

Supplement of

Sensitivity of the WRF-Chem v4.4 simulations of ozone and formaldehyde and their precursors to multiple bottom-up emission inventories over East Asia during the KORUS-AQ 2016 field campaign

Kyoung-Min Kim et al.

Correspondence to: Si-Wan Kim (siwan.kim@yonsei.ac.kr)

The copyright of individual parts of the supplement might differ from the article licence.

Table list

Table S1. The physics and chemistry schemes that are used in this study.

Table S2. The area total emissions in Eastern China (27.7-40°N, 115-123°E), South Korea (34.5-38°N, 126-130°E), and Seoul Metropolitan Area (SMA: 37.2-37.8°N, 126.5-127.3°E) for each emission data set in May.

Table S3. The list of MOZART species (Emmons et al., 2010)

Table S4. The list of RACM species.

Table S5. The chemical species of anthropogenic emissions used in RACM chemistry option and their mapping formulas from MOZART chemistry option that is the input format of anthro_emiss program.

Table S6. The list of SAPRC99 species (Carter, 2000).

Table S7. Comparison of surface meteorological variables from SYNOP and WRF-Chem for the KORUS-AQ campaign period. N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S8. The mapping table from WAS to RACM VOC based on Lu et al., 2013.

Table S9. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in SMA under 2 km height for the KORUS-AQ campaign period (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S10. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in the Chungnam region under 2 km height for the KORUS-AQ campaign period (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S11. Comparison of the aircraft-based 1-minuite-interval O₃, NO₂, CO, and HCHO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution

to O_3 concentration under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S12. Comparison of the aircraft-based 1-minuite-interval TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height. TOL, XYL, ETE, and ISO are defined in regional atmospheric chemical model (RACM) and compared with WAS based on Table S5 (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S13. Comparison of the aircraft-based 1-minuite-interval O₃, NO₂, CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV3_Ch2 and EDV3_ChKo2 in each case. The sampling number (N), mean, mean bias compared to DC-8 observations, standard deviations (σ), and correlation coefficient (R) with observations are presented (unit = ppb).

Table S14. Comparison of relative O_3 , NO_2 , and $Ox (= NO_2 + O_3)$ biases with perturbed emissions based on EDGAR-HTAP v3, which is (Model – Observation)/Observation.

Table S15. Comparison of absolute O_3 , NO_2 , and $Ox (= NO_2 + O_3)$ biases with perturbed emissions based on EDGAR-HTAP v3, which is (Model – Observation).

Table S16. Comparison of relative O₃, NO₂, and Ox (= $NO_2 + O_3$) biases with perturbed emissions based on EDGAR-HTAP v3, which is (Model – Observation)/Observation in each city; Beijing (39.4-41.1N, 115.4-117.5E), Tianjin (38.55-40.25N, 116.7-118.1E), Chengdu (30.05-31.5N, 103-105E), Chongqing (28.15-32.25N, 105.3-110.2E), Shanghai (30.7-31.5N, 120.85-122E), Hangzhou (29.2-30.6N, 118.3-120.9E), Nanjing (31.2-32.65N, 118.35-119.25E), Guangzhou (22.55-24N, 112.9-114.05E), Shenzhen (22.4-22.9N, 113.7-114.65E), SMA (37.2-37.8N, 126.5-127.3E), Wuhan (29.95-31.4N, 113.65-115.1E), and Xian (33.65-34.75N, 107.65-109.9E).

Table S17. Same as Table S16 except absolute biases (Model-Observation, unit=ppb).

Figure list

Figure S1. Comparison of the model surface MDA8 O₃ using EDGAR-HTAP v3 between with (EDV3_Fire) and without fire emissions (EDV3) at China surface observation sites during the whole campaign period (KORUS-AQ). (a) and (b) are absolute and relative differences between EDV3 and EDV3_Fire (EDV3_Fire – EDV3) respectively. The boxes represent Northern China (NOC, 38-42°N/106-110°E), Sichuan-Chongqing-Guizhou (SCG, 27-33°N/103-109°E), Pearl River Delta (PRD, 21.5-24°N/112-115.5°E), Southeastern China (SEC, 24-28°N/116-120°E), Yangtze River Delta (YRD, 30-33°N/119-122°E), South Korea (KOR, 34.5-38°N/126-130°E), North China Plain (NCP, 34-41°N/113-119°E), and Northeastern China (NEC, 43-47°N/124-130°E). NOC, NEC, and SEC are denoted by blue boxes (non-urban). NCP, SCG, PRD, YRD, and KOR are denoted by red boxes (urban).

Figure S2. Diurnal emission factors of VOC and NOx.

Figure S3. Relative ISO (isoprene) emission change from the temperature bias at the surface (unit = %).

Figure S4. Averaged surface temperature (unit: °C) and relative humidity (unit: %) from (a, d) ground-based observations (SYNOP) and (b, e) the weather research and forecast (WRF) model coupled with chemistry (WRF-Chem) from 1st May to 10th June for each station and countries. The differences and correlation coefficients between averaged observations and WRF-Chem are shown (c, f).

Figure S5. Comparison of PBL heights derived from the ceilometer at Yonsei University $(37.564^{\circ}N, 126.935^{\circ}E)$ with the WRF-Chem results during the KORUS-AQ campaign period: (a) time series of planetary boundary layer height from ceilometer and WRF-Chem (unit = m), (b) scatter plot of which x axis is ceilometer and y axis is WRF-Chem PBL height, (c) comparison of diurnal variations of PBL heights from ceilometer (grey) and WRF-Chem (red) with box whisker plot.

Figure S6. Correlation coefficient (R) between observed and simulated (a-c) MDA8 O3 and (d-f) hourly O3 with (a, d) EDV2, (b, e) EDV3, and (c, f) KOV5 emissions. The observation sites with R greater than 0.6 are indicated by a black circle.

Figure S7. Simulated surface (a-c) NO₂ and (d-f) HCHO concentrations and (g-i) HCHO to NO₂ ratio (FNR) with (a, d, g) EDV2, (b, e, h) EDV3, and (c, f, i) KOV5 emissions for 14-16

LST. FNR greater than 1 is marked with black circles. The simulated NO₂, HCHO, and FNR are linearly interpolated to ground-based observation sites.

Figure S8. The same as Figure 3 except $Ox (= NO_2 + O_3)$.

Figure S9. The same as Figure 4 except $Ox (= NO_2 + O_3)$.

Figure S10. The DC-8 flight tracks on the 22nd May and 5th June.

Figure S11. Vertically averaged (a) O_3 and (b) CO from DC-8 (black), EDV2 (sky blue), EDV3 (blue), EDV3 with double CO emission in China (EDV3 Ch2CO) (blue dashed) and KOV5 (red) 3 in SMA under 2 km height above ground level. The 1/2 of standard deviations are represented with black whiskers in each 200m layer. The sample number is presented with magenta color on the right of the plots.

