irrigated areas. This suggests that GLEAM is
not suitable for estimating ET rates in irrigated areas. For
instance, coupled simulations using CLM4 in northern India
showed a strong modeling underestimation of ET rates, even
with no irrigation (Fowler et al., 2018). When we compare

the simulations with the FLUXCOM product, the activation
of irrigation leads to a reduction in the negative evapotranspi-
ration bias, but the use of a single soil column in ORCHIDEE
for both rainfed and irrigated crops could induce an overes-
timation of the ET increase (see Fig. S11; in some cases, the
irrigation efficiency by country is too high). The ET bias im-
provement is particularly substantial in heavily irrigated ar-
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eas, where the simulated LAI is also improved by irrigation
(which reduces the negative LAI bias there). These results
show the benefits of including an irrigation scheme to par-
tially reduce some modeling biases, especially in intensively
irrigated areas, and are consistent with the multivariate eval-
uation of ORCHIDEE done in Mizuochi et al. (2021).

ET and LAI are two important drivers of land–atmosphere
coupling via water, energy, and momentum transfer (Senevi-
ratne et al., 2010; Greve et al., 2019), but there is evidence
that the effects on ET and LAI due to human land cover
change and landscape management are not monotonic (Ster-
ling et al., 2013). The sensitivity of these drivers to irriga-
tion calls for further studies in coupled mode to explore the
joint evolution of climate, land surface fluxes, and the use of
water resources. Some studies focuses on the effects of irri-
gation on climate and land surface fluxes for the historical
climate (Boucher et al., 2004; Sacks et al., 2009; Puma and
Cook, 2010; Guimberteau et al., 2012b; Cook et al., 2015;
Thiery et al., 2017; Al-Yaari et al., 2022), but to the best of
our knowledge, that is not the case for the future climate un-
der different scenarios.

In contrast to the effects on ET and LAI, the effect of ir-
rigation on land surface hydrology is rather weak. For dis-
charge, the activation of irrigation logically reduces river dis-
charge because of the surface and groundwater withdrawal
for irrigation. This reduction does not necessarily improve
the model performance to fit observed values, with the ex-
ception of the Danube river basin. Multiple causes could ex-
plain the incorrect simulation of discharge dynamics in OR-
CHIDEE, even when irrigation is activated. For instance, un-
certainties resulting from the atmospheric forcing are not as-
sessed here, while they are known to affect the yearly and
seasonal values of discharge (Guimberteau et al., 2012a;
Decharme et al., 2019). Also, a wrong ET estimation, er-
rors in snow dynamics, and the lack of permafrost repre-
sentation contribute to the mismatches (Cheruy et al., 2020).
Finally, a lack of representation of other anthropogenic pro-
cesses, like dam management (Fig. 9) and water withdrawal
for other economic sectors and other uses, could explain the
differences in the seasonal discharge dynamics between OR-
CHIDEE and observed data in some basins (Pokhrel et al.,
2016).

The effect of irrigation on simulated TWSAs is weak. In
some large river basins, we observed increases in low values
in areas with significant surface water supply. But even when
irrigation is activated, ORCHIDEE is not able to follow the
trends exhibited by GRACE datasets, for instance in Huang
He and Indus River basin, two heavily irrigated areas where
water depletion has been related to groundwater pumping for
irrigation (Rodell et al., 2018; Yin et al., 2020). There are
probably multiple causes for the inability of LSMs to capture
large negative decadal water storage trends (Scanlon et al.,
2018), starting with the underestimation of irrigation rates at
country level and grid cell scale (Fig. 4). Glacier loss mis-
representation in ORCHIDEE could also explain part of the

differences to observed negative trends in some basins, for
instance in the Indus and Ganges basins that depend on wa-
ter flow from the Himalaya mountains (Rodell et al., 2018).
And of course, errors in the partitioning between the different
water fluxes in ORCHIDEE (Cheruy et al., 2020; Mizuochi
et al., 2021) contribute to the problems in both simulations
(NoIrr and Irr).

We also underline the lack of fossil groundwater abstrac-
tion in ORCHIDEE as a very likely cause for the underesti-
mation of irrigation rates and TWSA trend mismatch. Fossil
groundwater, also called nonrenewable groundwater, is im-
portant in semiarid areas like Pakistan and the Middle East
and contributes nearly 20 % to the gross irrigation water de-
mand for the year 2000 (Wada et al., 2012). As the irrigation
scheme represents abstractions from shallow aquifers but not
from fossil sources, it probably restrains irrigation too often
due to a supply shortage and thus could have problems fit-
ting the negative trend in those areas with heavy groundwater
use, as already reported by Yin et al. (2020) for China. But
we must add that the estimation of fossil groundwater use is
challenging. For instance, an assessment of the TWSA trends
of residuals between our simulation and GRACE shows dif-
ferences with the estimates of groundwater depletion from
Wada et al. (2012) in some countries (see Table S3). Under-
estimation of irrigation rates and uncertainties arising from
flux partitioning and from meteorological data would also
affect the estimations of fossil groundwater abstraction. So
far, we cannot explain to which extent each one of these pos-
sible causes participates in the misrepresentation of GRACE
TWSA trends by ORCHIDEE.