Figure S12. The DC-8 flight tracks on the 4th, 20^{-th} May and 2nd, 3rd June (Local case).

Figure S13. The DC-8 flight tracks on the 22nd, 27th, 31st May (Transport case).

Figure S14. The contribution of Chinese emissions (%) to daily surface O_3 concentrations at Olympic Park obtained from the EDV3 simulations with/without Chinese anthropogenic emissions.

Figure S15. Vertically averaged O₃ from DC-8 (black), EDV2 (sky blue), EDV3 (blue), KOV5 (red), EDV3 with doubling Chinese CO and VOC emissions (dashed blue), EDV3 with doubling Korean CO and VOC emissions (dotted blue), and EDV3 with doubling Chinese and Korean CO and VOC emissions (dotted dashed blue) in Yellow Sea under 2 km height above ground level. The 1/2 of standard deviations are represented with whiskers in each 200m layer, The sample number is presented with magenta color on the right side of the plots.

Figure S16. Same as Figure 14 except that NO_2 is changed to $Ox (= NO_2 + O_3)$.

Figure S17. Same as Figure 15 except that NO₂ is changed to $Ox (= NO_2 + O_3)$.

Physics	Scheme	Reference	
Planetary Boundary Layer (PBL)	Yonsei University Scheme (YSU)	Hong and Noh, 2006	
Land surface	Unified Noah Land Surface Model	Tewari et al., 2004	
Microphysics	Purdue Lin Scheme	Chen and Sun, 2002	
Cumulus parameterization	Grell 3D Ensemble	Grell, 1993 Grell and Devenyi, 2002	
Chemistry	Scheme	Reference	
Photolysis	Madronich	Madronich, 1987	
Gas-phase chemistry	NOAA/ESRL RACM	Stokwell et al., 1997	
Aerosols	MADE/VBS	Ackermann et al., 1998 Ahmadov et al., 2012	

Table S1. The physics and chemistry schemes that are used in this study.

Region	E	astern Ch	ina	S	South Kore	a	SMA		
Species	EDV2	EDV3	KOV5	EDV2	EDV3	KOV5	EDV2	EDV3	KOV5
				unit =	mol/s				
ISO ¹⁾	0.0	0.0	31.3	0.0	0.0	2.5	0.0	0.0	0.1
SO2	3627	1991	1648	183	349	165	18	92	10
NO	10063	9034	5482	990	1191	886	196	214	191
NO2	0	0	0	0	0	0	0	0	0
CO	52304	53183	48489	921	3004	2113	268	240	388
ETH	519	715	579	18	16	30	5	5	6
HC3	406	542	545	60	58	45	16	18	10
HC5	508	695	507	66	65	36	18	20	8
HC8	317	435	534	53	54	41	13	16	9
XYL	176	246	270	15	16	41	4	4	9
OL2	1144	1599	1043	62	59	73	16	17	14
OLT	410	573	352	30	29	26	7	8	4
OLI	118	165	312	14	13	27	3	4	6
TOL	294	410	810	27	27	98	6	8	26
CSL	176	246	0	15	16	0	4	4	0
НСНО	96	134	47	15	16	9	4	5	2
ALD	430	599	41	34	34	6	8	10	1
КЕТ	106	144	43	7	6	5	3	2	1
ORA2	0	0	0	0	0	0	0	0	0
NH3	4065	6056	4594	80	395	510	9	30	43
SULF	0	0	0	0	0	0	0	0	0
Total NMVOC ²⁾	4701	6503	5115	418	408	439	107	122	96
				unit =	kg/s				
PM2.5	98.8	95.2	42.1	2.5	4.3	1.0	0.3	0.8	0.1
PM10	142.3	133.2	96.7	3.6	6.6	7.3	0.4	1.3	1.1
OC	18.0	16.8	13.7	0.2	0.4	1.7	0.0	0.1	0.1
BC	12.5	11.6	8.5	0.7	0.5	0.6	0.1	0.1	0.1

Table S2. The area total anthropogenic emissions in Eastern China (27.7-40°N, 115-123°E), South Korea (34.5-38°N, 126-130°E), and Seoul Metropolitan Area (SMA: 37.2-37.8°N, 126.5-127.3°E) for each emission data set in May.

¹⁾ Note ISO in Table S3 is only from anthropogenic sources. ISO is mainly emitted from biogenic sources using MEGAN.

²⁾ NMVOC is non-methane volatile organic compounds.

Species	Atomic composition	Note
ISOP	C_5H_8	isoprene
SO2	SO_2	sulfur dioxide
NO	NO	nitric oxide
NO2	NO_2	nitrogen dioxide
СО	СО	carbon monoxide
С2Н6	C_2H_6	ethane
С2Н5ОН	C ₂ H ₅ OH	ethanol
СНЗОН	CH ₃ OH	methanol
С3Н8	C_3H_8	propane
BIGALK	C5H12	lumped alkanes C>3
TOLUENE	$C_6H_5(CH_3)$	lumped aromatics
С2Н4	C_2H_2	ethene
BIGENE	C_4H_8	lumped alkenes C>3
CH2O	CH ₂ O	formaldehyde
СНЗСНО	CH ₃ CHO	acetaldehyde
СНЗСОСНЗ	CH ₃ COCH ₃	acetone
MEK	CH ₃ C(O)CH ₂ CH ₃	methyl ethyl ketone
NH3	NH ₃	Ammonia

 Table S3. The list of MOZART species (Emmons et al., 2010).

Species	Definition
ISO	Isoprene
SO2	Sulfur dioxide
NO	Nitric oxide
NO2	Nitrogen dioxide
СО	Carbon monoxide
ETH	Ethane
НС3	Alkanes, alcohols, esters, and alkynes with HO rate constant(298 K, 1 atm) less than $3.4 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$
HC5	Alkanes, alcohols, esters, and alkynes with HO rate constant(298K, 1 atm) between 3.4×10^{-12} and 6.8×10^{-12} cm ³ s ⁻¹
HC8	Alkanes, alcohols, esters, and alkynes with HO rate constant(298 K, 1 atm) greater than $6.8 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$
XYL	Xylene and more reactive aromatics
OL2	Ethene
OLT	Terminal alkenes
OLI	Internal alkenes
TOL	Toluene and less reactive aromatics
CSL	Cresol and other hydroxy substituted aromatics
нсно	Formaldehyde
ALD	Acetaldehyde and higher aldehydes
КЕТ	Ketones
ORA2	Acetic acid and higher acids
NH3	Ammonia
SULF	Sulfuric acid
PM2.5	Particulate matter under 2.5 µm diameter
PM10	Particulate matter under 10 µm diameter
OC	Organic carbon
BC	Black carbon

Table S4. The list of RACM species.

WRF-Chem	EDGAR-HTAP v2 (v3)	KORUS v5
RACM	MOZART to RACM	SAPRC-99 to RACM
ISO	0	ISOP
SO2	SO2	SO2
NO	NOx	NO + NO2
NO2	0	0
СО	СО	СО
ETH	C2H6 ¹⁾	ALK1 ²⁾
HC3	$0.5*C2H5OH^{1} + CH3OH^{1} + C3H8^{1}$	$ALK2^{2}$ + 1.11 x $ALK3^{2}$ + 0.4 x $MEOH^{2}$
HC5	$0.5 \times BIGALK^{1)} + 0.5 \times C2H5OH^{1)}$	0.97*ALK4 ²⁾
HC8	$0.5 \times BIGALK^{1)}$	ALK5 ²⁾
XYL	$0.2 \times TOLUENE^{1)}$	ARO2 ²⁾
OL2	C2H4 ¹⁾	ETHE ²⁾
OLT	$0.3 \times BIGENE^{1)} + C3H6^{1)}$	$OLE1 + 0.5 \times MACR + 0.5 \times MVK$
OLI	$0.4 \times \text{BIGENE}^{1)}$	OLE2 ²⁾
TOL	$0.1 \times BIGENE^{1)} + 0.3 \times TOLUENE^{1)}$	ARO1 ²⁾
CSL	$0.2 \times TOLUENE^{1)}$	$PHEN^{2)} + CRES^{2)}$
НСНО	CH2O	НСНО
	$0.2 \times BIGENE^{1)} + CH3CHO^{1)}$	$CCHO^{2)} + RCHO^{2)} + BALD^{2)} + GLY^{2)}$
ALD	$+0.3 \times \text{TOLUENE}^*$	+ MGLY ²⁾ + BACL ²⁾ + $0.5 \times MACR^{2)}$
KET	$CH3COCH3^{1} + MEK^{1}$	$0.3 \times ACET^{2)} + 1.61 \times MEK^{2)} + 1.61 \times PRD2^{2)}$ + 0.5 x MVK ²⁾ + IPRD ²⁾
ORA2	0	0
NH3	NH3	NH3
PM2.5	PM2.5	PM2.5+PMFINE
PM10	PM10	PM10
OC	OC	POA
SULF	0	SULF
BC	BC	PEC

Table S5. The chemical species of anthropogenic emissions used in RACM chemistry option and their mapping formulas from MOZART chemistry option that is the input format of *anthro emiss* program.

¹⁾Note that those are MOZART VOC species in **Table S3** (Emmons et al., 2010).

²⁾Note that those are SAPRC99 VOC species in Table S6 (Carter, 2000).

Species	Note
ISOP	Isoprene
SO2	Sulfur dioxide
NO	Nitric oxide
NO2	Nitrogen dioxide
СО	Carbon monoxide
ALK1	Alkanes and other non-aromatic compounds that react only with OH, and have kOH $< 5 \times 10^2$ ppm-1 min-1. (Primarily ethane)
ALK2	Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 5 x 10^2 and 2.5 x 10^3 ppm ⁻¹ min ⁻¹ . (Primarily propane and acetylene)
ALK3	Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 2.5×10^3 and 5×10^3 ppm ⁻¹ min ⁻¹ .
ALK4	Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 5 x 10^3 and 1 x 10^4 ppm ⁻¹ min ⁻¹ .
ALK5	Alkanes and other non-aromatic compounds that react only with OH, and have kOH greater than 1×10^4 ppm ⁻¹ min ⁻¹
ARO1	Aromatics with kOH $< 2x10^4$ ppm ⁻¹ min ⁻¹ .
ARO2	Aromatics with kOH > $2x10^4$ ppm ⁻¹ min ⁻¹ .
MEOH	Methanol
ETHE	Ethene
OLE1	Alkenes (other than ethene) with $kOH < 7x10^4$ ppm ⁻¹ min ⁻¹ . (Primarily terminal alkenes)
PHEN	Phenol
CRES	Cresols
НСНО	Formaldehyde
ССНО	Acetaldehyde and Glycolaldehyde
RCHO	Lumped C3+ Aldehydes
BALD	Aromatic aldehydes (e.g., benzaldehyde)
GLY	Glyoxal
MGLY	Methyl Glyoxal
BACL	Biacetyl
MACR	Methacrolein
ACET	Acetone
MEK	Ketones and other non-aldehyde oxygenated products which react with OH radicals slower than 5 x 10^{-12} cm ³ molec ⁻² sec ⁻¹
PRD2	Ketones and other non-aldehyde oxygenated products which react with OH radicals faster than 5 x 10^{-12} cm ³ molec ⁻² sec ⁻¹
MVK	Methyl Vinyl Ketone
IPRD	Lumped isoprene product species
NH3	Ammonia

 Table S6. The list of SAPRC99 species (Carter, 2000).

Nation		Eastern	China (sites	s = 271)	South Korea (sites = 48)			
V	ariable	Temperature (°C)	Relative humidity (%)	Wind speed (m/s)	Temperature (°C)	Relative humidity (%)	Wind speed (m/s)	
	Ν	83698	83696	79595	14948	14946	14103	
Мала	Obervation	20.13	65.02	2.87	18.94	65.81	2.56	
меап	WRF-Chem	19.22	65.35	4.12	17.23	71.35	3.84	
	R	0.90	0.85	0.55	0.88	0.76	0.62	
M	ean bias	-0.91	0.32	1.25	-1.71	5.54	1.27	
1	RMSE	3.20	13.94	2.45	2.84	15.88	2.31	

Table S7. Comparison of surface meteorological variables from SYNOP and WRF-Chem for the KORUS-AQ campaign period. N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

RACM	WAS
TOL	Toluene, Benzene, Ethylbenzene, i-Propylbenzene, n-Propylbenzene
XYL	m/p-Xylene , o-Xylene , 1-3-5-Trimethylbenzene, 1-2-4-Trimethylbenzene, 1-2-3-Trimethylbenzene, 4-Ethyltoluene
ETE	Ethene
ISO	Isoprene

Table S8. The mapping table from WAS to RACM VOC based on Lu et al., 2013.