Our results show that the new irrigation scheme helps sim-
ulate acceptable land surface conditions and fluxes in irri-
gated areas for ET and LAI, but they also show that inclu-
sion of irrigation alone is not necessarily sufficient for a good
fit between the simulated values of TWSAs and discharge
and observed products. Including additional anthropogenic
processes could help to reduce some of these biases. For
instance, dam management and fossil irrigation withdrawal
could increase the water supply in some basins during dry
months or years, thus increasing the irrigation amount in ar-
eas with high irrigation demand and water supply shortage.
At the same time, these processes may have an impact on
river discharge dynamics and could help to represent the mis-
representation of TWSA trends in some areas.

7 Conclusions

We implemented a global irrigation scheme within OR-
CHIDEE LSM with a simple representation of the environ-
mental restriction, water allocation rules based on local in-
frastructure, and water adduction from nonlocal water reser-
voirs. We compared the irrigation estimates to reported val-
ues of irrigation withdrawal, and then we compared the out-
puts with and without irrigation to observed products of ET,
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LAI, TWSAs and discharge. Our results highlight how the
inclusion of irrigation can reduce some modeling biases, es-
pecially for ET and LAI, but they also underline the difficul-
ties in representing irrigation on a large scale using a simple
scheme and limited information.

The model could still benefit from improvements in pa-
rameter tuning by explicitly representing paddy rice irriga-
tion. Paddy irrigation could decrease the irrigation bias in
areas of southern Asia by increasing the irrigation demand.
Dam management representation and the inclusion of nonre-
newable groundwater use could also reduce negative biases
in some heavily regulated basins by increasing the water sup-
ply. These three aspects could change the spatial distribution
of the ET and LAI increases within the model. For TWSAs
and discharge, the inclusion of processes like dam manage-
ment or fossil groundwater use could help to represent ob-
served seasonal dynamics and trends that the model is not
currently able to represent.

Finally, we remember that LSMs are commonly used in a
coupled mode with climate models, and irrigation can have
an impact on some atmospheric variables via changes in the
latent heat flux and leaf area index. Thus, the results obtained
here encourage the use of coupled simulations to explore the
joint evolution of climate under the ongoing climate change
(for historical and especially for future periods), water re-
sources, and irrigation activities. While there is an increasing
body of literature that explores the coupling of irrigation and
climate for the historical period, to the best of our knowl-
edge, that is not the case for future scenarios. Coupled cli-
mate simulations for future scenarios could help to foresee
potential changes in the joint long-term evolution of water
resources use and climate and might help to identify possible
social consequences.

Code and data availability. The version of the ORCHIDEE LSM
used for this study corresponds to tag 2.2, revision 7709 and
is freely available from https://forge.ipsl.jussieu.fr/orchidee/log/
branches/ORCHIDEE_2_2/ (last access: 16 June 2023, Arboleda
et al., 2023). It is provided under a CeCILL-C license (French
equivalent to the LGPL license).

The data from the ORCHIDEE simulations used for this study
are freely accessible at https://doi.org/10.5281/zenodo.8014430
(Arboleda-Obando et al., 2023). FLUXCOM is available at https:
//www.bgc-jena.mpg.de/geodb/projects/Home.php (Jung et al.,
2019) after registration. GLEAM is available at https://www.
gleam.eu/ (Martens et al., 2017) after registration. LAI3g
is available at https://doi.org/10.3334/ORNLDAAC/1653 (Mao
and Yan, 2019). Monthly discharge data from the GRDC
are available at https://www.bafg.de/GRDC/EN/Home/homepage_
node.html (GRDC, 2024). For TWSAs, the CSR dataset is available
at https://www2.csr.utexas.edu/grace/RL06_mascons.html (Save
et al., 2016), Tellus is available at https://doi.org/10.5067/TEMSC-
3JC63 (Wiese et al., 2023), and GSFC is available at https://
earth.gsfc.nasa.gov/geo/data/grace-mascons (Loomis et al., 2019).
HID dataset is available at https://mygeohub.org/publications/8/

2 (Siebert et al., 2015), and LUHv2 is available at https://
luh.umd.edu/ (Hurtt et al., 2020). MIRCA2000 is available at
https://doi.org/10.5281/zenodo.7422506 (Portmann et al., 2010b).
GRanD dataset is available at https://sedac.ciesin.columbia.edu/
data/set/grand-v1-dams-rev01 (Lehner et al., 2011). For analysis,
we used standard packages from R v.4.0.4 (R Core Team, 2016),
https://www.R-project.org/ (last access: 3 December 2022).
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