Table S9. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in SMA under 2 km height for the KORUS-AQ campaign period (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Species	Туре	Ν	Mean	Bias	σ	R
	OBS		80.9		21.6	
0	EDV2	1001	64.0	-16.9	16.3	0.61
03	EDV3	1081	66.6	-14.2	16.3	0.63
	KOV5		62.7	-18.1	15.4	0.70
	OBS		4.89		7.53	
NO	EDV2	1079	5.33	0.44	7.28	0.81
NO ₂	EDV3	1008	5.55	0.66	7.44	0.80
	KOV5		5.34	0.46	7.56	0.82
	OBS		247		98	
CO	EDV2	1150	148	-98	53	0.65
CO	EDV3	1150	151	-96	49	0.67
	KOV5		145	-102	49	0.71
	OBS		2.65		1.75	
UCUO	EDV2	1126	1.89	-0.76	1.24	0.84
нсно	EDV3	1120	1.99	-0.66	1.32	0.82
	KOV5		1.86	-0.78	1.26	0.85
	OBS		3.12		1.71	
TOI	EDV2	220	0.63	-2.49	0.43	0.38
IOL	EDV3	328	0.78	-2.34	0.57	0.36
	KOV5		2.24	-0.88	1.47	0.40
	OBS		0.76		0.60	
VVI	EDV2	107	0.31	-0.46	0.25	0.41
AIL	EDV3	182	0.40	-0.37	0.34	0.41
	KOV5		0.64	-0.12	0.51	0.45
	OBS		0.33		0.44	
ETE	EDV2	970	0.79	0.46	0.90	0.71
EIE	EDV3	870	0.89	0.56	1.07	0.73
	KOV5		0.69	0.35	0.71	0.71
	OBS		0.10		0.11	
ICO	EDV2	5 <i>55</i>	0.28	0.17	0.27	0.40
120	EDV3	222	0.27	0.16	0.26	0.40
	KOV5		0.26	0.16	0.26	0.41

Species	Туре	Ν	Mean	Bias	σ	R
	OBS		101.6		17.1	
0	EDV2	5(0)	63.5	-38.1	14.3	0.10
O_3	EDV3	560	60.2	-41.3	13.7	0.06
	KOV5		62.4	-39.2	14.1	0.11
	OBS		3.46		5.07	
NO	EDV2	557	4.88	1.43	4.75	0.26
NO_2	EDV3	337	8.09	4.63	6.34	0.30
	KOV5		4.79	1.34	4.79	0.28
	OBS		302		102	
CO	EDV2	570	148	-153	49	0.51
CO	EDV3	578	157	-145	37	0.59
	KOV5		142	-159	34	0.61
НСНО	OBS		4.04		2.48	
	EDV2	570	2.25	-1.79	1.06	0.41
	EDV3	579	2.18	-1.86	1.02	0.39
	KOV5		2.49	-1.55	1.19	0.44
	OBS		2.65		2.36	
тоі	EDV2	120	0.47	-2.18	0.35	0.13
IOL	EDV3	150	0.50	-2.15	0.35	0.09
	KOV5		1.17	-1.48	0.81	-0.06
	OBS		1.20		1.01	
VVI	EDV2	20	0.11	-1.10	0.09	0.01
AIL	EDV3	30	0.14	-1.06	0.10	0.03
	KOV5		0.17	-1.03	0.21	-0.42
	OBS		2.08		4.64	
ETE	EDV2	255	0.53	-1.55	0.50	0.05
LIL	EDV3	255	0.59	-1.49	0.48	0.06
	KOV5		0.75	-1.33	0.64	0.10
	OBS		0.06		0.06	
ISO	EDV2	101	0.06	0.00	0.06	-0.17
130	EDV3	101	0.09	0.04	0.09	-0.10
	KOV5		0.06	0.00	0.06	-0.13

Table S10. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in the Chungnam region under 2 km height for the KORUS-AQ campaign period (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S11. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, and HCHO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height for the KORUS-AQ campaign period (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Species	Case	Туре	Ν	Mean	Bias	σ	R
		OBS		81.2		15.3	
	Local	EDV2	1125	65.2	-15.9	13.4	0.66
	(5/4,20,6/2,3)	EDV3	1123	65.2	-16.0	12.8	0.59
0		KOV5		62.6	-18.5	11.5	0.70
03		OBS		95.6		19.1	
	Transport	EDV2	605	87.3	-8.3	13.8	0.64
	(5/25,26,31)	EDV3	005	93.1	-2.5	16.0	0.67
		KOV5		84.8	-10.8	14.3	0.69
		OBS		2.62		4.92	
NO. –	Local	EDV2	1066	2.57	-0.05	3.45	0.63
	(5/4,20,6/2,3)	EDV3	1000	3.51	0.89	4.39	0.67
		KOV5		2.34	-0.28	3.62	0.67
NO ₂		OBS		1.28		3.60	
	Transport (5/25,26,31)	EDV2	501	1.89	0.61	4.45	0.85
		EDV3	391	2.34	1.06	5.02	0.83
		KOV5		1.67	0.39	4.47	0.86
	Local (5/4,20 , 6/2,3)	OBS		214		61.7	
		EDV2	1225	130	-83	24.9	0.64
		EDV3	1223	137	-77	27.7	0.64
CO		KOV5		131	-83	25.0	0.67
CO		OBS		345		128.5	
	Transport	EDV2	651	209	-136	60.7	0.59
	(5/25,26,31)	EDV3	031	209	-135	61.6	0.58
		KOV5		201	-143	57.7	0.58
		OBS		2.43		1.82	
	Local	EDV2	1177	1.70	-0.73	0.86	0.49
	(5/4,20,6/2,3)	EDV3	11//	1.72	-0.71	0.84	0.48
исио		KOV5		1.78	-0.65	0.96	0.54
neno		OBS		1.70		1.08	
	Transport	EDV2	605	1.32	-0.38	0.72	0.74
	(5/25,26,31)	EDV3	005	1.36	-0.34	0.71	0.73
		KOV5		1.21	-0.49	0.69	0.72

Table S12. Comparison of the aircraft-based 1-minuite-interval TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height. TOL, XYL, ETE, and ISO are defined in regional atmospheric chemical model (RACM) and compared with WAS based on Table S8 (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Species	Case	Туре	Ν	Mean	Bias	σ	R
		OBS		1.67		1.40	
	Local	EDV2	170	0.35	-1.32	0.25	0.22
	(5/4,20,6/2,3)	EDV3	1/0	0.42	-1.25	0.35	0.19
TOL —		KOV5		1.14	-0.53	1.00	0.03
		OBS		1.99		1.48	
	Transport	EDV2	70	0.49	-1.50	0.37	0.54
	(5/25,26,31)	EDV3	12	0.59	-1.41	0.50	0.55
		KOV5		1.64	-0.35	1.42	0.57
		OBS		0.76		0.85	
	Local	EDV2	77	0.13	-0.63	0.17	0.21
	(5/4,20,6/2,3)	EDV3	//	0.18	-0.58	0.24	0.23
XYL –		KOV5		0.26	-0.50	0.40	0.15
		OBS	30	0.70		0.42	
	Transport (5/25,26,31)	EDV2		0.28	-0.42	0.22	0.23
		EDV3		0.37	-0.33	0.30	0.24
		KOV5		0.60	-0.10	0.48	0.19
	Local (5/4,20 , 6/2,3)	OBS		0.75		2.78	
		EDV2	535	0.44	-0.30	0.51	-0.01
		EDV3		0.52	-0.23	0.66	0.02
FTF		KOV5		0.49	-0.26	0.49	0.09
		OBS		0.24		0.38	
	Transport	EDV2	200	0.37	0.13	0.60	0.65
	(5/25,26,31)	EDV3	290	0.39	0.15	0.70	0.65
		KOV5		0.31	0.06	0.51	0.65
		OBS		0.08		0.09	
	Local	EDV2	352	0.16	0.07	0.20	0.32
	(5/4,20,6/2,3)	EDV3	552	0.17	0.09	0.20	0.31
150		KOV5		0.16	0.07	0.20	0.34
150		OBS		0.10		0.10	
	Transport	EDV2	76	0.18	0.08	0.19	0.56
	(5/25,26,31)	EDV3	70	0.19	0.08	0.18	0.58
		KOV5		0.17	0.06	0.17	0.55

Table S13. Comparison of the aircraft-based 1-minuite-interval O₃, NO₂, CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV3_Ch2, EDV3_Ko2, and EDV3_ChKo2 in each case. The sampling number (N), mean, mean bias compared to DC-8 observations, standard deviations (σ), and correlation coefficient (R) with observations are presented (unit = ppb).

Species	Case	Туре	Ν	Mean	Bias	σ	R
	Local	EDV3_Ch2		68.5	-12.7	12.3	0.62
	(5/4,20,	EDV3_Ko2	1125	69.6	-11.6	14.7	0.66
0.	6/2,3)	EDV3_ChKo2		72.3	-8.9	14.3	0.68
03	Transport	EDV3_Ch2		111.0	15.4	23.4	0.65
	(5/25, 26, 6/1)	EDV3_Ko2	605	94.8	-0.9	15.8	0.68
	(3/23,20,0/1)	EDV3_ChKo2		112.6	17.0	23.1	0.66
NO ₂	Local	EDV3_Ch2		3.30	0.68	4.31	0.68
	(5/4,20,	EDV3_Ko2	1066	3.11	0.50	3.97	0.67
	6/2,3)	EDV3_ChKo2		3.05	0.44	3.95	0.67
	Transport	EDV3_Ch2		2.09	0.81	4.75	0.83
	(5/25.26.6/1)	EDV3_Ko2	591	1.90	0.62	4.30	0.83
	(0,20,20,0,1)	EDV3_ChKo2		1.92	0.64	4.17	0.84
CO	Local	EDV3_Ch2		158	-56	43	0.68
	(5/4,20,	EDV3_Ko2	1225	155	-59	42	0.56
	6/2,3)	EDV3_ChKo2		176	-38	53	0.65
	Transport (5/25,26, 6/1)	EDV3_Ch2	651	331	-13	122	0.56
		EDV3_K02	651	217	-128	63	0.58
		EDV3_ChK02		339	-6	122	0.56
НСНО		EDV3_Ch2	1177	1.82	-0.61	0.8/	0.4/
	(5/4,20,	EDV3_K02 EDV2_ChVa2	11//	2.03	-0.40	1.18	0.51
	0/2,5)	EDV3_ChK02		2.13	-0.30	1.1/	0.51
	Transport	EDV3_Cn2 EDV2_Ke2	(05	1./8	0.08	0.98	0.69
	(5/25,26,6/1)	EDV3_K02 EDV3_ChVa3	003	1.31	-0.19	1.10	0.70
	Logal	EDV <u>5</u> CIIK02 EDV3 Ch2		0.46	2.24	0.40	0.72
	(5/4 20	EDV3_CH2 FDV3_Ko2	170	0.40	-2.33	0.40	0.09
	(5/4,20, 6/2,3)	EDV3_K02 FDV3_ChKo2	170	0.79	-2.04	0.65	0.23
TOL	Transport (5/25,26, 6/1)	EDV3_ChR02		0.75	-2.00	0.05	0.10
TOL		EDV3_Cn2 EDV3_Ko2	72	1.05	-1.84	0.40	0.50
		EDV3 ChKo2	12	1.05	-1.75	0.90	0.55
	Local	EDV3 Ch2		0.19	-0.64	0.25	0.17
	(5/4.20)	EDV3 Ko2	77	0.30	-0.53	0.42	0.26
	6/2,3)	EDV3 ChKo2		0.31	-0.52	0.42	0.23
XYL		EDV3 Ch2		0.35	-0.43	0.30	0.22
	Transport	EDV3 Ko2	30	0.64	-0.13	0.53	0.25
	(5/25, 26, 6/1)	EDV3 ChKo2		0.61	-0.17	0.53	0.23
	Local	EDV3_Ch2		0.62	-0.13	0.92	0.00
	(5/4,20,	EDV3_Ko2	535	0.77	0.02	1.00	0.02
ETE	6/2,3)	EDV3_ChKo2		0.87	0.12	1.17	0.00
EIE	Tuananant	EDV3_Ch2		0.51	0.26	0.69	0.65
	(5/25/26 6/1)	EDV3_Ko2	290	0.63	0.39	1.26	0.66
	(5/25,20,0/1)	EDV3_ChKo2		0.74	0.50	1.22	0.67
	Local	EDV3_Ch2		0.17	0.08	0.20	0.32
	(5/4,20,	EDV3_Ko2	352	0.15	0.07	0.17	0.33
150	6/2,3)	EDV3_ChKo2		0.15	0.06	0.17	0.33
150	Transnort	EDV3_Ch2		0.16	0.06	0.16	0.57
	1 ransport	EDV3_Ko2	76	0.15	0.05	0.15	0.57
	(3,23,20,0,1)	EDV3_ChKo2		0.14	0.03	0.14	0.55

	Emissions	NCP	SCG	YRD	PRD	KOR	NEC	NOC	SEC
	EDV3	-1%	68%	-6%	23%	-3%	-13%	-1%	75%
O3 bias (%)	C1	38%	103%	42%	53%	21%	3%	10%	111%
	C2	38%	103%	41%	52%	13%	2%	10%	111%
	C3	-1%	68%	-5%	23%	6%	-12%	-1%	76%
	C4	23%	63%	29%	49%	-5%	-10%	7%	80%
	C5	-23%	50%	-31%	7%	-11%	-22%	-6%	54%
	C6	9%	53%	9%	36%	-10%	-16%	4%	68%
	C7	20%	42%	32%	52%	-10%	-15%	7%	65%
	EDV3	24%	-12%	78%	63%	-5%	-18%	-11%	15%
	C1	13%	-19%	63%	54%	-9%	-20%	-13%	2%
	C2	13%	-19%	63%	54%	-5%	-20%	-13%	2%
NO ₂	C3	23%	-12%	78%	63%	-8%	-18%	-11%	15%
(%)	C4	-41%	-57%	-14%	-17%	-6%	-25%	-56%	-46%
	C5	28%	-9%	83%	67%	-6%	-15%	-10%	22%
	C6	-38%	-55%	-7%	-12%	-7%	-25%	-55%	-43%
	C7	-72%	-78%	-61%	-61%	-8%	-28%	-78%	-74%
	EDV3	6%	45%	20%	36%	-3%	-14%	-3%	59%
	C1	31%	68%	48%	53%	11%	-3%	5%	82%
	C2	31%	68%	48%	53%	7%	-3%	5%	81%
Ox bias	C3	6%	45%	21%	36%	1%	-14%	-3%	59%
bias (%)	C4	5%	29%	16%	28%	-5%	-14%	-6%	46%
	C5	-9%	33%	4%	26%	-9%	-21%	-7%	45%
	C6	-4%	22%	4%	21%	-9%	-18%	-9%	38%
	C7	-6%	8%	3%	16%	-9%	-18%	-11%	27%

Table S14. Comparison of relative O_3 , NO_2 , and $Ox (= NO_2 + O_3)$ biases with perturbed emissions based on EDGAR-HTAP v3, which is (Model – Observation)/Observation.

C1: EDV3_ChKo2, EDGAR-HTAP v3 with double CO and VOC emissions in China and South Korea.

C2: EDV3_Ch2, EDGAR-HTAP v3 with double CO and VOC emissions in China.

C3: EDV3_Ko2, EDGAR-HTAP v3 with double CO and VOC emissions in South Korea.

C4: EDV3_Ch0.5NOx, EDGAR-HTAP v3 with 50% reduction of NOx emission in China.

C5: EDV3_Ch0.5VOC, EDGAR-HTAP v3 with 50% reduction of VOC emission in China.

C6: EDV3_Ch0.5NOxVOC, EDGAR-HTAP v3 with 50% reductions of NOx and VOC emissions in China.

	Emissions	NCP	SCG	YRD	PRD	KOR	NEC	NOC	SEC
O3 bias (ppb)	EDV3	-0.5	23.6	-2.4	6.4	-1.2	-5.2	-0.3	19.6
	C1	16.9	35.5	16.0	14.7	8.9	1.1	4.4	29.0
	C2	16.7	35.5	15.7	14.6	5.2	1.0	4.4	28.9
	C3	-0.3	23.6	-2.0	6.5	2.6	-5.1	-0.3	19.8
	C4	10.2	21.9	11.2	13.6	-2.0	-4.2	3.2	21.0
	C5	-10.3	17.3	-11.9	2.0	-4.5	-9.1	-2.6	14.1
	C6	3.9	18.2	3.5	10.2	-4.2	-6.4	1.7	17.7
	C7	9.0	14.6	12.3	14.5	-4.2	-6.0	2.9	17.0
	EDV3	4.1	-1.6	13.4	8.2	-1.2	-2.4	-1.3	1.4
	C1	2.4	-2.6	10.8	6.9	-2.0	-2.7	-1.6	0.2
	C2	2.4	-2.6	10.8	6.9	-1.1	-2.7	-1.6	0.2
NO2	C3	4.1	-1.6	13.4	8.2	-1.9	-2.4	-1.3	1.4
(ppb)	C4	-7.2	-7.8	-2.5	-2.2	-1.5	-3.4	-6.6	-4.4
	C5	4.9	-1.2	14.2	8.6	-1.3	-2.1	-1.2	2.1
	C6	-6.6	-7.5	-1.2	-1.6	-1.6	-3.4	-6.6	-4.1
	C7	-12.7	-10.8	-10.5	-7.9	-1.8	-3.8	-9.3	-7.1
	EDV3	3.6	22.0	11.1	14.6	-2.2	-7.6	-1.7	21.0
	C1	19.3	32.9	26.8	21.6	7.1	-1.5	2.7	29.2
	C2	19.1	32.9	26.5	21.5	4.3	-1.6	2.7	29.1
Ox bias	C3	3.8	22.0	11.4	14.6	0.8	-7.4	-1.7	21.2
(ppb)	C4	3.0	14.1	8.8	11.3	-3.4	-7.6	-3.4	16.4
	C5	-5.3	16.2	2.3	10.6	-5.6	-11.2	-3.8	16.2
	C6	-2.7	10.6	2.3	8.5	-5.7	-9.8	-4.8	13.4
	C7	-3.7	3.8	1.9	6.6	-5.9	-9.7	-6.3	9.8

Table S15. Comparison of absolute O_3 , NO_2 , and $Ox (= NO_2 + O_3)$ biases with perturbed emissions based on EDGAR-HTAP v3, which is (Model – Observation).

C1: EDV3_ChKo2, EDGAR-HTAP v3 with double CO and VOC emissions in China and South Korea.

C2: EDV3_Ch2, EDGAR-HTAP v3 with double CO and VOC emissions in China.

C3: EDV3_Ko2, EDGAR-HTAP v3 with double CO and VOC emissions in South Korea.

C4: EDV3_Ch0.5NOx, EDGAR-HTAP v3 with 50% reduction of NOx emission in China.

C5: EDV3_Ch0.5VOC, EDGAR-HTAP v3 with 50% reduction of VOC emission in China.

C6: EDV3_Ch0.5NOxVOC, EDGAR-HTAP v3 with 50% reductions of NOx and VOC emissions in China.

Table S16. Comparison of relative O_3 , NO_2 , and $Ox (= NO_2 + O_3)$ biases with perturbed emissions based on EDGAR-HTAP v3, which is (Model – Observation)/Observation in each city; Beijing (39.4-41.1N, 115.4-117.5E), Tianjin (38.55-40.25N, 116.7-118.1E), Chengdu (30.05-31.5N, 103-105E), Chongqing (28.15-32.25N, 105.3-110.2E), Shanghai (30.7-31.5N, 120.85-122E), Hangzhou (29.2-30.6N, 118.3-120.9E), Nanjing (31.2-32.65N, 118.35-119.25E), Guangzhou (22.55-24N, 112.9-114.05E), Shenzhen (22.4-22.9N, 113.7-114.65E), SMA (37.2-37.8N, 126.5-127.3E), Wuhan (29.95-31.4N, 113.65-115.1E), and Xian (33.65-34.75N, 107.65-109.9E).

	Emissions	Beijing	Tianjin	Chengdu	Chongqing	Shanghai	Hangzhou	Nanjing	Guangzhou	Shenzhen	SMA ¹⁾	Wuhan	Xian
	EDV3	-6%	-9%	55%	68%	-24%	27%	-13%	15%	16%	-12%	-1%	34%
O3 bias (%)	C1	39%	36%	86%	107%	20%	81%	36%	51%	38%	19%	47%	69%
	C2	39%	36%	86%	107%	19%	81%	35%	51%	38%	6%	46%	69%
	С3	-5%	-8%	55%	68%	-23%	28%	-13%	15%	17%	0%	-1%	34%
	C4	22%	26%	48%	70%	16%	53%	28%	49%	42%	-14%	31%	49%
	C5	-32%	-33%	38%	48%	-45%	-4%	-37%	-4%	4%	-21%	-25%	16%
	C6	5%	8%	38%	57%	-4%	33%	7%	33%	33%	-20%	12%	37%
	C7	18%	29%	27%	50%	27%	45%	37%	56%	49%	-20%	30%	41%
NO ₂	EDV3	22%	30%	-23%	6%	112%	28%	126%	64%	73%	-2%	103%	-7%
	C1	5%	19%	-31%	-1%	108%	7%	122%	55%	68%	-4%	96%	-15%
	C2	5%	19%	-31%	-1%	108%	7%	122%	55%	68%	0%	96%	-15%
	C3	22%	30%	-23%	6%	112%	28%	126%	64%	73%	-5%	103%	-7%
(%)	C4	-47%	-39%	-63%	-48%	11%	-44%	21%	-16%	-10%	-3%	2%	-56%
	C5	30%	33%	-18%	8%	109%	39%	122%	67%	75%	-3%	102%	-4%
	C6	-41%	-35%	-61%	-45%	17%	-37%	26%	-9%	-8%	-4%	7%	-53%
	C7	-76%	-72%	-82%	-74%	-49%	-75%	-42%	-61%	-56%	-5%	-51%	-79%
	EDV3	1%	4%	36%	48%	17%	28%	31%	33%	33%	-7%	30%	20%
	C1	30%	31%	57%	73%	46%	57%	63%	52%	47%	9%	62%	40%
	C2	30%	31%	57%	73%	46%	56%	63%	52%	47%	4%	62%	40%
Ox	С3	2%	4%	36%	48%	17%	28%	31%	33%	33%	-1%	30%	20%
(%)	C4	3%	5%	21%	33%	14%	21%	26%	24%	27%	-8%	23%	12%
	C5	-16%	-12%	25%	35%	1%	11%	13%	23%	25%	-13%	13%	9%
	C6	-8%	-6%	14%	25%	2%	10%	13%	17%	21%	-12%	11%	5%
	C7	-8%	-4%	1%	11%	4%	5%	12%	12%	18%	-13%	7%	-1%

¹⁾Seoul Metropolitan Area

C1: EDV3_ChKo2, EDGAR-HTAP v3 with double CO and VOC emissions in China and South Korea.

C2: EDV3_Ch2, EDGAR-HTAP v3 with double CO and VOC emissions in China.

C3: EDV3_Ko2, EDGAR-HTAP v3 with double CO and VOC emissions in South Korea.

C4: EDV3_Ch0.5NOx, EDGAR-HTAP v3 with 50% reduction of NOx emission in China.

C5: EDV3_Ch0.5VOC, EDGAR-HTAP v3 with 50% reduction of VOC emission in China.

C6: EDV3_Ch0.5NOxVOC, EDGAR-HTAP v3 with 50% reductions of NOx and VOC emissions in China.

	Emissions	Beijing	Tianjin	Chengdu	Chongqing	Shanghai	Hangzhou	Nanjing	Guangzhou	Shenzhen	SMA ¹⁾	Wuhan	Xian
O3 bias (ppb)	EDV3	-2.8	-3.9	23.1	21.2	-10.1	9.2	-4.6	3.9	4.9	-4.3	-0.4	12.1
	C1	18.9	15.5	35.7	33.4	8.4	27.4	12.3	13.6	11.3	6.9	16.7	24.7
	C2	18.7	15.2	35.7	33.4	8.0	27.2	12.2	13.5	11.2	2.3	16.7	24.7
	C3	-2.6	-3.5	23.1	21.2	-9.7	9.5	-4.4	4.0	5.0	0.2	-0.3	12.2
	C4	10.4	11.1	19.9	21.8	6.8	18.1	9.8	13.0	12.5	-5.1	11.1	17.6
	C5	-15.5	-14.0	16.0	15.0	-18.9	-1.4	-12.7	-1.2	1.3	-7.8	-8.9	5.7
	C6	2.2	3.6	15.9	17.8	-1.8	11.1	2.3	8.8	9.9	-7.3	4.2	13.1
	C7	8.5	12.4	11.4	15.7	11.3	15.0	12.9	15.0	14.5	-7.4	10.7	14.7
	EDV3	3.9	6.0	-3.1	0.9	20.1	4.9	20.0	10.3	8.9	-0.5	15.4	-1.4
	C1	0.9	4.0	-4.2	-0.2	19.3	1.3	19.4	8.9	8.4	-1.2	14.3	-2.9
	C2	0.9	4.0	-4.2	-0.2	19.3	1.3	19.4	8.9	8.4	0.0	14.3	-2.9
NO ₂	С3	3.9	6.0	-3.1	0.9	20.1	4.8	20.0	10.3	8.9	-1.5	15.4	-1.4
bias (ppb)	C4	-8.3	-8.0	-8.5	-6.9	1.9	-7.5	3.3	-2.5	-1.3	-1.0	0.4	-11.0
	C5	5.4	6.8	-2.5	1.2	19.6	6.7	19.3	10.9	9.1	-1.1	15.3	-0.9
	C6	-7.3	-7.1	-8.2	-6.6	3.1	-6.4	4.1	-1.5	-1.0	-1.4	1.0	-10.4
	C7	-13.5	-14.7	-11.0	-10.7	-8.8	-12.8	-6.6	-9.8	-6.9	-1.6	-7.6	-15.5
	EDV3	1.0	2.2	20.1	21.9	10.0	14.2	15.4	14.1	13.8	-4.6	15.2	10.8
	C1	19.7	19.5	31.6	33.1	27.7	28.7	31.7	22.3	19.7	6.0	31.3	21.9
	C2	19.5	19.2	31.6	33.1	27.3	28.6	31.5	22.3	19.6	2.6	31.2	21.9
Ox	С3	1.2	2.5	20.1	22.0	10.5	14.4	15.6	14.2	13.9	-1.0	15.3	10.8
(ppb)	C4	1.9	3.2	11.4	14.9	8.7	10.7	13.0	10.4	11.3	-5.8	11.7	6.7
	C5	-10.2	-7.2	13.5	16.1	0.7	5.4	6.6	9.6	10.4	-8.6	6.6	4.9
	C6	-5.3	-3.5	7.7	11.2	1.2	4.8	6.4	7.2	8.9	-8.4	5.5	2.7
	C7	-5.2	-2.2	0.4	5.0	2.5	2.3	6.2	5.1	7.7	-8.8	3.5	-0.7

Table S17. Same as Table S16 except absolute biases (Model-Observation, unit=ppb).

¹⁾Seoul Metropolitan Area

C1: EDV3_ChKo2, EDGAR-HTAP v3 with double CO and VOC emissions in China and South Korea.

C2: EDV3_Ch2, EDGAR-HTAP v3 with double CO and VOC emissions in China.

C3: EDV3_Ko2, EDGAR-HTAP v3 with double CO and VOC emissions in South Korea.

C4: EDV3_Ch0.5NOx, EDGAR-HTAP v3 with 50% reduction of NOx emission in China.

C5: EDV3_Ch0.5VOC, EDGAR-HTAP v3 with 50% reduction of VOC emission in China.

C6: EDV3_Ch0.5NOxVOC, EDGAR-HTAP v3 with 50% reductions of NOx and VOC emissions in China.

Figure S1. Comparison of the model surface MDA8 O₃ using EDGAR-HTAP v3 between with (EDV3_Fire) and without fire emissions (EDV3) at China surface observation sites during the whole campaign period (KORUS-AQ). (a) and (b) are absolute and relative differences between EDV3 and EDV3_Fire (EDV3_Fire – EDV3) respectively. The boxes represent Northern China (NOC, 38-42°N/106-110°E), Sichuan-Chongqing-Guizhou (SCG, 27-33°N/103-109°E), Pearl River Delta (PRD, 21.5-24°N/112-115.5°E), Southeastern China (SEC, 24-28°N/116-120°E), Yangtze River Delta (YRD, 30-33°N/119-122°E), South Korea (KOR, 34.5-38°N/126-130°E), North China Plain (NCP, 34-41°N/113-119°E), and Northeastern China (NEC, 43-47°N/124-130°E). NOC, NEC, and SEC are denoted by blue boxes (non-urban). NCP, SCG, PRD, YRD, and KOR are denoted by red boxes (urban).

Figure S2. Diurnal emission factors of VOC and NO_x .

Figure S3. Relative ISO (isoprene) emission change from the temperature bias at the surface (unit = %).

Figure S4. Averaged surface temperature (unit: °C) and relative humidity (unit: %) from (a, d) ground-based observations (SYNOP) and (b, e) the weather research and forecast (WRF) model coupled with chemistry (WRF-Chem) from 1st May to 10th June for each station and countries. The differences and correlation coefficients between averaged observations and WRF-Chem are shown (c, f).

Figure S5. Comparison of PBL heights derived from the ceilometer at Yonsei University $(37.564^{\circ}N, 126.935^{\circ}E)$ with the WRF-Chem results during the KORUS-AQ campaign period: (a) time series of planetary boundary layer height from ceilometer and WRF-Chem (unit = m), (b) scatter plot of which x axis is ceilometer and y axis is WRF-Chem PBL height, (c) comparison of diurnal variations of PBL heights from ceilometer (grey) and WRF-Chem (red) with box whisker plot.

Figure S6. Correlation coefficient (R) between observed and simulated (a-c) MDA8 O_3 and (d-f) hourly O_3 with (a, d) EDV2, (b, e) EDV3, and (c, f) KOV5 emissions. The observation sites with R greater than 0.6 are indicated by a black circle.

Figure S7. Simulated surface (a-c) NO₂ and (d-f) HCHO concentrations and (g-i) HCHO to NO₂ ratio (FNR) with (a, d, g) EDV2, (b, e, h) EDV3, and (c, f, i) KOV5 emissions for 14-16 LST. FNR greater than 1 is marked with black circles. The simulated NO₂, HCHO, and FNR are linearly interpolated to ground-based observation sites.

Figure S8. The same as Figure 3 except $Ox (= NO_2 + O_3)$.

Figure S9. The same as Figure 4 except $Ox (= NO_2 + O_3)$.

Figure S10. The DC-8 flight tracks on the 22nd May and 5th June.

Figure S11. Vertically averaged (a) O_3 and (b) CO from DC-8 (black), EDV2 (sky blue), EDV3 (blue), EDV3 with double CO emission in China (EDV3 Ch2CO) (blue dashed) and KOV5 (red) 3 in SMA under 2 km height above ground level. The 1/2 of standard deviations are represented with black whiskers in each 200m layer. The sample number is presented with magenta color on the right side of the plots.

Figure S12. The DC-8 flight tracks on the 4th, 20th May and 2nd, 3rd June (Local case).

Figure S13. The DC-8 flight tracks on the 22nd, 27th, 31st May (Transport case).

Figure S14. The contribution of Chinese emissions (%) to daily surface O₃ concentrations at Olympic Park obtained from the EDV3 simulations with/without Chinese anthropogenic emissions.

Figure S15. Vertically averaged O_3 from DC-8 (black), EDV2 (sky blue), EDV3 (blue), KOV5 (red), EDV3 with doubling Chinese CO and VOC emissions (dashed blue), EDV3 with doubling Korean CO and VOC emissions (dotted blue), and EDV3 with doubling Chinese and Korean CO and VOC emissions (dotted dashed blue) in Yellow Sea under 2 km height above ground level. The 1/2 of standard deviations are represented with whiskers in each 200m layer, The sample number is presented with magenta color on the right side of the plots.

Figure S16. Same as Figure 14 except that NO₂ is changed to $Ox (= NO_2 + O_3)$.

Figure S17. Same as Figure 15 except that NO₂ is changed to $Ox (= NO_2 + O_3)$.

References

- Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: Development and first applications, *Atmos. Environ.*, 32, 2981-2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998.
- Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Meagher, J., Hsie, E.-Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, *J. Geophys. Res. Atmos.*, 117, D06301, https://doi.org/10.1029/2011JD016831, 2012.
- Carter, W. P.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Contract, 92, 95–308, https://intra.engr.ucr.edu/~carter/pubs/s99doc.pdf (last access: 9 June 2023), 2000.
- Chen, S.-H. and Sun, W.-Y.: A one-dimensional time dependent cloud model, *J. Meteorol. Soc. Japan*, 80, 99-118, https://doi.org/10.2151/jmsj.80.99, 2002.
- Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version4(MOZART-4), *Geosci. Model Dev.*, 3, 43-67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
- Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, *Geophys. Res. Lett.*, 29, 38-1-38-4, https://doi.org/10.1029/2002GL015311, 2002.
- Grell, G. A.: Prognostic evaluation of assumptions used by cumulus parameterizations, *Mon. Weather Rev.*, 121, 764-787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
- Hong, S.-Y. and Noh, Y.: A new vertical diffusion package with an explicit treatment of entrainment processes, *Mon. Weather Rev.*, 134, 2318–2341, https://doi.org/10.1175/MWR3199.1. 2006.
- Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zheng, J. M., Wahner, A., Zhu, T., Zhang, T. H., and Rohrer, F.: Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO₂ concentrations in summer 2006, *Atmos. Chem. Phys.*, 13, 1057-1080, doi.org/10.5194/acp-13-1057-2013, 2013.

- Madronich, S.: Photodissociation in the Atmosphere, 1, actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. Atmos., 92, 9740–9752. https://doi.org/10.1029/JD092iD08p09740, 1987.
- Stockwell, W. R., Kirchner, F., and Kuhn, M.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res. Atmos., 102, 25847-25879, https://doi.org/10.1029/97JD00849, 1997.
- Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and Cuenca, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model, 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15, 2004.